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Abstract—Analog-to-digital converters (ADCs) allow physical
signals to be processed using digital hardware. Their conversion
consists of two stages: Sampling, which maps a continuous-time
signal into discrete-time, and quantization, i.e., representing the
continuous-amplitude quantities using a finite number of bits.
ADCs typically implement generic uniform conversion mappings
that are ignorant of the task for which the signal is acquired, and can
be costly when operating in high rates and fine resolutions. In this
work we design task-oriented ADCs which learn from data how to
map an analog signal into a digital representation such that the sys-
tem task can be efficiently carried out. We propose a model for sam-
pling and quantization that facilitates the learning of non-uniform
mappings from data. Based on this learnable ADC mapping, we
present a mechanism for optimizing a hybrid acquisition system
comprised of analog combining, tunable ADCs with fixed rates, and
digital processing, by jointly learning its components end-to-end.
Then, we show how one can exploit the representation of hybrid
acquisition systems as deep networks to optimize the sampling
and quantization rates given the task by utilizing Bayesian meta-
learning techniques. We evaluate the proposed deep task-based
ADC in two case studies: the first considers synthetic multi-variate
symbol detection, where multiple analog signals are simultaneously
acquired in order to recover a set of discrete symbols. The second
application is beamforming of analog channel data acquired in
ultrasound imaging. Our numerical results demonstrate that the
proposed approach achieves performance which is comparable to
operating with high sampling rates and fine resolution quantiza-
tion, while operating with reduced overall bit rate. For instance,
we demonstrate that deep task-based ADCs enable accurate re-
construction of ultrasound images while using 12.5% of the overall
number of bits used by conventional ADCs.

Index Terms—Analog-to-digital conversion, deep learning,
sampling, quantization.
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I. INTRODUCTION

AMULTITUDE of electronic systems process physical sig-
nals using digital hardware. Digital signal processors rep-

resent analog quantities as a set of bits using analog-to-digital
conversion. Converting a continuous-time (CT) signal taking
continuous-amplitude values into a finite-bit representation
consists of two steps: The analog signal is first sampled into
a discrete-time process, which is then quantized into discrete-
amplitude values, such that it can be digitally processed [2].

The acquisition of analog signals is commonly carried out
using scalar analog-to-digital convertors (ADCs) [3]. These
devices sample the CT signal in uniformly spaced time-instances
and obtain a digital representation using a uniform mapping
of the real line. While this acquisition strategy is simple to
implement, it is limited in its ability to accurately represent sig-
nals in digital [4], especially when operating under constrained
sampling rate and low quantization resolution, due to, e.g., cost,
power, or memory constraints. Furthermore, this procedure is
carried out regardless of the task for which the analog signal is
acquired into a digital representation.

In practice, analog signals are often acquired in order to extract
some underlying information, namely, for a task other than
recovering the analog process. One example is multiple-input
multiple-output (MIMO) communications receivers, which re-
cover a transmitted discrete message from their observed chan-
nel output. MIMO receivers typically operate under strict power
and cost constraints, which are particularly relevant when op-
erating in high frequency bands [5]. Another relevant example
is ultrasound imaging, where large amounts of analog channel
data are acquired to form an image, which notably affects the
hardware cost and complexity [6]. While designing energy effi-
cient uniform ADCs is an on-going area of research [7], [8], [9],
[10], a natural approach to relieve the effects of high resolution
acquisition is to restrict the sampling rate and quantization
resolution of the ADCs.

When acquiring for a specific task, it was shown in [11], [12],
[13], [14], [15], [16], [17], [18], [19] that the distortion induced
by sample and bit limitations can be notably reduced by account-
ing for the task in acquisition. In particular, the works [11], [12],
[13] analytically designed task-based quantization systems for
estimation tasks by introducing analog processing and tuning
the quantization rule, assuming ideal (Nyquist rate) samplers;
A data-driven approach for designing task-based quantizers
under generic setups was considered in [14], which utilized
machine learning (ML) tools. The works [15], [16] also used
ML to learn sampling mechanisms assuming error-free quanti-
zation, while [17] and [18] analytically designed samplers for
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maximizing capacity in MIMO systems and for audio classi-
fication, respectively. However, none of these works study the
full acquisition process. For acquisition involving both sampling
and quantization, [19] studied the analytical design of hybrid
analog/digital acquisition systems with uniform ADCs for re-
covering linear functions of their observations. The analysis
of joint sampling and quantization systems was considered
in [20], [21], which focused on complex source coding instead
of scalar quantization, and derived bounds on the reconstruction
accuracy in the absence of a task. The works [22], [23] designed
acquisition systems with non-uniform sampling and one-bit
ADC for MIMO receivers. The design of acquisition systems
with possibly non-uniform ADCs for a (possibly analytically
intractable) task, has not yet been studied.

In this work we propose a task-based acquisition system
utilizing scalar ADCs for signals obeying a finite basis expansion
model. As analytically deriving task-based methods is difficult
and commonly requires imposing a limited structure, such as
assuming uniform ADC mappings and linear operations [11],
[13], [19], we adopt a data-driven approach. We design the
system to learn its sampling and quantization mappings along
with its analog and digital processing from training data, such
that it can reliably carry out its task. A major challenge in design-
ing ML-based ADCs and incorporating such devices into deep
neural networks (DNNs), stems from the continuous-to-discrete
nature of sampling and quantization: These operations are either
non-differentiable or nullify the gradient [14], [15], limiting the
application of conventional training based on backpropagation.
To overcome this, we adopt a soft-to-hard approach based on gra-
dient estimation through relaxation of the discrete process [24],
also utilized in [14] for optimizing quantization mappings.
We propose a differentiable approximation of sampling, which
can be trained to learn non-uniform sampling methods, and is
combined with the trainable quantizer of [14] into a dynamic
data-driven ADC. We incorporate this adaptive ADC into a DNN
architecture resulting in a deep task-based acquisition system,
which can be trained using conventional training methods, e.g.,
stochastic gradient descent (SGD) with backpropagation.

By representing the hybrid analog/digital acquisition system
as a trainable DNN with non-conventional layers encapsulating
the sampling and quantization operations, we are also able to
optimize the parameters dictating the overall bit rate. We treat
the sampling rate, the quantization resolution, and the number
of scalar ADCs, as hyperparameters of the DNN, and propose
a meta-learning scheme to optimize these key quantities from
data. We utilize a variation of Bayesian optimization based
meta-learning [25] in order to minimize these quantities while
preserving the ability to accurately carry out the task. Our
proposed deep task-based hybrid acquisition system is evaluated
in two applications: A synthetic scenario of detection from linear
observations, and an ultrasound beamforming setup. For the first
application, we demonstrate the ability of deep task-based ADCs
to achieve comparable performance to the maximum a-posteriori
probability (MAP) estimator without quantization constraints,
and to outperform the common approach of processing only in
the digital domain with uniform ADCs. Our proposed meta-
learning scheme is shown to notably reduce the overall bit
rate without degrading performance, and in some cases even

improving the detection accuracy. For ultrasound beamforming,
we show how the conversion of analog channel data into a set
of pixels specializes a task-based acquisition setup. Then, we
demonstrate that deep task-based ADCs can use as low as 12.5%
the number of bits compared to conventional acquisition while
hardly affecting the quality of the recovered image.

