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Abstract—Low-cost distributed robots suffer from lim-
ited onboard computing power, resulting in excessive com-
putation time when navigating in cluttered environments.
This article presents Edge Accelerated Robot Navigation
(EARN), to achieve real-time collision avoidance by adopt-
ing collaborative motion planning. As such, each robot can
dynamically switch between a conservative motion planner
executed locally to guarantee safety (e.g., path-following)
and an aggressive motion planner executed nonlocally to
guarantee efficiency (e.g., overtaking). In contrast to exist-
ing motion planning approaches that ignore the interdepen-
dency between low-level motion planning and high-level
resource allocation, EARN adopts model predictive switch-
ing (MPS) that maximizes the expected switching gain with
respect to robot states and actions under computation and
communication resource constraints. The MPS problem is
solved by a tightly coupled decision making and motion
planning framework based on bilevel mixed-integer non-
linear programming and penalty dual decomposition. We
validate the performance of EARN in indoor simulation, out-
door simulation, and real-world environments. Experiments
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show that EARN achieves significantly smaller navigation
time and higher success rates than state-of-the-art naviga-
tion approaches.

Index Terms—Collaborative computing, distributed robo-
tics, model predictive switching (MPS), motion planning.

I. INTRODUCTION

NAVIGATION is a fundamental task for mobile robots,
which determines a sequence of control commands to

move the robot safely from its current state to a target state [1].
The navigation time and success rate depend on how fast the
robot can compute a trajectory. The computation time is pro-
portional to the number of obstacles (spatial) and the length
of prediction horizon (temporal) [2]. In cluttered environments
with numerous obstacles, the shape of obstacles should also be
considered, and the computation time is further multiplied by the
number of surfaces of each obstacle [3]. Therefore, navigation
in cluttered environments is challenging for low-cost robots.

Currently, most existing approaches reduce the computation
time from an algorithm design perspective, e.g., using heuris-
tics [4], approximations [5], parallelizations [6], [7], [8], [9],
or learning [10], [11], [12] techniques. This article accelerates
the robot navigation from an integrated networking and algo-
rithm design perspective, i.e., the robot can opportunistically
execute advanced navigation algorithms by accessing a proximal
edge computing server [13], [14], [15]. However, design and
implementation of such systems are nontrivial. First, it involves
periodic data exchange between robots and servers. Therefore,
the server should have low-latency access to the robot; otherwise,
communication delays may lead to collisions. Second, different
robots may compete for a common computing server, and the
computation time increases quickly as the number of robots
increases. Third, in case of no proximal server, the robots should
be able to navigate individually with only onboard computing
resources. These observations imply that the new paradigm
needs to maximize the navigation efficiency under practical
resource constraints, for which the existing local [6], [7], [8], [9]
or edge [13], [14], [15] planning methods become inefficient and
unsafe, as they ignore the interdependence between low-level
motion planning (e.g., robot states and actions) and high-level
decision-making (e.g., resource management).

This article proposes Edge Accelerated Robot Navigation
(EARN), which is a collaborative motion planning (CMP)
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Fig. 1. Low-cost robots execute shape distance collision avoidance
assisted by a proximal edge server based on EARN.

framework that enables resource-adaptive switching between a
local motion planner at the robot and an edge motion planner at
the server. As shown in Fig. 1, with only onboard computer (i.e.,
Jetson Nano), the robot can only adopt center distance collision
avoidance, which generates a short trajectory (marked in blue)
blocked by the narrow gap. In contrast, by leveraging EARN,
the robot can opportunistically execute shape distance collision
avoidance by accessing a proximal edge server (i.e., Orin NX),
which generates a long trajectory (marked in yellow) reaching
the goal. EARN adopts model predictive switching (MPS) to
realize tightly coupled decision making and motion planning
(T-DMMP). The MPS maximizes the expected switching gain
under computation and communication resource constraints,
which is in contrast to existing model predictive control (MPC)
where robot states and actions are the only considerations. In
particular, for high-level resource management, we propose
a bilevel mixed-integer nonlinear programming (B-MINLP)
algorithm for decision-making, which can automatically identify
switching-beneficial robots while orchestrating computation and
communication resources. For low-level motion planning, we
incorporate the high-level decision variables into a set of condi-
tional collision avoidance constraints, and propose a penalty dual
decomposition (PDD) algorithm, which computes collision-free
trajectories in parallel with convergence guarantee. We im-
plement our methods by robot operation system (ROS) and
validate them in the high-fidelity car-learning-to-act (CARLA)
simulation. Experiments confirm the superiority of the proposed
scheme compared with various benchmarks in both indoor and
outdoor scenarios. We also implement EARN in a multirobot
testbed, where real-world experiments are conducted to demon-
strate the practical applicability of EARN.

The contribution of this article is summarized as follows.
1) Propose EARN, which enables T-DMMP in dynamic

environments1 under resource constraints based on MPS.
2) Propose B-MINLP and PDD algorithms, which ensure

smooth planner switching and real-time motion planning.
3) Implementation of EARN in both simulation and real-

world environments.

1States (including poses and velocities) of the obstacles and resources (in-
cluding communication and computation) of the system are both dynamic.

4) Evaluations of the performance gain brought by EARN
compared with extensive benchmarks.

The rest of this article is organized as follows. Section II
reviews the related work. Section III presents the architecture
and mechanism of the proposed EARN. Section IV presents the
core optimization algorithms for EARN. Simulations and ex-
periments are demonstrated and analyzed in Section V. Finally,
Section VI concludes this article.

