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Deep algorithm unrolling has emerged as a powerful, model-
based approach to developing deep architectures that com-
bine the interpretability of iterative algorithms with the per-

formance gains of supervised deep learning, especially in cases 
of sparse optimization. This framework is well suited to applica-
tions in biological imaging, where physics-based models exist 
to describe the measurement process and the information to be 
recovered is often highly structured. Here we review the method 
of deep unrolling and show how it improves source localization 
in several biological imaging settings.

Introduction
Biological imaging that precisely labels microscopic structures 
offers a range of insights, from single-molecule localization 
microscopy (SMLM) [1] visualizing the microarchitecture of 
the cellular cytoskeleton, to single-molecule fluorescence in 
situ hybridization [2], revealing the spatial distribution of gene 
expression, and synaptic immunofluorescence [3], showing the 
distribution of neuronal connections in the brain. To succeed, 
each of these imaging methods is accompanied by analysis 
tools that identify and localize the desired signal.

In localization problems, regardless of the imaging system 
used, analysis pipelines attempt to undo the blurring effect 
of its imperfect impulse response, or point-spread function 
(PSF). The PSF always has finite width, leading to limited 
image resolution. If small objects, like the two thin microtu-
bules seen in Figure 1, are nearer to each other than the width 
of the PSF, they may be difficult to distinguish. The biological 
signal in the field of view (FoV) of the imaging system can 
be represented as a high-resolution matrix, where each ele-
ment’s value represents the intensity of the signal at that physi-
cal location. The imaging process may be thought of as a 2D 
convolution of the “true” object being imaged and an array 
representing the PSF. The goal of a localization algorithm is 
to “undo” this convolution.

The localization problem is much more tractable if the imag-
es have a predictable structure because the solution space can 
be constrained. For example, some biological images comprise 

Digital Object Identifier 10.1109/MSP.2021.3129995 
Date of current version: 24 February 2022

Deep Unrolled Recovery in Sparse Biological Imaging
Achieving fast, accurate results

 SHUTTERSTOCK.COM/KKSSR

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 17,2023 at 09:59:02 UTC from IEEE Xplore.  Restrictions apply. 



46 IEEE SIGNAL PROCESSING MAGAZINE   |   March 2022   |

similarly sized cells, elongated fibers of known width, or small, 
scattered fluorescent spots representing individual molecules 
with dimensions below the diffraction limit. This knowledge 
can be combined with an understanding of the physical param-
eters of the imaging system, such as the numerical aperture 
and magnification, in analysis pipelines, to identify cell centers 
[4], trace long fibers [1], or localize fluorophores, which have 
been bound to biologically relevant molecules [5]. The results 
of these algorithms may then be used to achieve higher-level 
biological goals, from generating tissue atlases, to determining 
genetic expression patterns or diagnosing pathologies.

Here we focus specifically on biological localization 
problems on sparse images, meaning that the high-resolution 
information to be recovered has relatively few nonzero values. 
Some signals, such as fluorescently tagged messenger RNA 
(mRNA), clusters of proteins, or microbubbles in ultrasound 
imaging are naturally sparse. In other cases, experimental 
techniques may be used to induce sparsity [1], or sparsity in 
bases other than the spatial domain may be exploited.

Iterative optimization techniques have emerged as one of 
the most powerful approaches for localizing sparse signal 
emitters. For example, in SMLM, a superresolution technique 
that relies on subpixel localization of scattered fluorophores, 
the original peak-finding algorithms have been outperformed 
by approaches using iterative convex optimization-based algo-
rithms in terms of localization accuracy, signal-to-noise ratio, 
and resolution [7]. These advantages of iterative optimization 
techniques for sparse recovery go beyond SMLM to other bio-
logical imaging problems, providing high-accuracy localiza-
tion in many settings [8]–[10]. However, they also suffer from 
some disadvantages. They require adjustment of optimization 
parameters and explicit knowledge of the impulse response of 
the imaging system, which restricts their use when the imag-
ing system is not well characterized. They are computationally 
expensive and converge slowly, which limits their use in real-
time, live-cell imaging. Finally, they are relatively inflexible: 
a given algorithm is designed to take advantage of a particu-
lar structure (here, signal sparsity) but ignores other context, 
which may be important (e.g., cell size or density).

Many of these disadvantages can be overcome by replacing 
the iterations of these algorithms with trained neural networks, 

which perform the same mathematical operation, a process 
known as algorithmic unrolling [11] (alternatively, unfolding). 
By doing so, parameters which would have to be specified 
explicitly or tuned empirically are learned automatically, and 
relevant context ignored by the algorithm may be incorporated 
into the learned model. Since its introduction a decade ago, a 
wide variety of techniques have been adapted using learned 
unrolling, enabling improvements in performance across a 
variety of settings [12].

In the rest of this article, we review how learned unrolling is 
applied to the localization of sparse sources in biological imag-
ing data. We first formulate biological localization as a sparse 
recovery problem and discuss the advantages and disadvantag-
es of iterative approaches to sparse recovery. We then describe 
how algorithmic unrolling addresses some of the shortcom-
ings and how the general sparse recovery problem may be 
adapted to the unrolling framework. Next we show in detail 
how unrolling has been used to achieve fast, accurate super-
resolution in the optical microscopy technique SMLM. We 
then review a number of additional biological imaging analy-
sis problems to which unrolling has been applied to improve 
performance: ultrasound localization microscopy (ULM), 
light-field microscopy (LFM), and cell-center localization in 
fluorescence microscopy. Throughout, we discuss a number of 
additional data analysis problems in sparse optical microscopy 
and propose that algorithmic unrolling be applied to achieve 
the same benefits obtained in the reviewed techniques.

