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Abstract—Analog-to-digital converters (ADCs) allow physical
signals to be processed using digital hardware. Their conversion
consists of two stages: Sampling, which maps a continuous-time
signal into discrete-time, and quantization, i.e., representing the
continuous-amplitude quantities using a finite number of bits.
ADCs typically implement generic uniform conversion mappings
that are ignorant of the task for which the signal is acquired, and can
be costly when operating in high rates and fine resolutions. In this
work we design task-oriented ADCs which learn from data how to
map an analog signal into a digital representation such that the sys-
tem task can be efficiently carried out. We propose a model for sam-
pling and quantization that facilitates the learning of non-uniform
mappings from data. Based on this learnable ADC mapping, we
present a mechanism for optimizing a hybrid acquisition system
comprised of analog combining, tunable ADCs with fixed rates, and
digital processing, by jointly learning its components end-to-end.
Then, we show how one can exploit the representation of hybrid
acquisition systems as deep networks to optimize the sampling
and quantization rates given the task by utilizing Bayesian meta-
learning techniques. We evaluate the proposed deep task-based
ADC in two case studies: the first considers synthetic multi-variate
symbol detection, where multiple analog signals are simultaneously
acquired in order to recover a set of discrete symbols. The second
application is beamforming of analog channel data acquired in
ultrasound imaging. Our numerical results demonstrate that the
proposed approach achieves performance which is comparable to
operating with high sampling rates and fine resolution quantiza-
tion, while operating with reduced overall bit rate. For instance,
we demonstrate that deep task-based ADCs enable accurate re-
construction of ultrasound images while using 12.5% of the overall
number of bits used by conventional ADCs.

Index Terms—Analog-to-digital conversion, deep learning,
sampling, quantization.
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I. INTRODUCTION

AMULTITUDE of electronic systems process physical sig-
nals using digital hardware. Digital signal processors rep-

resent analog quantities as a set of bits using analog-to-digital
conversion. Converting a continuous-time (CT) signal taking
continuous-amplitude values into a finite-bit representation
consists of two steps: The analog signal is first sampled into
a discrete-time process, which is then quantized into discrete-
amplitude values, such that it can be digitally processed [2].

The acquisition of analog signals is commonly carried out
using scalar analog-to-digital convertors (ADCs) [3]. These
devices sample the CT signal in uniformly spaced time-instances
and obtain a digital representation using a uniform mapping
of the real line. While this acquisition strategy is simple to
implement, it is limited in its ability to accurately represent sig-
nals in digital [4], especially when operating under constrained
sampling rate and low quantization resolution, due to, e.g., cost,
power, or memory constraints. Furthermore, this procedure is
carried out regardless of the task for which the analog signal is
acquired into a digital representation.

In practice, analog signals are often acquired in order to extract
some underlying information, namely, for a task other than
recovering the analog process. One example is multiple-input
multiple-output (MIMO) communications receivers, which re-
cover a transmitted discrete message from their observed chan-
nel output. MIMO receivers typically operate under strict power
and cost constraints, which are particularly relevant when op-
erating in high frequency bands [5]. Another relevant example
is ultrasound imaging, where large amounts of analog channel
data are acquired to form an image, which notably affects the
hardware cost and complexity [6]. While designing energy effi-
cient uniform ADCs is an on-going area of research [7], [8], [9],
[10], a natural approach to relieve the effects of high resolution
acquisition is to restrict the sampling rate and quantization
resolution of the ADCs.