II. RELATED WORK

Motion planning: is a challenge when navigating low-cost
robots, due to contradiction between the stringent timeliness
constraint and the limited onboard computing capability. Con-
ventional heuristic methods (e.g., path following (PF) [4], spatial
cognition [16]) are overconservative, and the robot may get stuck
in cluttered environments. Emerging optimization techniques
can overcome this issue by explicitly formulating collision
avoidance as distance constraints. MPC [2], [3], [4], [6], [7], [8],
[9] is the most widely used optimization algorithm, which lever-
ages constrained optimization for generating high-performance
collision-free trajectories in complex scenarios. Nonetheless,
MPC could be time-consuming when the number of obstacles
is large.

Optimization-based collision avoidance: can be accelerated
in two ways. First, imitation learning methods [10], [11], [12]
can learn from optimization solvers’ demonstrations using deep
neural networks. As such, iterative optimization is transformed
into a feedforward procedure that can generate actions in mil-
liseconds. However, learning-based methods may break down if
the target scenario contains examples outside the distribution of
the training dataset [12]. Second, the computation time can be
reduced by parallel optimizations [6], [7], [8], [9]. For instance,
the alternating direction method of multipliers (ADMMs) has
been adopted in multirobot navigation systems [9], which de-
composes a large centralized problem into small subproblems
that are solved in parallel for each robot. By applying parallel
computation to obstacle avoidance, ADMM has been shown to
accelerate autonomous navigation in cluttered environments [8].
However, ADMM may diverge when solving nonconvex prob-
lems [17]. Unfortunately, motion planning problems are non-
convex due to the nonlinear vehicle dynamics and irregular
obstacle shapes [3], [8]. Here, we develop a PDD planner
that converges to a Karush–Kuhn–Tucker (KKT) solution and
overcomes the occasional failures of ADMM.

Cloud and edge robotics: are emerging paradigms to acceler-
ate robot navigation [13]. The idea is to allow robots to access
proximal computing resources. For example, robot inference
and learning applications, such as object recognition and grasp
planning, can be offloaded to cloud, edge, and fog as a ser-
vice [14]. Edge-assisted autonomous driving was investigated
in Atik et al. [18]’s work, which offloads the heavy tasks from
low-cost vehicular computers to powerful edge servers. How-
ever, this type of approach would introduce additional commu-
nication latency [19]. To reduce the communication latency, a
partial offloading scheme was proposed for vision-based robot
navigation [15]. A priority-aware robot scheduler was proposed
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Fig. 2. Architecture of EARN, which consists of a planner-switching
decision-making module and collaborative motion planners deployed at
the robots and server.

to scale up collaborative visual simultaneous localization and
mapping (SLAM) service in edge offloading settings [20]. A
cloud robotics platform FogROS2 was proposed to effectively
connect robot systems across different physical locations, net-
works, and data distribution services [21]. In recent DARPA
SubT challenge [22], it is found that for multirobot motion
planning, it is necessary to develop a higher level “mission
planner” that assigns different tasks to different robots according
to their states and capabilities. Nonetheless, current cloud and
edge robotics schemes ignore the interdependence between the
low-level motion planning (e.g., robot states and actions) and
the high-level decision-making (e.g., planner switching and
resource management). In contrast, EARN models such inter-
dependence explicitly through MPS and achieves the T-DMMP
feature by two optimization algorithms. Our method belongs
to vertical collaboration that split computing loads between the
server and the robot, which differs from conventional horizontal
collaboration, e.g., cooperative motion planning [6].

III. TIGHTLY COUPLED DECISION-MAKING AND MOTION

PLANNING

The architecture of EARN is shown in Fig. 2, which adopts
a decision-making module fD to execute planner switching
between a low-complexity local motion planner fL(·) deployed
at K robots and a high-performance edge motion planner fE(·)
deployed at the edge server. Decision-making operates at a low
frequency (e.g., 1 Hz) and motion planning operates at a high
frequency (e.g., 10 ∼ 100 Hz). In the following subsections, we
first present the CMP formulation that determines fL and fE .
Then, we present the MPS formulation that determines fD.

A. Collaborative Motion Planning

At the tth time slot, the kth robot (with 1 ≤ k ≤ K) esti-
mates its current state sk,t = (xk,t, yk,t, θk,t) and obstacle states
{o1,t, . . .,oM,t}withom,t = (am,t, bm,t, φm,t) (with 1 ≤ m ≤
M ), where (xk,t, yk,t) and θk,t are positions and orientations of
the kth robot, and (am,t, bm,t) and φm,t are positions and ori-
entations of the mth obstacle. The edge server collects the state
information from K robots and executes the decision-making
module fD. The output of fD is a set of one-zero decision
variables {α1, . . . , αK} ∈ {0, 1}K , where αk = 1 represents
the kth robot being selected for edge planning and αk = 0
represents the kth robot being selected for local planning. Given

αk, the local planner or edge planner can generate control vec-
tors by minimizing the distances between the robot’s footprints
{sk,t} and the target waypoints {s�k,t}. Denoting the current
time as t = 0, the state evolution model sk,t+1 = Ek(sk,t,uk,t)
is adopted to predict the future trajectories {sk,t}Ht=0, where H
is the length of prediction horizon and Ek is determined by
Ackermann kinetics

Ek (sk,t,uk,t) = Ak,tsk,t +Bk,tuk,t + ck,t ∀k, t (1)

where (Ak,t, Bk,t, ck,t) are coefficient matrices defined in
(8)–(10) of [8, Sec. III-B]. Furthermore, based on the state
evolution model, we compute the distance{dist(sk,t,om,t)}Ht=0
between the kth robot and the mth obstacle at all time slots
within the horizon, where the states {om,t}Ht=1 are obtained from
motion prediction. Consequently, the CMP problem for the kth
robot is formulated as

min
{sk,t,uk,t}Ht=0

H∑
t=0

∥∥sk,t − s�k,t
∥∥2

(2a)

s.t. sk,t+1 = Ek(sk,t,uk,t) ∀t (2b)

umin � uk,t � umax ∀t (2c)

amin � uk,t+1 − uk,t � amax ∀t (2d)

Ψ(sk,t,om,t, dsafe|αk) ≥ 0 ∀m ∈ M(k), t (2e)

where Ψ is a conditional collision avoidance function

Ψ(sk,t,om,t, dsafe|αk) = αk (dist (sk,t,om,t)− dsafe) (3)

and M(k) is the set of obstacles within the local map of robot k
with its cardinality denoted as |M(k)|. Constants umin (amin)
and umax (amax) are the minimum and maximum limits of the
control (acceleration) vector, respectively.