Sparse recovery in biological imaging
The localization of biological objects, from microtubules to 
neural synapses, can be approached effectively as a convex opti-
mization problem. For ease of notation, we first reframe the im-
aging process, typically thought of as a convolution, as a matrix-
vector multiplication. The high-resolution signal is “vectorized” 
and then multiplied by a matrix representing the PSF. We note 
that the problem can be formulated and solved with 2D convolu-
tions equally well, and the techniques described throughout the 
article may be applied to a 2D formulation, as in [6] and [10].

Formally, we consider the FoV as a high-resolution square 
grid with side length .nh  The total number of locations in 
this grid is .N nh h

2=  This grid is vectorized to form a vector: 
R .x Nh!  The locations of emitters in the sample may be mod-

eled by assigning each element of x a value related to the num-
ber of photons emitted from that location within the FoV. If the 
FoV is imaged using a sensor with Nl  pixels (with ),N Nh l2  
then we can model the imaging process as multiplication by 
matrix R ,A N Nl h! #  in which element (i, j) is the proportion 
of a signal emitted from location j on the high-resolution grid 
that will be detected at pixel i of the sensor. Thus defined, the 
columns of A represent the PSF of the imaging system such 
that column j of A is the PSF of the system for a point source 
at location j. The (vectorized) measured image is then ,y Ax=  
with R .y Nl!  The goal of the analysis pipeline is to infer the 
value of x, given y and A.

This inference problem can be formulated as a least-squares 
optimization problem: we seek to find

38.4 µm

3 µm

(a) (b)

FIGURE 1. A simulated microscopic imaging of microtubules from [6].  
(a) A true localization of the microtubule structure. (b) An imaged micro-
tubule “blurred” by the microscope PSF. 
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 .argminx y Ax 2
2

x
= -t  (1)

Even if A is known perfectly, as long as ,N Nh l2  A will have 
a nontrivial null space so that the optimization problem is un-
derdetermined. Leveraging knowledge of the biological struc-
ture of x can resolve this issue. If, as discussed previously, it is 
known that x is sparse, then we may choose a sparse optimiza-
tion technique, such as the well-known LASSO [13], [14] to 
recover x:

 .argminx y Ax x2
2

1
x

m= - +t  (2)

In particular, by correctly tuning ,m  minimizer xt  of (2) will 
provide accurate locations of each signal-emitting object in 
the FoV.

Algorithmic unrolling for sparse localization
Once a problem is framed as a sparse optimization of the form 
(2), a number of algorithms may be used to find the minimizer 

.xt  The examples include the alternating direction method of 
multipliers (ADMMs), [15] iterative shrinkage-thresholding 
algorithm (ISTA) [16], and half-quadratic splitting algorithm 
(HQS) [17]. These methods converge to the correct minimizer 
xt  but have some limiting disadvantages: slow convergence, the 
requirement of parameter tuning and explicit knowledge of the 
imaging system [6], and mathematical inflexibility.

Deep learning approaches have overcome some of these 
disadvantages. In analyzing SMLM data, we find that con-
volutional neural network (CNN) models have achieved fast, 
accurate superresolution [18], able to improve recovery by 
incorporating structures not specified by the user. Deep learn-
ing, however, comes with disadvantages of its own. In par-
ticular, deep learning is typically thought of as a black-box 
process: it is difficult to interpret the way the model transforms 
the input to obtain a result. Because of this, when inaccurate 
results are produced, it can be difficult to understand how 
to improve the model. Typical deep learning approaches are 
strongly dependent on the available training data, causing a 
lack of model robustness to new examples. Finally, when using 
generic network architectures, many layers and parameters are 
typically required for good performance.

In 2010, Gregor and LeCun proposed a method to create 
neural networks based on iterative methods used for sparse 
recovery [11], known as algorithm unrolling. The goal is to 
take advantage of both the interpretability of iterative tech-
niques and the flexibility of learned methods. In learned 
unrolling, the transformation applied to the input by each itera-
tion of the algorithm is replaced with a neural network layer, 
which applies the same type of function: for instance, matrix 
multiplication can be replaced by a fully connected layer, 
and thresholding can be replaced by an activation function 
with a learnable threshold, representing an appropriate regu-
larizer. These iteration layers are concatenated together, and 
the resulting, model-based neural network is optimized using 
supervised learning, with training data consisting of paired 
examples of the signal vector x and measurement vector y from 

(2). The loss function used for optimization may be customized 
depending on the task but is often based on the mean-squared 
error [11]. Training data may be obtained, for example, from 
measurement simulations with known ground truth, as in [6]. 
A forward pass through the optimized network will then per-
form the same operations as the iterative algorithm, with the 
parameters of each transformation optimized to map training 
input y to its paired signal x.

Gregor and LeCun applied the unrolling framework to ISTA, 
calling the ISTA-inspired network learned ISTA (LISTA). For 
a given number of iterations/layers, the trained LISTA network 
obtains lower prediction error than ISTA and even achieves faster 
convergence and higher accuracy than the accelerated version of 
ISTA, that is, the fast iterative shrinkage-thresholding algorithm 
(FISTA) [11]. In “From the Iterative Shrinkage-Thresholding 
Algorithm to the Learned Iterative Shrinkage-Thresholding 
Algorithm,” we detail the process of constructing the LISTA 
network based on ISTA.

This framework provides several key advantages. First, 
algorithm parameters, such as m  in (2), are learned automati-
cally. Second, with an unrolled model, the part of the model 
corresponding to A in (2) is learned, removing the need to 
explicitly model the PSF. Inherent properties of the PSF, such 
as locality, can be incorporated by using convolutional lay-
ers in the model. Finally, although these iterative algorithms 
are designed to solve a specific problem, i.e., sparse recovery, 
the approach is general, solving all the problems of this type 
equally well. With a neural network, the model can learn to 
analyze data which may have additional structure not explain-
able by sparsity, thereby obtaining higher-accuracy results 
more quickly. Because the underlying structure of the algo-
rithm remains intact, the network is also less prone to overfit-
ting, which improves robustness.

