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Abstract—Hardware-limited task-based quantization is a new
design paradigm for data acquisition systems equipped with serial
scalar analog-to-digital converters using a small number of bits.
By taking into account the underlying system task, task-based
quantizers can efficiently recover the desired parameters from
the low-bit quantized observation. Current design and analysis
frameworks for hardware-limited task-based quantization are only
applicable to inputs with bounded support and uniform quantizers
with non-subtractive dithering. Here, we propose a new framework
based on generalized Bussgang decomposition that enables the
design and analysis of hardware-limited task-based quantizers that
are equipped with non-uniform scalar quantizers or that have
inputs with unbounded support. We first consider the scenario in
which the task is linear. Under this scenario, we derive new pre-
quantization and post-quantization linear mappings for task-based
quantizers with mean squared error (MSE) that closely matches the
theoretical MSE. Next, we extend the proposed analysis framework
to quadratic tasks. We demonstrate that our derived analytical
expression for the MSE accurately predicts the performance of
task-based quantizers with quadratic tasks.

Index Terms—Analog-to-digital conversion, quantization.

I. INTRODUCTION

D IGITAL systems are equipped with quantizers to facilitate
the processing, storage, and communication of informa-

tion embedded in continuous-amplitude samples. In principle,
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the most accurate digital representation of a sampled signal is
obtained by jointly mapping the samples to the digital domain
via vector quantization [1], [2]. The optimal trade-off between
compression and fidelity is fundamentally described by rate-
distortion theory [3]. However, in practice, the quantization pro-
cess is performed by analog-to-digital converters (ADC) which
typically operate in a serial scalar manner [4]. Under this setup,
the incoming continuous-time analog signal is first sampled and
the samples are sequentially mapped by the quantizer in digital
form using a finite number of quantization bits [5]. A linear
increase in the number of quantization bits corresponds to an
exponential increase in power consumption [6]. Therefore, there
is growing interest in the use of low-resolution data converters.
For instance, recent works on low-power communication re-
ceivers, such as [7], [8], [9], [10], [11], [12], have focused on
investigating the performance limits of low-resolution receiver
architectures and designing novel methods that enable various
receiver functionalities (detection, channel estimation, and syn-
chronization) to work in the low-resolution regime.

Data acquisition systems are often designed such that the
input and output of the quantizers are close with respect to some
pre-defined distortion measure [13, Ch. 10] [14]. This design
approach, however, does not take into account the underlying
system task. In several signal processing and communication
applications, the objective is not to faithfully recover the input
signal, but rather to extract some low-dimensional parame-
ters/features embedded in the quantized measurements. Such
systems that take into account the underlying task are generally
referred to as task-based quantization, and task-based quantiza-
tion systems equipped with serial scalar ADCs are specifically
referred to as hardware-limited task-based quantization [15].

Previous works [15], [16], [17], [18] have shown that, by
exploiting the a priori knowledge regarding the system task,
hardware-limited task-based quantizers can outperform digital
systems that simply extract the desired parameters from the
quantized measurements. Performance gain in task-based quan-
tization is achieved by employing a hybrid analog/digital (A/D)
architecture and jointly designing the analog pre-quantization
mapping and digital post-quantization mapping in light of the
underlying system task. The task-based quantization framework
has been applied in various tasks such as channel estimation [15],
empirical covariance estimation [18], multiple-input multiple-
output (MIMO) radar receivers [19], task-specific beamforming
[20], MIMO communication [21], [22], [23], symbol detection
[24], [25], and graph signal compression [26]. Moreover, the
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combined effect of sampling and quantization in hardware-
limited task-based systems has been studied in [27], [28] and it is
shown that the optimal performance of bitrate-constrained data
acquisition systems is generally achieved by sampling below the
Nyquist rate. The optimal sampling and quantization scheme for
task-based data acquisition may also be learned via data-driven
approaches if the input distribution is not known [29].

Despite the aforementioned benefits and the wide range of
applications of task-based quantization, the existing frame-
work for analyzing hardware-limited task-based quantization is
only applicable to scalar uniform ADCs with non-subtractive
dithering. While dithering offers analytical tractability, dithered
quantizers generally have subpar performance compared to their
non-dithered counterpart when the input has a bandlimited
characteristic function because of their increased quantization
noise energy [15], [30]. As such, the current framework does
not fully capture the actual performance of task-based quanti-
zation. Simulation results of [15] depict large performance gaps
between the dithered and non-dithered case when the number
of quantization levels per scalar quantizer is low. Also, the
theory of nonsubtractive dithering [31] only applies to uniform
quantizers. Mathematical tools [32] for analyzing dithered non-
uniform quantization exist but only for subtractive dithering.
Furthermore, the analysis framework in [15] relies on the as-
sumption that the overload probability (i.e. the probability that
the ADC input does not exceed the specified dynamic range
of the ADC) is zero. This assumption can be quite restrictive
so that the analysis framework only holds approximately for
input signals with infinite support. Guidelines on how to set the
overload probability for a given number of quantization levels
are provided in [27]. Still, the simulated distortion of dithered
task-based quantization is approximately 5% higher than what
the analytical expression predicts in the numerical results.