Now consider two cases. If αk = 1, the collision avoid-
ance constraints exist, and the associated optimal solution
{s[1]k,t,u

[1]
k,t}Ht=0 to problem (2) leads to a proactive collision

avoidance policy. In this case, problem (2) is solved at the
edge server and we define fE(sk,t, {om,t}Mm=1) = u

[1]
k,t. On the

other hand, if αk = 0, the collision avoidance constraints are
discarded, and the optimal {s[0]k,t,u

[0]
k,t}Ht=0 to problem (2) leads to

a reactive collision avoidance policy. In this case, problem (2) is
solved at the robot k and we define fL(sk,t, {om,t}Mm=1) = u

[0]
k,t

if the robot sensor detects no obstacles ahead within a certain
braking distance dB and fL(sk,t, {om,t}Mm=1) = uB otherwise,
where uB denotes the braking action.

B. Model Predictive Switching

The decision making module aims to find the optimal decision
variables {α∗

k} by maximizing the expected switching gain over
all robots under the communication and computation resource
constraints. First, the communication latency between the kth
robot and the edge server should be smaller than a certain
threshold Dth if αk = 1, i.e., αkDk(sk,t) ≤ Dth, where Dk is
a function of the robot state sk,t. Second, the total computation
time at the server should not exceed a certain threshold Cth,
i.e.,

∑
k αkCk(H, |M(k)|) ≤ Cth, whereCk is a function of the
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prediction time length H and the number of obstacles |M(k)|.
Third, the expected switching gain Gk is defined as the differ-
ence between the moving distance of planner fL and that of fE at
time H . Let distc(s

[1]
k,H , sk,0) = ‖[x[1]

k,H − xk,0, y
[1]
k,H − yk,0]‖

represent the center distance between states s
[1]
k,H and sk,0, we

have

Gk (sk,t, {om,t}, fE , fL)

= distc

(
s
[1]
k,H , sk,0

)
− distc

(
s
[0]
k,H , sk,0

)
(4)

where s
[1]
k,H and s

[0]
k,H are the optimal solutions for the cases of

αk = 1 and αk = 0, respectively.
With the above-mentioned models, the MPS problem is for-

mulated as

max
{αk}Kk=1

K∑
k=1

αkGk (sk,t, {om,t}, fE , fL) (5a)

s.t. {s[αk]
k,H} = arg min

{sk,t,uk,t}Ht=0

{
H∑
t=0∥∥sk,t − s�k,t

∥∥2
: (2b) − (2e)

}
∀k (5b)

αkDk(sk,t) ≤ Dth ∀k (5c)

K∑
k=1

αkCk(H, |M(k)|) ≤ Cth (5d)

αk ∈ {0, 1} ∀k. (5e)

Denoting the optimal solution to MPS as {α∗
k}Kk=1, we set

fD(sk,t, {om,t}Mm=1, Dth, Cth) = {α∗
k}Kk=1. It can be seen that

MPS requires joint considerations of robot states, obstacle states,
communications, and computations. Inappropriate decisions
would lead to collisions due to local/edge computation timeout
or communication timeout.

C. Case Study

To demonstrate the practicability of EARN, a case study is
conducted for a five-robot system. We consider two embedded
computing chips, i.e., NVIDIA Jetson Nano and NVIDIA Orin
NX, and two motion planners, i.e., PF (reactive) [4] and RDA
(proactive) [8]. The power and price of Jetson Nano are 10 W
and 150 $. The power and price of Orin NX are 25 W and
1000 $. Based on our experimental data, a frequency of 50 Hz
can be achieved for PF on both chips. RDA can be executed at a
frequency of 5 Hz on Jetson Nano, and 20 Hz on Orin NX, when
the number of obstacles is 5 [8].

We consider three schemes as follows.
1) Onboard computing, where all robots execute RDA on

Jetson Nano.
2) Enhanced onboard computing, where all robots execute

RDA on Orin NX.
3) EARN, where four low-cost robots execute PF on Jetson

Nano and one edge server execute RDA on Orin NX.

TABLE I
COMPARISON OF DIFFERENT SCHEMES

The latency, power, and price of different schemes are illus-
trated in Table I , and we have the following observations.

1) The average computation latency of EARN (50 ms) is
significantly smaller than that of the onboard computing
(200 ms).

2) EARN (65 W) is more energy efficient than the enhanced
onboard computing (125 W).

3) The total system cost of EARN is significantly smaller
than that of enhanced onboard computing (1600 $versus
5000 $).

In summary, EARN is faster than onboard computing, and
their time difference is the acceleration gain. On the other hand,
EARN is more energy-and-cost efficient than enhanced onboard
computing, and their cost difference is the computing sharing
gain. The insight is that a robot is not always encountering
challenging environments, and it is possible to use a single server
to support multiple robots at different times. The acceleration
gain and computing sharing gain brought by EARN increase as
the complexity of motion planners increases. This makes EARN
suitable for large model empowered robot navigation at the edge.