The unrolling framework also has a few drawbacks. Its 
data-driven approach requires a substantial quantity of train-
ing data, which may be difficult to obtain. If the data used to 
train the network are generated differently from those being 
analyzed (for example, if a different microscope is used with 
a substantially different PSF), the recovery performance will 
degrade. However, it has been found that learned unrolled net-
works are much more robust than traditional learned neural 
networks to changes in the distribution of signal (for exam-
ple, studying a different type of subcellular structure [6]) and 
require many fewer training data. The learned weights of the 
network may also be less interpretable than an algorithm’s 
iterative step in which each component has explicit physical 
meaning. In [6], however, it is shown that the LISTA-based 
neural network used for the superresolution task learns trans-
formations which are closely related to the operation of the 
iterative step (for instance, convolution filters are learned with 
shapes similar to the PSF) and are easier to understand than 
those learned by the purely data-driven approach of typical 
neural networks.

It is also important to note that, being partially data driven 
and using a small, fixed number of iterations, learned unrolled 
networks no longer explicitly solve the optimization problems 
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on which they are based (such as sparse recovery). Although 
the structure of the algorithm is maintained, the transforma-
tion applied by the network does not follow the exact steps that 
are guaranteed to find the minimizer of (2) and may not be 
applied in the image domain. So, even though learned unrolled 
networks have been shown to be successful in localizing spa-
tially sparse sources, they do not necessarily explicitly solve 
the sparse recovery problem.

Throughout the rest of the article, we concentrate on 
applications of deep unrolling to the recovery of sparse 
biological data, specifically using unrolled networks based 
on ISTA. Importantly, the learned unrolling strategy is not 
restricted to ISTA, nor is it restricted to problems with a 
sparse prior: any algorithm for which the iterative step may 
be carried out by a learnable neural network layer may be 
unrolled. Gregor and LeCun developed a learned version of 
the coordinate descent algorithm, finding that the learned 

version again obtained much lower prediction error than the 
iterative version [11]. Other authors have applied the unroll-
ing framework to a variety of algorithms for biological data 
processing tasks, including ADMM [19] and robust princi-
pal component analysis [20], which were shown to obtain 
lower errors in magnetic resonance imaging signal recov-
ery and ultrasound clutter suppression, respectively, in less 
time than then-state-of-the-art algorithms, consistent with 
learned unrolled networks converging more quickly. Out-
side of the realm of biology, unrolling of the HQS algorithm 
has been shown to achieve both high-quality denoising [21] 
and superresolution in natural images [17]. Many additional 
example applications are provided in a recent review [12].

Unrolling in optical localization microscopy
In the following sections, we focus on the domain of optical 
localization microscopy. First, we give a detailed example of 

Here we detail the iterative shrinkage-thresholding algo-
rithm (ISTA) and use it as a case study to describe the pro-
cess of algorithm unrolling. Given a problem of the form 
(2), ISTA estimates ,x  taking as inputs the measurement 
matrix ,A  measurement vector ,y  regularization param-
eter ,m  and ,L  a Lipschitz constant of .Ax y 2

2d < <-

Algorithm 1. ISTA

Require: , , , ,Ly A m  number of iterations kmax

Ensure: xt
 1: ,0x1 =t  .k 1=
 2: while k kmax1  do
 3:   T ( ( ))L2x x A Ax y

L1k k
T

k= - -m+t t t
 4:   k k 1! +
 5: end while
 6: x xkmax=t t

Here T /Lm  represents the soft thresholding operator after 
which ISTA is named: 

 T ( ) { , } ( ),maxx x x0 sgn$; ; a= -a  (S1)

where ( )sgn $  is the sign operator: 
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The iterative step of ISTA is given in line 3 of Algorithm 1. 
The argument of T ( )/L $m  in the iterative step can be rewrit-
ten as the sum of matrix-vector products with y  and :xk
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This step can be modeled by the sum of fully connected 
neural network layers and an activation function with 
learned threshold, as depicted in Figure S1. Depending on 
the structure of ,A  convolutional layers may be chosen to 
preserve locality and reduce computational load. By string-
ing several of these layers together, the resulting deep neural 
network, i.e., the learned iterative shrinkage-thresholding 
algorithm, has the same form as the operation performed 
by running ISTA over multiple iterations. Different from 
ISTA, the weights of each layer are trained independently, 
providing greater flexibility, and the number of layers is 
chosen as a fixed, small number.

From the Iterative Shrinkage-Thresholding Algorithm  
to the Learned Iterative Shrinkage-Thresholding Algorithm 

FIGURE S1. The unrolling of ISTA into the learned iterative shrinkage-thresholding algorithm (LISTA). (a): A diagram of the operation of ISTA  
as a feedback loop. (b) A diagram of LISTA; the matrix multiplications by L2 AT  are replaced by weight matrices, ,W0k  and multiplication  
by L2I A AT-  is replaced by ,Wk  which, along with ,W0k  may be optimized with supervised learning.
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how unrolling enhances the capabilities of one optical im-
aging technique: SMLM. Then we discuss how the concept 
of unrolling can be applied to other sparse biological optical 
imaging problems.

Unrolling in single-molecule localization microscopy 
The visualization of subcellular features and organelles within 
biological cells requires imaging techniques with nanometer 
resolution. In the case of optical imaging systems, from the 
19th century until the recent development of superresolution 
microscopy, the resolution limit was considered to be set by 
Abbe’s diffraction limit for a microscope:

 
2

,
NA

d
b

=  (3)

where d is the minimal distance, below which two point sourc-
es cannot be distinguished; b  is the wavelength of the emitted 
photons; and NA is the numerical aperture of the microscope. 
In fluorescence microscopy, the sample is stained with fluo-
rophores, which can be excited with one color of light, and 
emit photons of a higher wavelength for subsequent detection. 
As most cells are not naturally fluorescent, this allows for 
specific imaging of the stained biomolecules. If the number 
of photons emitted is sufficiently high and the background 
is sufficiently low, single molecules can be detected in this 
way. However, biological structures of interest are typically 
made of multitudes of the same biomolecule type in close ap-
position, obscuring details finer than the diffraction limit of 
the emitted photons when all fluorophores are emitting at the 
same time.