When acquiring for a specific task, it was shown in [11], [12],
[13], [14], [15], [16], [17], [18], [19] that the distortion induced
by sample and bit limitations can be notably reduced by account-
ing for the task in acquisition. In particular, the works [11], [12],
[13] analytically designed task-based quantization systems for
estimation tasks by introducing analog processing and tuning
the quantization rule, assuming ideal (Nyquist rate) samplers;
A data-driven approach for designing task-based quantizers
under generic setups was considered in [14], which utilized
machine learning (ML) tools. The works [15], [16] also used
ML to learn sampling mechanisms assuming error-free quanti-
zation, while [17] and [18] analytically designed samplers for
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maximizing capacity in MIMO systems and for audio classi-
fication, respectively. However, none of these works study the
full acquisition process. For acquisition involving both sampling
and quantization, [19] studied the analytical design of hybrid
analog/digital acquisition systems with uniform ADCs for re-
covering linear functions of their observations. The analysis
of joint sampling and quantization systems was considered
in [20], [21], which focused on complex source coding instead
of scalar quantization, and derived bounds on the reconstruction
accuracy in the absence of a task. The works [22], [23] designed
acquisition systems with non-uniform sampling and one-bit
ADC for MIMO receivers. The design of acquisition systems
with possibly non-uniform ADCs for a (possibly analytically
intractable) task, has not yet been studied.

In this work we propose a task-based acquisition system
utilizing scalar ADCs for signals obeying a finite basis expansion
model. As analytically deriving task-based methods is difficult
and commonly requires imposing a limited structure, such as
assuming uniform ADC mappings and linear operations [11],
[13], [19], we adopt a data-driven approach. We design the
system to learn its sampling and quantization mappings along
with its analog and digital processing from training data, such
that it can reliably carry out its task. A major challenge in design-
ing ML-based ADCs and incorporating such devices into deep
neural networks (DNNs), stems from the continuous-to-discrete
nature of sampling and quantization: These operations are either
non-differentiable or nullify the gradient [14], [15], limiting the
application of conventional training based on backpropagation.
To overcome this, we adopt a soft-to-hard approach based on gra-
dient estimation through relaxation of the discrete process [24],
also utilized in [14] for optimizing quantization mappings.
We propose a differentiable approximation of sampling, which
can be trained to learn non-uniform sampling methods, and is
combined with the trainable quantizer of [14] into a dynamic
data-driven ADC. We incorporate this adaptive ADC into a DNN
architecture resulting in a deep task-based acquisition system,
which can be trained using conventional training methods, e.g.,
stochastic gradient descent (SGD) with backpropagation.

By representing the hybrid analog/digital acquisition system
as a trainable DNN with non-conventional layers encapsulating
the sampling and quantization operations, we are also able to
optimize the parameters dictating the overall bit rate. We treat
the sampling rate, the quantization resolution, and the number
of scalar ADCs, as hyperparameters of the DNN, and propose
a meta-learning scheme to optimize these key quantities from
data. We utilize a variation of Bayesian optimization based
meta-learning [25] in order to minimize these quantities while
preserving the ability to accurately carry out the task. Our
proposed deep task-based hybrid acquisition system is evaluated
in two applications: A synthetic scenario of detection from linear
observations, and an ultrasound beamforming setup. For the first
application, we demonstrate the ability of deep task-based ADCs
to achieve comparable performance to the maximum a-posteriori
probability (MAP) estimator without quantization constraints,
and to outperform the common approach of processing only in
the digital domain with uniform ADCs. Our proposed meta-
learning scheme is shown to notably reduce the overall bit
rate without degrading performance, and in some cases even

improving the detection accuracy. For ultrasound beamforming,
we show how the conversion of analog channel data into a set
of pixels specializes a task-based acquisition setup. Then, we
demonstrate that deep task-based ADCs can use as low as 12.5%
the number of bits compared to conventional acquisition while
hardly affecting the quality of the recovered image.

The rest of this paper is organized as follows: Section II
presents the system model. Section III details the proposed
deep task-based ADC system, while Section IV presents the
Bayesian meta-learning scheme for optimizing its configura-
tion. The synthetic case study and the application to ultrasound
beamforming are discussed in Sections V and VI, respectively.
Finally, Section VII concludes the paper.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x; the ith element of x is written as (x)i. Boldface
upper-case letters denote matrices, e.g., M ; and (M)i,j is its
(i, j)th element. Finally, R and Z , sign(•) and �(•) are the
sets of real numbers, integers, sign, and Dirac delta function,
respectively.