Here, we provide a new approach to design and analyze
hardware-limited task-based quantization systems with analog
pre-quantization and digital post-quantization linear mappings
based on generalized Bussgang decomposition [33]. In contrast
to the state-of-the-art (SOTA) analysis framework [15], the
proposed framework does not rely on the zero overload proba-
bility assumption and is also applicable to non-uniform scalar
quantizers and non-dithered settings. Our proposed framework
restricts the pre-quantization mapping to be within the class of
linear mappings that make the inputs of the scalar quantizers
uncorrelated. While this restriction may lead to suboptimal
performance, our numerical results show that the proposed
framework can achieve lower distortion than previous results
when the quantization budget is limited. More importantly, a
crucial advantage of our analysis is that the simulated distortion
of task-based quantizers designed using our method fits well
with the predictions of our theoretical framework, even if the un-
derlying system task is nonlinear. This is in contrast to previous
results which only hold approximately. The main contributions
of our work are the following:
� We provide descriptions of the analog and digital linear

mappings of task-based quantization under a linear task
assumption (i.e. the task is a linear function of the ob-
servations). The derived linear mappings are conceptually

different from the linear mappings in previous works. We
present numerical results showing that, in some cases,
task-based quantizers designed using our approach can
outperform task-based quantizers designed using the SOTA
analysis framework [15].

� We show that the actual mean squared error (MSE) of the
task-based system under the derived analog and digital
linear mappings fits the theoretical MSE in contrast to
previous results. Moreover, the proposed analysis frame-
work also enables a model-based analysis of task-based
quantization with non-uniform quantizers. To the best of
our knowledge, there is no framework in the literature that
facilitates model-based analysis of task-based quantization
with non-uniform quantizers.

� We show how to extend the proposed framework to non-
linear tasks. More specifically, we consider the quadratic
task problem of empirical covariance estimation and show
that the task-based quantization system designed using
our proposed framework achieves lower MSE than the
simulated MSE of the task-based system designed using
the framework presented in [18].

The rest of the paper is organized as follows: Section II
formulates the system model and states the model assumptions
for the linear task scenario. Section III presents the new analysis
framework. Section IV provides numerical results and analysis
for the proposed framework in Section III. Section V extends
the developed framework to quadratic tasks. Finally, Section VI
concludes the paper.

II. PROBLEM FORMULATION AND ANALYSIS TOOLS

A. Problem Setup and Model Assumptions

The system model of the task-based quantization with hard-
ware constraints is illustrated in Fig. 1. The task vector s ∈
R

K×1 contains the parameters we aim to recover. However, the
input to the task-based quantizer is not s but the measurement
vector x ∈ R

N×1. The statistical relationship between s and x is
described by the conditional probability fX|S(x|s). With slight
abuse of notation, we simply write the conditional probability as
fX|S. We also assume that s and x are both zero-mean random
vectors and have covariance matrices given by Σs and Σx,
respectively.

The measurement vector x is projected to R
P×1, where P ≤

N , using an analog pre-quantization mapping, denoted ha. The
P outputs of the analog pre-quantization mapping are fed to P
scalar quantizers. From [15, Corollary 1], the optimal choice of
P must not exceed K. Each scalar quantizer has M̃ = �M 1

P �
number of quantization levels, where M is a constraint on the
overall number of quantization levels. As pointed out in [15], the
parameter M̃ is directly related to the power consumption of an
ADC. We allow the quantization levels of the scalar quantizers to
have non-uniform and non-identical structure. In this work, we
assume that the scalar quantizers are designed using the Lloyd-
Max algorithm [34]. Note that quantizers designed using the
Lloyd-Max algorithm satisfyE{Xin|Q(Xin)} = Q(Xin), where
Xin is the input to the quantizer (i.e. the representative level
of a quantization interval is its conditional mean value). This
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Fig. 1. System model for task-based quantization.

Fig. 2. Task-based quantization with analog combining matrix and digital processing matrix.

property of the scalar quantizers is crucial in the derivation of
our main results. Note, however, that Lloyd-Max algorithm does
not necessarily produce the globally-optimal quantizer, unless
the quantizer input has a log-concave distribution [35]. Finally,
theP outputs of the scalar quantizers, denotedz ∈ R

P×1, are fed
to a digital post-processing function to estimate the task vector
s. We represent the estimate of the task vector as ŝ ∈ R

K×1.
The goal is to recover s from quantized measurements z.

The general problem setup is referred in the information the-
ory community as the indirect source coding problem1/indirect
quantization, and was first introduced in [36] and [37]. The
problem setup in this paper is different from the aforementioned
works since the hardware-limited task-based quantizer structure
is restricted to scalar ADCs. We design ha and hd such that the
MSE between s and ŝ is minimized. Mathematically, we have
the following optimization problem:

min
ha,hd

E
{||s− ŝ||2}

= E
{||s− s̃||2}+ min

ha,hd

E
{||̃s− ŝ||2} , (1)

where s̃ = E{s|x} is the minimum MSE (MMSE) estimator of
s given the measurement vector x. The RHS of (1) shows that
the MSE can be written as a sum of two terms. The first term
quantifies the minimum estimation error of s fromxwhereas the
second term accounts for the minimal distortion in quantizing
the MMSE estimate. The first term is independent on the actual
structure of the scalar quantizers and design of the pre- and post-
quantization mappings [15]. Thus, we can focus our attention on
minimizing the second MSE term. We shall refer to this MSE
term as the quantizer-dependent MSE.

To facilitate recovery of the task vector s under practical
hardware setting, we follow the approach of [15] which is to
impose ha and hd to be linear mappings, as shown in Fig. 2.
That is, we introduce an analog combining matrix A ∈ R

P×N

1Other names used in the literature are remote source coding and noisy source
coding.

and a digital processing matrix D ∈ R
K×P to operate as ha and

hd, respectively. The quantities {Apx}Pp=1 are the P outputs
of the analog combining matrix. The use of linear mappings in
the analog and digital domain offers a lot of benefits from a
practical viewpoint and is already done in various hybrid A/D
receiver architectures (see [38], [39], [40], [41]).