One may overcome the diffraction limit by distinguishing 
between the photons coming from two neighboring fluoro-
phores [22]. One way to distinguish neighboring molecules is 
by utilizing photo-activated or photo-switching fluorophores 
to separate fluorescent emission in time; this is the basis for 
SMLM techniques such as photo-activated localization micros-
copy (PALM) and stochastic optical reconstruction microsco-
py (STORM) [23], [24]. Optical, physical, or chemical means 
are used to ensure that at any given moment only a small subset 
of all fluorophores are emitting photons. Then a large number 
of diffraction-limited images is collected, each containing just 
a few active, isolated fluorophores. The imaging sequence is 
long enough such that each fluorophore is stochastically acti-
vated from a nonemissive state to a bright state, and back to a 
nonemissive (or bleached) state. During each cycle, the density 
of activated molecules is kept low enough so that emission pro-
files of individual fluorophores do not overlap.

High-resolution fluorophore localization can be framed as 
a linear inverse problem. Let us denote the collected sequence 
of diffraction-limited frames as R ,Y M T2

! #  where every col-
umn is the M2  vector stacking of the corresponding M M#  
frame. Our goal is to reconstruct an image of size ,N N#  con-
sisting of fluorophore locations on a fine grid ( ).N M2  We 
can model the generation of Y as

 ,Y AX=  (4)

where RX N T2

! #  is the sequence of vector-stacked high-reso-
lution frames, and the nonzero entries in each frame (i.e., col-
umns in the matrix) correspond to the locations of activated 
fluorophores. Matrix RA M N2 2

! #  is the measurement matrix, 
where each column of A is defined as the system’s PSF shifted 
by a single pixel on the high-resolution grid.

The simplest way to retrieve X without leveraging knowl-
edge of its biological structure is by fitting the observed emis-
sion profile, Y, to the PSF of the system, which is typically 
modeled as a Gaussian function in 2D. This results in localiza-
tions with precision greater than the diffraction limit (accurate 
up to a few to tens of nanometers, versus a diffraction limit 
of 200 nm), allowing for imaging at a molecular scale within 
cells. Figure 2 illustrates the enhanced resolution of SMLM: 
STORM reveals the underlying structure of a circular DNA 
construct, which was completely unseen in its diffraction-lim-
ited images.

Although they achieve excellent resolution, standard SMLM 
methods have one main drawback: they require lengthy imag-
ing times to achieve full coverage of the imaged specimen on 
the one hand, and minimal overlap between PSFs on the other. 

(a)

(b)

FIGURE 2. The sample experimental results from [24], comparing 
diffraction-limited and STORM-generated images of RecA-coated circular 
plasmid DNA. (a) An illustration of the DNA construct, with linked fluo-
rophores (via immunohistochemistry). (b) The diffraction-limited frames 
taken by a total internal reflection microscope (top), and the reconstruct-
ed STORM images of the same frames (bottom). Scale bars: 300 nm. 
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Thus, in its classical form, this technique has low temporal res-
olution, preventing its application to fast-changing specimens 
in live-cell imaging. To circumvent the long acquisition peri-
ods required for SMLM methods, a variety of techniques have 
emerged, which enable the use of a smaller number of frames 
for reconstructing the 2D superresolved image [18], [25], [27]–
[29]. These techniques take advantage of prior information 
regarding either the optical setup, geometry of the sample, or 
statistics of the emitters. One such technique is sparsity-based 
super-resolution correlation microscopy (SPARCOM) [25], 
[30], which exploits sparsity in the correlation domain while 
assuming that the blinking emitters are uncorrelated over time 
and space. This allows reformulation of the localization task 
as a sparse recovery problem, which can be solved using ISTA 
(see “Learned Sparsity-Based Super-Resolution Correlation 
Microscopy” and Figure S2).

SPARCOM yields excellent results when compared to a 
standard STORM reconstruction (using ThunderSTORM [26]), 
as illustrated in Figure 3. SPARCOM achieves similar spatial 
resolution with as few as 361 and even 60 frames, compared 
with the 12,000 frames needed for ThunderSTORM to produce 
a reliable recovery, corresponding to a 33- or 200-times faster 
acquisition rate when using SPARCOM. Thus, SPARCOM im -
proves temporal resolution while retaining the spatial resolu-
tion of PALM/STORM. Gaining these benefits comes with 
tradeoffs: SPARCOM requires prior knowledge of the PSF of 
the optical setup for the calculation of the measurement matrix, 
which is not always available, and a careful choice of regular-
ization factor ,m  which is generally done heuristically.

As shown in the previous section, these shortcomings can 
be overcome by learning from data using an algorithm unroll-
ing approach. This was done recently by Dardikman-Yoffe and 
Eldar [6], who introduced learned SPARCOM (LSPARCOM), 
a deep network with 10 layers resulting from unrolling SPAR-
COM, as detailed in “Learned Sparsity-Based Super-Resolu-
tion Correlation Microscopy.”

The results shown in Figure 4 illustrate that inference from 
10 folds of LSPARCOM is comparable to running SPAR-
COM for 100 iterations with a carefully chosen regularization 

parameter. Both methods succeed in reconstructing the under-
lying tubulin structure from a sequence of 350 high-density 
frames. Moreover, if a shorter, denser sequence is constructed 
by summing groups of 14 frames of the original sequence, 
the SPARCOM reconstruction’s resolution degrades while the 
LSPARCOM reconstruction remains excellent. Thus, even 
with 25 extremely dense frames as input, LSPARCOM yields 
excellent reconstruction of subwavelength features, which 
allows for substantially higher temporal resolution compared 
to the hundreds of frames needed for SPARCOM. LSPAR-
COM is also faster to use, with an approximate five-times 
improvement over SPARCOM in execution time [6]. LSPAR-
COM enables efficient and accurate imaging well below the 
diffraction limit, without prior knowledge regarding the PSF 
or imaging parameters.