The rest of this paper is organized as follows: Section II
presents the system model. Section III details the proposed
deep task-based ADC system, while Section IV presents the
Bayesian meta-learning scheme for optimizing its configura-
tion. The synthetic case study and the application to ultrasound
beamforming are discussed in Sections V and VI, respectively.
Finally, Section VII concludes the paper.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x; the ith element of x is written as (x)i. Boldface
upper-case letters denote matrices, e.g., M ; and (M)i,j is its
(i, j)th element. Finally, R and Z , sign(·) and δ(·) are the
sets of real numbers, integers, sign, and Dirac delta function,
respectively.

II. TASK-BASED SIGNAL ACQUISITION SETUP

In this section we formulate the task-based acquisition setup.
We first present the system model in Subsection II-A, after which
we formulate the problem of designing such systems in a data-
driven manner in Subsection II-B.

A. System Model

The task-based acquisition setup is modeled using the hybrid
system illustrated in Fig. 1. The system consists of analog fil-
tering, analog-to-digital conversion, and digital processing. Our
goal, as detailed in Subsection II-B, is to propose a mechanism
for learning these components from data. We focus on scenarios
where a set of n analog signals {xi(t)}ni=1 are converted into a
digital representation in order to recover an unknown vector
s ∈ Sk, referred to as the system task. The task vector s is
statistically related to the multivariate analog signal x(t) �
[x1(t), . . . xn(t)]

T via a conditional distribution fx|s. Such sce-
narios represent, for example, measurements taken from sensor
arrays to detect some physical phenomenon, acoustics echos
acquired in order to form an image in ultrasound beamforming,
or channel outputs acquired by a MIMO receiver for decoding
a transmitted message.

Signal Model: We focus on the case where each of the CT
signals known to be spanned by a set ofB basis functions, i.e., for
eachxi(t) there exists a set of functions {ui,j(t)}B−1

j=0 and coeffi-

cients {x̃i,j}B−1
j=0 such that xi(t) =

∑B−1
j=0 x̃i,jui,j(t). By defin-

ing the n× n diagonal matrix U j(t) such that (U j(t))i,i(t) �
ui,j(t) and the vector x̃j � [x̃0,j , . . . , x̃n−1,j ]

T , we can write
the multivariate signal as

x(t) =

B−1∑
j=0

U j(t)x̃j . (1)

The generic formulation in (1) accommodates a broad family of
signals, as exemplified next:

Example 1: Letx(t) be a set of finite rate of innovation (FRI)
signals, i.e., there exists a function u(t) and a set {τi,j} such that
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Fig. 1. Hybrid task-based acquisition system illustration. The task here is recovering a set of constellation symbols in MIMO communications.

xi(t) =
∑B−1

j=0 x̃i,ju(t− τi,j) [16]. Such signals are a special
case of (1), obtained by setting ui,j(t) = u(t− τi,j).

The FRI model of Example 1 represents signals encountered
in various applications. For instance, in uplink MIMO commu-
nications settings, which is the setting illustrated in Fig. 1, when
the statistical relationship fx|s represents a multipath channel,
the received signal typically follows an FRI model with u(t)
being the pulse-shaping functions [26].

Example 2: Let x(t) be a set of signals defined over a finite
time interval t ∈ [0, P ) for some P > 0, and thus each xi(t)
can be written using its Fourier series expansion. Such signals
with finite Fourier series are a special case of (1) obtained when
ui,j(t) is the jth Fourier basis function for t ∈ [0, P ).

Example 3: Whenx(t) is periodic with periodP > 0 and has
a finite Fourier series expansion, then it can be written via (1)
with ui,j(t) being the jth Fourier basis function ∀t ∈ R.

The motivation for this model is that it allows to rigorously
express the multivariate CT signal x(t) using the nB × 1 vec-
tor x � [x̃T

0 , . . . , x̃
T
B−1]

T , which encapsulates the information
needed to recover the task vector s.

Analog Filtering: The observed x(t) is first mapped into a set
of p CT signals {yi(t)}pi=1, representing the processing carried
out in analog. We focus on linear analog processing, in which
y(t) � [y1(t), . . . yp(t)]

T is obtained fromx(t) via multivariate
filtering with a matrix impulse responseG(t, τ) ∈ Rp×n, i.e.,

y(t) =

∫
G(t, t− τ)x(τ)dτ. (2)

We do not restrict the filter to be linear time-invariant (LTI)
or causal, allowing it to represent a broad range of acquisition
systems. We focus on linear operations as these are a common
model for feasible analog processing; linear analog filters were
shown to facilitate the sampling and recovery of multivariate
signals in [27], while LTI memoryless combiners are commonly
used for RF chains reduction in MIMO systems [28], [29], [30].

Based on the signal model in (1), it holds that for each t ∈ R,
the vector y(t) is given by a linear function of x, as

y(t) =

∫
G(t, t− τ)

B−1∑
j=0

U j(τ)x̃jdτ

=

B−1∑
j=0

(∫
G(t, t− τ)U j(τ)dτ

)
x̃j = G̃(t)x, (3)

where G̃(t) is an p× nB block-matrix comprised of a row of B
sub-matrices, i.e., G̃(t) = [G̃0(t), . . . , G̃B−1(t)] where the jth
submatrix is

G̃j(t) �
∫
G(t, t− τ)U j(τ)dτ. (4)

Example 4: When x(t) is periodic as in Example 3 and the
analog filter is LTI, then G̃j(t) = F{G}( 2πjP )U j(t), where
F{G}(ω) is the multivariate frequency response of the filter,
and U j(t) is the jth Fourier basis as in Example 3.

Analog-to-Digital Conversion: Next, y(t) observed over the
interval t ∈ [0, T ) is converted into a digital representation using
a set of scalar ADCs. Each signal yi(t) undergoes the same ADC
mapping, which consists of arbitrary non-uniform sampling and
quantization: Sampling is represented by the operator ΦL̃(·),
such that zi = ΦL̃(yi(t)) is a L̃× 1 vector whose entries are

(zi)j = yi(tj), where {tj}L̃j=1 ⊂ [0, T ), i.e.,

(ΦL̃(α(t)))j =

∫
α(τ)δ(τ − tj)dτ, j ∈ {1, . . . , L̃}. (5)

The parameters {tj}L̃j=1 determine the sampling times, which
are not restricted to represent uniform sampling. Quantization is
carried out using a continuous-to-discrete mapping QM̃ : R �→
Q applied to each entry of zi, where M̃ = |Q| is the resolution,
i.e., it uses �log2 M̃� bits. The mapping is given by (almost
everywhere on R)

QM̃ (α) = a0 +

M̃−1∑
i=1

aisign (α− bi) . (6)

In (6), {bi} and {ai} determine the decision regions and their
assigned values, i.e., the set Q. For the special case of uniform
quantization, the difference bi − bi−1 and the values of ai are
constant, and do not depend on the decision region index i.
By defining z � [zT1 , . . . ,z

T
p ]

T , the output of the ADCs is

the vector q ∈ QpL̃ whose entries are (q)l = QM̃ ((z)l). The
overall number of bits used for acquisition is p · L̃ · �log2 M̃�.

Digital Processing: The discrete vector q is processed in
digital to estimate the task vector s as ŝ ∈ Sk.

