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Dual Gabor Frames: Theory and
Computational Aspects

Tobias Werther, Yonina C. Eldar, Member, IEEE, and Nagesh K. Subbanna

Abstract—We consider a general method for constructing dual
Gabor elements different from the canonical dual. Our approach
is based on combining two Gabor frames such that the generated
frame-type operator is nonsingular. We provide necessary
and sufficient conditions on the Gabor window functions and
such that is nonsingular for rational oversampling, consid-
ering both the continuous-time and the discrete-time settings. In
contrast to the frame operator, the operator is, in general, not
positive. Therefore, all results in Gabor analysis that are based on
the positivity of the frame operator cannot be applied directly. The
advantage of the proposed characterization is that the algebraic
system for computing the Gabor dual elements preserves the
high structure of usual Gabor frames, leading to computationally
efficient algorithms. In particular, we consider examples in which
both the condition number and the computational complexity
in computing the proposed dual Gabor elements decrease in
comparison to the canonical dual Gabor elements.

Index Terms—Frame theory, Gabor analysis, twisted convolu-
tion, window design.

I. INTRODUCTION

GABOR analysis is a pervasive signal processing method
for decomposing and reconstructing signals from their

time-frequency projections. Gabor representation is used in
many applications ranging from speech processing and texture
segmentation to pattern and object recognition, among others
[3], [4], [21], [28], [40].

One of the advantages of Gabor analysis is the highly struc-
tured system inherited from the uniform time-frequency lattice,
which allows for efficient computational algorithms. A major
part of Gabor analysis relies on frame theory, which deals with
overcomplete sets [8]. When using an overcomplete Gabor
system to decompose a signal, the reconstruction is no longer
unique. The most popular choice of reconstruction is based
on the canonical (minimal-norm) dual Gabor frame [33], [36].
Computing the canonical frame involves inverting the frame
operator associated with the given Gabor frame. The frame op-
erator has a lot of structure emerging from the commutivity with
corresponding time-frequency shifts, which is a consequence
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of the uniformity of the underlying time-frequency lattice. This
structure gives rise to many important and well-known results,
such as the Wexler–Raz biorthogonality and the Janssen repre-
sentation, that we briefly discuss in Section III. In the discrete
time setting, the structure of the Gabor system is evident in the
sparsity and the periodic distribution of the entries of the Gabor
frame matrix that can be used to develop efficient numerical
algorithms [31], [36]. In some applications, however, the frame
operator may be poorly conditioned or require many operations
to compute, cf. Section VI. In such cases, it may be possible to
reduce the computational complexity and the condition number
by considering dual elements different from the canonical dual.

A general characterization of dual Gabor elements was given
in [24] based on the canonical dual. Each of the dual Gabor ele-
ments in this characterization depend explicitly on the canonical
dual and therefore require computing the inverse of the frame
operator. Different dual Gabor windows have also been studied
for the continuous and the discrete case in [9] and [36], respec-
tively. In both cases, the authors aimed at computing the dual
window that has minimal (semi)-norm with respect to a special
norm other than the -norm. The resulting system, however,
does not, in general, preserve the structure of the Gabor frame
operator that is heavily exploited for deriving fast algorithms.