Given its enhanced capabilities, LSPARCOM has great 
potential for the localization of biological structures. Meet-
ing the temporal and spatial resolutions’ criteria for imaging 
of dynamic cellular processes at a molecular scale, it might 
replace its iterative counterpart as a robust, efficient method 
for live-cell imaging. The success of LSPARCOM further sug-
gests that unrolling may benefit other sparse biological imag-
ing problems, as we discuss in the following sections. 

Optical microscopy extensions
In the previous section, learned unrolling was shown to achieve 
fast, highly accurate results in SMLM. Next we touch on two 
other applications that may benefit from unrolling: imaging 
transcriptomics (IT) and synapse detection.

Imaging transcriptomics
IT is a family of fluorescence microscopy techniques that stud-
ies the spatial distribution of mRNA transcripts in cells. This 
can enable the classification of individual cells by their gene 
expression in the context of their location in a tissue, yielding 
insight about the function of the whole system [5] or revealing 
subcellular spatial organization of mRNA transcripts. Many 
IT methods are based on single-molecule fluorescence in 
situ hybridization (smFISH) [2] in which fluorophore-labeled 

Ground Truth Diffraction
Limited

ThunderSTORM
12,000 Frames

1µm

(a) (b) (c)

SPARCOM
361 Frames

SPARCOM
60 Frames

(e)(d)

FIGURE 3. The results from [25], showing the simulation and reconstruction of microtubules from a motion picture [7] of 361 high-density frames. (a) The 
simulated ground truth of the image with subwavelength features. (b) A diffraction-limited image obtained by summing all the 361 frames in the movie. 
(c) A single-molecule localization reconstruction from a low-density movie of 12,000 frames of the same simulated microtubules and the same number 
of emitters (the image is constructed using the ThunderSTORM plug-in [26] for ImageJ). SPARCOM recoveries for movies with 361 and 60 high-density 
frames (the simulated microtubules and number of emitters is the same) are given in (d) and (e), respectively. 
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In SPARCOM, we start by observing the temporal covari-
ance matrices of X  and ,Y  MX  and .MY  According to 
(4), we can write the following:

 .M AM AY X
T=  (S4)

We assume that different emitters are uncorrelated over time 
and space. Thus, MX  is a diagonal matrix, where each 
entry on its diagonal, ,m  represents the variance of the 
emitter fluctuation on a high-resolution grid. As a nonzero 
variance can only exist where there is fluctuation in emis-
sion, the support of the diagonal corresponds to the emitters’ 
locations on the high-resolution grid. Therefore, recovering 
m  and reshaping it as a matrix yields the desired high-reso-
lution image. For this purpose, let us rewrite (S4) as

 ,M A A mY i

i

N

i
T

i

1

2

=
=

|  (S5)

where A i  is the ith column in ,A  and m i  is the ith entry in 
.m  Following (2), we can exploit the sparsity of emitters and 

compute m  by solving the following sparse recovery problem:

 ,min 2
1m M A A mY i

i

N

i
T

i
0 1

1 2

2

m

2

m + -
$

=

|  (S6)

where 0$m  is the regularization parameter. The iterative 
shrinkage-thresholding algorithm can be used to solve this 
optimization problem, as shown in Figure S2.

To apply unrolling to SPARCOM, we need to replace 
the operations performed in a single iteration with neural 
network layers and choose the input of the unrolled algo-
rithm. The unrolling process is illustrated in Figure S2: to 
start, ,G  the ,N N#  matrix-shaped resized version of the 
diagonal of ,MY  is taken as input. The matrix-multiplica-
tion operations performed in each iteration are replaced 
with convolutional filters ,W ( )

p
k  , , ,k 0 9f=  and the posi-

tive soft-thresholding operator is replaced with a differen-
tiable, sigmoid-based approximation of the positive 
hard-thresholding operator [31], denoted as (·) .S ,0 0a b

+  The 
unrolling process results in LSPARCOM, a deep neural 
network that acts as the operation performed by running 
SPARCOM over multiple iterations. LSPARCOM can be 
trained on a single sequence of frames taken from one 
field of view with a known, underlying structure, which 
can be generated using simulations (like the one offered 
by ThunderSTORM [26]). The model is then trained on 
overlapping small patches taken from multiple frames of 
that sequence.

Learned Sparsity-Based Super-Resolution Correlation Microscopy

FIGURE S2. The unrolling of SPARCOM to LSPARCOM from [6]. (a) A block diagram of SPARCOM (via the iterative shrinkage-thresholding algo-
rithm), recovering the vector-stacked superresolved image x ( )k  (which corresponds to ).m  The input is ,gY  the diagonal of .MY  The block with the 
blue graph is T ,/L fm  the positive, soft-thresholding operator with parameter / ,L fm  where L f  is the Lipschitz constant of the gradient of (S6). The 
other blocks denote matrix multiplication (from the left side), where A A2=u  (element-wise power) and M A AT 2; ;=  (absolute value and power 
operations performed element wise). (b) LSPARCOM, recovering the superresolved image .X ( )k  Input G  is the matrix-shaped resized version of 

.gY  The blocks with the blue graph apply smooth-activation function (·)S ,0 0a b
+  with two trainable parameters: , ,0 1( ) ( )k k

0 0$ $a b  , , .k 0 10f=  The 
other blocks denote convolutional layers, where I f  is a nontrainable identity filter and ,Wi  ,W( )

p
k  and , ,k 0 9f=  are trainable filters.
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probes bind to complementary regions of mRNA. Although 
smFISH localizes transcripts of one gene at a time, in many 
experiments, it is desirable to study multiple genes at once, up 
to tens of thousands. To achieve this goal, combinatorial IT 
techniques, like multiplexed error-robust fluorescence in situ 
hybridization (MERFISH) [5], assign a distinct binary bar-
code with length F to each transcript. The barcodes are cho-
sen to be distinct entries in a “codebook”: F rounds of FISH 
imaging are performed, with transcripts appearing as spots in 
round f if the fth bit of its barcode is 1, as depicted in Figure 5. 
By using this technique, up to 2F  genes may be studied in only 
F rounds of imaging.