IV. ALGORITHM DESIGNS FOR DECISION-MAKING AND

MOTION PLANNING

A. Decision-Making

To solve the MPS problem, we need mathematical expressions
of the communication latency Dk, the computation latency Ck,
and the planner switching gain Gk. First, the function Dk is
determined by the signal attenuation Qk between the kth robot
and the server. This Qk is a function of the robot position sk,t,
which is known as radio map. It is not only related to the
robot-edge distance, but also related to nonline-of-sight signal
propagation (shadowing, reflection, diffraction, blockage) [23].
We adopt NVIDIA Sionna, a widely used ray tracing pack-
age [24], to obtain the radio map [e.g., Fig. 8(b)], where similar
colors represent similar attenuation (and latency). As such, we
can segment the radio map into J regions by color and for
the jth region, we select representative positions and ping the
communication latencies between the robot and the server using
onboard WiFi. The measurements are adopted to estimate the
latency distribution of each region. For the radio map in Fig. 8(b),
according to the measurements, the communication latency Dk

is between 30 and 80 ms for the yellow and light green regions;
and larger than 100 ms for dark green regions.

Next, we determine the computing latency Ck. Since a com-
mon motion planner has a polynomial-time computational com-
plexity, we can write Ck as

Ck = γH|M(k)|p + τ (6)
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where γ and τ are hardware-dependent hyperparameters esti-
mated from historical experimental data. Moreover,p is the order
of complexity, which ranges from 1 to 3.5 and depends on the
motion planner.

Finally, we determine Gk, which is coupled with the
motion planning algorithms fE and fL. In particular, if
distc(sk,t,om,t) > dB, we have Gk ≤ 0, since the local plan-
ning problem is a relaxation of the edge planning problem
and the solution of the former is at least no worse than
the latter. On the other hand, if distc(sk,t,om,t) ≤ dB, then

distc(s
[0]
k,H , sk,0) = 0 as the braking signal is generated and the

robot stops. Combining the above-mentioned two cases, Gk is
equivalently written as

Gk = Ik distc

(
s
[1]
k,H , sk,0

)
(7)

where

Ik =

{
1, ifdistc(sk,t,om,t) ≤ dB,om,t ∈ Wk

0, otherwise
(8)

and set Wk represents the global path formed by waypoints
{s�k,t}. Note that we have replaced Gk ≤ 0 with Gk = 0, which
would not affect the solution of the problem.

Based on the above-mentioned derivations of Dk, Ck,
and Gk, the original MPS problem (5) is transformed
into

max
{αk}Kk=1

K∑
k=1

αkIkdistc

(
s
[1]
k,H , sk,0

)
(9a)

s.t. constraints (5b), (5e) (9b)

αkDk(sk,t) ≤ Dth ∀k (9c)

K∑
k=1

αkγH|M(k)|p + τ ≤ Cth. (9d)

This is a B-MINLP problem due to the constraint (9b). A naive
approach is to solve the inner problem (5b) for all robots and
conduct an exhaustive search over {αk}. However, the resultant
complexity would be O(2K), which cannot meet the frequency
requirement of the decision-making module. To this end, we
propose a low-complexity method summarized in Algorithm 1,
which consists of three sequential steps as follows.

1) Prune out impossible solutions for space reduction.
Specifically, we conduct the feasibility check of (9c)–(9d)
and switching gain check of {Ik} for all the robots. This
yields sets A (robots satisfying (9c)–(9d) and having
positive values of Ik) and I (otherwise). Any robot in I is
pruned out, without the need for further motion planning.

2) Leverage parallel motion planning for fast trajectory com-
putations.

3) Put {αk = 0}k∈I and {s[1]k,t}k∈A into problem (9), and
solve the resultant problem using integer linear program-
ming. The integer programming can be either solved
by CVXPY, or accelerated by other penalty continuous
relaxation approaches.

Algorithm 1: B-MINLP Decision Making.

B. Motion Planning

When αk = 0, the local motion planner is adopted. To ensure
safety, the distances between the robot and other obstacles
are first computed using the onboard sensor. If the robot sen-
sor detects any obstacle ahead within a certain distance dB,
then the braking action uB is directly adopted without further
computation (hence this also reduces computation complexity).
Otherwise, the following planning problem (which corresponds
to (5b) with αk = 0) is considered:

min
{sk,t,uk,t}Ht=0

H∑
t=0

∥∥sk,t − s�k,t
∥∥2

(10a)

s.t. constraints (2b) − (2d). (10b)

The above-mentioned problem can be independently solved at
each robot as there is no coupling among different k. Combining
the above-mentioned two cases, the action of robot k can be
represented as

u
[0]
k,t =

{
uB, ifdistc(sk,t,om,t) ≤ dB,om,t ∈ Wk

u∗
k,t, otherwise

(11)

where {s∗k,t,u∗
k,t} is the optimal solution to (10) and the set Wk

denotes the global path formed by waypoints {s�k,t}, which is
given by

Wk =
{
s : ‖s− s�k,t‖ ≤ δ ∀t} (12)

where δ is the width of the path.
When αk = 1, the edge motion planner is adopted, which

corresponds to (5b) with αk = 1

min
{sk,t,uk,t}Ht=0

H∑
t=0

∥∥sk,t − s�k,t
∥∥2

(13a)

s.t. constraints (2b) − (2e). (13b)

To solve the above-mentioned problem, we need an explicit
form of dist(sk,t,om,t) in constraint (2e). Here, in contrast to
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conventional approaches that model the obstacle as a point [25],
i.e.,dist(sk,t,om,t) = distc(sk,t,om,t), we take the obstacles’
shapes into account and model them as polyhedrons as in [3] and
[8], i.e., dist(sk,t,om,t) = dists(Gk,t,Om,t). However, if the
obstacle shapes are considered, the computation speed would be-
come a challenge, which hinders the practical application of [3]
and [8]. This motivates us to develop a PDD motion planner
for fast parallel optimization under shape distance model dists.
Note that PDD is different from RDA [8], as PDD incorporates
the online calibration of penalty parameters into RDA, leading
to convergence guaranteed robot navigation.