Similar to previous works, we further relax the problem
by considering linear tasks, i.e. s̃ = Γx for some Γ ∈ R

K×N .
Under the linear task scenario, we are able to derive closed-form
expressions for A, D, and MSE than what were obtained in the
previous work. The framework developed for the linear task will
be later extended to the more general nonlinear tasks.

B. Analysis Techniques for Task-Based Quantization

The previous work [15] carried out the analysis assuming
the system is equipped with non-subtractive uniform dithered
quantizers. Whenever the input falls inside the dynamic range of
a uniform dithered quantizer, the output can be written as a sum
of the input and an additive zero-mean white quantization noise
that is uncorrelated with the input. This simplication enables
the derivation of the optimal linear mappings and MSE under
a uniform dithered setting. Numerical results show that using
these linear mappings on uniform undithered quantizers can
further reduce the distortion. However, the theoretical frame-
work established in [15] is unable to accurately predict the
actual MSE of the task-based quantizer. We present numerical
results in Sections IV and V to demonstrate this issue. Moreover,
the non-subtractive dithering framework [31] does not apply to
non-uniform quantization.

To avoid the shortcomings of the previous work, we consider
a different analysis technique to represent the output of the scalar
quantizers in a more analytically tractable form. More precisely,
we use the generalized Bussgang decomposition2 to represent
the quantization process as a noisy linear function of the input.

2The original statement of the Bussgang Theorem [42] only applies to Gaus-
sian signals. Instead, we use the generalized Bussgang decomposition mentioned
in [33, Sec. V-C] which works for non-Gaussian inputs.
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That is,

z = Q1:P
M̃

(Ax)

= BAx+ η. (2)

Here, Qi:j

M̃
(·) denotes the outputs of the scalar quantizers from

index i to index j. The square matrix B ∈ R
P×P is called the

Bussgang gain and η ∈ R
P×1 is the distortion vector uncorre-

lated with the quantizer input Ax. The Bussgang gain matrix
can be written as

B = ΣzxA
T
(
AΣxA

T
)−1

, (3)

where Σzx is the cross-covariance between z and x. The covari-
ance of the distortion vector, denoted Ση , can be expressed as

Ση = Σz −B
(
AΣxA

T
)
BT , (4)

where Σz is the covariance of z.
The generalized Bussgang decomposition is exact; the intu-

ition is that BAx is the linear MMSE estimate of z given the
observation Ax (not necessarily Gaussian) [33]. However, the
distribution of η is not known and the Bussgang gain matrix is,
in general, not diagonal. Therefore, we introduce a restriction
on the structure of A that makes the Bussgang gain matrix
B diagonal, regardless of the distribution of the measurement
vector x.

Restriction 1: Suppose we denote Ai to be the i-th row of
the analog combining matrix A. Then, we pick Ai such that, for

any i �= j, we have AiΣ
1
2
x ⊥ AjΣ

1
2
x , where Σ

1
2
x is the matrix

square root of Σx.
Note that imposing Restriction 1 may yield sub-optimal task-

based quantizer designs. In fact, we demonstrate in Section IV
that our design framework, which is based on Restriction 1,
does not always produce the task-based quantizer design with
the lowest MSE. Nonetheless, our framework can achieve better
performance than the current design and analysis frameworks
when the scalar quantizers have very low resolution. Restric-
tion 1 also forces the elements of η to be uncorrelated.3

In the next section, we will show how imposing Restriction 1
forces B to be diagonal. We will then use Restriction 1 in
conjunction with the generalized Bussgang decomposition to es-
tablish a new framework for analyzing and designing hardware-
limited task-based quantizers.

III. MAIN RESULTS

We now characterize the hardware-limited task-based quan-
tizer which minimizes (1) under Restriction 1. We first define a
quantity that is crucial in stating the main results of the paper.

Definition 1: Suppose Ap ∈ R
1×N is the p-th row of A.

Then, the distortion factor of the p-th quantizer, denoted ρ
(p)
q ,

accounts for the relative amount of distortion introduced by the

3The requirements mentioned in [43, page 3] to make Ση diagonal are
satisfied since AΣxA

T and B are diagonal.

p-th quantizer to its input and is expressed as

ρ(p)q =
E{(zp −Apx)

2}
E{(Apx)2} , (5)

where zp is the output of the p-th scalar quantizer and the
denominator term is the energy of the quantizer input.

A typical scenario in which the MMSE estimator s̃ is a linear
function of x is when the task vector s and the measurement
vector x are jointly Gaussian [44, Sec. 3.2.7]. Conveniently, the
quantizer inputs Ax are also Gaussian. The distortion factor
ρ
(p)
q for a Gaussian input and Lloyd-Max scalar quantizer is

tabulated in [45] for M̃ = 1 up to M̃ = 36 levels. For high-rate
quantizers, the distortion factors of non-uniform and uniform
quantizers under a Gaussian input are ρ

(p)
q ≈ π

√
3

2 · M̃−2 and

ρ
(p)
q ≈ 1.47 · M̃−1.74, respectively [2], [45].
The following proposition characterizes the diagonal entries

of the Bussgang gain matrix under Restriction 1.
Proposition 1: Under Restriction 1, the Bussgang gain matrix

B is a diagonal matrix and can be expressed as

B = diag{1− ρq}, (6)

where the diag{·} operator generates a P × P diagonal ma-
trix with entries coming from the P × 1 vector {·}, and ρq =

[ρ
(1)
q , ρ

(2)
q , . . . , ρ

(P )
q ]T .