In this paper, we present a method for deriving dual Gabor
elements that retain the high Gabor structure, without relying
on the inversion of the frame operator. Specifically, we use a
frame-type operator that enjoys the same commutivity proper-
ties as the standard Gabor frame operator in order to derive dual
Gabor elements that generate an alternative dual Gabor frame.
In the discrete time setting, this method can still access all fast
inversion schemes that do not rely on positivity. The basic idea
follows the general concept introduced in [13] of replacing the
pseudo-inverse of a matrix with another left-inverse. In the con-
text of general frames, this leads to dual frames different from
the canonical choice. For Gabor frames, we are constrained to
special left inverses in order to retain most of the structure that
arises from uniform time-frequency lattices. In particular, we
build a left inverse of the analysis operator of a given Gabor
frame using another Gabor frame sequence such that the arising
frame-type operator is nonsingular. We prove necessary and suf-
ficient conditions for the underlying Gabor atoms to generate a
left inverse for rational oversampling. An important case in ap-
plications is integer oversampling, for which the corresponding
frame operator is sparse, leading to fast numerical algorithms
[30], [31], [33], [41]. In the case of integer oversampling, our
general condition reduces to an easily verifiable condition on
the given windows. In our development, we consider both the
continuous-time case and the discrete-time case.
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The paper is organized as follows. In Section II, we provide
the basic definitions, formulate the problem in a general setting,
and introduce Gabor frames. In Section III, we review funda-
mental results in Gabor analysis, outline the Janssen represen-
tation, and briefly state the Feichtinger algebra. These first three
chapters are intended to provide a short overview of the facts
needed in the present approach. Section IV contains the main
results. Specifically, for rational lattice parameters we develop
necessary and sufficient conditions on the Gabor windows such
that the resulting frame-type operator is invertible on . As
we show, our general condition takes on a particularly simple
form in the integer oversampling case. In Section V, we de-
scribe a finite dimensional model, and discuss the example of
Gaussian windows. This context is important in applications,
since in practice, we always have a finite set of data. Section VI
provides numerical examples illustrating the advantages of the
proposed method with respect to computational complexity and
stability of the Gabor system compared with the standard frame
operator described in [36].

The contribution of this paper is two-fold: On the theoretical
side, we provide an alternative characterization of all dual Gabor
elements that does not require the conventional frame operator.
From a practical perspective, we develop concrete methods for
Gabor expansions that can reduce the computational complexity
and improve the stability with respect to existing approaches.
The practical aspects are mainly in the discrete-setting, while
the heart of the theory is in analyzing the continuous-time set-
ting. Thus, while the results of Section IV are interesting on a
theoretical level, the more practically oriented reader may focus
on Sections V and VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Notation

We define the Fourier transform of an absolutely integrable
function by

where denotes the reals. The Fourier transform extends to a
unitary mapping on the Hilbert space of square integrable
functions with inner product

where denotes the complex conjugate of . The Fourier series
expansion of a -periodic square-integrable function is

(1)

where the coefficients are given by ,
and denotes the integers. If the coefficient sequence is
absolutely summable, then is continuous.

For real numbers and , we denote by

the modulation (frequency translation) and translation operator,
respectively. It is important to note that the two operators do not
commute, but

(2)

In particular, we have

(3)

This commutation rule plays an important role throughout the
paper.

The space for and contains
all sequences of complex numbers with

Given two sequences , , we define the twisted con-
volution (with parameter ) by

(4)

For , twisted convolution reduces to the standard
convolution:

(5)

We will later see that twisted convolution arises naturally from
the commutation rule (3).

B. Frames

We introduce two basic concepts in Hilbert space theory that
generalize the very useful tool of orthonormal bases. In this sec-
tion, denotes a separable Hilbert space with inner product

.
Definition 2.1: A sequence of a Hilbert space is

a Riesz basis of its closed linear span if there exist bounds ,
such that

Riesz bases preserve many properties of orthonormal sets [5].
An extension to overcomplete (linearly dependent) sets is the
concept of frames.

Definition 2.2: A sequence of a Hilbert space is
a frame of if there exist bounds , such that

(6)

A sequence satisfying the right inequality is called a
Bessel sequence.

