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Deep Unfolding Transformers for Sparse Recovery
of Video
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and Nikos Deligiannis , Member, IEEE

Abstract—Deep unfolding models are designed by unrolling an
optimization algorithm into a deep learning network. By incor-
porating domain knowledge from the optimization algorithm,
they have shown faster convergence and higher performance
compared to the original algorithm. We design an optimization
problem for sequential signal recovery, which incorporates that
the signals have a sparse representation in a dictionary and are
correlated over time. A corresponding optimization algorithm is
derived and unfolded into a deep unfolding Transformer encoder
architecture, coined DUST. To show its improved reconstruction
quality and flexibility in handling sequences of different lengths,
we perform extensive experiments on video frame reconstruction
from low-dimensional and/or noisy measurements, using several
video datasets. We evaluate extensions to the base DUST model
incorporating token normalization and multi-head attention, and
compare our proposed networks with several deep unfolding
recurrent neural networks (RNNs), generic unfolded and vanilla
Transformers, and several video denoising models. The results
show that our proposed Transformer architecture improves the
reconstruction quality over state-of-the-art deep unfolding RNNs,
existing Transformer networks, as well as state-of-the-art video
denoising models, while significantly reducing the model size and
computational cost of training and inference.

Index Terms—Deep unfolding, transformer networks, sparse
recovery, video compressed sensing, video denoising.

I. INTRODUCTION

IN many imaging applications, one needs to reconstruct im-
ages, videos, or other data from low-dimensional and/or

noisy measurements, for example in dynamic magnetic reso-
nance imaging [1], radar target detection [2], compressive video
sensing [3] and high-speed hyperspectral video acquisition [4].
In order to make reconstruction of the data possible, additional
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knowledge about the signal’s properties is incorporated into the
reconstruction algorithm. Sparse recovery uses the fact that the
signals have a sparse representation with respect to a dictionary,
such as natural images, which can often be represented by a
sparse set of coefficients in the frequency domain.

There are many works on sparse recovery of temporal signal
sequences, e.g., [5], [6], [7], [8]. In [5], they propose a method
to dynamically determine the number of random measurements
needed to reconstruct a signal, and [6] proposes the modified-
CS approach to reconstruct sparse signals where part of the
signal is known through prior knowledge or the previous re-
constructed signal in a sequence. The authors of [7] and [8]
model the temporal correlation between signals using an �1 or
�2 norm, which results in �1-�1 or �1-�2 minimization problems.
These optimization algorithms generally need a large number
of iterations to converge, resulting in a high computational cost.
This problem is exacerbated when the problem dimensionality
increases. With the rise of deep neural networks (DNNs), many
networks have been designed for recovery problems in image
processing and medical imaging. Such DNNs offer improved
reconstruction quality compared to iterative algorithms, while
the computational cost is moved to the training phase, resulting
in fast reconstruction times once the model is trained.

For the task of image compressed sensing (CS), [9], [10]
proposed convolutional neural networks (CNNs) to reconstruct
images, and [11] proposed a dual path CNN with added atten-
tion modules, one path for the image’s structure and one focused
on the texture. The authors in [12] designed a CNN and Trans-
former hybrid network, which aggregates the features from the
CNN branch into the Transformer branch. For the recovery of
videos, [13] designed CNNs to extract spatial features from
compressed video frames and a recurrent neural network (RNN)
to model the temporal correlations and reconstruct a sequence
of frames. The authors of [14] introduced an RNN for single-
pixel video reconstruction, and [15] proposed a Transformer
network [16] that uses the spatial and temporal correlations to
reconstruct high-speed video where groups of multiple frames
are compressed into single measurements. The downside of
DNNs is that they are black box models that lack interpretability
and prior domain knowledge about the data at hand [17]. This
lack of prior knowledge requires them to train on large amounts
of data to learn efficient representations.

Recently, there have been efforts to combine the learn-
ing ability and fast reconstruction of DNNs with the domain
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knowledge encapsulated in optimization algorithms [18]. Par-
ticularly, the approach of deep unfolding aims to unroll ex-
isting optimization algorithms into their individual iterations,
and map operations to neural network layers that are equivalent
or similar in nature [19]. The computations performed by this
unfolded neural network are close to the original algorithm, but
its parameters can be learned and improved through training on
data. In the context of sparse recovery, examples include LISTA
[20], a Learned version of the Iterative Soft Thresholding Al-
gorithm (ISTA) [21], the unfolded version of the Alternating
Direction Method of Multipliers (ADMM), called ADMM-Net
[22], and the learned Approximate Message Passing (AMP)
network [23].

For compressive sensing, several recent works designed deep
unfolding based neural networks for the reconstruction of im-
ages from low-dimensional measurements, such as ISTA-Net
[24] and its successor ISTA-Net++ [25], which are based on
ISTA, AMP-Net [26], and ADMM-DAD [27], which are un-
foldings of AMP and ADMM, respectively. The authors of
[28] used the Neumann series expansion to design Neumann
networks that can be used for various inverse problems in
imaging, and the study in [29] proposed a hybrid Transformer-
CNN model for compressed sensing that incorporates ISTA-
inspired elements.

For sparse recovery of sequential data, particularly video
reconstruction, the number of deep unfolding networks is lim-
ited. In [30], ISTA is modified into a sequential version, coined
SISTA, which is then unfolded into a recurrent neural net-
work SISTA-RNN. The authors of [31] and [32] start from
an �1-�1 minimization problem and a reweighted version, re-
spectively, where the derived optimization algorithms are then
unfolded into respectively the �1-�1-RNN and reweighted-
RNN model.

Recently, the work in [33] designed an energy function
and corresponding optimization algorithm that unfolds into a
(simplified) Transformer encoder network. The Transformer
architecture was introduced in [16], and has achieved state-
of-the-art results in language and vision tasks [34], [35], [36],
[37], [38], [39], [40], [41]. This neural network architecture
consists of several Transformer blocks stacked on top of each
other, where each block takes as input a sequence of vec-
tors (tokens), employs a self-attention operation on the tokens
to exchange context information between them, then applies
the same nonlinear transformation on each token in paral-
lel, and passes the transformed sequence to the next block
or the output. While the authors of [33] empirically showed
that their unfolded Transformer network converges towards
the solution of the corresponding optimization problem, no
experiments were conducted in which the network is trained
and evaluated on any practical regression or classification
task. We even show that without some modification, this net-
work does not perform well at all on the sparse recovery
tasks. Furthermore, the generic unfolded Transformer does
not incorporate priors specific to sparse recovery, resulting in
a lower reconstruction performance compared to e.g., deep
unfolding RNNs, which do take into account this prior
knowledge. To the best of our knowledge, our work is the first to

propose a deep unfolding Transformer architecture specifically
designed for sparse recovery problems.

In this paper, we propose an energy function for sparse re-
covery of sequential signals, by incorporating priors on 1) the
sparsity of signals in a dictionary and 2) the correlation between
signals over the entire sequence. Building upon the framework
in [33], we derive a new optimization algorithm to minimize
our energy function and unfold it into a Transformer network
coined DUST. Our deep unfolding Transformer model has a
modified self-attention mechanism, different linear projections,
and a different activation function compared to the model in
[33], making it tailored to the task of sequential sparse recovery.
We extend our initial work in [42] with additional modifications
to the architecture, namely the normalization of attention tokens
to improve training convergence and the introduction of multi-
head attention. Moreover, we provide an extensive evaluation
of our proposed architectures on (noisy) compressed sensing,
video denoising, and the reconstruction of longer sequences
and compare them to state-of-the-art deep unfolding RNNs, the
unfolded Transformer in [33] and a vanilla Vision Transformer
network. Furthermore, we compare our networks with multiple
state-of-the-art video denoising models. The reconstruction per-
formance in compressed sensing and denoising is evaluated on
multiple video datasets, showing our DUST network improves
reconstruction quality, while significantly reducing the compu-
tational cost and number of parameters at the same time. The
specific contributions of this work are:

• We design an energy function, derive a corresponding
optimization algorithm and unfold it into a Transformer
network, named DUST. It differs from [33] by incorporat-
ing the priors necessary for sparse recovery of sequences.
The Transformer also operates very differently compared
to the deep unfolding RNNs. RNNs reconstruct a sequence
in a recurrent fashion, focusing only on the current and
previous signal in the sequence, while the Transformer
can handle long-range correlations throughout the full se-
quence to improve reconstruction quality.