II. TASK-BASED SIGNAL ACQUISITION SETUP

In this section we formulate the task-based acquisition setup.
We first present the system model in Subsection II-A, after which
we formulate the problem of designing such systems in a data-
driven manner in Subsection II-B.

A. System Model

The task-based acquisition setup is modeled using the hybrid
system illustrated in Fig. 1. The system consists of analog fil-
tering, analog-to-digital conversion, and digital processing. Our
goal, as detailed in Subsection II-B, is to propose a mechanism
for learning these components from data. We focus on scenarios
where a set of n analog signals {xi(t)}ni=1 are converted into a
digital representation in order to recover an unknown vector
s � Sk, referred to as the system task. The task vector s is
statistically related to the multivariate analog signal x(t) �
[x1(t), . . . xn(t)]T via a conditional distribution fx|s. Such sce-
narios represent, for example, measurements taken from sensor
arrays to detect some physical phenomenon, acoustics echos
acquired in order to form an image in ultrasound beamforming,
or channel outputs acquired by a MIMO receiver for decoding
a transmitted message.

Signal Model: We focus on the case where each of the CT
signals known to be spanned by a set ofB basis functions, i.e., for
eachxi(t) there exists a set of functions {ui,j(t)}B�1

j=0 and coeffi-

cients {�xi,j}B�1
j=0 such that xi(t) =

�B�1
j=0 �xi,jui,j(t). By defin-

ing the n× n diagonal matrix U j(t) such that (U j(t))i,i(t) �
ui,j(t) and the vector �xj � [�x0,j , . . . , �xn�1,j ]T , we can write
the multivariate signal as

x(t) =
B�1�

j=0

U j(t)�xj . (1)

The generic formulation in (1) accommodates a broad family of
signals, as exemplified next:

Example 1: Let x(t) be a set of finite rate of innovation (FRI)
signals, i.e., there exists a function u(t) and a set {�i,j} such that
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Fig. 1. Hybrid task-based acquisition system illustration. The task here is recovering a set of constellation symbols in MIMO communications.

xi(t) =
�B�1

j=0 �xi,ju(t� �i,j) [16]. Such signals are a special
case of (1), obtained by setting ui,j(t) = u(t� �i,j).

The FRI model of Example 1 represents signals encountered
in various applications. For instance, in uplink MIMO commu-
nications settings, which is the setting illustrated in Fig. 1, when
the statistical relationship fx|s represents a multipath channel,
the received signal typically follows an FRI model with u(t)
being the pulse-shaping functions [26].

Example 2: Let x(t) be a set of signals defined over a finite
time interval t � [0, P ) for some P > 0, and thus each xi(t)
can be written using its Fourier series expansion. Such signals
with finite Fourier series are a special case of (1) obtained when
ui,j(t) is the jth Fourier basis function for t � [0, P ).

Example 3: Whenx(t) is periodic with periodP > 0 and has
a finite Fourier series expansion, then it can be written via (1)
with ui,j(t) being the jth Fourier basis function �t � R.

The motivation for this model is that it allows to rigorously
express the multivariate CT signal x(t) using the nB × 1 vec-
tor x � [�xT

0 , . . . , �x
T
B�1]T , which encapsulates the information

needed to recover the task vector s.
Analog Filtering: The observed x(t) is first mapped into a set

of p CT signals {yi(t)}pi=1, representing the processing carried
out in analog. We focus on linear analog processing, in which
y(t) � [y1(t), . . . yp(t)]T is obtained fromx(t) via multivariate
filtering with a matrix impulse response G(t, �) � Rp×n, i.e.,

y(t) =
�

G(t, t� �)x(�)d�. (2)

We do not restrict the filter to be linear time-invariant (LTI)
or causal, allowing it to represent a broad range of acquisition
systems. We focus on linear operations as these are a common
model for feasible analog processing; linear analog filters were
shown to facilitate the sampling and recovery of multivariate
signals in [27], while LTI memoryless combiners are commonly
used for RF chains reduction in MIMO systems [28], [29], [30].