Once these F rounds of imaging are performed, images are 
processed to produce a set of localizations for mRNA of each 
gene. The problem of translating images into such a list is a 
sparse recovery problem: the fluorophores, scattered sparsely 
across the sample, appear in the images, modulated by the 
codebook and blurred by the PSF of the microscope. The goal, 
similar to SMLM, is to locate these sparsely scattered fluores-
cent emitters. Currently used processing techniques analyze 
image data with a heuristic approach in which each location is 
separately checked for a signal. In [8], we formalized this sys-
tem analogously to the sparse optimization problem (2), in a 
method called the joint sparse method for IT. For IT data with 

F rounds of imaging, studying G genes, with Nh  locations on 
the high-resolution location grid and Nl  pixels in measure-
ment images, we can set up an optimization problem simi-
lar to (2). We vectorize and concatenate images into matrix 

R .Y N Fl! #  Then we take Y to be generated as a product of 
three matrices:

 .Y AXC=  (5)

Here, RA N Nl h! #  is the same as in (1), the columns of X !
RN Gh#  are signal vectors like x in (1), with each column repre-
senting a specific gene, and RC G F! #  is the set of barcodes.

Given (5), we recover X from measurement Y and known 
matrices A and C using an optimization-based approach, 
constrained by assumptions of sparsity: that only one mRNA 
will be present at each location, and that relatively few mRNA 
will be present in the FoV. This constrained optimization 
problem can be solved with an iterative algorithm. In addition 
to being more interpretable than the currently used heuristic, 
this method has achieved more accurate mRNA localization, 
especially in low-magnification imaging. A natural extension 
of this formulation is the application of learned unrolling. 
Based on our experience with other applications, unrolling 
may improve performance, obtaining more accurate genet-
ic expression levels in fewer iterations while eliminating  

38.4 µm

3 µm

λ = 0.25

λ = 0.05

SNR = 4.34 dB SNR = 6.27 dB

SNR = 1.12 dB SNR = 4.26 dB

(a) (b) (c)

(e)(d)

FIGURE 4. The sample results from [6], reconstructed from a simulated biological tubulins data set [7], composed of (b) and (c) 350 high-density or  
(d) and (e) 25 very high-density frames. (a) The simulated ground-truth tubulin structure. (b) and (d) The SPARCOM reconstruction, executed over  
100 iterations with (b) .0 25m =  for 350 frames and (d) .0 05m =  for 25 frames. (c) and (e) The LSPARCOM reconstruction, given (c) 350 frames and 
(e) 25 frames as input. SNR: signal-to-noise ratio.  
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parameter-tuning requirements and explicit knowledge of the 
optical PSF A.

Synapse detection
Many other biological settings involve sparse emitters but 
have not necessarily been framed as sparse recovery prob-
lems to improve performance. For example, sparse biologi-
cal images are encountered in neuronal synapse detection for 
characterization of the neurophysiological consequences of 
genetic and pharmacological perturbation screens. Synapses 
are localized by identifying positions in which fluorescently 
tagged pre- and postsynaptic proteins are located in close 
proximity. These proteins cluster into puncta, which appear 
as point sources, similar to fluorophores in SMLM data. A 
sparse analysis could identify subpixel locations for each 
punctum and, from the presence of both pre- and postsynap-
tic proteins, infer accurate synapse locations. Although sparse 
algorithm unrolling has not yet been applied in this context, 
model-based learning strategies have already shown good re-
sults for this setting [3].

Unrolling in other imaging modalities
Sparse emitters arise in other biological imaging modalities 
beyond epifluorescent microscopy, and the algorithmic un-
rolling method has achieved fast, highly accurate localization 
in several such settings. In the following sections, we review 
three such cases: ULM, LFM, and cell-center localization in 
nonspatially sparse histology images.

Unrolling in ultrasound localization microscopy
The attainable resolution of ultrasonography is fundamentally 
limited by wave diffraction, i.e., the minimum distance be-
tween separable scatters is one half of a wavelength. Due to this 
limit, conventional ultrasound techniques are bound to a trad-
eoff between resolution and penetration depth: increases in the 
transmit frequency shortens the wavelength (thus increasing 
resolution) but come at the cost of reduced penetration depth as 
higher frequency waves suffer from stronger absorption. This 

tradeoff particularly hinders deep, high-resolution microvascu-
lar imaging, which is crucial for many diagnostic applications.

A decade ago, this tradeoff was circumvented by the intro-
duction of ULM [9], [32], which leverages the principles of 
SMLM and adapts these to ultrasound imaging. In SMLM, 
stochastic “blinking” of subsets of fluorophores is exploited 
to provide sparse point sources; in ULM, lipid-shelled gas 
microbubbles fulfill this role. A sequence of diffraction-lim-
ited ultrasonic scans is acquired, each containing just a few 
active isolated sources. Thus, each received image frame can 
be written as

 ,y Ax w= +  (6)

where x is a vector that describes the sparse microbubble dis-
tribution on a high-resolution image grid, y is a vectorized im-
age frame from the ultrasound sequence, A is the measurement 
matrix defined by the system’s PSF, and w is a noise vector. 
As in SMLM, this enables precise localization of their cen-
ters on a subdiffraction grid. The accumulation of many such 
localizations over time yields a superresolved image. This ap-
proach achieves a resolution up to 10-times smaller than the 
wavelength [33], showing that ultrasonography at subdiffrac-
tion scale is possible.