• We present two extensions to our basic unfolded Trans-
former architecture, namely the normalization of atten-
tion keys/queries, which significantly improves the per-
formance of the model, and the design of a multi-head
attention version, called MH-DUST.

• We provide extensive experiments for the evaluation of
DUST and MH-DUST on the task of video frame re-
construction from low-dimensional and/or noisy measure-
ments, using multiple real-world video datasets. The re-
sults show that our proposed models outperform state-of-
the-art deep unfolding RNNs, generic Transformer net-
works, and state-of-the-art video denoising models in re-
construction quality, number of parameters, and computa-
tional cost for training and inference.

The remainder of the paper is organized as follows: Section II
describes background and related work, Section III presents our
base DUST model for sparse recovery of signal sequences and
several extensions. Section IV presents experiments on video
sparse recovery and video denoising, and Section V concludes
the paper.
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II. BACKGROUND AND RELATED WORK

We seek to recover a sequence of signals st ∈ R
n, with

t= 1, . . . , T from a series of compressive and/or noisy mea-
surements:

xt =Ast + εt, (1)

where A ∈ R
m×n(m� n) is the measurement matrix or sens-

ing matrix and εt ∈ R
m is additive noise. Since this is an under-

determined system of equations, we need additional constraints
in order to recover the original signals. We assume that the
signals st have a sparse representation ht ∈ R

d in a dictionary
D ∈ R

n×d, that is, st =Dht. Furthermore, the correlation of
signals over time is used to further improve reconstruction
performance.

A. Learned Iterative Soft Thresholding Algorithm (LISTA)

When no temporal correlation is considered, the signals st
can be recovered separately, by minimizing the following en-
ergy function with respect to ht, for each time step t [43]:

E(xt,ht) =
1

2
‖xt −ADht‖22 + λ1‖ht‖1, (2)

where ‖ · ‖p is the �p norm and λ1 is a regularization parameter.
A popular algorithm for this optimization problem is ISTA [21],
which consists of the following iterations:

h
(k+1)
t = φλ1

c

(
h
(k)
t +

1

c
DTAT

(
xt −ADh

(k)
t

))
, (3)

where φγ(u) = sign(u)max(0, |u| − γ) is the soft thresholding
function and c is an upper bound on the Lipschitz constant of the
gradient of 1

2‖xt −ADht‖22. From the solution h∗
t , we obtain

the reconstructed signal by multiplication with the dictionary
D, that is, s∗t =Dh∗

t .
The iterations of ISTA can be unrolled into a feedforward

neural network called LISTA [20], such that each layer l =
1, . . . , L, corresponds to one iteration of ISTA and has the form:

h
(l+1)
t = φλ1

c

(
Uh

(l)
t +Vxt

)
. (4)

LISTA performs better than ISTA, and with a much smaller
number of iterations (layers).

B. Deep Unfolding RNNs

The deep unfolding RNNs proposed in [30], [31], [32] use the
reconstruction of the previous signal in time st−1, or its sparse
representation ht−1, to aid in recovery of st. They start from
the following optimization problem:

min
ht

E(xt,ht) + λ2C (ht,ht−1) , ∀t, (5)

where E is defined in (2), C defines the correlation between the
two time steps and λ2 is another regularization parameter. (5)
is solved consecutively for each time step t, using the recon-
struction from the previous step, which results in a RNN archi-
tecture when unfolded. Depending on C, one obtains different
optimization algorithms, which unfold into the different deep
unfolding RNN architectures. When C (ht,ht−1) =

1
2‖Dht −

FDht−1‖22, where the matrix F models the correlation between
consecutive signals, the problem can be solved using a sequen-
tial version of ISTA, referred to as sequential ISTA (SISTA), or
its unfolded version SISTA-RNN [30]. On the other hand, when
C (ht,ht−1) = ‖ht −Ght−1‖1, where the matrix G models
the temporal correlation, the reconstruction becomes an �1-
�1 optimization problem, which unfolds into the �1-�1-RNN
[31]. Additional weighting parameters can be inserted into this
�1-�1 optimization problem, which unfolds into the reweighted-
RNN [32].

C. Transformers and Deep Unfolding

In recent years, Transformer models have achieved state-of-
the-art results in language modeling [16], [34], [35], computer
vision [36], [37], [38], and image processing tasks [40], [41]
(see [39] for an overview in vision). Their key idea is splitting
the input data into independent tokens and processing them in
parallel to model long-range relationships. This is in contrast
to RNNs, which process data sequentially. In Transformers, the
input tokens can be word embeddings for language modeling or
image patches for image or video processing. In this work (and
also in [33]), only the encoder part of the Transformer is consid-
ered. Specifically, we focus on obtaining the core Transformer
encoder operations in our unfolded network, namely, 1) the self-
attention module, which lets tokens extract context from each
other, and 2) the nonlinear transform that is applied to each
token in parallel, generally implemented by a one- or two-layer
fully connected network (FCN). Whereas a Transformer block
is also interleaved with normalization layers and residual con-
nections, the core operation of a vanilla Transformer encoder
block is described by:

Z(k+1) =Y(k) softmax
(
Y(k)TW

(k)T
K W

(k)
Q Y(k)

)
, (6)

y(k+1)
n = FCN

(
z(k+1)
n

)
∀n, (7)

where the tokens y
(k)
1 , . . . ,y

(k)
N are concatenated into the ma-

trix Y(k), transformed into Z(k) by the self-attention module
with learnable matrices W(k)

K and W
(k)
Q , and then the columns

z
(k)
n are further processed into the output tokens of the block

y
(k+1)
1 , . . . ,y

(k+1)
N . The softmax function transforms the val-

ues u1, . . . , uN of each column in a matrix to a probability dis-
tribution of N possible outcomes with probability exp(un)∑N

j=1 exp(uj)
.

Many of these blocks are then stacked on top of each other to
form a full Transformer encoder model.

The authors of [33] designed the first deep unfolding based
Transformer, which consists of a softmax self-attention opera-
tion and a nonlinear transform as in (6)-(7), by starting from
the following optimization problem:

min
Y

⎛
⎝∑

i,j

− exp

(
−1

2
‖Wayi −Wayj‖22

)
+

1

2
‖WaY‖2F

⎞
⎠

+

(
1

2
Tr

(
YTWbY

)
+

1

2
‖Y‖2F + ϕ(Y)

)
, (8)

where Y is a matrix with the vectors y1, . . . ,yN as columns,
‖ · ‖F is the Frobenius norm, Tr(·) is the trace of a matrix, ϕ(u)
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is the indicator function, whose value is +∞ for u < 0 and 0
otherwise, and Wa and Wb are arbitrary weight matrices. They
proved that this total energy can be minimized by iterations of
an algorithm alternating between a step that decreases the value
of the first part of (8) and a proximal gradient descent step on
the second part of (8). When unfolded, this first part will result
in a weighted softmax self-attention layer, while the second part
unfolds into a linear projection with ReLU activation as follows:

Z(k+1) =Y(k) softmaxβ

(
Y(k)TW(k)T

a W(k)
a Y(k)

)
, (9)

y(k+1)
n =ReLU

(
W

(k)
b z(k+1)

n

)
∀n, (10)

where W
(k)
a and W

(k)
b are learnable matrices, ReLU(u) =

max(0, u) and softmaxβ is a weighted softmax function with
probabilities βn exp(un)∑N

j=1 βj exp(uj)
, where βi = exp

(
− 1

2‖yi‖22
)
. We

can see the correspondence between (6)-(7) and (9)-(10). The
sequence of (9) and (10) together form one block of the un-
folded Transformer, which can be stacked into a network of L
such blocks.