B. Problem Formulation

Designing task-based acquisition systems using model-based
methods, namely, analytically setting the filter G(t, τ) and the
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operators ΦL̃(·) and QM̃ (·) based on fx|s, is very difficult. Con-
sequently, previous model-based studies assumed some specific
conditional distribution fx|s with either fixed sampling rule and
uniform quantizers [11], [13], [19], or alternatively, considering
error-free quantization [17]. Furthermore, accurate knowledge
offx|smay not be available in practice. Consequently, our goal is
to design task-based acquisition systems in a data-driven fashion
using ML methods.

To formulate the setup such that it can be designed using
ML tools, which typically operate on vectors and not on CT
quantities, we restrict the sampling times {tj}, which dictate
ΦL̃(·), to be a subset of the some dense uniform grid. We divide
the observation interval [0, T ) into L sub-intervals of duration
TL = T

L , and select our sampling points from the set {lTL}L−1
l=0 .

The grid is set such that the number of samples taken by the ac-
quisition system L̃ is smaller, and preferably much smaller, than
the size of the dense gridL. Here, by writing the dense samples as
the vector y � [yT (0), . . . ,yT ((L− 1)TL)]

T , it holds that the
input to the quantizer z consists of entries of y. Constraining the
acquisition system to sample from a discretized grid facilitates
its design using ML methods, as done in [15]. Furthermore,
by defining the Lp× nB matrix Ḡ which is comprised of a
column ofL sub-matrices with G̃(lTL) being the lth sub-matrix,
it follows from (3) that the candidate samples are expressed as

y = Ḡx. (7)

It is noted that the matrix may be restricted to take a given
structure, depending on the constrains imposed on the filter
G(t, τ) as well as the specification of the basis functions in (1).
Accordingly, once such a structure is imposed, one can trace Ḡ
to the setting of the CT filterG(t, τ). To how such structures are
obtained, consider the following example:

Example 5: Consider FRI signals where the delays lie on
the sampling grid, such that x(t) in Example 1 can be written
with τi,j = jTL and B = L. When the analog filter is LTI, i.e.,
G(t, τ) ≡ G(τ), it holds by (4) that

G̃j(iTL) =

∫
G(iTL − τ)u(τ − jTL)dτ

= Gconv((i− j)TL), (8)

where we define Gconv(t) as the convolution
∫
G(t−

τ)u(τ)dτ . Under the given constraints, Ḡ is a block-Toeplitz
matrix.

The task-based acquisition system is thus required to learn to
recover s from x(t) based on a training set {s(j),x(j)}Nj=1 con-
sisting of N realizations of the densely-sampled inputs and their
corresponding task vectors. In particular, the system parameters,
i.e., the analog filter Ḡ, sampling operator ΦL̃(·), quantization
rule QM̃ (·), and the processing of the digital vector q into ŝ, are
learned from training. The hybrid acquisition system is restricted
to utilize at most B bits i.e., p · L̃ · �log2 M̃� ≤ B. Once these
parameters are tuned, they can be configured into the task-based
acquisition system detailed in the previous subsection, which
operates on CT analog signals.

Fig. 2. Deep task-based analog-to-digital conversion illustration.

III. LEARNING TASK-BASED ACQUISITION

In this section we present our deep task-based acquisition
system, which learns how to map analog signals into an estimate
of the task vector. We focus here on optimizing the hybrid
acquisition system when number of ADCs p, the amount of
samples acquired L̃, and the quantizer resolution M̃ , are fixed,
and embodied in the hyperparemeter vector θ = [p, L̃, log2 M̃ ].
The optimization of these parameter subject to an overall bit
constraint B is discussed in Section IV. We begin by detailing
the analog and digital networks in Subsection III-A. Then, in
Subsection III-B we present how ADC mappings are trained, and
discuss the resulting structure in Subsection III-C. Throughout
this section we consider generic tasks and DNN architectures.
Specific models are detailed and evaluated in the case studies
presented in Sections V–VI.

A. Learned Analog and Digital Processing

Our proposed deep task-based acquisition system imple-
ments the analog filtering and digital processing using dedicated
DNNs, denoted as the analog network and the digital network,
respectively. An illustration of such a system is depicted in
Fig. 2. The input to the system is the vector representation of
the observed signal x. To realize linear filters, as detailed in our
system model in Section II, the analog network should consist
only of linear layers, while introducing non-linear activations
yields non-linear analog processing.

While the network architecture illustrated in Fig. 2 is generic,
the recovery of the vectors of interest can be broadly divided into
two types of tasks: classification and estimation (regression).
When S is a finite set, which is the case in the MIMO detection
application presented in Section V the recovery of s can be
viewed as classifying from |S|k possible categories. In such
cases, the output layer of the digital network is a softmax layer
with |S|k outputs, each representing the conditional distribution
of the corresponding label given the input. The overall network is
trained end-to-end to minimize the cross-entropy loss. By letting
ψ be the set of system trainable parameters and γψ,θ(x;α) be
the output corresponding to α ∈ Sk with network weights ψ
and ADC hyperparameters θ, the loss function is given by

Lθ(ψ) = 1

N

N∑
j=1

− log γψ,θ

(
x(j); s(j)

)
. (9)
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When S is a continuous set, which is the case in the ultra-
sound beamforming application discussed in Section VI, then
the system task is estimation over a continuous domain. Here,
the output layer of the digital network is comprised of k nodes,
each estimating a single entry of s. In such setups, the network
output γψ,θ(x) takes values in Sk, and is used as the estimate
of s. A common loss function for such tasks is the empirical
mean-squared error (MSE), given by

Lθ(ψ) = 1

N

N∑
j=1

∥∥∥γψ,θ

(
x(j)

)
− s(j)

∥∥∥2. (10)

Once the system is trained, the learned parameters are used
to configure the task-based acquisition system detailed in Sub-
section II-A, which operates on CT signals. The matrix repre-
sentation of the linear analog network is used to set the filter
G(t, τ). The adaptation of the ADC mapping, trained along
with the overall system assuming a fixed number of samples L̃
and quantization resolution M̃ , is detailed in the sequel, while
a method for optimizing the acquisition hyperparameters θ is
discussed in Section IV.

B. Learned Analog-to-Digital Conversion

The analog and digital processing parts of the hybrid task-
based acquisition system are learned as conventional DNN
models. However, the ADC mapping, determined by the sam-
pling and quantization rules whose adjustable parameters are the
sampling times {tj} inΦL̃(·) and the decision regions {ai, bi} in
QM̃ (·), cannot be represented using standard layers or activation
functions. In particular, both the sampling mapping (5) and the
quantization function (6) are non-differentiable or have a zero-
valued gradient with respect to their input and/or the adjustable
parameters. Consequently, one cannot use straight-forward ap-
plication of backpropagation with SGD-based optimization to
train the system end-to-end.