The synthesis map of a frame is defined by
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Its adjoint is the analysis operator . Due
to (6), , and thus, are bounded. The frame operator is
defined by

By (6), the frame operator satisfies

and is, therefore, positive and invertible.
Given a frame, there exists a dual frame , which is a

frame itself, such that

(7)

The dual frame is unique if and only if is a Riesz basis.
For a frame that is not a Riesz basis, the canonical choice of
its dual frame is the sequence . It provides the min-
imal -norm coefficients in the expansion (7) [12]. Many re-
sults about frames can be found in [5]. For example, a Bessel
sequence is a dual frame of if and only if

(8)

In this paper, we focus on dual frames other than the canonical
dual. The reason for choosing alternative dual frames is that
for particular applications one might be interested in different
features than minimal -norm coefficients. For example, we
might be interested in a dual frame whose elements are of a
special shape or are easy to compute.

For alternative dual frames, there exist constructive ap-
proaches that rely on the canonical dual. In [6], [7], and [25], it
is shown that any dual frame of can be written as

(9)

where is a Bessel sequence. Note, however, that the repre-
sentation (9) involves inverting the frame operator. An alterna-
tive approach based on the combination of two different frames
that does not rely on the canonical dual was suggested in [13],
and we outline it here.

Given two frames and for a Hilbert space with
synthesis operators and , respectively, we observe that if

is invertible, then

is a left-inverse of , and the vectors and
behave similarly to a dual frame in the sense that

Pursuing this idea leads to dual frames as follows. If is
invertible, then defined by

(10)

is a dual frame for . This follows from the fact that is
a Bessel sequence, and

which verifies (8). If we assume that is already a dual
frame for , then is obviously the identity, and there-
fore, (10) trivially leads to the dual frame itself. We con-
clude that instead of the characterization of (9), we can charac-
terize all duals by (10), where is chosen such that is
invertible.

At this point, we may raise the question under which condi-
tions is invertible. The following characterization, given
in a slightly more general context in [13], is rather abstract.

Proposition 2.3: Let and be frames for a Hilbert
space with synthesis operator , , respectively.
Then, the operator is invertible on if and only if every
sequence has a unique representation of the form

for some and with .
Proposition 2.3 provides a very general condition that is dif-

ficult to verify. One purpose of this paper is to derive explicit
conditions for invertibility of in the case in which and

represent Gabor frames.

C. Gabor Frames

A function generates a Gabor frame with the (lattice)
parameters (time parameter) and (frequency pa-
rameter) if the sequence of uniform time-frequency translates

is a frame for . To denote Gabor systems,
we use the notation

The prototype of a function generating Gabor frames is the
Gaussian

(11)

The Gaussian generates a frame if and only if [27],
[35]. It can be easily derived that the dilated Gaussian ,

also generates a Gabor frame if and only if .
In general, it is complicated to find all lattice parameters for

which a function constitutes a Gabor frame. For instance, the
B-splines of any order do not generate a Gabor frame whenever

[19].
It is well-known that the canonical dual of a Gabor frame

is itself a Gabor frame given by , with the gen-
erating function . Functions that generate a dual Gabor
frame are called dual Gabor elements. Besides the canonical
dual, there exists other dual Gabor frames, as shown in [24] by
means of (9), which involves the canonical dual. Our aim is to
study approaches for deriving dual Gabor elements without re-
lying on the canonical dual that requires the inversion of the
frame operator.
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Transferring the idea of different left inverses described in
Section II-B to a Gabor setting leads to dual Gabor elements
that can be efficiently computed without using the traditional
frame operator. In this way, we gain some freedom in optimizing
Gabor algorithms with respect to numerical issues such as sta-
bility and computational complexity.

For fixed parameters , , we denote by the synthesis
operator of the Gabor system given by

If is a frame, then the adjoint operator is bounded,
and so is . The frame operator is simply given by .

According to the general concept (10), we consider Gabor
frames and with synthesis operators
and , respectively. Our main purpose is to find conditions
on the functions and such that the (bounded) frame-type
operator

is invertible on . Theorem 4.1 characterizes the invertibility
of for the continuous time case in terms of the coefficient
sequence . This characterization boils
down to a rather simple formula for integer oversampling, i.e.,
the case ; see Corollary 4.3. An analog result for
the discrete time case is given in Corollary 5.2.