It was shown in [33] that the network architecture is able
to decrease the Transformer energy in (8) throughout its layers,
demonstrating that the conditions for convergence of the model
likely hold in many practical settings. However, no experiments
were conducted in which the unfolded Transformer is trained
and tested on any regression or classification task. In fact, we
show in Section IV-D that without our modification to (9), the
network is not able to train well at all on the sparse recovery
task. Additionally, the model in [33] does not incorporate the
priors specific to sparse recovery that are embedded in, for
example, the deep unfolding RNNs [30], [31], [32], allow-
ing them to obtain a significantly better reconstruction than
the generic unfolded Transformer of [33]. Therefore, in this
work we explore unfolded Transformer architectures specific
to sparse recovery.

III. DEEP UNFOLDING SPARSE TRANSFORMER (DUST)

In this section we propose our optimization problem for
the sparse recovery of sequential signals, the derivation of the
corresponding optimization algorithm, and the unfolding of the
algorithm into a deep unfolding Transformer network, coined
DUST. Additionally, we describe extensions to the base model
that incorporate token normalization and multi-head attention
in order to improve the reconstruction performance.

A. DUST Optimization Problem

In the deep unfolding RNNs discussed in Section II-B, only
the correlation between pairs of consecutive signals is consid-
ered. When modeling a video with a static background, for
example, measurements from all frames are useful to recover
the background and could improve reconstruction quality com-
pared to looking at only two frames at a time. The same can
be argued for videos with recurring events or temporary oc-
clusions, where similar signals in the video are not necessarily
adjacent. The technique of using similar image patches to aid
the reconstruction process has been used before in traditional

optimization algorithms [44], [45] and deep learning models
[46]. In this work, we take all signals in a sequence, e.g., all
image patches from the same spatial location in a video clip,
and want to extract information from the most similar patches
through an attention mechanism.

In order to find similar signals in the sequence and reconstruct
them simultaneously, we aim to extend the term 1

2‖Dht −
FDht−1‖22 in SISTA [30] to model correlations over the whole
sequence, in the form of

∑
t,τ

1
2‖FDht − FDhτ‖22. The in-

dices t and τ span the whole signal sequence, from time step 1
to T , such that we compare each possible pair of signals in the
sequence. Initial experiments showed that using F does not im-
prove performance and therefore we set it to the identity matrix.
This is further elaborated on in Appendix B. In order to diminish
the influence of uncorrelated signals, we introduce an expo-
nential function:

∑
t,τ − exp

(
− 1

2‖Dht −Dhτ‖22
)
. When per-

forming gradient descent on this expression, the gradient will be
near zero for dissimilar signals while we improve the estimation
of correlated signals. We also add a constraint on the �2 norm of
each signal, i.e.,

∑
t
1
2‖Dht‖22, to obtain the following temporal

correlation function:

CD(h1, . . . ,hT ) =
∑
t

∑
τ

− exp

(
−1

2
‖Dht −Dhτ‖22

)

+
∑
t

1

2
‖Dht‖22, (11)

where D is the dictionary matrix as in (2). Given a sensing
matrix A, the dictionary D, and regularization parameters λ1

and λ2, we put together this correlation function, and the re-
construction error and sparsity constraint in (2), to obtain our
full optimization problem:

min
h1,...,hT

∑
t

E(xt,ht) + λ2CD(h1, . . . ,hT ). (12)

We observe a similarity between (11) and the first part of
(8), while the second part of (8) is replaced by our data fidelity
terms and sparsity constraints in

∑
t E(xt,ht) [see (2)]. More

specifically, the term 1
2 Tr(Y

TWBY) + 1
2‖Y‖2F in (8) that

is designed to unfold into a linear projection, is replaced by∑
t ‖xt −ADht‖22, and the indicator function ϕ (Y) in (8) is

replaced with our sparsity constraints λ1

∑
t ‖ht‖1. The dif-

ferences between (8) and (12) make our optimization problem
tailored to the task of sparse recovery for sequential signals.

We derive an optimization algorithm for solving (12), anal-
ogous to the algorithm the authors of [33] derived for (8).
We can design minimization steps for CD(h1, . . . ,hT ) and∑

t E(xt,ht) separately, and alternate between the two steps to
obtain the full optimization algorithm. An elaborate description
of this derivation is given in Appendix A. The update that
minimizes CD(h1, . . . ,hT ) is given by

H(k+1) =H(k) softmaxβ

(
H(k)TDTDH(k)

)
, (13)

with H(k) ∈ R
d×T a matrix with h

(k)
1 , . . . ,h

(k)
T as its columns,

and where softmaxβ applies a weighted softmax function to
each of the columns in a matrix, with probabilities βt exp(ut)∑

s βs exp(us)

and βt = exp
(
− 1

2‖Dht‖22
)
. Note that if eachDht has the same
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(a) (b)

Fig. 1. The proposed deep unfolding transformer (DUST) encoder for sequential sparse recovery. The inputs to the network are the measurements xt =
Ast + εt. The sparse representations ht are initialized with zeros and passed through K network layers. The sparse outputs of the encoder are then multiplied
with the dictionary D to obtain the reconstructed signals st. The ⊕ symbol signifies elementwise addition, while ⊗ stands for matrix multiplication.

Algorithm 1 Attention-based sequential sparse recovery algo-
rithm
Require: measurement matrix A, dictionary D, regularization

parameters c, λ1 and λ2, measurements xt =Ast, with t=
1, . . . , T

1: h
(0)
1 , . . . ,h

(0)
T ← 0

2: for k = 1 to K do
3: β

(k)
t ← exp

(
− 1

2‖Dh
(k)
t ‖22

)
∀t

4: for t= 1 to T do

5: z
(k)
t ← λ2

∑
u β(k)

u exp
(
h

(k−1)T
t DTDh(k−1)

u

)
h(k−1)

u

∑
u β

(k)
u exp

(
h

(k−1)T
t DTDh

(k−1)
u

)

6: h
(k)
t ← φλ1

c

(
zt +

1
cD

TAT
(
xt −ADz

(k)
t

))
7: end for
8: end for
9: return s�1 =Dh

(K)
1 , . . . , s�T =Dh

(K)
T

�2 norm, the weighted softmax simplifies to an unweighted one.
Since each E(xt,ht) is independent from each other, the cor-
responding update step for this part consists of T parallel ISTA
iterations (3). The full optimization algorithm then consists
of alternating steps of softmax self-attention (13) and parallel
ISTA operations (3) and is shown in Algorithm 1. Since initially
all ht, t= 1, . . . , T, are identical (we initialize them to zero),
the first iteration of the algorithm simplifies to an iteration of
ISTA. After K − 1 more iterations of alternating self-attention
and single-iteration ISTA steps, the sparse representations h(K)

t

are multiplied with the dictionary D to obtain the final recon-
structed signals s�t =Dh

(K)
t .

B. Proposed DUST Model

By unrolling the steps of Algorithm 1 we obtain the pro-
posed Deep Unfolding Sparse Transformer model (DUST). The
sensing matrix A becomes a learnable parameter of the model,
which is used to obtain the compressed measurements xt. Then
the model, shown in Fig. 1, takes as input a set of initial tokens
ht and the measurements xt, applies self-attention (line 5 in

Algorithm 1) using the learned dictionary D, followed by one
layer of LISTA [20] (which we refer to as 1�-LISTA). 1�-LISTA
reduces the calculations in line 6 of Algorithm 1 to (15), using
the learnable matrices U and V.

The main processing block of DUST then has the
following form:

Z(k+1) = λ2H
(k) softmaxβ

(
H(k)TDTDH(k)

)
, (14)

h
(k+1)
t = φλ1/c

(
Uz

(k+1)
t +Vxt

)
for t= 1, . . . , T. (15)

The tokens are put through such a block of self-attention (14)
and 1�-LISTA (15) K times, followed by a final linear pro-
jection using the learned dictionary D to obtain the recon-
structed signals.