Following [14], which considered quantization without sam-
pling, we adopt a soft-to-hard approach. This approach approx-
imates non-differentiable mappings during training by smooth
functions that faithfully capture their operation. Recall that
Kronecker delta functions, from which the sampling mapping
in (5) is comprised, can be obtained as the limit of a sequence
of Gaussian functions with decaying variance. Substituting this
into (5) while replacing integration with a summation over the
discretized grid yields the following relaxation:

(φL̃(α(t)))j =

L−1∑
i=0

α(iTL) exp

(
(iTL − tj)

2

σ2
i

)
, (11)

where the parameters {σ2
i } control the resemblance of φL̃(·) to

the non-differentiable sampling function ΦL̃(·). Approximating
ΦL̃(·) with (11) during training allows the system to learn the
sampling time instances {tj} along with the analog and digital
networks. As samples are taken from the grid {lTL}, the learned
sampling times are projected onto this grid after training, i.e.,
tj is replaced with its nearest grid point, while each point
can only be assigned to a single entry of {tj}. Similarly, as
suggested in [14], the quantizer (6) is also approximated with a

Fig. 3. Learned sampling and quantization rules illustration.

differentiable function. Since sign functions can be approached
almost everywhere on R by a sequence of hyperbolic tangents,
QM̃ (·) is approximated during training as

qM̃ (α) = a0 +

M̃−1∑
i=1

aitanh (ci · α− bi) , (12)

where {ci} is a set of real-valued parameters. As ci increases,
its corresponding tanh function approaches a sign mapping as
in (6). Using (11)–(12), the system can tune its parameters by
backpropagating the gradient through the ADC mapping during
training, while learning non-uniform quantization mappings by
tuning {ai, bi}. Once training is concluded, the learned set { bi

ci
}

is used to determine the borders of the decision regions of the
true (non-differentiable) quantizer. Fig. 3 illustrates how φL̃(·)
and qM̃ (·) are converted into sampling and quantization rules.

In (11) and (12), the parameters {σ2
i } and {ci}, respectively,

balance the smoothness of the mapping and the accuracy in
representing the non-differentiable function from which it origi-
nates. Consequently, they can be either fixed, or modified during
training using annealing optimization [31], making the differen-
tiable mapping gradually approach the actual non-differentiable
function during training.

C. Discussion

The proposed deep task-based acquisition system jointly
adapts its analog filter, sampling function, quantization rule,
and digital processing based on training data. This is achieved
by identifying smooth trainable approximations of the sampling
and quantization mappings. While our system model is formu-
lated for real-valued signals in Subsection II-A, our design can
also be applied to complex-valued signals. This is achieved by
separating complex quantities into their real and imaginary parts,
as is the conventional operation of complex ADCs [32], and
representing complex vectors as real-valued vectors of extended
dimensions. The number of ADCs p, average sampling rate L̃

T ,
and the quantization resolution M̃ are all assumed to be fixed
here. Yet, the fact that they can be treated as hyperparameters of
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a DNN motivates their setting via hyperparameter optimization,
as we explore in Section IV.

The system model detailed in Section II bears some similarity
to that considered in [22], [23], where non-uniform sampling
is implemented by selecting the sampling times from a dense
uniform (oversampled) grid, and acquisition is carried out for a
task other than reconstructing the analog signal. Nonetheless,
our work, which considers a data-driven design for possibly
intractable statistical models, is fundamentally different from
the works [22], [23] that focused on fully known linear Gaussian
MIMO settings with one-bit quantization. Furthermore, our
system model allows for a pre-acquisition analog processing,
which can implement any linear processing. In particular, the
learned matrix Ḡ can be any real-valued L · n× L · p matrix.
Nonetheless, in some cases, a specific family of filters, such as
causal, LTI, memoryless, or phase-shifters may be preferred.
Such restrictions can be incorporated into our model by impos-
ing a specific structure on Ḡ. For example, for LTI filters, Ḡ is
block-Toeplitz as shown in Example 5, while for memoryless
filters, Ḡ can be written as IL ⊗ G̃ for some G̃ ∈ Rn×p. Alter-
native forms of constrained analog processing, such as those
induced by the inherent controllable combining of dynamic
metasurface antennas [33], [34], [35] or by using phase shifter
networks [28], [29], result in different constraints on Ḡ. Here,
we focus on generic linear analog mappings, and leave these
special cases to future investigation.

As detailed in Subsection III-A, our system is designed to
be trained offline, and the learned parameters are configured in
the acquisition system once training is concluded. Nonetheless,
one can also envision an adjustable acquisition hardware device,
which is capable of learning its multivariate analog-to-digital
conversion mapping online. Such a system can utilize config-
urable ADCs combined with neuromorphic circuits [36] based
on, e.g., memristors [37], for realizing the trainable analog
network. However, for a deep task-based acquisition system to
adjust its parameters online using conventional methods such
as SGD, the digital processor must have access to the vector
x during training, namely, it must process a high-resolution
version of the vector representation of its observed signals
during the periods in which it has knowledge of the task s.
This requirement can be satisfied by, e.g., utilizing additional
dedicated high-resolution ADCs which are employed only dur-
ing the specific periods where the analog input can be used for
training along with its label.

IV. ACQUISITION HYPERPARAMETERS OPTIMIZATION

So far, we have utilized ML methods to jointly learn the
analog filtering, ADC mappings, and digital processing, in an
end-to-end manner. This learning stage is carried out while fixing
some of the key parameters of analog-to-digital conversion: the
number of ADCs p, the number of samples taken L̃, and the
quantization resolution M̃ . The fact that these hyperparameters
directly affect some important aspects of acquisition, such as
power consumption and memory usage [3], motivates their
learning as part of the training procedure. In this section we detail
how the proposed framework of learned task-based acquisition

can be extended to tune these key parameters using Bayesian
meta-learning tools. To that aim, we first introduce some basics
in Bayesian meta-learning in Subsection IV-A, after which we
present a method for optimizing the acquisition parameters in
Subsection IV-B.

A. Preliminaries in Meta-Learning

Meta-learning is a subfield of ML which deals with optimiz-
ing hyperparameters. Unlike conventional parameters, e.g., the
weights of a neural network, that are learned in the training
process, hyperparameters are parameters of ML algorithms that
control the model class, e.g., the network architecture [38], or the
learning process, e.g., the learning rate [39] and the optimization
rule [40]. Those can be either chosen from a discrete set or from
a continuous range; the space of hyperparameters is referred to
henceforth as the search space.

Some hyperparmeters, such as the initial weights used during
training and the learning rate, can be optimized using gradient
based methods, as done in model-agnostic meta-learning [41].
However, computing the gradient of the loss with respect to
architecture-related hyperparameters, such as the acquisition
parameters of our deep task-based acquisition system, is often
infeasible. For such settings where gradient-based methods can-
not be applied, several methods have been proposed in the liter-
ature for hyperparmeter optimization. To formulate the different
strategies, we use θ ∈ Θ to denote the set of hyperparameters of
the learning algorithm A, where Θ is the search space. We also
let fA(θ) be the evaluation function of these hyperparmeters. In
the context of meta-learning the architecture of a neural network,
computing this function involves training a network to obtain the
empirical loss of the learning algorithm with hyperparmaters θ.
Thus, computing fA(θ) tends to be costly and time-consuming
to evaluate. Since for our task-based acquisition system, the
search space Θ can be very large, while evaluating fA(θ) in-
volves re-training a DNN and is thus costly to compute, we adopt
the Bayesian optimization approach for meta-learning [25].

Bayesian meta-learning involves a controllable amount of
evaluations of fA(·), and is based on assuming a prior distribu-
tion on it. Bayesian meta-learning models fA(θ) as a Gaussian
process over Θ with postulated mean μ0(θ) = E[fA(θ)] and
autocovariance function Σ0(θ,θ

′) = cov(fA(θ), fA(θ′)). The
method sequentially samples the evaluation function fA(·), iter-
atively refining the selected θ assuming an underlying Gaussian
model. Given the samples of fA(·) measured at the i vectors
θ1, . . . ,θi, the next sampling vector θi+1 is selected as the one
maximizing the expected improvement [25]

EIi(θ) � E
[
(fA(θ)− fA(θ∗i ))

+ |{fA(θj)}j≤i

]
, (13)

where θ∗i � argmaxj≤i fA(θj) is the current best observation,
and a+ � max(a, 0).