To begin with, we define the shape models Gk,t and Om,t for
robot and obstacle [8]. We omit the subscript of robot index k
for simplicity, and set Gt, which represents the geometric region
occupied by the robot, is related to its state st and its shape Z

Gt(st,Z) = {z ∈ Z|R(st)z+ p(st)} (14)

whereR(st) ∈ R3×3 is the rotation matrix related to θt andp(st)
is the translation vector related to (xt, yt). The set Z = {z ∈
R3|Gz � g} represents the robot shape, where G ∈ Rl×3 and
g ∈ Rl (l is the number of surfaces for the robot). Similarly, the
mth obstacle can be represented by Om,t = {z ∈ R3|Hm,tz �
hm,t}. To determine whether the robot collides with the obstacle,
the distances between any two points within Gt and Om,t are
computed. If the distance is smaller than the safe distance dsafe,
a collision is likely to happen. Consequently, constraint (2e) is
equivalently written as

dists(Gt,Om,t) ≥ dsafe ∀m ∈ M(k), t. (15)

Function dists is not analytical, but can be equivalently trans-
formed into its dual form [3], [8]∥∥Hm,t

Tλm,t

∥∥ ≤ 1

λm,t � 0, μm,t�0, zm,t ≥ 0

μT
m,tG+ λT

m,tHm,tR(st) = 0

λT
m,tHm,tp(st)− λT

m,thm,t

− μT
m,tg − zm,t = dsafe (16)

where λm,t ∈ Rlm , μm,t ∈ Rl, and zm,t ∈ R are the dual vari-
ables representing our attentions on different surfaces of robots
and obstacles. Putting (16) into problem (13), the resultant
problem is

min
{st,ut}

{λm,t,µm,t,zm,t}

H∑
t=0

‖st − s�t‖2 (17a)

s.t. constraints (2b) − (2d) (17b)

λm,t � 0,μm,t�0 ∀m, t (17c)∥∥Hm,t
Tλm,t

∥∥ ≤ 1, zm,t ≥ 0 ∀m, t (17d)

Um,t (st,μm,t,λm,t) = 0 ∀m, t (17e)

Vm,t (st,μm,t,λm,t, zm,t) = 0 ∀m, t (17f)

where we have defined

Um,t (st,μm,t,λm,t) = μT
m,tG+ λT

m,tHm,tR(st) (18)

Vm,t (st,μm,t,λm,t, zm,t) = λT
m,tHm,tp(st)− λT

m,thm,t−
μT

m,tg − zm,t − dsafe. (19)

Now, instead of directly solving the dual problem us-
ing optimization software [3] or ADMM [8], we propose a
PDD method (summarized in Algorithm 2) that constructs the
following augmented Lagrangian:

L =

H∑
t=0

‖st − s�t‖2 +
ρ

2

H∑
t=0

M∑
m=1

∥∥∥Um,t (st,μm,t,λm,t)

+ ζm,t

∥∥∥2
+

ρ

2

H∑
t=0

M∑
m=1

(Vm,t (st,μm,t,λm,t, zm,t) + ξm,t)
2

where {ζm,t, ξm,t} are slack variables, ρ is the penalty param-
eter. Then, the augmented Lagrangian is minimized

min
{st,ut}∈X ,

{(λm,t,µm,t,zm,t)∈Ym,t}
L ({st,ut}

{λm,t,μm,t, zm,t}; ρ, {ζm,t, ξm,t}) (20)

where X is the set for constraints (2b)–(2d), Y is the set for
constraint (17c)–(17d). To solve problem (20), we first optimize
the robot states and actions with all other variables fixed via
CVXPY, as shown in line 4 of Algorithm 2. Next, we optimize
the collision attentions with all other variables fixed via CVXPY
as shown in line 5 of Algorithm 2. Finally, from lines 6–10, we
either execute dual update or penalty update based on the residual
function

Φ({λm,t,μm,t, zm,t})

= max

{
max
m,t

∥∥∥Um,t (st,μm,t,λm,t)
∥∥∥
∞

max
m,t

∣∣∣Vm,t (st,μm,t,λm,t, zm,t)
∣∣∣} .

For dual update, we compute {ζm,t}, {ξm,t} using first-order
method as line 7 in Algorithm 2. For penalty update, we scale
the penalty parameter as line 9 in Algorithm 2 with β ≥ 1
being an increasing factor. According to [17, Theorem 3.1],
Algorithm 2 is guaranteed to converge to a KKT so-
lution to problem (20). The complexity of PDD is
given by Compk = O((5H)3.5 +H

∑
m∈M(k)(lm + lk)

3.5 +

H|M(k)|(lm + lk)).
Remark: For practical implementation, a static safety dis-

tance dsafe may not be suitable for all the time slots t ∈ [0, H]
since the state evolution starting from a feasible state may
end up at a state that the safety constraint (2e) conflicts with
the control bounds (2c) and (2d) [26], [27]. To this end, the
fixed dsafe is modified to be a variable dmin ≤ dt ≤ dmax (dmin

and dmax are the lower and upper bounds for dt, respectively),
which is encouraged toward a larger value by adding a norm
distance regularizer P ({dt}) = −η

∑H
t=0 |dt| (η is a weighting

factor) to the objective function (2a). This method automatically
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Algorithm 2: PDD Motion Planner.

mitigates of conflicts between collision avoidance and control
bound constraints.

V. EXPERIMENTS

A. Implementation

We implemented the proposed EARN system using Python
in ROS. The high-fidelity CARLA simulation platform [28]
is used for evaluations, which adopts unreal engine for high-
performance rendering. Our EARN system is connected to
CARLA via ROS bridge [29] and data sharing is achieved via
ROS communications, where the nodes publish or subscribe
ROS topics that carry the sensory, state, or action information.
We simulate two outdoor scenarios and one indoor scenario. All
simulations are implemented on a Ubuntu workstation with a
3.7 GHZ AMD Ryzen 9 5900X CPU and an NVIDIA 3090 Ti
GPU.