Similar to SMLM, the quality of ULM imaging is depen-
dent on the quantity of localized microbubbles and localization 
accuracy; thus, it gives rise to a new tradeoff between micro-
bubble density and acquisition time. To achieve the desired 
signal sparsity for straightforward isolation of the backscat-
tered echoes, ULM is typically performed using a very diluted 
solution of microbubbles. On regular ultrasound systems, this 
constraint leads to long acquisition times to cover the full 
vascular bed. Ultrafast plane-wave ultrasound (uULM) imag-
ing has managed to lower the acquisition time [33] by taking 
many snapshots of individual microbubbles as they transport 
through the vasculature, thereby facilitating high-fidelity 
reconstruction of the larger vessels. Nevertheless, mapping the 
full capillary bed still requires microbubbles to pass through 

Image 1 Image 2 Image 3 Image N Decoded Image
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~100–1,000 RNA

Repeat

Hybridize,
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FIGURE 5. A depiction of MERFISH multiplexed IT from [5]. (a) Fluorophores are hybridized to mRNA transcripts if the bit of the associated barcode is 
equal to one, and if mRNA appears as a spot. (b) The acquisition and decoding of MERFISH data. 
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each capillary, capping acquisition time benefits to tens of 
minutes [34].

As with SMLM, uULM can be extended by using the 
sparsity of the measured signal (whether spatially sparse 
or in any transform domain [36]). Sparse recovery again 
enables improved localization precision and recall for high-
microbubble concentrations [37]. Figure 6 depicts this, 
showing how the sparse recovery method produces fine 
visualization of the human prostate from a high-density 
sequence of in vivo ultrasound scans. However, as in the case 
of SPARCOM, solving the ULM sparse recovery problem 
requires iterative algorithms, such as ISTA. Unfortunately, 
as previously noted, these algorithms are not computation-
ally efficient, and their effectiveness is strongly dependent 
on a good approximation of the system’s PSF and careful 
tuning of the optimization parameters. With the unrolling 

approach, these challenges can be met in a fashion similar to 
the aforementioned SMLM (see “Deep Unrolled Ultrasound 
Localization Microscopy”).

The tests on synthetic data show that deep unrolled ULM 
significantly outperforms standard ULM and sparse recov-
ery through FISTA for high-microbubble concentrations (see 
Figure 7), offering better recall (measured by the recovered 
density) and lower localization error. In addition, when tested 
on in vivo ultrasound data, van Sloun et al. [38] observed that 
deep unrolled ULM yields superresolution images with higher 
fidelity, implying improved robustness and better generaliza-
tion capabilities. Furthermore, Bar-Shira et al. [39] demon-
strated how the use of deep unrolled ULM for in vivo human 
superresolution imaging allows for better diagnosis of breast 
pathologies. The unrolled method is also highly efficient, 
requiring slightly more than 1,000 flops and containing only 

500 µm500 µm

(a) (b) (c)

1 mm

FIGURE 6. The sample results from [35]. Reconstructed, highly dense sequence of 300 frames, clinically acquired in vivo from a human prostate.  
(a) A maximum intensity projection image of the sequence, (b) a selected area in the image, and (c) the sparsity-driven, superresolution ultrasound  
on the same area.  

Under the assumption of spatial sparsity of microbub-
bles in the high-resolution grid, x  [as defined in (6)] 
corresponds to the solution of the l -regularized1  inverse 
problem, which was previously presented in (2); thus, it 
can be computed using the iterative shrinkage-threshold-
ing algorithm (ISTA). After estimating x  for each frame, 
the estimates are summed across all frames to yield the 
final superresolution image, which describes the micro-
bubble distribution throughout the entire sequence.

To apply unrolling in this case, the learned iterative shrink-
age-thresholding algorithm can replace ISTA, as in the 
“Sparse Recovery in Biological Imaging” section. van Sloun 
et al. [38] have implemented such a model, resulting in a 

10-layer, feedforward neural network. Each layer consists of 
trainable, 5 5#  convolutional filters W k0  and ,Wk  along 
with a trainable shrinkage parameter km  , ..., .k 0 9=^ h  The 
convolutional filters replace the fully connected layers, which 
appear in the original unrolled version of ISTA (see Figure 
S1). Replacing the proximal soft-thresholding operator Tm  
[see (S1)] with a smooth sigmoid-based soft-thresholding 
operation [31], helped avoid vanishing gradients. Similar to 
LSPARCOM, this network is trained on simulated ultrasound 
scans of point sources, with a variety of point-spread func-
tion and noise realizations, Overlapping small patches are 
taken from multiple frames of each simulated scan sequence 
and given to the network as training samples. 

Deep Unrolled Ultrasound Localization Microscopy

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on October 17,2023 at 09:59:02 UTC from IEEE Xplore.  Restrictions apply. 



55IEEE SIGNAL PROCESSING MAGAZINE   |   March 2022   |

506 parameters (compared to millions of parameters in other 
deep learning models).

In summary, deep unrolled ULM can be a method for 
efficient, robust, and parameter-free ultrasonic imaging, with 
comparable (or superior) resolution to that of other ULM  
methods (standard and sparsity based). Given the ability of deep 
unrolled ULM to perform precise reconstructions for high-
microbubble concentrations, deep-tissue ultrasound imaging 
becomes feasible. High-microbubble concentrations dramati-
cally shorten required acquisition times, which allows deep 
unrolled ULM to perform deep, high-resolution imaging much 
faster. Thus, intricate ultrasonography tasks like microvascular 
imaging, which have a key role in the noninvasive, in vivo diag-
nosis of many medical conditions such as cancer, arteriosclero-
sis, stroke, and diabetes, become simpler to execute.