If the frame-type operator is invertible, then the Gabor system
is a dual Gabor frame for . This fol-

lows from the facts that is a Bessel sequence and
that (8) is easily verified since and, therefore, com-
mute with all time-frequency shifts [9], [23], i.e.,

(12)

We emphasize that this commutation rule is the core property
for many results in Gabor analysis.

An advantage of the present approach is that due to (12),
preserves the commutivity properties of the standard frame op-
erator and, therefore, fast methods that have been developed for
inverting the frame operator that do not rely on the positivity can
also be used to invert , as discussed in Section V. Further-
more, by choosing appropriately, we may be able to further
decrease the computational complexity of establishing and
increase the stability. An example in the discrete case is the com-
bination of two Gaussian functions of different spread for which
we explicitly show in Proposition 5.3 that is invertible. We
also provide numerical simulations, in Section VI, that confirm
the potential improvement of stability.

Before proceeding to the detailed development, in the next
section, we summarize the main results on Gabor analysis that
will be used in our derivations in Sections IV and V.

III. BASIC RESULTS IN GABOR ANALYSIS

A. Characterizations

In the following, we describe fundamental results in Gabor
analysis that are important to understand the alternative ap-
proach that we present for computing dual Gabor elements. For

basic and more advanced properties of Gabor frames, we refer
to [5], [15], and [18].

An important result in Gabor analysis is the Wexler–Raz
biorthogonality relation that characterizes all dual Gabor ele-
ments for a given Gabor frame [5], [18], [39].

Theorem 3.1: Assume that and are
Gabor frames for . Then, they are dual frames if and only if

(13)

It is interesting to see that the condition for dual Gabor el-
ements uses the so-called dual lattice . In fact, the
dual lattice plays a central role in many parts of Gabor theory.
The first important relationship between the lattice and
its dual lattice goes back to the Ron–Shen duality [34].

Theorem 3.2: Let and , be given. Then, the
Gabor system is a frame for with bounds , if
and only if is a Riesz basis for its closed linear
span with bounds , .

These two theorems are the basis of important results of con-
ditions on the parameters and , where is a frame.
We only mention a central result and refer to [18] and [26] for
detailed discussions.

Theorem 3.3: Assume that is a frame. Then,
. Moreover, is a Riesz basis for if and only if

.
In this paper, we are only interested in the case (over-

sampling) since we want to make sure that more than one dual
Gabor element exists in contrast to Riesz bases where the dual
or biorthogonal basis is always unique.

Assume that for some , with , is a
frame of with the canonical dual Gabor element . It follows
that the closed linear span of , say , is a proper
subspace of and [18]. Note that the dual Gabor
element of minimal -norm is precisely , which is therefore
also called the minimal dual [18].

B. Janssen Representation and the Feichtinger Algebra

Every operator that commutes with all time-frequency
shifts has a representation of the form

(14)

for a unique sequence [9], [23]. This is
often referred to as the Janssen representation. If is an abso-
lutely converging sequence, i.e., , then the Janssen
representation is convergent in . Obviously, the sequence of
the Janssen representation for the identity operator is the Dirac
sequence . The fact that our construction of duals involves
the operator that commutes with all time-frequency shifts
will allow us to exploit the Janssen representation. In particular,
if two operators and commute with all , then the
product also commutes with and assuming that
both operators , and have a Janssen representation of the
form (14) with , , respectively, we obtain

(15)
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by means of the commutation rule (3), as derived, for instance,
in [14] and [18]. Here, it becomes evident how the twisted con-
volution comes into the game. This representation will be used
in deriving our results in the next section.

For the special case of , the coefficient sequence of the
Janssen representation, which we denote by , is
shown in [9] and [23] to be given by

(16)

Throughout the paper, always denotes the sequence of (16),
unless otherwise stated.