We also implement EARN in a real-world multirobot plat-
form, where each robot has four wheels and can adopt Acker-
mann or differential steering. The robot named LIMO has a 2-D
lidar, an RGBD camera, and an onboard NVIDIA Jetson Nano
computing platform for executing the SLAM and local motion
planning packages. The edge server is a manually controlled
wheel-legged robot, Direct Drive Tech (DDT) Diablo, which has
a 3-D livox lidar and an onboard NVIDIA Orin NX computing
platform for executing the SLAM and edge motion planning
packages. The Diablo is also equipped with a wireless access
point.

To obtain the parameters involved in model (6), we execute the
PDD motion planning in Algorithm 2 on the AMD Ryzen 9 and
NVIDIA Orin NX chips. The experimental data of computation
time (ms) versus the number of prediction horizons H and the
number of obstacles |M(k)| is shown in Fig. 3. It can be seen that
the computation time of PDD scales linearly with H and |Mk|,
which corroborates the complexity analysis. As such, the value
of parameter p is set to 1. The computation time ranges from
less than 10 to 200 ms, corresponding to a planning frequency

Fig. 3. Computation time (ms) of PDD planner versus the number
of prediction horizons H and obstacles |M(k)|. (a) AMD Ryzen 9.
(b) NVIDIA Orin NX.

Fig. 4. Crossroad scenario in CARLA Town04 and planner switching
from PF to PDD performed by EARN. (a) Crossroad scenario in CARLA
Town04 map. (b) EARN switches from PF to PDD for overtaking.

of 5 Hz to over 100 Hz. The parameters γ, τ are obtained by
fitting the function Ck = γH|Mk|+ τ to the experimental data
in Fig. 3 using weighted least squares, and is given by γ∗ = 0.6
and τ ∗ = 12 ms for ADM Ryzen 9 and γ∗ = 1 and τ ∗ = 20 ms
for NVIDIA Orin NX.

B. Benchmarks

We compare our method to the following baselines.
1) PF planner [4].
2) Collision avoidance MPC (CAMPC) [25], which models

each obstacle as a point and determines the collision
condition by computing distc.

3) RDA planner [8], which solves (17) in parallel via
ADMM.

4) PDD-Edge, or PDD-E for short, which executes PDD
planner at the edge server following the idea of [30].

5) PDD-Local, or PDD-L for short, which executes PDD
planner at the local robot.

6) EDF, which is a CMP scheme where robots are oppor-
tunistically selected for edge computing using a nonpre-
emptive earliest deadline first (EDF) policy [18].2

C. Single-Robot Simulation

We first evaluate EARN in single-robot outdoor scenarios.
The server is assumed to be equipped with AMD Ryzen 9.
The robot is assumed to be a low-cost logistic vehicle with its

2Note that Atik et al. [18] do not consider motion planning and we combine
our PDD planner with EDF for fair comparison.
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Fig. 5. Trajectories and control parameters of different schemes in crossroad scenario. Trajectories generated by the local and edge motion
planners are marked in red and yellow, respectively. (a) EARN. (b) PF. (c) PDD-Edge. (d) PDD-Local.

longitudinal wheelbase and lateral wheelbase being 2.87 and
1.75 m, respectively. Based on these parameters, (Ak,t, Bk,t,
ck,t) in (1) can be calculated. The braking distance for planner
fL is set to dB = 8.0 m and the safe distance for planner fE
is set to dsafe = 1 m. The length of prediction horizon is set to
H = 5, with the time step between consecutive motion planning
frames being 0.35 s.

We consider a crossroad scenario in CARLA Town04 map,
where the associated location of edge server, the starting/goal
position of robot (with a random deviation of 3 m), and the
positions of nonplayer character (NPC) vehicles are shown
in Fig. 4(a). In this scenario, the maximum number of NPC
vehicles in the local map M is 5. Using H = 5 and |M| = 5,
we have C = 27 ms when PDD is executed at the edge server.
The computation time is assumed to be 200 ms when executed
locally at the ego vehicle. The computation time of RDA is
similar to that of PDD. The computation time of PF is less
than 20 ms. The computation time of CAMPC is approximately
1/4 of that of PDD, as CAMPC ignores the number of edges
for each obstacle. The computation latency threshold is set to
Cth = 50 ms in Algorithm 1 according to the operational speed
in the outdoor scenario.

The trajectories and control parameters generated by EARN,
PF, PDD-E, and PDD-L are illustrated in Fig. 5(a)–(d). It is
observed that both EARN and PF planner can navigate the
robot to the destination without any collision, while PDD-E
and PDD-L lead to collisions at t = 5.47 s and t = 6.11 s,
respectively. Moreover, EARN executes the planner switching
at t = 11.22 s as observed in Fig. 5(a). This empowers the
robot with the capability to overtake front low-speed obstacles
and increase the maximum speed from 4.03 to 7.06 m/s and
the average speed from 1.67 to 5.20 m/s, by leveraging edge
motion planning through low-latency communication access. In
contrast, the maximum speed and average speed achieved by the
PF planner are merely 3.41 and 1.51 m/s, respectively.

The quantitative comparisons are presented in Table II, where
the performance of each method is obtained by averaging 50
trials. It can be seen that EARN reduces the average navigation
time by 46.7% compared to PF, as EARN can switch the planner

TABLE II
COMPARISON OF NAVIGATION TIME AND SUCCESS RATE

Fig. 6. Dense traffic scenario in CARLA Town04 and overtaking per-
formed by PDD planner. (a) Dense traffic scenario. (b) Overtaking by
PDD planner.

adaptively and utilize the computing resources at the server, as
shown in Fig. 4(b). Moreover, both PDD-E and PDD-L suffer
from low success rate.3 This is because PDD-E and PDD-L
involve either computation or communication latency, resulting
in low end-to-end planning frequency. The proposed EARN
achieves a success rate significantly higher than those of PDD-E
and PDD-L (98% versus 64% and 58%), which demonstrates the
necessity of planner switching performed by EARN.