Under the assumption that fA(·) is a Gaussian process, the dis-
tribution of fA(θ) conditioned on {fA(θj)}j≤i is also Gaussian
with mean value μi(θ) and standard deviation σi(θ), obtained
from μ0(·) and Σ0(·, ·) via [25, (3)]:

μi(θ) = Σ0 (θ,θ1:i) Σ
−1
0 (θ1:i,θ1:i)
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Algorithm 1: Bayesian Hyperparameters Optimization.

× (fA(θ1:i)− μ0 (θ1:i)) + μ0 (θ) ,

σ2
i (θ) = Σ0 (θ,θ)− Σ0 (θ,θ1:i) Σ

−1
0 (θ1:i,θ1:i) Σ0(θ1:i,θ).

Here, fA(θ1:i) denotes the i× 1 vector whose jth entry is
fA(θj); Σ0(θ1:i,θ1:i) is an i× i matrix whose (m, j)th entry
is Σ0(θm,θj); Σ0(θ,θ1:i) is a 1× i vector whose jth entry is
Σ0(θ,θj); and μ0(θ1:i) is an i× 1 vector whose jth entry is
μ0(θj). By letting FG(·) and pG(·) are the cumulative distribu-
tion function and the probability density function of the standard
normal distribution, respectively, the expected improvement is
computed via [25, (8)]

EIi(θ)=(μi(θ)−fA(θ∗i ))FG(Zi)+σi(θ)pG(Zi), (14)

where

Zi =

{
(μi(θ)−fA(θ∗

i).)
σi(θ)

if σi(θ) > 0,

−∞ if σi(θ) = 0.
(15)

The resulting sequential hyperparameter optimization is sum-
marized as Algorithm 1. The term fA(θ∗i ) is often replaced with
fA(θ∗i ) + ζ for some ζ > 0 to improve exploration and reduce
the probability of yielding a local optima [42].

B. Acquisition Parameters Optimization

Our proposed deep task-based ADC system is modeled as a
DNN such that its analog filter, acquisition mappings, and digital
processing can be learned end-to-end from data. The analog-
to-digital conversion configuration is dictated by the number of
ADCs p, the number of samples taken in each interval L̃, and the
quantization resolution M̃ . The triplet (p, L̃, M̃), which dictates
the number of bits used in acquisition p · L̃ · �log2 M̃�, affects
the architecture of the DNN, and is thus treated as the hyperpa-
rameters of the model. Consequently, in order to optimize the
model under a given bit budget B, as requested in the problem
formulation in Subsection II-B, we utilize meta-learning via
Bayesian optimization. By letting ΘB be the set of triplets
of positive integers (p, L̃, M̃) such that p · L̃ · �log2 M̃� ≤ B,
meta-learning is expressed as the following optimization prob-
lem:

argmin
(p,L̃,M̃)∈ΘB

fA
(
p, L̃, M̃

)
(16)

The objective in (16) is determined by the system task and the
available data set. For example, fA(p, L̃, M̃) can represent the

Algorithm 2: Deep Task-Based ADC Learning.

Init: Define loss measure Lθ(·) and meta-learning
objective fA(θ).

1 Obtain θ via Algorithm 1.
2 Set ψ to minimize Lθ(·) via DNN training.

Output: Deep task-based ADC system γψ,θ(·).

training loss as in (9), e.g.,

fA (θ) = −min
ψ

Lθ (ψ) , (17)

or alternatively, the validation error of a deep task-based ac-
quisition system as in Fig. 1 with hyperparameters (p, L̃, M̃)
after trained using a given data set. Further, one can boost
configurations with reduced number of overall bits by including
in the formulation of the objective a regularization term which
accounts for the number of bits acquired, as we do in the
numerical study in Subsection V-C.

The objective in (16) satisfies the following conditions: 1)
Computing fA(·) requires training the network anew, and thus
involves a computationally expensive computation; 2) the cardi-
nality of the search spaceΘB grows with the size of the sampling
grid L, and can thus be large. These conditions imply that naive
search techniques may be computationally infeasible, hence, we
utilize Bayesian meta-learning in Algorithm 1 for tuning the
ADC configuration. The resulting overall learning procedure of
the deep task-based ADC, including the learning of the both
the acquisition hyperparameters θ and the DNN weights ψ, is
summarized as Algorithm 2.

This application of Algorithm 2 can be further facilitated by
recasting the multiplicative formulation of the search space ΘB
into an additive one by writing it as

log2 p+ log2 L̃+ log2
⌈
log2 M̃

⌉ ≤ log2 B. (18)

Expressing ΘB via (18) enables the application of existing
Bayesian meta-learning toolboxes, such as BoTorch [43] and
Ax [44]; the latter is used in our numerical evaluations. Algo-
rithm 2 can be further simplified by noting that the Bayesian
optimization procedure involves training the DNN with the
optimized acquisition hyperparameters, and thus one can extract
the network weights ψ from Algorithm 1 and avoid re-training
in Step 2, as we do in our numerical study in Subsection V-C.
In fact, such an approach is expected to yield improved per-
formance as the networks weights are selected from a set of
imax independent training procedures. Nonetheless, as one may
prefer to utilize different data sets or different optimization
configuration (e.g., step size, number of epochs) in learning
the DNN weights compared to those used when evaluating the
meta-learning objective fA(·), we include a dedicated sepa-
rate weights training step in the overall learning procedure in
Algorithm 2.

V. CASE STUDY: SYNTHETIC MODEL

We next apply the deep task-based acquisition system for
detection in a synthetic linear model. The aim of this study is to
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demonstrate the ability of the proposed mechanism to jointly
train the component of the hybrid analog/digital system, as
well as to evaluate the hyperparameter optimization mechanism
proposed in Section IV. Therefore, in this section we consider
a relatively simple synthetic model for which we are able to,
e.g., compute the model-based MAP rule as a benchmark. The
application of the proposed deep task-based acquisition frame-
work in a non-synthetic setup is detailed in next case study in
Section VI.

Here, we first describe the task and the signal model and
the experimental setup1 in Subsection V-A. Then, we evaluate
the deep task-based acquisition system for such setups with
fixed acquisition hyperparameters in Subsection V-B and with
optimized hyperparameters in Subsection V-C.

A. Experimental Setup

We consider the detection of a vector of binary-valued sym-
bols s whose entries take value in a discrete set S = {−1, 1}.
The CT n× 1 signal x(t) observed at time instance t ∈ [0, T )
is related to the task vector s via the following linear model:

x(t) =H(t)s+w(t). (19)

Here, H(t) ∈ Rn×k is time-varying measurement matrix and
w(t) is the noise vector, comprised of independent zero-mean
Gaussian entries with variance σ2

w(t) > 0. To obtain the signal
model as in (1), we approximate the CT signal using dense
sampling, such that x̃j = x(j · T/L) and U j(t) is the iden-
tity matrix for t ∈ [j · T, (j + 1) · T ), and the all-zero matrix
otherwise.