To avoid technical details that do not contribute to a better
insight of the problem, we only consider functions , such that

. A class of functions with this property is the Feichtinger
algebra defined by

where denotes the
short-time Fourier transform with respect to the Gaussian
window defined in (11). Examples of functions in are the
Gaussian and continuous B-splines of any order.

The Feichtinger algebra is an extremely useful space of
test functions and of “good” window functions in the sense of
time-frequency localization. Rigorous descriptions of can
be found in [16] and references therein.

IV. INVERTIBILITY OF THE FRAME-TYPE OPERATOR ON

We now derive necessary and sufficient conditions on the
functions and such that the frame-type operator

is invertible on . As we have seen, if is invertible,
then the Gabor system is a dual Gabor frame for

. We will see in Section V that the discrete finite rep-
resentation leads to simpler results than the standard -setting.

A. Rational Case

As in many parts of Gabor analysis [18], [42], we only con-
sider the rational case with , relatively prime.
In contrast to irrational relations of the parameters, the rational
case preserves important periodicity conditions such as (18) that
are exploited in the proofs. Tackling the problem for all , re-
quires completely different methods [20] from those used here
and are of little practical significance.

In our approach, we use standard time-frequency methods.
Many definitions and derivations are described in [18, Ch. 13].

Let , , and define the entries of the bi-infinite matrix
valued function by the correlation functions

(17)
Because of , , is in since is closed
under translation and under pointwise multiplication. Moreover,
the periodization of period a is continuous. As shown in

[18, Ch. 6] by virtue of Schur’s test,1 the bi-infinite matrix
is a bounded operator on for all .

We state two important properties of :

(18)

(19)

The first property is based on the fact that . The second
relation shows that can be derived from . Indeed,
we can also define by the Fourier series

(20)

where , and use (19) to extend
to . Equation (20) follows from the fact that

represent the Fourier coefficients, as introduced in (1).
The correlation functions provide an important rep-

resentation of the frame-type operator : the so-called Walnut
representation

(21)

that follows directly from the Janssen representation (14) of
. Since , , the series of the Walnut representation

converges unconditionally2 in [18], [38]. We will also make
use of

(22)

Next, we define the entries of the -matrix valued function
by

(23)
As shown in [18, Ch. 13] (replace one by ), has an
absolutely converging Fourier series expansion and is therefore
continuous and of period ( , ). Moreover, is invertible
on if and only if the -matrix is invertible
for every ( , ).

The last statement is useful in order to transfer the question
of the invertibility of to and leads to the core result
of the continuous case.

1The ` -norm of the rows and of the columns are uniformly bounded.
2Any sequence of increasing finite sums converges to the same limit.
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Theorem 4.1: For , , and , set
, and define the matrix-valued function

with

(24)
Then, is invertible if and only if

for all ( , ).
Proof: First, we show that coincides with the ma-

trix-valued function defined in (23). Using (18)–(20),
we compute

Now, we transfer the statement of the theorem to .
Assume first that is invertible. By virtue of Wiener’s

Lemma, cf. [20], there exists a sequence such that
. Furthermore, we derive from

(15)

(25)

We use the sequence for defining

and

(26)
In the Appendix, in Lemma 7.1, we prove that the matrix-valued
function is the inverse of . This shows that , and
therefore, is invertible for all ( , ).

Conversely, assume that is invertible for all ( , ).
We define

By using a generalized version of Wiener’s lemma, it has been
shown in [18] that all entries have an absolutely
convergent Fourier series. In particular, the entries of
are continuous and of period ( , ). We further define a ma-
trix-valued function by

(27)

and for . As it can
easily be seen, there exists a constant such that

(28)

Recall that by definition (23)

Lemma 7.2 shows explicitly that is the inverse of .
In order to obtain the inverse of from the matrix-valued

function , we define the sesqui-linear form

(29)

for , . By means of (28), we have

and, therefore, (29) is bounded.
By means of (29), we define the operator on implicitly

through

(30)

Finally, Lemma 7.3 shows that is the inverse of . In par-
ticular, is invertible on .