Proof: See Appendix A. �
We now present the main results of our work.
Proposition 2: For any analog combining matrixA that satis-

fies Restriction 1, the optimal digital processing matrix, denoted
D◦, which minimizes the MSE is given by

D◦ (A) = ΓΣxA
T (AΣxA

T )−1. (7)

Consequently, the quantizer-dependent MSE can be expressed
as

E{||̃s− ŝ||2}
= Tr

(
ΓΣxΓ

T
)

− Tr
(
ΓΣxA

TB
(
AΣxA

T
)−1

AΣxΓ
T
)

(8)

Proof: See Appendix B. �
Theorem 1: Under Restriction 1, the optimal analog combin-

ing matrix, denoted A◦, is

A◦ = VT
optΣ

− 1
2

x , (9)

where the rows of VT
opt ∈ R

P×N are the P right singular vectors

of Γ̃ = ΓΣ
1
2
x corresponding to theP largest singular values. The

optimal digital processing matrix for a given A = A◦, denoted
D◦(A◦), is

D◦(A◦) = ΓΣ
1
2
xVopt. (10)

UsingA◦ andD◦ gives the following quantizer-dependent MSE:

E{||̃s− ŝ||2}

=

{∑K
i=1 λΓ̃,i · ρ(i)q , if P ≥ K∑P
i=1 λΓ̃,i · ρ(i)q +

∑K
i=P+1 λΓ̃,i , otherwise

(11)
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where λΓ̃,i is the i-th eigenvalue of Γ̃Γ̃
T

(arranged in descend-
ing order).

Proof: See Appendix C. �
When the number of quantization levels per quantizer is

sufficiently large and P = K, the distortion vector η becomes
negligible, and the estimate of the task vector can be expressed
as

ŝ ≈ D◦A◦x

≈ ΓΣ
1
2
xVoptV

T
optΣ

− 1
2

x x

≈ Γx ≈ s̃

(i.e. our estimate of the task vector approaches the MMSE
estimate). Consequently, the quantizer-dependent MSE term
approaches zero since ρ

(p)
q → 0 as M̃ → ∞. In fact, when x

is specialized to a Gaussian vector, we can use the derived
quantizer-dependent MSE expression and the approximation for
the distortion factor of Gaussian input to show that

E[‖s̃− ŝ‖2] ∼ O(1/M̃ c),

where c = 2 for non-uniform quantizer and c = 1.74 for uniform
quantizer.

The design of the task-based quantizer in Theorem 1 has a nice
intuition. The optimal analog combiner first applies a whitening
filter to the measurement vector x. Then, the matrix VT

opt maps
the “whitened” signal from the measurement space to a space
with lower number of dimensions. We shall call this the task
space. Quantization is performed in the task space to get z. In

the digital domain, the Σ
1
2
xVopt term in D◦ inverts the operation

of A◦ to get some intermediate result x̂, a linear estimate of x
given z. Finally, we compute ŝ = Γx̂ to get an estimate of the
task vector.

There are several differences between the linear mappings and
MSE expressions derived in Theorem 1, and their counterparts in
[15, Th. 1]. First, the linear mappings we derived are independent
of the actual structure of the scalar quantizers and their parame-
ters. The linear mappings only depend on the underlying system
task Γ and the statistics of the measurement vector x. Thus,
we get the same analog linear mappings for both uniform and
non-uniform quantizers. In contrast, the optimal linear mappings
in [15, Theorem 1] change as the quantizer parameters (e.g. M ,
dynamic range, spacing, etc) are varied. Second, we looked for
the optimal A within the class of analog combiners that satisfy
Restriction 1. However, we have not shown that there is no loss
of optimality if we restrict the search space within this class.
In fact, the analog linear mappings obtained using the SOTA
approach do not necessarily satisfy this property. Third, the
quantizer-dependent MSE expressions have different structures.
The quantizer-dependent MSE expression in our new approach

is a linear combination of the eigenvalues of Γ̃Γ̃
T

, weighed by
the distortion factors of the scalar quantizers. On the other hand,
the quantizer-dependent MSE in [15, Th. 1] and the eigenvalues

of Γ̃Γ̃
T

exhibit a nonlinear relationship. We provide a more
in-depth comparison of the two analysis frameworks in the next
section.

IV. NUMERICAL STUDY FOR LINEAR TASK

We now apply our proposed analysis framework for the
hardware-limited task-based quantization in a scenario which
involves parameter acquisition from quantized observations.
More precisely, we consider a scalar channel estimation problem
where samples are corrupted by intersymbol interference (ISI)
and noise, as in [15, Sec. VI-A]. The task vector s represents
the coefficients of a K-taps multipath channel that we want to
estimate. We aim to recover the task vector s from the N = 120
noisy observations contained in x, where the n-th element of x
is given by

xn =

K∑
l=1

slan−l+1 + wn ∀n ∈ {1, 2, . . . , N}. (12)

The coefficients {al} account for a deterministic training se-
quence that is known by the task-based quantizer. The quantities
{wn}Nn=1 represent the i.i.d. zero-mean Gaussian noise process
that has unit variance, i.e. σ2

w = 1, and is independent of s. The
channel s is modeled as a zero-mean Gaussian vector with the
i-th row and j-th column of its covariance matrix is given by

Σ(i,j)
s = e−|i−j|, ∀i, j ∈ {1, 2, . . . ,K}.

