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Abstract

With the tremendous success of deep learning
in recent years, the field of medical imaging has
undergone unprecedented changes. Despite the
great success of deep learning in medical imag-
ing, these recent developments are largely
empirical. Our goal in this chapter is to provide
an overview of some of the key mathematical
foundations of deep learning to the medical
imaging community. In particular, we will con-
sider ties with traditional machine learning
methods, unrolling techniques which connect
deep learning to iterative algorithms, and
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geometric interpretations of modern deep
networks.

Keywords

Machine learning · Deep learning · Neural
network · Representation power · Hierarchical
feature extraction

Introduction

Since groundbreaking performance improve-
ments were first demonstrated by AlexNet [1] at
the ImageNet challenge, deep learning has pro-
vided significant gains over classical approaches
in various fields of artificial intelligence and data
science. Availability of large-scale training
datasets and advances in neural network research
such as development of effective network archi-
tectures and efficient training algorithms have
resulted in unprecedented successes of deep learn-
ing in innumerable medical imaging applications
such as disease diagnosis, image segmentation,
and image reconstruction.

In contrast to classical shallowmachine learning
approaches, which require “feature engineering” to
extract features to feed into simple classifiers for
diagnosis and recovery, one of the most important
advantages of deep learning is that deep neural
networks automatically discover the features and
design appropriate classifiers and recovery
methods in a data-driven way. This greatly sim-
plifies the workflow of machine learning algorithm
development and deployment. More importantly,
the features are optimized toward specific tasks,
which generally offer enhanced representation of
the underlying data. In particular, for classification
tasks the learned features can be much more dis-
criminative than handcrafted features, whereas for
reconstruction problems the learned features may
better preserve the details and enable a more faith-
ful reconstruction. As data representation plays a
critical role, better features typically lead to supe-
rior performance in practice. Therefore, deep learn-
ing has become an increasingly important and
versatile tool for medical imaging.

Nonetheless, the success of deep learning
largely remains a mystery. From an architecture

perspective, deep neural networks are typically
composed of a series of convolution, pooling, and
nonlinearity layers, which from a mathematical
point of view are regarded as primitive tools. Inter-
estingly, with abundant training samples available,
the cascaded connection of these primitive tools
results in superior performance over traditional
approaches which are carefully designed and tai-
lored toward specific applications.

A popular explanation for the success of deep
neural networks is that neural networks are devel-
oped by mimicking the human brain. One of the
most famous numerical experiments is the emer-
gence of hierarchical features from a deep neural
network when it is trained to classify human faces
[2]. This phenomenon is similarly observed in
human brains, where hierarchical features of the
objects emerge during visual information processing.
However, when askedwhy, it is surprising to find out
that neuroscientists usually rely on numerical simu-
lations with artificial neural networks to explain how
hierarchical properties arise in the brain [3].

To understand this fundamental question, one
can go back to classical approaches to understand
the similarities and differences from modern deep
neural networkmethods. Recent studies have shown
that there is a close relationship between deep learn-
ing approaches and sparse representations [4–
8]. Specifically, neural networks have been
interpreted as unrolled versions of sparse recovery,
where each unfolded block is learned from the train-
ing data [4, 9–11]. The authors in [5, 6] showed that
a deep neural network can be interpreted as a piece-
wise linear representation, whose data-driven basis
is learned from training data and automatically
adapted to various input signals [12]. In this chapter,
we will consider these and other mathematical
underpinnings of deep networks in order to offer
insights into their unprecedented performance.

We begin in section “Classical Machine Learn-
ing and Its Limitations” by reviewing typical
machine learning models and explain their limita-
tions in representation power which motivate the
development of modern deep learning techniques.
We then review standard modern deep neural net-
works and illustrate conceptually how they have
successfully achieved superior representation
power compared to classical approaches in section
“Modern Deep Learning Revolution.” We next
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review algorithm unrolling in section “Algorithm
Unrolling: From Iterative Algorithms to Deep Net-
works” which connects traditional iterative algo-
rithms with modern deep neural networks. To gain
further insights into deep learning, we discuss how
it can be interpreted, both from a biological and a
geometric perspective in section “Interpretations of
Deep Learning.” Finally, we summarize this chapter
in section “Summary and Outlook.”

Classical Machine Learning and Its
Limitations

In this section, we provide historical context on
how deep learning evolved into its current form.
We review two relevant classical machine learn-
ing models, the perceptron and support vector
machine, and illustrate the limitations of these
“shallow” models.