Altogether, we showed that is invertible if and only if
is invertible for all ( , ), which is equivalent to the

claim of the theorem.
The following statement results from the fact that if , ,

then maps into itself [16]. It basically says that if and
are well-localized in time and frequency, so is the dual window

.
Proposition 4.2: If , , and is invertible for some

, , then is also in .
Remark 1: Theorem 4.1 can also be stated only in terms of

the coefficient sequence without referring to special constructs
of Gabor analysis. Indeed, we can use (20) in order to define
(17). Then, we obtain (19) by definition and derive (18) easily
from . These are the only properties that we used
in our computations. In this context, Theorem 4.1 says that the
Janssen representation of an sequence is invertible if and
only if never vanishes.

Remark 2: In the case , Theorem 4.1 states a charac-
terization for generating a Gabor frame, which coincides with
the derivations in [18, p. 286].

Remark 3: The fact that is a Gabor frame must
be fulfilled for being a frame, although it is not
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explicit in the above derivation. This follows easily from the
frame inequality (6) and the fact that commutes with all
time-frequency shifts of the form such that

A different but less transparent characterization of the invert-
ibility of is given by the so-called Zibulski–Zeevi represen-
tation [42]. This representation uses the Zak transform

(31)

that is widely known in signal processing [22].
The Zibulski–Zeevi representation is as follows. For
, define the matrix-valued function by

for , , and the vector valued Zak transform
by

Then

(32)

Hence, is invertible if and only if the matrix-valued func-
tion is invertible for almost all , [18], [42].

The Zibulski–Zeevi representation is a powerful tool in
Gabor analysis and provides an alternative characterization
of the invertibility of the frame-type operator . While the
Zibulski–Zeevi representation uses the Zak transform, our
approach is based on the series expansion of frame-type oper-
ators (Janssen representation) transferring the analysis over to
the corresponding coefficients. These coefficients, which are
hidden in the Zibulski–Zeevi representation, reveal many prop-
erties of frame-type operators and are well suited for further
studies. For instance, preconditioning concepts of the Gabor
frame operator are developed on the basis of manipulating co-
efficients in the Janssen representation [1]. Therefore, analysis
based on these coefficients can be important in our aspects of
Gabor theory as well.

As a final remark of this section, we point out that both the
Zibulski–Zeevi representation and Theorem 4.1 are inappro-
priate for studying the numerical behavior of the Gabor frame-
type operator in the presence of small changes of the lattice pa-
rameters , since and may get arbitrary large, leading
to computational drawbacks. This would suggest to use the old
standard von Neumann-type inversion, as described in early pa-
pers about frames [12]. In most practical applications, however,
one tries to avoid large and usually sticks to the integer over-
sampling case.

B. Integer Oversampling

The case with is called integer
oversampling and corresponds to the rational case . This
case has been studied extensively in the literature since it leads
to efficient computational algorithms [30], [31], [41]. As Corol-
lary 4.3 below shows, in this case, we can obtain an easily ver-
ifiable condition on the windows and such that is in-
vertible. This is also a consequence of the fact that in the integer
oversampling case, the operators and commute.

Corollary 4.3: For , , and ,
set . Then,

is invertible if and only if the
function

(33)

never vanishes.
Proof: Since leaves , , expression (24) of

Theorem 4.1 simply reduces to (33).
Example: We now consider a general class of functions that

satisfy the conditions of Corollary 4.3. Suppose that for some
constant , we have the following:

1) , and
2) supp , and supp .

Then, it follows that for all , which
shows that is constant in the first variable since the con-
dition in Corollary 4.3 reduces to

(34)

Using with , we can
apply the Poisson summation formula to (34) and obtain

If and have overlapping supports and are real-valued and
non-negative, for instance, B-splines, then there always exists
small enough such that is strictly positive, and hence, Corol-
lary 4.3 applies.