Analogous to the comparison of our optimization problem
with [33] in the previous section, the softmax self-attention (14)
is identical up to the scaling factor λ2 to (9), while the linear
projection followed by ReLU in (10) is replaced by a layer of
LISTA (15) in DUST.

The learnable sensing matrix A is randomly initialized. The
learned dictionary D is initialized with the discrete cosine
transform, analogous to the deep unfolding RNNs [30], [31],
[32], since natural video frames are generally sparse in the
frequency domain. For other applications, you could choose
another initialization appropriate to the task at hand, or use a
random initialization. Given the initial values for A and D,
indicated as Ai and Di, we can initialize U and V in (15)
with the values used in ISTA as U= I− 1

cD
T
i A

T
i AiDi and

V = 1
cD

T
i A

T
i . U and V are then trained independently of

A and D.
The learnable parameters of DUST are the matrices A, D,

U and V, and the parameters λ1, λ2 and c. These parameters
are tied between all blocks, similar to the deep unfolding RNNs.
The model is trained by minimizing the mean squared error loss
1
JT

∑
j,t ‖sj,t − s�j,t‖22 between the original and reconstructed

time-series signals, where J is the number of training samples.
The main difference between the unfolded Transformer [33]

and DUST is the ability to interpret our network as the oper-
ation of a sparse recovery algorithm, with as most prominent
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architectural difference the incorporation of a LISTA layer (15)
in the network instead of (10). The input to the network is for
our model not the compressed measurements, but the initial
values of the sparse representations, while the measurements
are taken in as side information through the LISTA layer.
This LISTA layer, with the soft thresholding activation func-
tion, promotes the sparsity of the generated signal represen-
tations. Additionally, DUST puts these sparse representations
through a final linear projection, in order to obtain the recon-
structed signals.

C. Token Normalization

The weighted softmax operation in (13), derived from the
energy function (11), differs from the plain softmax operator
used in the vanilla Transformer. The attention weight for the
contribution of token hs to token ht is given by:

βs exp
(
hT
t D

TDhs

)
∑

i βi exp
(
hT
t D

TDhi

) , (16)

where the weights βi are given by βi = exp
(
− 1

2‖Dhi‖22
)
. Note

that the weights cancel out when each βi has the same value,
or equivalently, when each vector Dhi has the same norm.
Therefore, we tried to normalize the vectors qt =Dht to zero
mean and unit variance before calculating the attention map
using the unweighted softmax, which turned out to significantly
improve the reconstruction performance of the model.

This normalization is exactly the same as in the Layer Nor-
malization used in vanilla Transformers, albeit without the
learnable affine transform that often follows it. Differently from
the vanilla Transformer, the normalization is mixed into the
self-attention operation and applied on the query tokens Dht,
instead of the sparse representations ht themselves in a sepa-
rate LayerNorm layer before the self-attention. In either case,
the normalization helps to stabilize the training of the DUST
network and improves its final performance. Since the unfolded
Transformer in [33] uses the same weighted softmax operation,
it can also be applied there. The performance improvement for
the unfolded Transformer by applying token normalization is
even larger than for DUST, as is shown in Section IV-D.

D. Multi-Head Attention

So far we have derived a self-attention operation with a single
attention head. In order to allow the model to attend to different
pieces of information, resulting from different signal repre-
sentations, we use multiple dictionary projections or attention
heads which perform attention operations in parallel. With this
in mind, instead of only using one temporal correlation function
CD in (12), we take the average of M functions CDm

, each with
a different learnable dictionary:

min
h1,...,hT

∑
t

E(xt,ht) +
λ2

M

∑
m

CDm
(h1, . . . ,hT ). (17)

The minimization step for
∑

t E(xt,ht) remains the same [see
(3)], whereas the averaging of functions CDm

translates into
the averaging of self-attention operations:

h
(k+1)
t =

1

M

∑
m

H(k) softmaxβ

(
H(k)TDT

mDmH(k)
)
.

(18)

The unfolding of (17) is the same as for DUST, with the dif-
ference that we now obtain a multi-head self-attention layer
λ2

∑
m H(k) softmax

(
H(k)TDT

mDmH(k)
)

instead of (14).

IV. EXPERIMENTAL RESULTS

In this section, we test the performance of the basic DUST
model and the multi-head version MH-DUST. They are com-
pared with deep unfolding RNNs [30], [31], [32], as well as a
generic Vision Transformer (ViT) [47] and the deep unfolding
Transformer from [33]. We conduct experiments on video re-
construction from compressed measurements, as well as video
denoising tasks.

A. Datasets and Preprocessing

In our experiments we used the following three real-world
video datasets:

• CUHK Avenue [48] consists of 16 training videos and 21
test videos with a resolution of 640× 360 pixels, contain-
ing people walking in front of a station entrance.

• UCSD Anomaly Detection [49] has 50 train and 48 test
videos of pedestrians and the occasional vehicle. Videos
from one scene have a resolution of 238× 158 pixels,
while the second scene has a 360× 240 pixels resolution.

• ShanghaiTech Campus [50] contains 330 train and 107
test videos of resolution 856× 480 pixels of pedestrians
and an occasional bicycle or scooter. It covers 13 different
scenes with a variety of view angles.

For the Avenue and ShanghaiTech dataset, we convert the
videos to grayscale and downsample the frames to a vertical res-
olution of 160 pixels. The UCSD dataset is already in grayscale
and has a lower resolution, so we do not downsample these
videos. Furthermore, the training videos of each dataset are
split into 80% for the training set and 20% for the validation
set, while the test sets are used as is. In order to reduce the
computational time needed to conduct experiments, the length
of each video is limited to a maximum of 200 frames.

In order to reconstruct the videos, they are split into overlap-
ping or non-overlapping patches of 16× 16 pixels. These patch
videos are then further split into non-overlapping clips of 20
frames each. The last processing steps differ slightly depending
on the reconstruction task at hand.

1) Compressed Sensing: In this setting, each 16× 16 patch
is flattened into a 256× 1 vector and multiplied with the learn-
able m× 256 sensing matrix A of the model, without adding
extra noise. Each patch clip sample then becomes a sequence
of 20 vectors of size m, or equivalently a m× 20 matrix.

2) Denoising: A special case of compressed sensing is when
the sensing matrix in (1) is the identity. The recovery of the
signals then becomes a denoising task. For this task, we simply
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flatten the patches and add Gaussian noise with the specified
noise level. This noise level is the standard deviation of the noise
that is added to pixel values in the range [0, 255]. Each patch
clip input sample is then a 256× 20 matrix.

3) Noisy Compressed Sensing: This scenario is a combina-
tion of the two previous operations. The flattened patches are
multiplied with the sensing matrix A and are then corrupted by
adding i.i.d. Gaussian noise with standard deviation σ.

B. Experimental Settings

All models are implemented using PyTorch [51]. Each net-
work is trained to minimize the mean square error (MSE)
between the output of the network and the original signal se-
quence, using the Adam optimizer. We use gradient clipping
during backpropagation in order to stabilize training.

For each model tested in this work we use the same number of
layers/blocks, that is, 3. Each block in a model shares the same
parameters, apart from the ViT, which has separate weights in
each Transformer block. The number of parameters of each
network is listed in Table VIII.

In each model, the m× 256 sensing matrix A is randomly
initialized using Glorot initialization, where the value m< 256
depends on the chosen compressed sensing rate m

256 (CS rate).
For the video denoising task, however, the sensing matrix is
fixed to the square identity matrix. The overcomplete 256×
1024 dictionary D used in the deep unfolding models is ini-
tialized with the DCT transform. For the multi-head version
of DUST, each dictionary D1. . . . ,DM is initialized with the
DCT, but we make each one of them slightly different by
Gaussian noise with a standard deviation of 3× 10−4, to en-
courage the model to learn different dictionaries. Furthermore,
for DUST and MH-DUST the starting values of c, λ1, and λ2

are 1, 0.1, and 0.4 respectively, while we use the values 1, 0.3,
and 0.02 for SISTA-RNN, �1-�1-RNN, and reweighted-RNN.
Other parameters are initialized according to their correspond-
ing papers.