The task is thus given by the recovery of s from the observed
x(t), and can thus be treated as acquisition for a classification
task. Note that in the absence of noise, s can be often accurately
recovered from a single sample of x(t), and thus the gain in
processing multiple samples is in reducing the effect of noise
quantization distortion. We set n = 6, k = 4, and the signal
duration is T = 1 μSec. The noise in (19) satisfies σ2

w(t) ≡ 1,
while the measurement matrixH(t) represents spatial exponen-
tial decay with temporal variations, and its entries are

(H(t))i,j =
√
ρ (1 + 0.5 cos (2πf0t)) e

−|i−j|, (20)

where ρ > 0 is referred to as the signal-to-noise ratio (SNR) and
f0 = 103 Hz. Note that the fact that the measurement matrix
(20) varies within the symbol duration motivates the usage of
non-uniform sampling.

In our experimental study we implement the following ar-
chitecture for the deep task-based analog-to-digital conversion
system: The analog network is an n · L× p · L fully-connected
layer, and the digital DNN is comprised of a p · L̃× 32 layer,
a ReLU activation, a 32× 16 layer, and a softmax output layer.
Consequently, the network output is a probability vector overSk

(whose cardinality is |S|k = 16), and detection is carried out by
taking the symbol vector corresponding to the maximal value of
this probability vector. The network is trained to minimize (9)
over N = 104 samples using the ADAM optimizer [45] with
learning rate of 0.01.

1The source code used in our numerical studies is available online on https:
//github.com/arielamar123/ADC-Learning-hyperopt.

Fig. 4. Error rate versus SNR.

B. Fixed Hyperparameters Experiments

We begin by evaluating the deep task-based acquisition
system with fixed acquisition hyperparameters. The simulated
acquisition system uses p = 4 ADCs, while selecting L̃ = 4
samples out of a grid of L = 20 time instances, and quantiz-
ing each sample using up to log2 M̃ = 3 bits. We compare
the error rate of our deep acquisition system to the following
model-based detectors: The MAP rule for recovering s from
a uniformly sampled version of x with sampling rate L̃/T
referred to as sampled MAP, namely, the minimal achievable
error rate when using the same number of samples as our
deep task-based system without quantization constraints; and
the MAP rule for recovering s fromx from a uniformly sampled
and quantized version of x without analog processing, referred
to as sampled quantized MAP. The resulting error rates, averaged
over 106 Monte Carlo simulations, versus SNR are depicted
in Fig. 4.

We note that while the data-driven acquisition system is
ignorant of the statistical model relating s and x(t) and learns
its mapping from training samples corresponding to this model,
the MAP receivers require accurate knowledge of the underlying
model. In particular, they rely on the fact that the underlying sig-
nal model is given by (19), and require knowledge ofH(t). As
accurate knowledge of the signal model may not be available in
some scenarios, we also depict in Fig. 4 the error rate obtained by
the sampled MAP receiver as well as the MAP rule for recovering
s from x without sampling and quantization constraints, when
these receivers have access to a noisy version ofH(t), in which
each entry is corrupted by additive i.i.d. Gaussian noise whose
variance is 30% of its magnitude. This scenario is referred to
as H(t) uncertainty. To evaluate our acquisition system under
H(t) uncertainty, we compute its achievable error rate when
trained using samples taken from the same inaccurate noisy
signal model. In principle, one can also design dedicated robust
model-based detectors that are aware of the presence of model
mismatches, thus deviating from the standard MAP operation.
Here, we focus on comparing the operation of algorithms based
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on the MAP for Gaussian settings as in (19) to the deep task-
based acquisition system with fixed architecture, exploring the
ability to use the same algorithm while coping with uncertainty.
Such studies were also considered in the context of DNN-aided
symbol detection in, e.g., [46], [47].

Observing Fig. 4, we note that for accurate training, our
deep task-based acquisition system achieves comparable per-
formance to the sampled MAP which operates without quanti-
zation constraints. Furthermore, our data-driven system notably
outperforms the quantized MAP rule, which utilizes uniform
quantizers of lesser resolution, as it does not reduce the dimen-
sionality in analog and must thus assign less bits for each ADC.
In the presence of model uncertainty, the performance of our
proposed system is degraded by approximately 5 dB in SNR
compared to accurate training, yet it is still capable of achieving
error rate below 10−4 for SNRs above 10 dB. The model-based
MAP rule operating without quantization constraints, whether
processing a uniformly sampled input or even on the densely
discretizedx, reaches an error floor of above 10−3. These results
demonstrate the ability of the proposed deep task-based acqui-
sition framework in jointly optimizing the analog and digital
mappings along with the ADC rule in a manner which allows to
accurately carry out the desired task.

C. Meta-Learned Acquisition Hyperparameters

Next, we numerically evaluate the meta-learning procedure
detailed in Section IV for optimizing the acquisition hyper-
parameters. We do so by applying Algorithm 1 to optimize
the parameters of the acquisition system, such that the overall
number of bits utilized is minimized without degrading the over-
all performance. The network weights are selected as the ones
trained along with the selected hyperparameters in the Bayesian
optimization procedure, as discussed in Subsection IV-B.

Here, we fix the maximal overall bit budget to B = 20 bits.
Since hyperparameters optimization does not involve computing
the gradient of its objective fA(θ), we use the error rate objec-
tive, being the desired performance measure, rather than the
cross entropy loss (9) which is used when training the weights.
In particular, we design the Bayesian optimization procedure
to both tune p, L̃, M̃ to get low error rate as possible, and use
lowest possible number of bits under the constraint of our bit
budget. The objective is thus set to

θ∗ �
(
p∗, L̃∗, M̃ ∗

)
= argmin

p·L̃·�log2(M̃)�≤B
α · (p · L̃ · �log2(M̃)�)

+
∑
ρ∈P

ERρ (γψ,θ) , (21)

where P is the set of SNR values for each channel we are
testing;ERρ(γψ,θ) is the error rate achieved using an acquisition
system with hyperparameters θ that was trained with channel
with SNR ρ; and α balances the contribution of two measures
one is interested in minimizing: the number of bits the acqui-
sition system is using and the model performance respectively.
Specifically, we utilize Ax [44] for Bayesian optimization. Since
Ax supports Bayesian optimization with additive constraints,

we replace (p, L̃, M̃) with their logarithms as our variables,
converting the multiplicative constraint in (21) into an additive
one.

In the setting with fixed hyperparameters detailed in Sub-
section V-B, the acquisition system uses p = 1 ADC, L̃ = 6
samples out of a grid of L = 20 time instances, and samples are
quantized using log2 M̃ = 8 bits. Thus, an overall of 1 · 6 · 8 =
48 bits are used for acquisition. As observed in Fig. 5(a), the
proposed Bayesian meta-learning scheme allows to achieve error
rates results within a minor gap of that of the original configura-
tion while using 62.5% less bits. In Fig. 5(b), we illustrate that
for larger scale settings, with k = 8 andn = 16, hyperparameter
optimization via Algorithm 2 manages to reduce the number of
bits by 83% with a relatively small loss of approximately 4 dB in
SNR. In both Fig. 5(a) and Fig. 5(b) we observe that the proposed
meta-learning even allows to achieve improved accuracy while
reducing the number of bits by 33% and 27%, respectively.
This is due to its inherent training of multiple systems and the
selection of the most accurate one. These results indicate that
the proper combination of Bayesian meta-learning with learning
of the overall mapping via deep task-based acquisition allows to
improve both performance and bit efficiency.