Effectively, x and s are jointly Gaussian so the linear task
assumption s̃ = Γx is satisfied, where Γ = ΣsxΣ

−1
x . Finally,

we set the training sequence to be

al =

{
cos

(
2πl
N

)
, l > 0

0 , otherwise
. (13)

Using the above setup, we evaluate the distortion of the
hardware-limited task-based quantizer designed using our pro-
posed analysis framework, and compare it to that of the
hardware-limited task-based quantizer designed using the SOTA
analysis framework. We consider two channels: (a) one with
K = 2 channel taps, and (b) one with K = 8 channel taps. By
default, we set P = K. However, we allow P to be optimized in
some parts of the numerical study. For our proposed framework,
we used the distortion factors for a Lloyd-Max non-uniform
quantizer with Gaussian input. Since x is a Gaussian random
vector, the quantizer input Apx for some p ∈ {1, 2, . . . , P} is a
linear combination ofN Gaussian random variables. Thus,Apx
is also Gaussian. We also set the range of the overall quantization
levels to be log2 M ∈ [2 ·K, 10 ·K]. Our numerical study will
evaluate the distortions incurred by the following quantization
systems:
� System A (No quantization): The MMSE E{||s− s̃||2},

which is the optimal distortion of an unquantized system.
This quantity can be expressed as

E{||s− s̃||2} = Tr (Σs)− Tr
(
ΓΣT

sx

)
. (14)

� System B (SOTA Approach w/ dithering): This is the dis-
tortion of the dithered hardware-limited task-based quan-
tizer in which the analog and digital linear mappings A
and D are designed using [15, Th. 1]. Both simulated
and theoretical distortions are evaluated. The simulated
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Fig. 3. MSE vs overall number of bits of Systems A-D, task: channel estima-
tion with K = 2 taps (σ2

w = 1).

MSEs are computed empirically by averaging the MSE
over 500,000 Monte Carlo runs.

� System C (SOTA Approach w/o dithering): Since dither-
ing increases the energy of the quantization noise, we
also simulate the MSE of the hardware-limited task-based
quantizer without dithering (A and D are still designed
using [15, Th. 1]).

� System D (New Approach, uniform quantizers): This is
the distortion of the hardware-limited task-based quantizer
designed under our proposed analysis framework. The
uniform quantizers are designed using the Lloyd-Max algo-
rithm for equally-spaced level quantizers (See [45, Eq. 8]).
Both simulated and theoretical distortions are evaluated.
The simulated MSEs are computed empirically by averag-
ing the MSE over 500,000 Monte Carlo runs. Moreover,
our analytical expression enables us to optimize the number
of scalar quantizers. We also present the theoretical MSE
using the optimal P , denoted P ∗. This is computed by
trying all possible P ∈ {1, 2, . . . ,K} in (11).

� System E (New Approach, non-uniform quantizers):
This is the same as System D but we allow the quantizers to
be non-uniform. The thresholds and representative levels of
the scalar quantizers are designed using the Lloyd-Max al-
gorithm [45]. Note that we did not change the configuration
of the linear mappings since the derived linear mappings in
Theorem 1 are agnostic of the actual structure of the scalar
quantizers.

Figs. 3 and 4 depict the distortions for System A to System D
for K = 2 and K = 8 channel taps, respectively. In both cases,
it can be observed that the MSE of System D is lower than that
of System B. The performance gain is more pronounced in the
low resolution regime but the gap between the MSEs of the two
frameworks diminishes as the overall number of bits is increased.
When all the scalar quantizers in the quantizer model have at
least five bits, i.e. log2 M ≥ 5K, the quantizer-dependent MSE

Fig. 4. MSE vs overall number of bits of Systems A-D, task: channel estima-
tion with K = 8 taps (σ2

w = 1).

is negligible and most of the overall MSE comes from (14). We
also demonstrate in the K = 8 setup that using lower P may
yield lower MSE when there is a tight quantization budget.

There is no clear winner between System C and System D.
System D has lower MSE when the overall number of bits
are limited but is slightly outperformed by System C at some
values of log2(M). We conjecture that its subpar performance
at some cases is due to Restriction 1. That is, there is loss of
optimality when restricting the search for the optimal A within
a class of analog linear mappings that satisfy Restriction 1. In
fact, we inspected the analog linear maps in System C and
noticed that AΣxA

T is not a diagonal matrix, thus violating
Restriction 1. Nonetheless, we point out that the simulated
MSE and the theoretical MSE (i.e. (14) + (11)) of System D
perfectly coincide in our numerical study. This is expected since
the proposed framework is exact, provided the assumptions on
the scalar quantizers and analog combining matrix are satis-
fied. On the other hand, we can see that the simulated MSE
of the dithered task-based quantizer designed using the SOTA
framework does not perfectly match the theoretical MSE. This is
because the overload probabilities of the quantizers are nonzero.
Thus, [15, Th. 1] only holds approximately. Furthermore, the
SOTA analysis framework is not capable of accurately predicting
the simulated MSE of System C.