Light-field microscopy
Another imaging domain dealing with spatially sparse data is 
LFM [40]. Obtaining 3D information from a single acquisi-
tion is valuable, enabling real-time volumetric neural imaging. 
LFM provides single-shot 3D imaging by placing a microlens 
array between the microscope objective and the camera sensor. 
This configuration captures both lateral and angular informa-
tion from each light ray emitted from the sample, so decon-
volution of the system’s PSF produces 3D emitter locations. 

As each spatial location is imaged in multiple pixels on the 
detector, LFM faces a tradeoff between depth and lateral reso-
lution. If the sample is composed of spatially sparse emitters, 
localization on a high-resolution, 3D grid can be performed, as 
in SMLM and ULM.

The authors in [10] present the problem of localizing neu-
rons in 3D space with LFM images: in LFM, neurons are small 
enough to be considered point sources and are distributed in 
a spatially sparse manner. To localize neurons, measured 
images are converted to a structure called an epipolar plane 
image (EPI); the system PSF in this domain varies strongly 
with depth, as shown in Figure 8. By performing sparse opti-
mization, the authors are able to achieve fast, accurate neu-
ron localization.

By framing 3D neuron localization as a sparse optimization 
problem, the problem is opened to unrolling. In [10], Song et al. 
first use a convolutional variant of ISTA (CISTA) to solve the 
localization problem, then create an unrolled network based on 
that algorithm, called CISTA-net. The unrolled network recov-
ers neuron location with higher accuracy in all dimensions 
and performs the recovery task more than 10,000-times faster 
than ISTA. This increase in speed expands the applicability of 
LFM: it could enable, for instance, live, 3D imaging of whole 
nervous systems in small-model organisms like C. elegans, or 
of activity of large volumes of the mammalian cortex.
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FIGURE 7. A performance comparison of standard ULM, sparse-recovery (FISTA), and deep unrolled ULM on simulations (taken from [38]). 
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FIGURE 8. The epipolar plane images (EPIs) derived from LFM images of emitters at different depths (from [41] under Creative Commons License 4.0).  
By matching an observed EPI, the depth of sources may be determined.  
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Nonspatially sparse imaging
The most obvious way of thinking about sparse recovery in 
biological imaging is in the domain of spatially sparse sources, 
but other methods leverage sparse coding in other aspects, 
and unrolling can achieve accurate results in these situations 
as well. One example is cell-center localization in histology 
slides. Although cell centers are scattered sparsely in an FoV, 
cell shapes are irregular, so there is not a single “impulse 
response” transforming cell-center locations into images of 
cells, as in the sparse recovery form of (2). In [4], a traditional 
CNN is combined with a LISTA-like network to localize cell 
centers. In this framework, the locations of the centers of cells 
in a 2D FoV with dimension h w#  are represented by binary 
matrix R .X h w! #  The matrix X is radon transformed to rep-
resent the cell centers in polar coordinates, R ( ).f XX p =  A 
measurement matrix A is generated as a random Gaussian 
projection matrix, and the product AX Yp =  is formed. Xue 
et al. found that although Y cannot be measured directly, a 
CNN may be trained to infer Y from an image of the FoV. 
A two-stage neural network is designed: in the first stage, a 
traditional CNN transforms the images into an estimate Yt  
of the matrix Y; in the second stage, a LISTA-like network 
is used to obtain an estimate Xp

t  of the sparse matrix ,Xp  
which, after an inverse Radon transformation, gives the cell-
center locations X. The network, called end-to-end CNN and 
compressed sensing (ECNNCS), is trained by penalizing the 
differences between both yt  and y, and xt  and x. The ECNNCS 
model achieved better localization accuracy than the state-of-
the-art algorithms used as a comparison [4], showing that un-
rolling can improve performance outside problems of strict 
spatial sparsity.

Compressed in situ imaging (CISI) [42] is another imaging 
technique that leverages sparse recovery despite not using spa-
tially sparse data and, accordingly, may benefit from algorithm 
unrolling. Like IT, CISI evaluates expression levels of genes at 
single-cell resolution. Different from IT, in CISI, data are not 
spatially sparse. Instead, CISI takes advantage of genetic coex-
pression patterns to infer single cells’ transcriptomes from a 
few “composite measurements,” which measure multiple genes 
at once. In CISI, single-cell transcriptomes are conceptualized 
as linear combinations of “modules,” sparse linear combina-
tions of coexpressed genes. The sparse recovery problem is to 
infer from composite measurements of genes the sparse set of 
active coexpression modules. Currently, modules are defined 
before the experiment, but with algorithmic unrolling, optimal 
coexpression modules could be learned, enabling improved 
transcriptome inference.

Conclusions
New biological imaging techniques are constantly being devel-
oped, and with them, computational pipelines to identify and 
characterize the imaged biological structures. We described 
a few of these techniques and their accompanying pipelines. 
In many cases, these techniques consist of heuristic strate-
gies, which have limited accuracy and are difficult to interpret. 
As computational power continues to increase and the methods 

become more developed and powerful, interpretable processing 
techniques have been created by incorporating biological and 
physical assumptions into constrained optimization problems, 
solved with iterative methods. These methods, in turn, require pa-
rameter tuning and explicit knowledge of the experimental setup. 
A natural next step in pipeline development is model-based learn-
ing methods, including algorithmic unrolling. We have shown 
how, in many imaging modalities requiring source localization, 
unrolling achieves fast, accurate results with robust models, and 
proposed that unrolling be extended widely to other similar prob-
lems, including to methods involving biological structure other 
than sparsity. We hope this work will inspire methods extending 
unrolling to further biological imaging modalities and experi-
mental settings leading to rapid, interpretable, high-performing 
physics-based methods.
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