All models are trained using a batch size of 64 patch clips.
The deep unfolding RNNs use a learning rate of 10−4, while
ViT, the unfolded Transformer, DUST and MH-DUST use a
learning rate of 3× 10−4 in most cases. For the compressed
sensing task, DUST and MH-DUST use a learning rate of 10−3

instead. This learning rate is reduced with a factor 0.3 each
times the validation loss does not decrease for 5 consecutive
epochs. On the Avenue and UCSD dataset the models are
trained for 100 epochs, while on ShanghaiTech we train for 40
epochs due to the larger size of the dataset.

The reconstruction performance is measured using the peak
signal-to-noise ratio (PSNR) between the original and recon-
structed frames, after stitching the patches back together. The
PSNR is then averaged over all frames in the test set. We use
the same operation to calculate the structural similarity index
measure (SSIM).

C. Sensitivity to Initial Parameter Values

The initial values for c, λ1, and λ2 were determined empir-
ically. In fact, the exact starting values for these parameters

TABLE I
EFFECT OF INITIAL PARAMETER VALUES ON FINAL MODEL PERFORMANCE

λ1 0.01 0.03 0.1 0.3 1 3 10

PSNR 37.54 37.61 37.61 37.67 37.65 37.66 37.59

λ2 0.05 0.1 0.2 0.4 0.6 0.8 1

PSNR 37.64 37.56 37.55 37.61 37.60 37.50 37.35

c 0.1 0.5 1 1.5 2 3 4

PSNR 37.45 37.52 37.61 37.61 37.58 37.56 37.48

TABLE II
THE EFFECT OF TOKEN NORMALIZATION ON COMPRESSED SENSING

PERFORMANCE FOR THE AVENUE DATASET

(a) Proposed DUST

Avenue UCSD ShanghaiTech

PSNR SSIM PSNR SSIM PSNR SSIM

w/o norm. 35.24 0.9526 33.51 .9565 * *

w/ norm. 36.30 0.9653 34.53 0.9688 35.53 0.9407

(b) Unfolded Transformer [33]

Avenue UCSD ShanghaiTech

PSNR SSIM PSNR SSIM PSNR SSIM

w/o norm. 10.59 0.0624 8.86 0.0116 * *

w/ norm. 33.64 0.9289 32.54 0.941 33.31 0.9145

* Training diverged

do not have a significant impact on the final performance of
the model, since the optimal values are also learned during
training. In Table I, we provide the average PSNR values for
compressed sensing on the Avenue dataset when varying each
of these parameters. As can be seen in the table, varying the
starting value for each of these parameters has little effect on
the reconstruction quality after training.

D. Token Normalization

Prior to calculating the attention map in DUST, we normalize
the tokens to get rid of the reweighing in the softmax function,
as described in Section III-C. Here, we show that this normal-
ization has a significant positive effect on the performance of the
model. The tests are performed for the compressed sensing task
on the Avenue dataset, with CS rate 0.2 and non-overlapping
patches.

We observed that the normalization helps to stabilize the
training process, especially in the beginning, which helps the
model reach a better final performance. In Table II(a) that con-
tains the results for DUST, in the row w/o norm. the attention
tokens were not normalized and the weighted softmax function
is used as in (13), while in the row w/ norm., we did apply
the normalization. On the Avenue and UCSD dataset, we gain
over 1 dB in PSNR and more than 1.2% in SSIM by using
the token normalization over the weighed softmax. On the
ShanghaiTech dataset, the model is not even able to converge
without normalization.

In the same way, we make the comparison for the unfolded
Transformer [33] in Table II(b). We test the difference between
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Fig. 2. Compressed sensing performance on the avenue dataset for SISTA,
Algorithm 1, and the corresponding deep unfolding networks.

using the weighed softmax, and normalizing the attention to-
kens before computing the attention matrix and applying plain
softmax. Without normalization, this architecture performs very
poorly on the Avenue and UCSD dataset with 11.59 and 8.86 dB
PSNR, respectively. Like DUST, the architecture also diverges
on ShanghaiTech. The token normalization allows the unfolded
Transformer to perform decently on all three datasets.

Given these results, we use token normalization in both
DUST and the unfolded Transformer in all further experiments.

E. Optimization Algorithms vs Deep Unfolding

The relation between Algorithm 1 and the unfolding into
DUST is illustrated in Fig. 2. We show the reconstruction per-
formance for compressed sensing at a rate 0.2 on the Avenue
test set, for different numbers of model layers or algorithm itera-
tions. For DUST, we trained networks from 1 to 6 layers, while
Algorithm 1 was tested for 5, 10, 20, 50, 100, 200, and 500
iterations. The algorithm needs at least an order of magnitude
more iterations to converge compared to DUST, while DUST
still achieves PSNR that is at least 16 dB higher. For compari-
son, we also include results for SISTA and SISTA-RNN in the
figure, with the same numbers of layers and iterations. While
Algorithm 1 only gains 0.5 dB over SISTA, this difference
is amplified when training the corresponding deep unfolding
networks, where DUST achieves an increase of more than 2
dB in PSNR over SISTA-RNN.

F. Multi-Head Attention

Next, we want to find the optimal number of attention heads
for the multi-head DUST model MH-DUST. We compare the
base DUST architecture and MH-DUST with different numbers
of heads on Avenue for compressed sensing with CS rate 0.2,
as well as denoising with noise level 20. The results on both
tasks are shown in Table III. The single-head case corresponds
with the basic DUST model. For the compressed sensing task,
multi-head attention brings a slight advantage of up to 0.1 dB
in PSNR on the Avenue and ShanghaiTech dataset, while on
UCSD we see no apparent benefit. On the denoising task, we
see improvements of 0.1, 0.2, and 0.3 dB in PSNR using multi-
head attention on respectively the UCSD, ShanghaiTech, and
Avenue datasets.

TABLE III
RECONSTRUCTION PERFORMANCE FOR DIFFERENT NUMBERS OF

ATTENTION HEADS ON THE AVENUE DATASET

(a) Compressed Sensing

Avenue UCSD ShanghaiTech

# Heads PSNR SSIM PSNR SSIM PSNR SSIM

1 36.44 0.9665 34.56 0.9690 35.51 0.9404

2 36.46 0.9666 34.56 0.9689 35.43 0.9396

4 36.48 0.9670 34.51 0.9686 35.61 0.9415
6 36.52 0.9672 34.53 0.9688 35.47 0.9402

8 36.48 0.9669 34.52 0.9687 35.44 0.9391

(b) Denoising

Avenue UCSD ShanghaiTech

# Heads PSNR SSIM PSNR SSIM PSNR SSIM

1 34.90 0.9478 34.54 0.9569 35.71 0.9363

2 35.19 0.9507 34.64 0.9585 35.89 0.9369
4 35.02 0.9489 34.66 0.9590 35.39 0.9295

6 35.21 0.9506 34.66 0.9589 35.44 0.9306

8 35.03 0.9493 34.66 0.9588 35.46 0.9307

Since the multi-head attention is not clearly outperforming
the single-head model, in further experiments we evaluate both
single-head and multi-head DUST with 4 attention heads. We
can conclude that multi-head attention mostly shines when the
problems become harder, for instance, denoising at higher noise
levels or noisy compressed sensing, where the added modeling
complexity does improve the reconstruction significantly. The
choice between DUST and MH-DUST thus depends on the
specifics of the reconstruction problem.

G. Performance Comparison

In this section, we compare our DUST and MH-DUST mod-
els with the deep unfolding RNNs SISTA-RNN, �1-�1-RNN
and reweighted-RNN, as well as the unfolded Transformer [33]
and a generic ViT model on the three real-world video dataset
CUHK Avenue, UCSD Anomaly Detection and ShanghaiTech
campus. We perform experiments for compressed sensing at
different CS rates, video denoising for different noise levels,
and CS with additive Gaussian noise.