In Fig. 6 we depict a contour plot representing the objective
fA(θ) as a function of p and L when fixing the quantization
resolution to be M̃ = 4. This plot shows the relations between
number of ADCs and number of samples taken when the quanti-
zation resolution is relatively small. We can see from Fig. 6 that
Algorithm 2 is likely to prefer hyperparameter configurations
taking small number of ADCs with relatively large amount of
samples. Another option shown in the plot is taking relatively
large amount of ADCs with low amount of samples, shown to
be a local minimum of the objective function. However, when
looking in the standard deviation contour plot we can see that a
configuration like this will not be stable, because the standard
deviation is high.

VI. CASE STUDY: ULTRASOUND BEAMFORMING

In this section we apply the deep task based acquisition
framework to a real-world case study of ultrasound image recon-
struction, which can be modeled as a regression problem. Here,
we show that joint training of task-based ADCs combined with
deep learning based adaptive beamforming can achieve high
quality imaging at low data rates, improving over competing
approaches.

Ultrasound imaging is based on the transmission and reflec-
tion of high frequency sound waves in tissue. These reflections,
denoted {xi(t)}ni=1, are recorded by an array of n transducer
elements, and are used to form a brightness mode (B-mode)
image of the tissue by applying beamforming. Typical ultra-
sound devices use probes with n = 128 or more transducer
elements, each of which contributing a separate data-stream.
Additionally, multiple consecutive recordings might be required
for a single frame in order to achieve an SNR that leads to
the desired image properties. The transfer of these recordings
involves hardware that supports a large data bandwidth, which
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Fig. 5. Error rate versus SNR for deep task-based acquisition with meta-learned acquisition parameters versus fixed parameters. (a) Synthetic signal model,
k = 4 and n = 6. (b) Synthetic signal model, k = 8 and n = 16.

Fig. 6. Contour plots of the (a) mean and (b) standard deviation of fA as
function of number of ADCs, and number of samples when quantization reso-
lution is fixed M̃ = 4. Squares marked values of fA queried in hyperparameter
optimization.

is expensive and not always feasible to implement. In recent
developments such as 3D ultrasound (n > 512) or portable scan-
ners (bandwidth constrained), these limitations are especially
problematic. The need for compression of data early on in the
signal chain motivates the use of our proposed deep task based
signal acquisition in ultrasound imaging, which is studied in this
section, beginning the description of the experimental setup in
Subsection VI-A, and followed by the statement of the results
in Subsection VI-B.

A. Experimental Setup

1) Data: We consider plane-wave (PW) imaging, in which a
planar wavefront is transmitted, energizing the whole imaging
medium with a single pulse. For training we use 1000 in-vivo
recordings, acquired using a Verasonics Vantage system with
the L11-4v linear probe. Additionally, 100 images are obtained
for testing purposes. High quality target images were generated
similar to [48], by computationally intensive minimum variance
beamforming.

2) Filtering and Quantization: Following the task-based ac-
quisition model depicted in Fig. 1, we consecutively filter,
sample and quantize x(t). During the forward pass, we follow
(2), (5) and hard quantization as in (6). The input to the ADCs
is given by

y(t) = G1x(t) (22)

where G1 ∈ R
p×n is a trainable matrix. Note that (22) spe-

cializes the generic formulation of (2) by restricting the time-
varying analog filter G(·, ·) to represent time-invariant spatial
combining, i.e., take on the form G(t, τ) = G1δ(τ). The fil-
tering operation transforms the n channel signals into a linear
combination of p channels, such that p ≤ n, to further reduce
data rates. After quantization, the signals are expanded again
into a set of n signals through

q[i] = G2QM̃ (y (iTL)) , (23)

whereG2 ∈ R
n×p is another trainable matrix that maps back to

the original array geometry.
To simplify notation, we summarize the sampling, quantiza-

tion and filtering operations in (22) and (23) as a single function
gφ(·) such that

q[i] = gφ (x(iTL)) . (24)

The vectorφ constitutes the trainable parameters, corresponding
to the quantization levels and the filters G1,G2; the sampling
instances in this experimental study represent fixed uniform
sampling. This is typical in ultrasound systems due to dense
scattering in tissue, and the need to cover a broad imaging region.

3) Beamforming: Next, the digital signals are focused to-
wards each pixel position by applying delays, effectively trans-
forming q from the time-domain to the pixel-domain. For each
pixel, this yields the n× 1 channel domain signal given by

u(r) = [u1(r), u2(r), . . . , un(r)]

= [q[Δ1(r)], q[Δ2(r)], . . . , q[Δn(r)]] , (25)
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Fig. 7. Schematic overview of the task-based analog-to-digital conversion for ultrasound, jointly trained with adaptive beamforming by deep learning. The
(analog) RF signals are consecutively compressed in p channels, uniformly sampled, quantized, and expanded back into n channels before being stored in a digital
buffer. Trough delays, these RF lines can be focused to individual pixels, after which adaptive apodization (ABLE) is applied to yield a beamformed RF image.

where r is a coordinate vector towards that pixel position, and
Δi(r) the corresponding time-delay.

In conventional delay-and-sum beamforming (DAS), these
delayed signals are weighed according to a window w(r),
favouring either contrast (Hanning window) or resolution (rect-
angular window), and subsequently summed. This operation is
given by

sDAS(r) = w
T(r)u(r). (26)

where sDAS denotes the beamformed signal output at every pixel
index. Note here that, whiler can vary per pixel, it does not adapt
to the received signals.

To improve upon such a fixed apodization scheme, an adaptive
method can be employed in the digital domain. Here, we con-
sider the trainable Adaptive Beamforming by Deep Learning
(ABLE) [48], a model-based deep learning framework which
can learn to predict optimal channel apodizations based on
time-delayed RF data. ABLE can be written as an apodization
function fθ(·), which depends on a set of trainable parameters
θ, and maps an input signal to a content-adaptive apodization
pattern. The ABLE model combined with the mapping matrix
G2 constitute the digital processing of the generic task-based
acquisition system of Fig. 2, as illustrated for the considered
ultrasound beamforming setup in Fig. 7.

To conclude, our beamformed output signal is given by

ŝ(r) = fθ (u (r))T u(r), (27)

where ŝ denotes the predicted beamformed signal. The train-
able parameters here constitute the weights and biases of four
fully-connected layers of which ABLE is comprised [48], along
with the ADC parameters and the filters G1,G2. Finally, a
B-mode image is obtained by envelope detection and logarithmic
compression of the beamformed output.

4) Training: Because of the non-uniform distribution of
ultrasound data, we initialize the ADCs with a logarithmic
quantization rule (exponentially spaced), which is known to
result in a higher quantization resolution in the low-intensity

ranges [49]. Training is based on a signed-mean-squared-
logarithmic-error loss function, defined as

L (ŝ, s) =
1

2
‖ log10

(
ŝ+
)− log10

(
s+
) ‖22

+
1

2
‖ log10

(−ŝ−)− log10
(−s−) ‖22, (28)

where ŝ and s denote the predicted and target frames, respec-
tively, defined as ŝ+ := max(s, 0) and ŝ− := −min(s, 0), and
(·)± denote the positive and negative signal components. Train-
ing the network parameters fθ and gφ can then be formulated
as a regression problem, aiming at setting θ and φ to minimize
the loss between a desired image s and its reconstructed one
obtained via (27).