We also extend the numerical analysis of the channel es-
timation task in the high signal-to-noise ratio regime. More
specifically, we compare the performances of the System C and
System D when the noise variance in the numerical study is set to
σ2
w = 0.1. The numerical results for K = 2 and K = 8 channel

taps are depicted in Figs. 5 and 6, respectively. It can be seen
that the MSE of System D is now consistently lower than that of
System C for all quantization bit budgets log2(M) considered in
the numerical study. Furthermore, our theoretical prediction for
the MSE of System D still coincides with the simulated MSE.
Overall, these findings suggest that the task-based quantizer
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Fig. 5. MSE vs overall number of bits of Systems A-D, task: channel estima-
tion with K = 2 taps (σ2

w = 0.1).

Fig. 6. MSE vs overall number of bits of Systems A-D, task: channel estima-
tion with K = 8 taps (σ2

w = 0.1).

should be designed using our proposed framework rather than
the SOTA framework when the energy of the additive noise
embedded in the observations is small or when the quantization
bit budget is limited.

When the scalar quantizers in System D are replaced with
non-uniform quantizers, i.e. System E, we observe in Fig. 7
that the MSE of the task-based quantizer designed using our
proposed analysis framework slightly improved. The use of
non-uniform quantizers in our proposed framework is expected
to provide performance gain, albeit small, since non-uniform
quantizers generally have lower distortion factor compared to
uniform quantizers. More importantly, we emphasize that the
simulated MSE of the task-based system equipped with non-
uniform quantizers coincides with our theoretical predictions.
The proposed framework enables a model-based analysis of
task-based quantization with non-uniform quantizers. To the

Fig. 7. Comparison of task-based system with uniform and non-uniform
quantization (K = 2, σ2

w = 1).

best of our knowledge, only a data-driven approach [29] for
task-based quantization with non-uniform quantizers is available
in the literature.

In the next section, we extend the framework to quadratic
tasks.

V. EXTENSION OF THE PROPOSED FRAMEWORK TO

QUADRATIC TASK

A. Setup for the Quadratic Task Problem

To extend the proposed analysis framework to the quadratic
task problem, we consider the task-based quantization model
depicted in Fig. 8 and follow the approach of [18]. The
measurement vector x ∈ R

N×1 is a zero-mean Gaussian ran-
dom vector and the task is to recover a set of quadratic
functions {xTCkx}Kk=1, where each Ck ∈ R

N×N satisfies
E{xTCkx} < ∞. We shall represent the results of these
quadratic functions using a K × 1 task vector s whose entries
are given by sk = xTCkx.

Since we are interested in quadratic tasks, we introduce the
quadratic measurement vector x̄ = vec(xxT ) ∈ R

N2×1, where
vec(C) ∈ R

mn×1 is the vectorization ofCm×n, i.e. the vector is
a vertical stacking of the columns of C. We also introduce G ∈
R

K×N2
whosek-th row is given by vecT (Ck). Consequently, we

can write the task vector as s = Gx̄. The following proposition
from [18] gives the structure of the analog and digital mappings
for the quadratic task.

Proposition 3 ([18, Th. 2]): For any P ×N2 matrix A with
P ≤ N2, the MMSE estimate of a quadratic function f(x) =
xTCx from random vector W = A(x̄− E[x̄]) can be written
as

E[f(x)|W] = dTW + E[f(x)]

for some P × 1 vector d, which depends on C, A, and the
covariance of x.
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Fig. 8. System model of task-based quantization with analog quadratic mapping and digital affine mapping.

Due to Proposition 3, we can focus on analog mapping ha of
the form

ha : x �→ A (x̄− E{x̄}) , (15)

whereA ∈ R
P×N2

is a matrix that applies a rotation and dimen-
sionality reduction to the shifted quadratic measurement vector
x̄− E{x̄}, and on digital mapping hd of the form

hd : x �→ Dz+ E{s}, (16)

where z ∈ R
P×1 contains theP outputs of the scalar quantizers.

We find the matrices A and D that minimizes E{||s− ŝ||2},
where ŝ is the output of the task-based quantizer.

B. System Design

We now apply our proposed framework to the linearized
quadratic task. First, we let Σx̄ ∈ R

N2×N2
be the covariance

matrix of x̄. Since x is a zero-mean Gaussian random vector,
xxT is an N ×N Wishart matrix of degree 1. Thus, the ele-
ments of Σx̄ ∈ R

N2×N2
and E{x̄} can be obtained from [46].

Alternatively, these quantities can be computed empirically as
done in [18]. The following corollary of Theorem 1 gives the
quadratic task extension of the proposed framework.

Corollary 1: Under Restriction 1, the optimal analog com-
bining matrix, denoted A◦, is

A◦ = V̄T
optΣ

− 1
2

x̄ , (17)

where the rows of V̄T
opt ∈ R

P×N2
are theP right singular vectors

of G̃ = GΣ
1
2
x̄ corresponding to the P largest singular values.

The optimal digital processing matrix for a given A = A◦,
denoted D◦(A◦), is

D◦(A◦) = GΣ
1
2
x̄ V̄opt. (18)

Using A◦ and D◦ gives the following MSE:

E{||s− ŝ||2}

=

{∑K
i=1 λG̃,i · ρ(i)q , if P ≥ K∑P
i=1 λG̃,i · ρ(i)q +

∑K
i=P+1 λG̃,i , otherwise

(19)

where λG̃,i is the i-th eigenvalue of G̃G̃T (arranged in descend-
ing order).

Proof: The corollary directly follows from Theorem (1) since
s is a linear function of x̄, i.e. s = Gx̄. �

C. Numerical Results

We now demonstrate the effectiveness of the proposed frame-
work on the quadratic task problem. We consider the empirical
covariance estimation problem described in [18, Sec. V]. The
input is given by x = [yT

1 , . . . ,y
T
4 ]

T , where {yl}4l=1 are i.i.d.
3×1 zero mean Gaussian random vectors. Hence, the measure-
ment vector x is a 12×1 vector. The i-th row and j-th column
of the covariance matrix of each yl, denoted Σy, is given by

Σ(i,j)
y = e−|i−j|, ∀i, j ∈ {1, 2, 3}.