1) Compressed Sensing: For the compressed sensing experi-
ments, we extract overlapping patches from the videos into clips
of 20 consecutive patches. The compressed sensing rate m

256
ranges from 0.1 to 0.5, and the average PSNR and SSIM values
for each model in each setting are reported in Table IV. On all
three datasets, reweighted-RNN had the tendency to suddenly
diverge during training. Even after trying out different values for
the learning rate and other hyperparameters, we could not get
reweighted-RNN to train properly in some settings, indicated
in the table.

In general, the main contenders in these experiments are the
reweighted-RNN and the single- and multi-head DUST models.
SISTA-RNN and �1-�1-RNN perform consistently worse than
reweighted-RNN, and ViT and the unfolded Transformer are
in almost all cases several dB in PSNR and several percent
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TABLE IV
COMPRESSED SENSING

(a) Avenue test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

CS Rate PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.1 32.43 0.9104 33.65 0.9409 * * 34.30 0.9530 32.25 0.9054 35.00 0.9550 34.97 0.9548

0.2 35.91 0.9591 36.82 0.9697 37.28 0.9762 36.71 0.9732 34.35 0.9405 37.95 0.9766 38.02 0.9770
0.3 38.08 0.9754 39.03 0.9817 39.53 0.9845 36.41 0.9727 36.09 0.9605 40.08 0.9854 39.84 0.9845

0.4 40.18 0.9849 40.96 0.9882 41.87 0.9906 39.20 0.9854 38.07 0.9750 41.81 0.9900 41.81 0.9899

0.5 42.02 0.9901 42.93 0.9924 43.88 0.9939 38.05 0.9875 39.76 0.9828 43.57 0.9931 43.61 0.9932

(b) UCSD test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

CS Rate PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.1 30.84 0.9139 31.31 0.9363 * * 33.29 0.9595 30.99 0.9153 32.71 0.9537 32.83 0.9551

0.2 34.20 0.9589 34.40 0.9672 * * 24.00 0.6377 33.10 0.9469 35.97 0.9764 36.05 0.9769
0.3 36.74 0.9757 37.09 0.9809 37.78 0.9847 26.03 0.7435 34.55 0.9544 38.52 0.9856 38.53 0.9858
0.4 39.17 0.9855 39.59 0.9880 40.15 0.9902 25.79 0.7309 36.55 0.9702 40.82 0.9908 40.89 0.9909
0.5 41.47 0.9913 42.10 0.9927 42.32 0.9934 28.14 0.8586 38.64 0.9808 42.99 0.9940 42.98 0.9940

(c) ShanghaiTech test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

CS rate PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0.1 31.48 0.8844 32.36 0.9005 * * 33.18 0.9076 31.66 0.8865 33.08 0.9060 33.07 0.9058

0.2 34.82 0.9397 35.44 0.9473 * * 35.85 0.9486 34.08 0.9344 35.94 0.9497 35.86 0.9486

0.3 37.06 0.9631 37.75 0.9675 37.97* 0.9699* 37.75 0.9673 36.03 0.9586 37.90 0.9677 37.91 0.9675

0.4 39.16 0.9770 39.75 0.9797 40.30* 0.9812* 38.70 0.9769 37.63 0.9721 40.04 0.9801 40.01 0.9801

0.5 41.22 0.9858 41.71 0.9871 * * 41.18 0.9862 39.56 0.9818 41.78 0.9870 41.80 0.9870

* Training diverged; if a result is given, this was obtained after considerable hyperparameter tuning.

in SSIM below reweighted-RNN and the DUST models. The
reason ViT and the unfolded Transformer do not perform well in
these experiments is because they do not incorporate the priors
specific to this recovery problem that are embedded into the
architecture of the deep unfolding RNNs and DUST. Overall,
our DUST models consistenly improve over reweighted-RNN
by 0.6-0.7 dB in PSNR as well as in SSIM. The comparison
between basic DUST and the multi-head version MH-DUST
is rather inconclusive, with differences mostly below plus or
minus 0.1 dB in PSNR.

2) Video Denoising: In this setting, we fix the sensing matrix
to the identity in all models and add Gaussian noise to the
frame patches. We again test all models on the three datasets
Avenue, UCSD, and ShanghaiTech, using noise with a standard
deviation from 10 to 100. The results are shown in Table V.
Similar to the compressed sensing experiments, SISTA-RNN,
�1-�1-RNN, ViT, and the unfolded Transformer perform well
below reweighted-RNN and DUST. Again, our DUST models
improve over reweighted-RNN with a significant margin. In this
case, however, our multi-head attention is able to consistently
be better than single-head DUST.

3) Noisy Compressed Sensing: For completeness, we also
consider the combination of the previous two scenarios, adding
Gaussian noise to compressed measurements. We generate
measurements from non-overlapping patches at a compression

ratio of 0.2 and add noise with a standard deviation ranging
from 10 to 100. The average PSNR and SSIM are reported in
Table VI for the Avenue dataset. At low noise levels, MH-DUST
and DUST are on par with reweighted-RNN, while at higher
noise levels, DUST improves over reweighted-RNN with 0.8-
2 dB. MH-DUST adds another 0.5 to 0.8 dB on top of this.
Like before, SISTA-RNN, �1-�1-RNN, ViT and the unfolded
Transformer cannot match reweighted-RNN and (MH-)DUST.

In conclusion, the Vision Transformer and unfolded Trans-
former cannot compete with the problem specific archi-
tectures, as they lack the specific priors related to these
recovery problems. Our DUST method consistently improves
over reweighted-RNN and the other RNNs, while its multi-
head variant has an edge in more difficult settings like noisy
compressed sensing.

A visual example of the performance of each model is given
in Fig. 3. It shows the difference in absolute value between
the reference frame and the reconstruction from a noisy video
with noise level 20 of each network, where yellow indicates
the highest errors and purple shows the lowest errors. For the
RNNs, reweighted-RNN is visually the best model, which cor-
roborates the global PSNR and SSIM results. ViT suffers from
severe errors in some patches, which may indicate that ViT
mostly memorizes the training data and is unable to generalize
to unseen data, like the person walking in the foreground or

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on April 10,2024 at 19:42:30 UTC from IEEE Xplore.  Restrictions apply. 



WEERDT et al.: DEEP UNFOLDING TRANSFORMERS FOR SPARSE RECOVERY OF VIDEO 1791

TABLE V
VIDEO DENOISING

(a) Avenue test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 34.83 0.9385 36.95 0.9641 37.66 0.9695 27.72 0.9186 35.19 0.9446 38.02 0.9698 38.17 0.9709
20 31.14 0.8739 33.83 0.9351 34.61 0.9457 27.22 0.8912 33.06 0.9122 34.90 0.9478 35.02 0.9489
50 26.68 0.7345 29.86 0.8660 30.71 0.8856 23.80 0.7413 30.00 0.8442 31.44 0.8977 31.62 0.9024

100 23.96 0.6223 26.66 0.7640 27.49 0.7910 20.40 0.6574 28.16 0.7992 28.28 0.8065 28.46 0.8116

(b) UCSD test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 35.03 0.9452 36.87 0.9668 * * 30.48 0.9380 35.27 0.9474 37.63 0.9722 37.82 0.9733
20 31.53 0.8955 33.28 0.9430 34.26 0.9569 28.28 0.9075 32.29 0.9091 34.54 0.9569 34.66 0.9590
50 26.85 0.7397 29.25 0.8786 30.26 0.9086 24.63 0.8328 29.03 0.8562 30.47 0.9130 30.53 0.9150

100 24.14 0.6241 26.40 0.7853 27.32 0.8291 20.72 0.7312 27.21 0.8315 27.39 0.8326 27.42 0.8375

(c) ShanghaiTech test results

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 35.26 0.9186 37.12 0.9466 37.44 0.9502 22.67 0.8028 36.54 0.9430 38.24 0.9581 39.34 0.9667
20 32.12 0.8637 33.58 0.9001 34.10* 0.9086* 21.38 0.7444 34.47 0.9053 35.71 0.9363 35.39 0.9295

50 28.18 0.7533 30.04 0.8241 * * 19.84 0.7008 30.68 0.8311 31.53 0.8650 31.94 0.8743
100 25.53 0.6552 27.58 0.7487 27.92 0.7646 18.39 0.6470 28.44 0.7799 28.89 0.7998 29.16 0.8067

* Training diverged; if a result is given, this was obtained after considerable hyperparameter tuning.