V. DISCRETE FINITE REPRESENTATION

In the previous section, we considered the case of contin-
uous-time Gabor representations. In this section, we consider
the finite discrete-time case. In applications, we can only
process a finite number of data. Therefore, we introduce a finite
discrete model of signals defined on the cyclic (index) group

of dimension according to the excellent
treatise on finite-dimensional Gabor systems in [36].

One approach to deriving the results in the discrete setting is
to “sample” the continuous-time results. However, it is impor-
tant to note that the Gabor frame-type matrix has an additional
sparsity structure that is not present in the continuous model
[30], [36]. This observation allows for easier characterizations
by treating the discrete model directly without relying on the
continuous-time results. Nonetheless, we will show in the case
of integer oversampling that the condition for invertibility of the
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frame-type operator is analogous to the continuous-time condi-
tion of Corollary 4.3 and how this result can be applied to the
example of Gaussian windows.

What we will show by examples is that the presented alter-
native approach for dual Gabor windows leaves some freedom
that can be used to reduce computational complexity and to im-
prove stability in the sense of controlling the condition number
of the Gabor frame-type matrix.

The notation of the finite discrete setting mainly follows [33]
and [36]. A signal of length is a vector of complex numbers

, . The vector is extended periodically
on , that is

The inner product of two signals , is

Given two integer parameters , with that are divisors
of , we define and . (Note that and are
integers.) If the set of vectors

, spans , then it is
called a Gabor frame. The case that divides corresponds
to integer oversampling. We note that in the discrete case, we
always have that is an integer and that divides .

For two Gabor frames with generating vectors and , the
associated frame-type operator is an -matrix with

th entry

if is divided by
otherwise

(35)

which is called the Walnut representation of for the dis-
crete case [33]. The discrete Walnut representation implies the
following properties of :

1) Only every th subdiagonal of is nonzero.
2) Entries along a subdiagonal are -periodic.
3) is a block circulant matrix of the form

...
...

. . .
...

where are noncirculant matrices, with

(36)

for and , [36].
In the following, we exploit the high structure of the matrix

in order to derive statements about the invertibility of
similar to the main results in the continuous case where this
sparsity structure is not present.

For a Block circulant matrix of square matrices ,
, we write . We define

the Fourier transform of a block circulant matrix by
with

The invertibility of a circulant matrix can be characterized by
means of its Fourier transform [2], [11], [37].

Lemma 5.1: The block circulant matrix
is invertible if and only if is invertible for

all . In this case,
with

In this context, the main Theorem 4.1 of the continuous case
reduces to the verification of the invertibility of the -ma-
trices , in the discrete case as a consequence
of the additional structure of the Gabor matrix.

Exploiting the structure of circulant matrices leads to very ef-
ficient inversion methods. Indeed, as shown in [36] for the Gabor
matrix, the inversion of can be carried out in

operations, provided that is invertible.
Applying Lemma 5.1 to the frame-type operator for integer

oversampling leads to a simple explicit invertibility characteri-
zation that is slightly different to what is stated in [32] and [33].

Corollary 5.2: Assume that is an integer. Then, the
frame-type operator

is invertible if and only if the diagonal entries of are not zero
for all indices .

Proof: Since is assumed to be divisible by , it follows
from the properties of that

are the only nonzero diagonal matrices. Therefore

(37)

are also diagonal matrices for and invertible
if and only if each diagonal entry is not zero. Applying Lemma
5.1 concludes the proof.

The difference of Corollary 5.2 from Corollary 4.3 emerges
only from the additional structure of the Gabor frame-type ma-
trix, whereas the statement is indeed the equivalent formulation
of Corollary 4.3 for the discrete setting.

Example: A popular choice of a Gabor window is the
Gaussian window . It is well known that the
Gaussian window is optimal in the sense that it is most localized
in time and frequency [10], [18], [29].