The parameter we want to recover is a 3× 3 empirical covariance
matrix 1

4

∑4
l=1 yly

T
l , which is completely determined by its

upper triangular matrix. Thus, the task vector s has length
K = 6.

Since x̄ is not a Gaussian random vector, we expect A◦x̄ to
be non-Gaussian as well. Indeed, as illustrated in Fig. 9, the
P outputs of the analog quadratic mapping are non-Gaussian.
Therefore, we use the lloyds(·) function of MATLAB to get
the P Lloyd-Max scalar quantizers and their corresponding
distortion factors.

We evaluate the distortion incurred by the following task-
based quantization systems:
� System F (SOTA Approach for Quadratic Task [18]):

This is the distortion of the task-based quantizer where
A and D are designed using [18, Th. 3]. We present the
simulated MSEs of both the dithered and non-dithered
case. The simulated MSEs are computed empirically by
averaging the MSE over 500,000 Monte Carlo runs. The
theoretical MSE [18, Th. 3] is also evaluated.

� System G (New Approach for Quadratic Task, non-
uniform quantizers): This is the distortion of the task-
based quantizer where A and D are designed using Corol-
lary 1. Both simulated and analytical MSEs are evaluated.
Since the elements ofA◦x̄ are non-Gaussian and non-i.i.d.,
the distortion factors are first obtained empirically and
then applied to (19) to produce the analytical MSE. The
simulated MSE is computed empirically by averaging the
MSE over 500,000 Monte Carlo runs.

Fig. 10 shows the distortions of the quantization systems. It
can be observed that the simulated MSE of System G is lower
than that of non-dithered System F. Moreover, the analytical
expression we derived closely matches the simulated MSE of
our task-based quantizer. This numerical result demonstrates
that our proposed analysis framework can be potentially applied
to problems with nonlinear tasks. On the other hand, we see

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on May 07,2023 at 12:43:26 UTC from IEEE Xplore.  Restrictions apply. 



BERNARDO et al.: DESIGN AND ANALYSIS OF HARDWARE-LIMITED NON-UNIFORM TASK-BASED QUANTIZERS 1559

Fig. 9. Empirical distributions of the six elements of A◦x̄. The distributions are generated from 1,000,000 Monte Carlo runs. The red plots correspond to the
best-fit Gaussian distributions.

Fig. 10. MSE vs overall number of bits, empirical covariance recovery.

that while the analytical MSE expression in [18, Th. 3] expects
System F to yield the lowest MSE in certain scenarios, it does
not accurately predict the actual MSE of the dithered task-based
quantizer designed using the SOTA framework. In fact, the
relative discrepancy gets worse as the number of quantization
levels is increased.

VI. CONCLUSION

In this work, we formulated a new analysis framework based
on the Bussgang decomposition for hardware-limited task-based
quantization that overcomes limitations of the current SOTA
framework. More precisely, our framework does not rely on
the zero overload probability assumption and works for both
uniform and non-uniform scalar quantizers without dithering.
Our first contribution is a rigorous derivation of the optimal
linear mappings and analytical MSE in the linear task scenario
under a restriction on the analog combiner. In contrast to the
linear mappings derived under the SOTA framework, our map-
pings do not depend on the structure of the scalar quantizers.
We then demonstrated in our numerical study that the simulated

MSE of the task-based quantizer designed under our proposed
framework coincides with our theoretical predictions. Addition-
ally, we also extended our framework to quadratic tasks and
showed that our analytical expression for the MSE continues to
hold provided that the distortion factors are known or can be
computed empirically.

One notable research direction is to investigate the appli-
cability of the analysis framework to nonlinear tasks beyond
the quadratic task problem. For instance, can we extend our
proposed method to design and analyze hardware-limited task-
based quantizers performing classification tasks? It is also in-
teresting to see how the proposed framework can be utilized to
design power-efficient analog mappings.

APPENDIX A
PROOF OF PROPOSITION 1

By Restriction 1, AΣxA
T becomes a diagonal matrix. That

is,

AΣxA
T = diag{PAx}, (20)

where PAx = [P
(1)
Ax, . . . , P

(P )
Ax ]T and P

(i)
Ax = E{(Aix)

2}. In
addition, it can be shown that

E{zixTAT
j } = E{(BiiAix+ ηi)x

TAT
j }

= BiiAiΣxA
T
j + E{ηixTAT

j }
= 0

for i �= j. The quantity Bii is the i-th diagonal entry of B. The
first line follows by applying Bussgang decomposition at the
output of the i-th quantizer. The first term in the second line is
zero due to Restriction 1 while the second term in the second line
is zero since the distortion at the i-th quantizer is uncorrelated
with the input of the j-th quantizer. Thus, ΣzxA

T is a diagonal
matrix. Consequently, the Bussgang gain matrix in (3) is also
diagonal.
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To derive the diagonal elements of the Bussgang gain matrix,
we expand (1):

ρ(p)q =
E{(zp −Apx)

2}
E{(Apx)2}

=
E{z2p} − 2E{zpxTAT

p }+ E{(Apx)
2}

E{(Apx)2} .