The Perceptron Model

One of the earliest machine learning models is the
single layer perceptron [13]. As illustrated in Fig. 1,
it is built by fully connected neurons at a single
hidden layer, where each neuron is formed by an
affine transformation of the input vector followed by
a nonlinear mapping. Formally speaking, let
φ : ℝ 7! ℝ be a nonlinear activation function, and
let χ � ℝn denote the input space. Then, a single
layer perceptron fΘ : χ 7! ℝ is represented by

fΘ xð Þ ¼ Σd
i¼1viφ w

┬
i xþ bi

� �
, x� χ ð1Þ

where wi � ℝn is a weight vector, vi, bi � ℝ are
real constants, andΘ ¼ wi, vi, bið Þf gdi¼1 collec-
tively represents the model parameters. To estimate
the unknown parameters, a collection of training
data xi, yið Þf gNi¼1 . The model parameters are then
estimated by solving the following error criterion:

min
Θ

ΣN
i¼1‘ yi, fΘ xið Þ� �þ λR Θð Þ ð2Þ

where ‘ (.,.) is a desired loss function, λ is a regu-
larization parameter, and R(Θ) is a regularization
function with respect to the parameter set Θ.

When the single layer perceptron was first intro-
duced, it was not clear how to simultaneously opti-
mize the weights wif gdi¼1 for all neurons. Instead, a
heuristic algorithm called the perceptron algorithm
was used to estimate the neuron weights. When the
training data set is linearly separable, the perceptron
algorithm is guaranteed to find an exact separation
in a finite number of steps. Later on, the back-
propagation algorithm was introduced [14], which
applies gradient-based learning to learn all neuron
weights simultaneously.

One of the classical results regarding the repre-
sentation power of a single layer perceptron is the
universal approximation theorem [15], which states
that a feed-forward network with a single hidden
layer containing a finite number of neurons can
approximate continuous functions on compact sub-
sets under mild assumptions on the activation func-
tion. The universal approximation theorem
promoted research into neural networks as a power-
ful functional approximation; however, it turned out
to be a limitation in the development of machine
learning by circumventing construction of deeper
neural networks. Although the theorem conceptu-
ally justifies that a shallow network with sufficiently
many neurons can be a universal approximator, the
proof of the theorem does not offer even a loose
upper bound on how many neurons are required.
Therefore, it is entirely possible that the networks
which act as universal approximators are too large to
be practical. However, at the time, deeper neural
networks were difficult to train. Therefore, the prev-
alent approach was to increase the width of the
network, namely the number of nodes, rather than
the depth. Only recently has it been realized that
depth matters, i.e., there exists a function that a deep
neural network can approximate but a shallow neu-
ral network with the same number of parameters
cannot [16–19].

Support Vector Machine

Another typical example of a “wide” model is
Support Vector Machine (SVM). Similar to the
neuron model, it classifies the data samples by
learning an optimal separating hyperplane. How-
ever, in order to ensure that all data samples are far
apart from the hyperplane, it employs a maximal
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margin loss function for training the weights of
the separating hyperplane. Specifically, given
training samples xn, ynf gNn¼1, it solves the follow-
ing minimax problem [20]:

max
w, b

1���w��� min
n

yn wTxn þ b
� �� �8<

:
9=
; ð3Þ

which can be interpreted as maximizing the dis-
tances (margin) from the closest data samples
(support vectors) to the separating hyperplane. A
visual illustration of this criterion is given in
Fig. 2a.

In practice, it is possible that the data samples
cannot be classified by a single separating

hyperplane, i.e., the data samples are not linearly
separable. In this scenario, SVM employs a non-
linear mapping φwhich embeds the data manifold
into a high-dimensional feature space [21], where
the data samples are assumed linearly separable.
In practice, instead of explicitly designing the
embedding φ, one can seek a kernel function,
which characterizes the inner product h., .i in the
underlying feature space:

k x, x0ð Þ ¼ φ xð Þ,φ x0ð Þh i: ð4Þ

The aforementioned SVM technique is then
employed in the feature space. In this way, the
explicit form of ϕ does not need to be specified
and only the kernel function has to be designed.

1

2

3

1

2

3

Σ

(a)

+
=
0< 0

> 0

(b)

1

2

3

( 1)1

( 1)2

( 3 )3

1

2

3

1

2

3

Σ

(c)

< 0

> 0

(d)

Fig. 1 Geometric interpretation of the perceptron model.
(a) Architecture of the perceptron model for a three dimen-
sional input. A neuron first applies an affine mapping of the
input x and then performs thresholding to determine the
predicted class y; (b) geometrically, a neuron divides the

input space into two decision regions through a separating
hyperplane; (c) the perceptron model is formed through a
combination of multiple neurons; and hence (d) its deci-
sion boundary corresponds to a piecewise linear surface
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This technique is commonly called the kernel
trick [21]. In order for the kernel function to
correspond to a valid inner product, Mercer’s
theorem [22] requires φ that the kernel function
is symmetric and positive definite. As depicted in
Fig. 2b, the kernel trick enables SVM to form
nonlinear decision boundaries. As the feature
space is often of higher dimensionality compared
to the ambient space, kernel SVM can be regarded
as increasing the “width” of the classification
model in order to enhance its capacity, instead of
employing hierarchical architectures which fol-
low the “depth” dimension.