Consider choosing and as Gaussian windows of different
spread, that is

and (38)
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for some , . We explicitly show that in the case of
integer oversampling, the corresponding frame-type matrix
is invertible for all choices of and . Thus, in applications
where is fixed, we may choose to obtain a frame-
type operator that is better conditioned or computed with fewer
operations.

Proposition 5.3: If is an integer, then the frame-type
operator of , defined in (38) is invertible.

Proof: In accordance with Corollary 5.2, we have to show
that the diagonal entries of the matrices , ,
given by (37), are nonzero. By combining (35)–(37), we derive

What we obtain is a sum of the discrete Fourier transform of
shifted Gaussians, which never vanishes.

VI. COMPUTATIONAL ASPECTS

In the discussion about computational aspects, we consider
the discrete finite setting described in the previous section. In
particular, we use the example of Gaussian windows given in
(38) and provide arguments for computational savings when cal-
culating dual elements. Numerical examples finally show that
it is possible to improve the condition number of the Gabor
frame-type matrix.

In some applications, the spread of one Gaussian window is
fixed, and we can choose the second Gaussian window with a
much smaller spread. In this way, the sum (35) for the entries of
the frame-type matrix reduces to a few terms, and the compu-
tational complexity for establishing the matrix can be reduced
significantly. For example, if we choose the effective spread of
the second Gaussian to be within the interval , i.e., all
values outside this interval are negligibly small, then the sum
(35) becomes a single term, and the number of operations for es-
tablishing the frame-type matrix is reduced from
when all terms of (35) are considered to , leading to com-
putational savings.

Figs. 1–3 show examples of different dual elements, in-
cluding the canonical dual for the Gaussian window defined
in (38) with , , , and (integer
oversampling).

What we observe is that changing the spread parameter of the
Gaussian window leads to different but similarly shaped dual
elements.

In Fig. 2, we compare the condition number of the frame-
type matrices when varying the spread . The parameters are as
above, except .

The example in Fig. 2 reveals that it is possible to improve the
stability of Gabor systems when replacing the canonical dual
by different dual elements. In the given example, we reduce the
condition number by a factor of 100 when choosing .

The final figure shows the improvement of the condition
number by a factor of 100 for the Gaussian example for nonin-

Fig. 1. Gaussian windows.

Fig. 2. Condition number versus spread � .

Fig. 3. Condition number versus spread � .

teger oversampling. Here, we chose , , ,
and .
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VII. CONCLUSION

In this paper, we have presented a method for computing al-
ternative dual Gabor elements without relying on the canonical
dual. The approach is based on the general idea that replacing
the pseudo-inverse of the analysis operator of a frame by an-
other left inverse leads to alternative dual frames.

In the theoretical part, we provide necessary and sufficient
conditions on the window functions for the frame-type operator
to be invertible in the rational case and derive a simple formu-
lation for integer oversampling. In the discrete finite setting, we
exploit the Gabor structure in order to derive invertibility state-
ments directly from the frame-type matrix. Our approach has
the potential for computational savings and stability improve-
ment when calculating the dual element, as substantially shown
in examples.

APPENDIX

Lemma 7.1: The matrix-valued function defined in
(26) is the inverse of the matrix-valued function defined
in (20).

Proof: We fix , and by means of (25), we compute

The same holds true for . Note that since ,
, the interchanges of the sums are justified.
The above computation gives an insight into the connection

of the definitions of the matrix-valued functions and the
twisted convolution.

Lemma 7.2: The matrix-valued function defined in
(27) is the inverse of the matrix-valued function defined
in (17).

Proof: Let , be arbitrary integers.
Applying the Poisson summation formula [17], we compute

The same computation goes through for .
Lemma 7.3: The operator defined in (30) is the inverse of

.
Proof: Using the Walnut representation (21) of , we

compute
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In the same way, by using (22), we have
. Since this holds true for all , we

obtain .
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