Based on the signal model in (1), it holds that for each t � R,
the vector y(t) is given by a linear function of x, as

y(t) =
�

G(t, t� �)
B�1�

j=0

U j(�)�xjd�

=
B�1�

j=0

��
G(t, t� �)U j(�)d�

�
�xj = �G(t)x, (3)

where �G(t) is an p× nB block-matrix comprised of a row of B
sub-matrices, i.e., �G(t) = [ �G0(t), . . . , �GB�1(t)] where the jth
submatrix is

�Gj(t) �
�

G(t, t� �)U j(�)d�. (4)

Example 4: When x(t) is periodic as in Example 3 and the
analog filter is LTI, then �Gj(t) = F{G}( 2�jP )U j(t), where
F{G}(�) is the multivariate frequency response of the filter,
and U j(t) is the jth Fourier basis as in Example 3.

Analog-to-Digital Conversion: Next, y(t) observed over the
interval t � [0, T ) is converted into a digital representation using
a set of scalar ADCs. Each signal yi(t) undergoes the same ADC
mapping, which consists of arbitrary non-uniform sampling and
quantization: Sampling is represented by the operator ��L(•),
such that zi = ��L(yi(t)) is a �L× 1 vector whose entries are

(zi)j = yi(tj), where {tj}
�L
j=1 � [0, T ), i.e.,

(��L(�(t)))j =
�

�(�)�(� � tj)d�, j � {1, . . . , �L}. (5)

The parameters {tj}
�L
j=1 determine the sampling times, which

are not restricted to represent uniform sampling. Quantization is
carried out using a continuous-to-discrete mapping Q �M : R ��
Q applied to each entry of zi, where �M = |Q| is the resolution,
i.e., it uses �log2 �M� bits. The mapping is given by (almost
everywhere on R)

Q �M (�) = a0 +
�M�1�

i=1

aisign (�� bi) . (6)

In (6), {bi} and {ai} determine the decision regions and their
assigned values, i.e., the set Q. For the special case of uniform
quantization, the difference bi � bi�1 and the values of ai are
constant, and do not depend on the decision region index i.
By defining z � [zT

1 , . . . ,zT
p ]T , the output of the ADCs is

the vector q � Qp�L whose entries are (q)l = Q �M ((z)l). The
overall number of bits used for acquisition is p • �L • �log2 �M�.

Digital Processing: The discrete vector q is processed in
digital to estimate the task vector s as �s � Sk.

B. Problem Formulation

Designing task-based acquisition systems using model-based
methods, namely, analytically setting the filter G(t, �) and the
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operators ��L(•) and Q �M (•) based on fx|s, is very difficult. Con-
sequently, previous model-based studies assumed some specific
conditional distribution fx|s with either fixed sampling rule and
uniform quantizers [11], [13], [19], or alternatively, considering
error-free quantization [17]. Furthermore, accurate knowledge
offx|s may not be available in practice. Consequently, our goal is
to design task-based acquisition systems in a data-driven fashion
using ML methods.

To formulate the setup such that it can be designed using
ML tools, which typically operate on vectors and not on CT
quantities, we restrict the sampling times {tj}, which dictate
��L(•), to be a subset of the some dense uniform grid. We divide
the observation interval [0, T ) into L sub-intervals of duration
TL = T

L , and select our sampling points from the set {lTL}L�1
l=0 .

The grid is set such that the number of samples taken by the ac-
quisition system �L is smaller, and preferably much smaller, than
the size of the dense gridL. Here, by writing the dense samples as
the vector y � [yT (0), . . . ,yT ((L� 1)TL)]T , it holds that the
input to the quantizer z consists of entries of y. Constraining the
acquisition system to sample from a discretized grid facilitates
its design using ML methods, as done in [15]. Furthermore,
by defining the Lp× nB matrix flG which is comprised of a
column ofL sub-matrices with �G(lTL) being the lth sub-matrix,
it follows from (3) that the candidate samples are expressed as

y = flGx. (7)