We also consider a dense traffic scenario in CARLA Town04
map as shown in Fig. 6(a) with tens of dynamic obstacles. This
experiment is used to evaluate the robustness of EARN in dy-
namic and complex environments. The trajectories and control
vectors generated by PDD, PF, RDA, and CAMPC are illustrated

3A successful navigation requires the robot to reach the goal without any
collision.
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Fig. 7. Trajectories and control parameters of different schemes in dense traffic scenario. (a) PDD. (b) PF. (c) RDA. (d) CAMPC.

Fig. 8. Simulation results of the multirobot indoor scenario. (a) Trajectories generated by the local (marked in purple) and edge (marked in yellow)
motion planners. (b) Radio map of the server.

in Fig. 7(a)–(d). In this scenario, the PDD planner successfully
navigates the robot to the destination in merely 53.53 s with
average speed 5.08 m/s, as shown in Fig. 7(a). In contrast, the PF
planner, while also finishing the task, costs over 158.40 s (with
speed from 0 to 4.04 m/s) due to its conservative navigation
strategy. Moreover, the robot with RDA planner collides with
NPC vehicle as the collision avoidance constraint is not strictly
satisfied due to the fixed value of ρ. The CAMPC planner is
neither able to navigate the robot to the destination, i.e., the
robot gets stuck behind the dense traffic flow due to the center
point distance model. Since RDA and CAMPC planners cannot
accomplish the navigation task, we only compare the navigation
time of PDD and PF. It is found that the PDD planner reduces
the navigation time by 66.2% compared to the PF planner, while
achieving the same success rate.

D. Multirobot Simulation

To verify the effectiveness of Algorithm 1, we implement
EARN in a multirobot indoor scenario shown in Fig. 8(a), where
robot 1 navigates in an office room with its target path marked in

blue, robot 2 navigates in a corridor with its target path marked
in green, robot 3 navigates in a conference room with its target
path marked in orange, and robot 4 navigates from a corridor to
a lounge with its target path marked in red. The number of NPC
robots, which are marked as red boxes, in local maps 1–4 are
are (|M1|, |M2|, |M3|, |M4|) = (3, 6, 3, 0), respectively. The
server (marked as a pink box) is assumed to be a Diablo wheel-
legged robot with NVIDIA Orin NX. Each robot is simulated
as an Ackerman steering car-like robot with their length, width,
longitudinal wheelbase, and lateral wheelbase being 32.2 , 22.0 ,
20.0 , and 17.5 cm, respectively, and the parameters (Ak,t,Bk,t,
ck,t) in (1) are computed accordingly. The braking distance for
planner fL is set to dB = 1.3 m and the safe distance for planner
fE is set to dsafe = 0.1 m. The length of prediction horizon is
set to H = 20, with the time step between consecutive motion
planning frames being 0.25 s. Using H = 20 and the above
{|Mk|}, we have (C1, C2, C3, C4) = (80, 140, 80, 20)ms. The
total computation latency threshold is set to Cth = 240 ms ac-
cording to the operational speed in indoor environments. The
execution time of PDD is assumed to be unacceptable when
executed locally at the robot.
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Fig. 9. The throttle commands, steer commands, switching gains, and planner selections of different robots. (a) Throttle commands. (b) Steer
commands. (c) Switching gains. (d) Planner selections.

Fig. 10. Urban driving scenario in Intel CARLA challenge. (a) Urban
driving scenario. (b) Planner switched by EARN.

The trajectories of four robots under the proposed EARN are
shown in Fig. 8(a), where the purple trajectories are generated by
local motion planner and the yellow trajectories are generated by
edge motion planner. The associated throttle commands, steer
commands, switching gains {Ik}, and planner selections {αk}
are shown in Fig. 9(a)–(d). In particular, starting from t = 0 s,
all robots adopt local motion planning and move at a speed of
0.55 m/s. Robot 4 encounters no obstacles along its target path;
hence it keeps on moving using the local motion planner [as
seen from Fig. 9(c)–(d)] until reaching the goal at t = 29.64 s [as
seen from Fig. 9(a)–(b)]. In contrast, robots 1–3 stop in front of
obstacles at t = 4.08 , 3.88 , and 8.52 s, respectively, as observed
from Fig. 9(a)–(b). Consequently, the switching gains of robots
1 and 3 increase from 0 to 1.2. However, they cannot switch their
planners immediately, since the edge server is now at the other
side of the map and the communication latency between the
server and robot 1 or 3 would be large. Note that the switching
gain of robot 2 is only 0.67, since the corridor is blocked by 4
obstacles and the robot cannot pass the “traffic jam” even if it
switches from local to edge planning.

At t = 10 s, the server starts to move upwards at a speed
of 0.88 m/s, and collaborates with robots 1 and 3 for collision
avoidance using edge motion planning with a speed of 0.67 m/s
at t = 24.12 s and t = 27.12 s, respectively. After completing
the collision avoidance actions, the switching gains of robots
1 and 3 become 0 and the planners are switched back to local
ones to save computation resources at the server. Furthermore,
the switching gain of robot 2 increases from 0.67 to 1.2 at
t = 40.08 s. This is because an NPC robot (marked as a blue
box) in the corridor moves away at t = 30 s, leaving enough
space for robot 2 to pass the traffic jam.

Fig. 11. Trajectories and control parameters of different schemes in
the official Intel CARLA challenge. (a) EARN. (b) PF.