5) Evaluation: We train a set of models with different com-
pression ratios by changing the rate of analog combining and the
number quantization levels (bits) in the ADC. For each level of
compression, numerical performance is assessed by measuring
the contrast-to-noise ratio (CNR) over a simulated anechoic cyst
phantom from the PICMUS dataset [50]. The CNR is defined as

CNR = 20 log10

⎛
⎜⎜⎝ |μlow − μhigh|√(

σ2
low + σ2

high

)
/2

⎞
⎟⎟⎠ , (29)

where μlow, μhigh, σ2
low and σ2

high represent the mean intensities
and the variances of the anechoic and hyperechoic regions,
respectively. Furthermore we evaluate the mean-absolute-error
(MAE) between the baseline (uncompressed) and compressed
reconstructions. It should be noted however, that this metric does
not directly provide an measure of image quality, but gives a
good indication of similarity to the training target.

B. Results

We evaluate deep task-based acquisition with the ABLE
digital beamformer for different levels of data compression by
varying the amount of analog combining and quantization in the
model. To that end, we demonstrate 3 settings, at compression
rations of 2.6, 4 and 8. These results are compared against a
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Fig. 8. Image reconstructions, with a dynamic range of 60 dB, for: (a)–(e) Carotid artery cross-section, (f)–(g) Carotid artery longitudinal cross-section. For each
image, reconstructions are shown for: Uncompressed 16-bit ABLE (a) & (f), the proposed task based acquisition with compression ratios of 12.5% (b) & (g), 25%
(c) & (h), and 38.5% (d) & (i), and finally the 16-bit minimum variance beamformed training targets. (e) & (j).

TABLE I
NUMERICAL METRICS

baseline model, which is ABLE without deep task-based acqui-
sition [48]. Furthermore we compare the learned ADC strategy
with a deterministic (non-learned) approach having the same
bit-budget, to show the performance difference between the two
strategies.

In Table I we show the MAE and CNR for the different model
settings. Additionally we provide the rate of analog combining
and bitrate that achieve a specific compression ratio. As expected
we see reduced CNR, and increased MAE compared to the target
image, for higher compression ratios. Furthermore we see that in
all cases, the task-based ADC framework outperforms the fixed
scheme. That is, using a fixed logarithmic quantization rule, and
ABLE as beamformer.

To demonstrate that the performance metrics in Table I are
indeed translated into a clear ultrasound image acquired in

a compressed manner, we show in Fig. 8 the reconstructed
images of two in-vivo records for the baseline model, the deep
task-based ADC, and the target algorithm. Here, we can see
that the model can handle reconstruction at tight bit-budgets
well, yielding similar to baseline images. From the different
compression levels we see that at rates of 2.6x and even 4x
compression, the images are not notably affected in terms of
image quality. However, as can be expected, at more extreme
rates (i.e. 8x) the images start to get more blurry and fine details
are lost. These results demonstrate the ability of deep task-based
acquisition to facilitate operation with reduced number of bits
in practical applications involving analog-to-digital conversion.

VII. CONCLUSION

In this work we designed a deep task-based acquisition system
which learns to map a set of analog signals into an estimate of
an underlying task vector, obtained in the digital domain, in a
data-driven manner. Our system adjusts its ADC mapping by
approximating its continuous-to-discrete conversions using dif-
ferentiable functions, allowing to learn non-uniform mappings
and to train the overall system in an end-to-end fashion. The pro-
posed system was evaluated in both a synthetic detection setup
as well as for ultrasound beamforming scenario, demonstrating
its gains over using uniform ADCs and digital processing.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 06,2024 at 09:59:39 UTC from IEEE Xplore.  Restrictions apply. 



SHLEZINGER et al.: DEEP TASK-BASED ANALOG-TO-DIGITAL CONVERSION 6033

REFERENCES

[1] N. Shlezinger, R. J. van Sloun, I. A. Huijben, G. Tsintsadze, and Y.
C. Eldar, “Learning task-based analog-to-digital conversion for MIMO
receivers,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2020,
pp. 9125–9129.

[2] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cambridge,
U.K.: Cambridge University Press, 2015.

[3] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J.
Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.

[4] A. Kipnis, Y. C. Eldar, and A. J. Goldsmith, “Analog-to-digital compres-
sion: A new paradigm for converting signals to bits,” IEEE Signal Process.
Mag., vol. 35, no. 3, pp. 16–39, May 2018.

[5] M. Xiao et al., “Millimeter wave communications for future mobile
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 9, pp. 1909–1935,
Sep. 2017.

[6] T. Chernyakova and Y. C. Eldar, “Fourier-domain beamforming: The path
to compressed ultrasound imaging,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 61, no. 8, pp. 1252–1267, Aug. 2014.

[7] R. T. Yazicigil, T. Haque, P. R. Kinget, and J. Wright, “Taking compressive
sensing to the hardware level: Breaking fundamental radio-frequency
hardware performance tradeoffs,” IEEE Signal Process. Mag., vol. 36,
no. 2, pp. 81–100, Mar. 2019.

[8] N. Jain et al., “Esampling: Energy harvesting ADCs,” 2020,
arXiv:2007.08275.

[9] S. Lee, A. P. Chandrakasan, and H. Lee, “A 1 GS/s 10b 18.9 mW time-
interleaved SAR ADC with background timing skew calibration,” IEEE J.
Solid-State Circuits, vol. 49, no. 12, pp. 2846–2856, Dec. 2014.

[10] Y. Zhou, B. Xu, and Y. Chiu, “A 12-b 1-GS/s 31.5-mW time-interleaved
SAR ADC with analog HPF-assisted skew calibration and randomly
sampling reference ADC,” IEEE J. Solid-State Circuits, vol. 54, no. 8,
pp. 2207–2218, Aug. 2019.

[11] N. Shlezinger, Y. C. Eldar, and M. R. Rodrigues, “Hardware-limited
task-based quantization,” IEEE Trans. Signal Process., vol. 67, no. 20,
pp. 5223–5238, Oct. 2019.

[12] N. Shlezinger, Y. C. Eldar, and M. R. Rodrigues, “Asymptotic task-based
quantization with application to massive MIMO,” IEEE Trans. Signal
Process., vol. 67, no. 15, pp. 3995–4012, Aug. 2019.

[13] S. Salamtian, N. Shlezinger, Y. C. Eldar, and M. Medard, “Task-based
quantization for recovering quadratic functions using principal inertia
components,” in Proc. IEEE Int. Symp. Inf. Theory, 2019, pp. 390–394.

[14] N. Shlezinger and Y. C. Eldar, “Deep task-based quantization,” Entropy,
vol. 23, no. 1, 2021, Art. no. 104.

[15] I. A. M. Huijben, B. S. Veeling, K. Janse, M. Mischi, and R. J. G. van Sloun,
“Learning sub-sampling and signal recovery with applications in ultra-
sound imaging,” IEEE Trans. Med. Imag., vol. 39, no. 12, pp. 3955–3966,
Dec. 2020.

[16] S. Mulleti, H. Zhang, and Y. C. Eldar, “Learning to sample: Data-driven
sampling and reconstruction of FRI signals,” 2021, arXiv:2106.14500.

[17] G. Solodky and M. Feder, “Sampling a noisy multiple output channel to
maximize the capacity,” in Proc. IEEE 26th Eur. Signal Process. Conf.,
2018, pp. 445–449.
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