It is noted that the matrix may be restricted to take a given
structure, depending on the constrains imposed on the filter
G(t, �) as well as the specification of the basis functions in (1).
Accordingly, once such a structure is imposed, one can trace flG
to the setting of the CT filter G(t, �). To how such structures are
obtained, consider the following example:

Example 5: Consider FRI signals where the delays lie on
the sampling grid, such that x(t) in Example 1 can be written
with �i,j = jTL and B = L. When the analog filter is LTI, i.e.,
G(t, �) 	 G(�), it holds by (4) that

�Gj(iTL) =
�

G(iTL � �)u(� � jTL)d�

= Gconv((i� j)TL), (8)

where we define Gconv(t) as the convolution
�
G(t�

�)u(�)d� . Under the given constraints, flG is a block-Toeplitz
matrix.

The task-based acquisition system is thus required to learn to
recover s from x(t) based on a training set {s(j),x(j)}Nj=1 con-
sisting of N realizations of the densely-sampled inputs and their
corresponding task vectors. In particular, the system parameters,
i.e., the analog filter flG, sampling operator ��L(•), quantization
rule Q �M (•), and the processing of the digital vector q into �s, are
learned from training. The hybrid acquisition system is restricted
to utilize at most B bits i.e., p • �L • �log2 �M� 
 B. Once these
parameters are tuned, they can be configured into the task-based
acquisition system detailed in the previous subsection, which
operates on CT analog signals.

Fig. 2. Deep task-based analog-to-digital conversion illustration.

III. LEARNING TASK-BASED ACQUISITION

In this section we present our deep task-based acquisition
system, which learns how to map analog signals into an estimate
of the task vector. We focus here on optimizing the hybrid
acquisition system when number of ADCs p, the amount of
samples acquired �L, and the quantizer resolution �M , are fixed,
and embodied in the hyperparemeter vector � = [p, �L, log2 �M ].
The optimization of these parameter subject to an overall bit
constraint B is discussed in Section IV. We begin by detailing
the analog and digital networks in Subsection III-A. Then, in
Subsection III-B we present how ADC mappings are trained, and
discuss the resulting structure in Subsection III-C. Throughout
this section we consider generic tasks and DNN architectures.
Specific models are detailed and evaluated in the case studies
presented in Sections V–VI.

A. Learned Analog and Digital Processing

Our proposed deep task-based acquisition system imple-
ments the analog filtering and digital processing using dedicated
DNNs, denoted as the analog network and the digital network,
respectively. An illustration of such a system is depicted in
Fig. 2. The input to the system is the vector representation of
the observed signal x. To realize linear filters, as detailed in our
system model in Section II, the analog network should consist
only of linear layers, while introducing non-linear activations
yields non-linear analog processing.

While the network architecture illustrated in Fig. 2 is generic,
the recovery of the vectors of interest can be broadly divided into
two types of tasks: classification and estimation (regression).
When S is a finite set, which is the case in the MIMO detection
application presented in Section V the recovery of s can be
viewed as classifying from |S|k possible categories. In such
cases, the output layer of the digital network is a softmax layer
with |S|k outputs, each representing the conditional distribution
of the corresponding label given the input. The overall network is
trained end-to-end to minimize the cross-entropy loss. By letting
� be the set of system trainable parameters and ��,�(x;�) be
the output corresponding to � � Sk with network weights �
and ADC hyperparameters �, the loss function is given by

L�(�) =
1
N

N�

j=1

� log ��,�

�
x(j); s(j)

	
. (9)
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When S is a continuous set, which is the case in the ultra-
sound beamforming application discussed in Section VI, then
the system task is estimation over a continuous domain. Here,
the output layer of the digital network is comprised of k nodes,
each estimating a single entry of s. In such setups, the network
output ��,�(x) takes values in Sk, and is used as the estimate
of s. A common loss function for such tasks is the empirical
mean-squared error (MSE), given by

L�(�) =
1
N

N�

j=1




��,�

�
x(j)

	
� s(j)





2
. (10)

Once the system is trained, the learned parameters are used
to configure the task-based acquisition system detailed in Sub-
section II-A, which operates on CT signals. The matrix repre-
sentation of the linear analog network is used to set the filter
G(t, �). The adaptation of the ADC mapping, trained along
with the overall system assuming a fixed number of samples �L
and quantization resolution �M , is detailed in the sequel, while
a method for optimizing the acquisition hyperparameters � is
discussed in Section IV.