Note that we considered scalar quantizers that satisfy the prop-
erty E{Xin|Q(Xin)} = Q(Xin). As such, we have

E{zpxTAT
p } = E{E{zpxTAT

p |zp}}
= E{z2p}, (21)

where the first line follows from the law of iterated expectation,
and the second line follows from E{Xin|Q(Xin)} = Q(Xin).
Effectively, the distortion factor becomes

ρ(p)q =
E{(Apx)

2} − E{zpxTAT
p }

E{(Apx)2}

= 1− E{zpxTAT
p }

E{(Apx)2}
= 1−Bpp.

The claim is proven by doing the above analysis for all p ∈
{1, · · · , P}.

APPENDIX B
PROOF OF PROPOSITION 2

From (1), we can simply focus on finding D◦ that minimizes
the quantizer-dependent MSE for a given A. Under the assump-
tion that s̃ is a linear task, the optimal D which results in ŝ being
the linear MMSE estimate of s̃ given z = BAx+ η is

D◦(A) = E{s̃zT }E{zzT }−1

= E{s̃(BAx+ η)T }E{zzT }−1

=
(
ΓΣxA

TBT + ΓE{xηT }) (ΣzxA
T
)−1

= ΓΣxA
TBT (AΣxA

T )−1B−1

= ΓΣxA
T (AΣxA

T )−1. (22)

The first line follows from the definition of a linear MMSE
estimator. The second line follows from the generalized Buss-
gang decomposition. The third line follows from the linear task
assumption s̃ = Γx and the relationship between Σz and Σzx

established in (21). The fourth line is obtained from the Bussgang
gain matrix expression in (3) and fact that E{xηT } = 0. To see
this, we expand E{xηT } as follows:

E{xηT } = E{x (z−BAx)T }
= ΣT

zx −ΣxA
TBT

= 0,

where the third line holds because of (3). Finally, the last line
in (22) follows from the fact that B and AΣxA

T are diagonal

matrices. As such,

BT (AΣxA
T )−1B−1 = BTB−1(AΣxA

T )−1

= (AΣxA
T )−1.

Consequently, the quantizer-dependent MSE term of the linear
MMSE estimator becomes

E{||s̃− ŝ||2} = E{||Γx−D◦z||2}
= Tr

(
ΓΣxΓ

T
)

− Tr
(
ΓΣxA

TB
(
AΣxA

T
)−1

AΣxΓ
T
)
,

which proves the claim.

APPENDIX C
PROOF OF THEOREM 1

Let Ã = AΣ
1
2
x . Then, the quantized-dependent MSE term

becomes

E{||s̃− ŝ||2} = Tr
(
Γ̃Γ̃

T
)

− Tr

(
Γ̃ÃTB

(
ÃÃT

)−1

ÃΓ̃T

)

= Tr
(
Γ̃Γ̃

T
)

− Tr

(
ÃΓ̃T Γ̃ÃTB

(
ÃÃT

)−1
)
, (23)

where the second line comes from the cyclic property of the
trace function. Since the first term is independent of Ã, the
optimization problem simplifies to

Ã◦ = argmax
Ã

Tr

(
ÃΓ̃T Γ̃ÃTB

(
ÃÃT

)−1
)
. (24)

Due to Restriction 1, ÃÃT is a diagonal matrix. Thus, we
can also represent Ã as

Ã = HÃVT , (25)

where HÃ ∈ R
P×N is a scaling matrix whose off-diagonal

entries are zero and whose p-th entry in the main diagonal cor-
responds to a scaling of the p-th output of the analog combining
matrix. The matrix V ∈ R

N×N is a unitary matrix. Under this
setting, we can reduce the optimization problem to

H◦,V◦ = argmax
HÃ,V

Tr
(
HÃVT Γ̃T Γ̃VHT

Ã
B
(
HÃHT

Ã

)−1
)
.

Due to [47, Th. II.1], V◦ is the matrix containing the right
singular vectors of Γ̃. This further simplifies the optimization
problem to

H◦ = argmax
HÃ

min(P,K)∑
i=1

λΓ̃,i[1− ρ(i)q ],

whereλΓ̃,i is the i-th eigenvalue of Γ̃
T
Γ̃ (arranged in descending

order). It can be observed that the new objective function is
independent of HÃ as long as the entries of main diagonal of
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HÃ are positive (otherwise, HÃHT
Ã

will not be invertible).
Without loss of generality, we set H◦ = [IP×P 0P×(N−P )].
Consequently, we get

A◦ = H◦(V◦)TΣ− 1
2

x

= VT
optΣ

− 1
2

x ,

where the rows of VT
opt are the P right singular vectors of Γ̃ =

ΓΣ
1
2
x corresponding to the P largest singular values. To verify

that A◦ satisfies Restriction 1, note that

A◦Σx(A
◦)T = VT

optΣ
− 1

2
x ΣxΣ

− 1
2

x Vopt

= VT
optVopt.

Since the singular vectors are orthogonal to each other, then
VT

optVopt is a diagonal matrix.
By plugging in A◦ to D◦(A), we get

D◦(A◦) = ΓΣ
1
2
xVopt. (26)

Finally, the quantizer dependent MSE can be written as

E{||s̃− ŝ||2}

=

K∑
i=1

λΓ̃,i −
min(K,P )∑

i=1

λΓ̃,i · [1− ρ(i)q ]

=

{∑K
i=1 λΓ̃,i · ρ(i)q , , if P ≥ K∑P
i=1 λΓ̃,i · ρ(i)q +

∑K
i=P+1 λΓ̃,i, otherwise.
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