TABLE VI
NOISY COMPRESSED SENSING ON AVENUE

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST
σ PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

10 33.34 0.9222 35.02 0.9518 35.82 0.9607 29.93 0.9035 33.08 0.9208 35.74 0.9607 35.63 0.9601
20 32.32 0.9015 34.02 0.9370 35.02 0.9520 30.05 0.8930 32.92 0.9165 35.04 0.9543 35.06 0.9546
50 29.16 0.8159 30.80 0.8771 32.31 0.9148 29.91 0.8789 32.20 0.9054 33.16 0.9322 33.93 0.9437

100 26.58 0.7218 28.29 0.8058 30.10 0.8675 29.05 0.8574 31.51 0.8938 32.11 0.9135 32.60 0.9256

the bags in the bottom left corner. DUST and MH-DUST yield
the best results visually, which supports the quantitative results
in Table V.

H. Longer Sequences

In this section, we evaluate the models on longer sequences,
since we expect the Transformer based models to be better able
to handle these compared to the RNNs. The first experiment
uses the models trained for compressed sensing on Avenue in
Section IV-G, using a CS rate of 0.2 and clips of 20 frames long,
and evaluates them on longer video sequences; namely, patch
clips of 25, 50, and 100 frames. The average PSNR and SSIM
for each model and clip length is shown in Table VII(a). The
unfolded Transformer, DUST and MH-DUST achieve almost
exactly the same performance, irrespective of the length of the
video clips. Among the Transformer based architectures, only
ViT sees a drop in performance of 0.8 dB and 2.1 dB in PSNR
for sequences of length 50 and 100. For the deep unfolding

RNNs however, at a clip length of 100 frames, SISTA-RNN
sees a drop of 1.2 dB in PSNR, �1-�1-RNN loses more than 10
dB, and the output of reweighted-RNN even diverges, which
results in numerical overflows and errors.

The reason for this difference between the RNNs and Trans-
formers is the way they process a signal sequence. Since the
RNNs reconstruct the sequence frame by frame, using the pre-
vious reconstruction as a guide, the errors accumulate over
time. On the other hand, the self-attention in the Transformers
just processes more tokens at a time and no error accumula-
tion occurs. The other parts in the Transformer architecture
even operate on each token independently, so the only part
where the sequence length makes any difference is in the self-
attention layer.

This error accumulation is illustrated in Fig. 4 for the com-
pressed sensing task, which shows the PSNR for each frame,
averaged over all video clips extracted from the Avenue test
set. When evaluated on both clip lengths of 20 and 50 frames,
the average frame PSNR remains fairly constant over the whole
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Fig. 3. Visualization of the absolute error on an example frame for video denoising on the avenue dataset.

TABLE VII
Compressed Sensing for Longer Video Clips on the Avenue Dataset

(a) Evaluation of original models on longer clips

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

Clip Length PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

20 35.91 0.9591 36.82 0.9697 37.28 0.9762 36.71 0.9732 34.35 0.9405 37.95 0.9766 38.02 0.9770
25 35.95 0.9593 36.83 0.9702 36.86 0.9758 36.69 0.9732 34.33 0.9404 37.94 0.9765 38.02 0.9770
50 35.62 0.9596 34.06 0.9676 36.21 0.9745 35.91 0.9731 34.34 0.9404 37.96 0.9766 38.06 0.9772

100 34.70 0.9591 26.17 0.9536 † † 34.61 0.9725 34.33 0.9403 37.99 0.9768 38.09 0.9774

(b) Model performance after finetuning on the corresponding clip lengths

SISTA-RNN �1-�1-RNN Reweighted-RNN ViT Unfolded Transf. DUST MH-DUST

Clip Length PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25 35.98 0.9598 36.89 0.9704 36.89 0.9759 36.90 0.9737 34.38 0.9410 37.96 0.9767 38.04 0.9772
50 35.60 0.9600 35.59 0.9701 36.29 0.9746 36.80 0.9736 34.36 0.9408 37.98 0.9768 38.06 0.9772

100 34.76* 0.9595* * * * * 36.78 0.9736 34.37 0.9408 37.99 0.9768 38.08 0.9774

† Model output diverged * Training diverged

clip for all Transformer based models, showing that the archi-
tecture is robust to changes in input length. On the other hand,
the RNNs process the video clips sequentially, which means
that they cannot use the information in the subsequent frames
and forget information over time. For the first few frames,
the information the RNNs can use is limited, which results
in low PSNR values for these frames. In later frames, the re-
construction errors accumulate and the PSNR drops over time.
This dropping reconstruction quality is especially prominent
when evaluating on clips of length 50, where all RNNs show
significant drops in PSNR towards the end of the clip, which
explains their poor performance on long videos. Specifically for
reweighted-RNN, we also observed throughout the experiments
that during the reconstruction of a patch clip, sometimes the
norm of the vector representation explodes. This divergence
also caused several failed training runs as reported in previous
sections. The presence of these failed reconstructions might also
explain the steeper decline in PSNR in Fig. 4 for reweighted-
RNN at clip length 20.

Fig. 4. Compressed sensing reconstruction quality per frame for each
network, averaged over each video clip in the avenue test set.

Apart from evaluating the models on longer clips, we also
finetune the models for these settings. We divide the initial
learning rate by 10 compared to training from scratch, and
finetune each model for 20 epochs on the Avenue dataset, with
CS rate 0.2 and the specified clip length. The results are listed
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TABLE VIII
SIZE AND COMPUTATIONAL COSTS OF EACH MODEL FOR COMPRESSED

SENSING ON THE AVENUE DATASET

# Parameters
(Millions)

Training Time
(s/epoch)

Inference
Time (s)

SISTA-RNN 0.34 30 42
�1-�1-RNN 1.32 55 64

reweighted-RNN 2.37 65 72
ViT 2.46 31 21

unfolded Transf. 0.49 10 20
DUST 1.38 6 20

MH-DUST 2.42 7 21

in Table VII(b). For most models, the effects of finetuning are
rather limited, with differences only in the last digit for the
PSNR and SSIM values. Only for ViT and �1-�1-RNN, we see
some significant improvements. With finetuning, ViT now has
about the same performance for each clip length, while �1-�1-
RNN gains 1.5 dB in PSNR for 50 frame clips, which is still
1.2 dB below the base performance on the clips of length 20.

Overall, finetuning does not make a difference for the deep
unfolding Transformers, since they already perform equally
well on a wide range of sequence lengths. The RNN models on
the other hand, see large drops in reconstruction quality when
the input sequences become longer, even when finetuned on
these specific settings. We would like to mention that while
finetuning the RNN can help for that specific clip length, but as
a result loses performance on the original 20 frame clips, which
does not happen for the Transformer models.

I. Model Complexity

Furthermore, we compare the number of parameters, training
time, and inference speed for each of the models in Table VIII.
We train each model for 100 epochs for compressed sensing
on the Avenue dataset with a CS rate of 0.2 on an NVIDIA
GeForce RTX 3090 GPU. We list the average training time in
seconds per epoch, as well as the total time to run the model
on the test set, to showcase the inference speed.

DUST has significantly less parameters than reweighted-
RNN, showing that the improvements in performance do not
come from increased model complexity, but rather an architec-
tural advantage. The Transformer models are up to 10 times
faster to train than the RNNs, and their processing speed is 2-
3 times higher at inference. This is due to the more parallel
nature of the computations in Transformers, as well as more
simple activation functions, e.g., soft thresholding or ReLU
compared to the double plateau thresholding function in �1-
�1-RNN and reweighted-RNN. Additionally, DUST has nearly
half the number of parameters compared to ViT and is 5 times
faster to train, due to its single linear layer compared to the two-
layer feedforward block in ViT. The unfolded Transformer has
less parameters than DUST, but is somewhat slower to train.
Nevertheless, both ViT and the unfolded Transformer perform
significantly worse than DUST as shown in previous sections,
due to the priors that are embedded into the DUST architecture.