Fig. 12. Real-world experiment 1.

The average navigation time of EARN and EDF is provided
in Table III. The navigation time of robots 1–4 with EARN is
64.80 , 57.96 , 67.68 , and 29.64 s, respectively. The navigation
time of robots 1–4 with EDF is 65.89 , 56.40 , 95.16 , and
29.29 s, respectively. Compared to EDF, the total navigation
time of EARN is reduced by 12.1%. This is because the EDF
scheme is based on the expected task execution deadline, not
on the low-level motion planning trajectories. As such, EDF
fails to recognize the scenarios and traffic in real-time, leading
to a potential resource-robot mismatch. For instance, in the
considered indoor scenario, robots 2 and 4 are expected to finish
their navigation tasks in a shorter time, since their target paths
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TABLE III
COMPARISON OF THE ROBOT NAVIGATION TIME UNDER DIFFERENT COMPUTATION TIME CONSTRAINTS

Fig. 13. Real-world experiment 2. (a) No switching gain. (b) Robot 1 switches. (c) Robot 2 switches. (d) Task accomplished.

are shorter than other robots as seen from Fig. 8(a). Therefore,
EDF selects robots 2 and 4 for edge motion planning, despite
the fact that robot 2 gets stuck in the traffic jam and robot 4
has a small switching gain from the local to edge planner. The
navigation time of EARN and EDF under Cth = 160 ms is also
provided in Table III. Due to this tighter time constraint, the
server cannot navigate multiple robots at the same time, and the
waiting time for robots 1 and 3 becomes larger. Consequently,
the robot navigation time increases. However, the proposed
EARN still outperforms EDF by a large margin.

E. Intel CARLA Challenge

The performance of EARN is also verified in the official Intel
CARLA Challenge.4 As illustrated in Fig. 10(a), the competition
is an urban driving scenario of the CARLA Town12 map, with
various NPC vehicles on the road. It is observed from Fig. 10(b)
that the robot accomplishes the overtaking action and reduces
the navigation time by switching the adopted planner to PDD at
t = 7.10 s. The trajectories and control parameters generated by
EARN and PF are also illustrated in Fig. 11(a)–(b). It is observed
that both EARN and PF planners are able to navigate the robot
to the destination without any collision. However, the navigation
time of EARN (14.60 s) is reduced by 19.78% compared to that
of the PF planner (18.20 s), which reveals the speed boost and
performance enhancement brought by EARN.

4[Online]. Available: https://leaderboard.carla.org/challenge/

F. Real-World Testbed

Finally, to verify the hardware–software compatibility of
EARN and its robustness against sensor and actuator uncertain-
ties, we implement EARN in a real-world testbed consisting
of a Diablo wheel-legged robot server and 4 LIMO car-like
robots. As shown in Fig. 12, we adopt the livox lidar and the
fast-lio algorithm [31] to obtain a cm-level localization of the
Diablo robot and the global cloud map of the indoor scenario.
The trajectory of Diablo is marked as red–green–blue axes. The
cloud map consists of two regions, where robots 1 and 2 navigate
inside the sandbox (marked by a yellow box) and robots 3 and 4
navigate in the corridor (marked by a red box). All robots need
to avoid collisions with the static environments as well as the
cubes therein.

The trajectories of four robots under the proposed EARN are
shown at the left and right sides of Fig. 12, where the blue and
red arrows are generated by local motion planners and the pink
paths are generated by edge motion planners. It can be seen
that robots 2 and 4 encounter no obstacles along their target
path, and they execute the local motion planner without external
assistance until reaching the goal at t = 25.45 s and t = 21.45 s,
respectively. On the other hand, robots 1 and 3 encounter new
obstacles (marked in blue boxes) and leverage planner switching
in front of the blue boxes. Specifically, robot 1 and Diablo server
collaboratively accomplish reverse and overtaking actions, so
that the robot reaches the goal at 26.00 s. Robot 3 holds its
position at the beginning and waits for connection with the
server. At about t = 30 s, Diablo moves from the sandbox to
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the corridor and assists robot 3 for switching to edge motion
planning at t = 64 s. With another 13.85 s, robot 3 reaches
the goal. This demonstrates the impact of communication on
EARN.

To validate the effectiveness of switching gain, real exper-
iment 2 is conducted with two LIMO robots and one Diablo
server, as depicted in Fig. 13, where robot 1 navigates inside
the sandbox, while robot 2 navigates outside the sandbox. As
illustrated in Fig. 13(a)–(b), although the robot 2 is closer to the
server, its trajectory is planned by the local planner rather than
the edge planner. This is because its path is completely blocked
by the server, and its switching gain is zero. Consequently,
conducting planner switching for this robot leads to a waste of
resources. In contrast, planner switching is adopted for robot 1,
as shown in Fig. 13(b), since the local planner gets stuck in front
of a box but the edge planner is able to overtake, resulting in
enhancement of planning efficiency. Furthermore, as illustrated
in Fig. 13(c), with the movement of server, planner switching
also occurs for robot 1 due to the increased switching gain. This
demonstrates the real-time adaptiveness of EARN. Finally, the
task is successfully completed through collaboration between
the server and the robots, as depicted in Fig. 13(d). Please refer
to our video for more details.

VI. CONCLUSION

This article proposed EARN to realize CMP and MPS, thereby
opportunistically accelerating the trajectory computations while
guaranteeing safety. The new feature of EARN is to optimize
robot states and actions under communication and computation
resource constraints. CARLA simulations and real-world ex-
periments have shown that EARN reduces the navigation time
by 12.1% and 46.7% compared with EDF and PF schemes in
indoor and outdoor scenarios, respectively. Furthermore, EARN
increases the success rate by 53.1% and 69.0% compared with
edge or local computing schemes.
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