B. Learned Analog-to-Digital Conversion

The analog and digital processing parts of the hybrid task-
based acquisition system are learned as conventional DNN
models. However, the ADC mapping, determined by the sam-
pling and quantization rules whose adjustable parameters are the
sampling times {tj} in��L(•) and the decision regions {ai, bi} in
Q �M (•), cannot be represented using standard layers or activation
functions. In particular, both the sampling mapping (5) and the
quantization function (6) are non-differentiable or have a zero-
valued gradient with respect to their input and/or the adjustable
parameters. Consequently, one cannot use straight-forward ap-
plication of backpropagation with SGD-based optimization to
train the system end-to-end.

Following [14], which considered quantization without sam-
pling, we adopt a soft-to-hard approach. This approach approx-
imates non-differentiable mappings during training by smooth
functions that faithfully capture their operation. Recall that
Kronecker delta functions, from which the sampling mapping
in (5) is comprised, can be obtained as the limit of a sequence
of Gaussian functions with decaying variance. Substituting this
into (5) while replacing integration with a summation over the
discretized grid yields the following relaxation:

(��L(�(t)))j =
L�1�

i=0

�(iTL) exp

�
(iTL � tj)2

�2
i

�

, (11)

where the parameters {�2
i } control the resemblance of ��L(•) to

the non-differentiable sampling function ��L(•). Approximating
��L(•) with (11) during training allows the system to learn the
sampling time instances {tj} along with the analog and digital
networks. As samples are taken from the grid {lTL}, the learned
sampling times are projected onto this grid after training, i.e.,
tj is replaced with its nearest grid point, while each point
can only be assigned to a single entry of {tj}. Similarly, as
suggested in [14], the quantizer (6) is also approximated with a

Fig. 3. Learned sampling and quantization rules illustration.

differentiable function. Since sign functions can be approached
almost everywhere on R by a sequence of hyperbolic tangents,
Q �M (•) is approximated during training as

q �M (�) = a0 +
�M�1�

i=1

aitanh (ci • �� bi) , (12)

where {ci} is a set of real-valued parameters. As ci increases,
its corresponding tanh function approaches a sign mapping as
in (6). Using (11)–(12), the system can tune its parameters by
backpropagating the gradient through the ADC mapping during
training, while learning non-uniform quantization mappings by
tuning {ai, bi}. Once training is concluded, the learned set { bi

ci
}

is used to determine the borders of the decision regions of the
true (non-differentiable) quantizer. Fig. 3 illustrates how ��L(•)
and q �M (•) are converted into sampling and quantization rules.

In (11) and (12), the parameters {�2
i } and {ci}, respectively,

balance the smoothness of the mapping and the accuracy in
representing the non-differentiable function from which it origi-
nates. Consequently, they can be either fixed, or modified during
training using annealing optimization [31], making the differen-
tiable mapping gradually approach the actual non-differentiable
function during training.

C. Discussion

The proposed deep task-based acquisition system jointly
adapts its analog filter, sampling function, quantization rule,
and digital processing based on training data. This is achieved
by identifying smooth trainable approximations of the sampling
and quantization mappings. While our system model is formu-
lated for real-valued signals in Subsection II-A, our design can
also be applied to complex-valued signals. This is achieved by
separating complex quantities into their real and imaginary parts,
as is the conventional operation of complex ADCs [32], and
representing complex vectors as real-valued vectors of extended
dimensions. The number of ADCs p, average sampling rate

�L
T ,

and the quantization resolution �M are all assumed to be fixed
here. Yet, the fact that they can be treated as hyperparameters of

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 06,2024 at 09:59:39 UTC from IEEE Xplore.  Restrictions apply. 




