TABLE IX
VIDEO DENOISING PERFORMANCE (PSNR) ON THE

AVENUE DATASET

σ = 10 σ = 20 σ = 50
pretrained FastDVDnet 32.39 25.72 18.29

FastDVDnet 38.52 35.37 31.71
pretrained PaCNet 36.43 30.20 23.74

pretrained RVRT 31.69 25.65 18.08
RVRT 28.15 22.26 15.01

DUST 38.02 34.90 31.44
MH-DUST 38.17 35.02 31.62

J. Comparison With SOTA Video Denoising Models

Additionally, we compare the video denoising performance
of our approach with other video denoising methods, namely,
FastDVDnet [52], PaCNet [46], and RVRT [53]. Since these
models were implemented for RGB videos instead of the
grayscale videos as we evaluate in this paper, we adapted their
code to use the same noise values for each color channel and
then fed them the same grayscale videos as for DUST for a fair
comparison. Each of these works provide weights pretrained
on the DAVIS dataset [54]. We evaluate these models on the
Avenue test set. Furthermore, we train FastDVDnet and RVRT
from scratch on Avenue. For PaCNet this was not possible as
they did not provide training details or training code.

The denoising performance in PSNR for each model is shown
in Table IX. Only FastDVDnet trained on Avenue is able to
best our MH-DUST network by 0.1-0.4 dB. Depending on the
noise level, the pretrained models all lose at least 2 and up to
13 dB compared to DUST. RVRT, in particular, was not able
to train at all on the Avenue dataset and performs even worse
than pretrained RVRT. On top of that, on our NVIDIA GeForce
RTX 3090 GPU, DUST can be trained in under 12 minutes and
performs inference at 730 frames/s. On the other hand, Fast-
DVDnet requires 32 hours of training on the same computer,
and can run inference at 69 frames/s. RVRT requires more than
8 days of training and runs at 23 frames/s. Finally, PaCNet is
only able to achieve an inference speed of 0.09 frames/s, more
than 8000 times slower than DUST. Furthermore, DUST and
MH-DUST have respectively 1.38 and 2.42 million parameters.
FastDVDnet and PaCNet have 2.48 and 2.87 million param-
eters, on par with MH-DUST and double the size of single-
head DUST, while RVRT contains 12.8 million parameters,
an order of magnitude more than DUST. In conclusion, our
methods yield competitive denoising performance at a fraction
of the computational cost compared to state-of-the-art video
restoration methods.

V. CONCLUSION

In this work, we design an optimization algorithm for the
recovery of sequential signals, taking into account the spar-
sity of the signals in a dictionary and their correlation over
time. The derived optimization problem is unfolded into a
Transformer based neural network architecture. We experi-
ment with different modifications to the base model, such as
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the normalization of attention tokens and the use of multi-
head attention. Extensive experiments on video reconstruction
from low-dimensional and/or noisy measurements show that
our deep unfolding Transformer networks outperform state-of-
the-art deep unfolding RNNs, generic Transformer networks,
and state-of-the-art video restoration methods in reconstruction
performance, while having less model parameters. In addition,
our proposed networks require significantly less computational
resources to train and perform inference than other approaches.

APPENDIX A

DERIVATION OF THE DUST OPTIMIZATION ALGORITHM

We elaborate on the derivation of our optimization algorithm
from (12). Starting with the temporal correlation function (11),
it was shown in Theorem 3.1 from [33] that the energy function
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τ = exp

(
− 1
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and H(k) a concatenation of the

vectors h(k)
1 , . . . ,h

(k)
T . Furthermore, they introduced learnable

parameters into this update step using the reparameterization
yt =Dht, such that we obtain the update step (13) for (11).

In order to derive an update rule for

min
h1,...,hT

∑
t

1

2
‖xt −ADht‖22 + λ1‖ht‖1, (21)

we observe that the terms are independent for each t. There-
fore, each of these terms can be minimized independently with
iterations of ISTA (3) as in Section II-A.

In order to minimize the sum of (11) and (21), we can use the
proximal alternating inexact minimization algorithm (P-AIM)
from [33]. They proved that an energy function that is a sum
of multiple terms, can be minimized by applying (proximal)
gradient descent steps for each part separately in succession.
The resulting algorithm, where one iteration consists of exe-
cuting the (proximal) gradient descent update corresponding to
each part consecutively, is shown to converge to a small region
around the optimal solution. Since our optimization problem
(12) fits within the scope of P-AIM, we can apply this method
to derive our Algorithm 1, where one iteration consist of the de-
scent step for (11), a gradient descent on

∑
t
1
2‖xt −ADht‖22,

and the soft thresholding proximal operator corresponding
to

∑
t ‖ht‖1.

APPENDIX B

EFFECT OF THE F MATRIX

The authors of [30] assume each signal in a sequence is
linearly predictable through a matrix F: st = Fst−1 + nt−1,

TABLE X
EFFECT OF THE F MATRIX ON RECONSTRUCTION PERFORMANCE

(a) DUST

Avenue UCSD Shanghaitech

PSNR SSIM PSNR SSIM PSNR SSIM

CS
w/o F 37.97 0.9766 36.04 0.9767 35.86 0.9486
w/ F 37.91 0.9762 36.05 0.9768 35.84 0.9489

Denoising
w/o F 34.90 0.9478 35.54 0.9569 35.71 0.9363
w/ F 35.14 0.9505 34.58 0.9575 35.59 0.934

Noisy CS
w/o F 35.09 0.9547 33.92 0.963 34.86 0.9332
w/ F 35.15 0.9554 33.96 0.9634 34.90 0.9334

(b) MH-DUST

Avenue UCSD Shanghaitech

PSNR SSIM PSNR SSIM PSNR SSIM

CS
w/o F 37.94 0.9765 36.02 0.9769 35.88 0.9489
w/ F 37.89 0.9763 35.99 0.9767 35.84 0.9483

Denoising
w/o F 35.02 0.9489 34.66 0.959 35.39 0.9295
w/ F 35.20 0.9508 34.66 0.9591 35.54 0.9318

Noisy CS
w/o F 35.12 0.9553 33.95 0.9634 34.89 0.9337
w/ F 35.13 0.9556 33.98 0.9637 34.84 0.9329

where n is zero mean Gaussian noise. This results in the
correlation term C(ht,ht−1) =

1
2‖Dht − FDht−1‖22 in (5).

When you extend this approach to multiple time steps, you
obtain higher powers of F. To facilitate the self-attention oper-
ation, we have to opt for the symmetric constraint 1

2‖FDht −
FDht−1‖22. However, this is equivalent to projection using a
different dictionary D′ = FD. Since the dictionary is learned
anyway, introducing an extra matrix F should not make any
difference. In Table X, we compare the reconstruction perfor-
mance of single-head and multi-head DUST on the Avenue
dataset for the different reconstruction tasks, with and without
the F matrix. The results mostly differ in the least significant
digit and lie within the natural variability between training runs.

APPENDIX C

VISUALIZATION OF THE LEARNED MATRICES

In Fig. 5, we show the initial values of the sensing matrix
A and the dictionary D, as well as their values after training
DUST for compressed sensing on the Avenue dataset. In Fig. 6,
we do the same for the matrix U, which is initialized using the
formula: U= I− 1

cD
TATAD. Additionally, we recalculate

U using the learned values of A, D, and c, which is very
different from the plain learned U. The same conclusion can
be reached for the matrix V. As in LISTA, the independent U
and V matrices add extra flexibility to the model and help to
increase the reconstruction performance.
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Fig. 5. Visualization of the initial and learned sensing matrix A and
dictionary D.

Fig. 6. The difference between the initialization of the matrix U, the learned
values, and the recalculation from the learned parameters A, D, and c.
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