In principle, any symmetric positive definite
kernel function can be associated to an inner
product. Therefore, the kernel generates a wide
variation of functions within the feature space.
Indeed, one of the main research thrusts in classi-
cal machine learning approaches is to find appro-
priate kernels that are suitable for specific
applications. That said, kernel methods still have
fundamental limitations. First, the kernel function
is typically handcrafted instead of learned from
data. Second, once the kernel machine is trained,
the parameters are fixed, and it is not possible to
adjust them at test phase. These drawbacks lead to
fundamental limitations of expressivity of kernel-
based learning models [21].

Modern Deep Learning Revolution

One of the main reasons for the success of deep
learning is its significantly extended expressivity
by learning hierarchical features through deep
neural networks. Before we delve deep into this
claim, we first provide a brief review of modern
deep network architectures.

Architectures of Modern Deep Neural
Networks

In early neural network research, the Multi-Layer
Perceptrons (MLP) was a popular choice. A dia-
gram illustration of this architecture is given in
Fig. 3. As can be observed, this model can be
regarded as the extension of a single layer
perceptron shown in Fig. 1c, by introducing mul-
tiple hidden layers. This scheme can be viewed as
adopting a hierarchical feature representation and
increasing its “depth.”

Similar to perceptron, each neuron in MLP
is fully connected to every neuron in the previ-
ous layer, except for the input layer. The layers
are thus commonly called fully connected
layers. Analytically, in the l-th layer, the

(  )

Fig. 2 The decision regions of SVM. (a) Linear SVM
forms its separating hyperplane by maximizing the mar-
gins of data samples; (b) through the kernel trick, SVM is

able to form nonlinear decision boundaries and classify
samples that are not linearly separable
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relationship between the neurons o lð Þ
j and o

lþ1ð Þ
i

is expressed as

o
iþ1ð Þ
i ¼ σ Σ

j
w

lþ1ð Þ
ij o

lð Þ
j þ b

lþ1ð Þ
i

� �
ð5Þ

where W (l + 1) and b(l + 1) are the weights and
biases, respectively, and σ is a nonlinear activa-
tion function. Popular choices of activation func-
tions include the logistic function and the
hyperbolic tangent function. In recent years, they
have been superseded by Rectified Linear Units
(ReLU) [23] defined by

ReLU xð Þ ¼ max x, 0f g: ð6Þ

The W s and b’s are generally trainable param-
eters that are learned from datasets, using back-
propagation [24] for gradient computation.

Nowadays, MLPs are rarely seen in practical
medical applications. The fully connected nature
of MLPs contributes to a rapid increase in their
parameters, making them difficult to train. To
address this limitation, Fukushima et al. [25]
designed a neural network by mimicking the
visual nervous system [26]. The neuron connec-
tions are restricted to local neighbors only, and
weights are shared across different spatial loca-
tions. The affine transformations then become
convolutions (or correlations in a strict sense),
and the resulting networks are commonly called
Convolutional Neural Networks (CNN). A visual
illustration of a CNN can be seen in Fig. 4. With
significantly reduced parameter dimensionality,
training deeper networks becomes much easier.

While CNNs were first applied to digit recog-
nition, their translation invariance is a desirable

property for analyzing image features and are
broadly applied in various medical problems,
including medical image retrieval [27], segmenta-
tion [28], and reconstruction [4], to name a few. In
reality, the architecture of CNN can be more
sophisticated than illustrated in Fig. 4. There
may be advanced types of convolutions, such as
stridden convolutions which reduce spatial reso-
lution [29], transposed convolutions which per-
form up-sampling [30], and more. There may also
be other layers, such as pooling layers which
perform spatial aggregation [29], batch normali-
zation layers which stabilize training [31], and
dropout layers which perform network assem-
bling to reduce overfitting [32].

In some medical applications, the data may
exhibit certain sequential forms. A concrete
example is video processing, where video frames
have temporal dependencies [33]. In such scenar-
ios, Recurrent Neural Networks (RNN) [14] are a
popular choice. RNNs explicitly model the
sequential data dependence in different time
steps in the sequence and scale well to sequences
with varying lengths. A visual depiction of RNNs
is provided in Fig. 5. Given the previous hidden
state s(l-1) and input variable x(l ), the next hidden
state s(l ) is computed as

s lð Þ ¼ σ1 Ws i�1ð Þ þ Ux lð Þ þ b
	 


ð7Þ

while the output variable o(l ) is generated by

o ið Þ ¼ σ2 Vs lð Þ þ b
	 


Here, U, V, W, and b are trainable network
parameters and σ1, and σ2 are activation
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Fig. 3 Architecture of
MLP. The input vector
passes through a few hidden
layers and reaches the
output layer. Each layer
comprises an affine
transformation followed by
a nonlinear activation
function. We omit drawing
the activation functions for
brevity
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functions. We again omit the activation func-
tions and biases in Fig. 5. In contrast to MLPs
and CNNs where the layer operations are
applied recursively in a hierarchical representa-
tion fashion, RNNs apply the recursive opera-
tions as the time step evolves. A distinctive
property of RNNs is that the parameters U, V,
and W are shared across all time steps, rather
than varying from layer to layer. Training

RNNs can thus be difficult as the gradients
of the parameters may either explode or
vanish [34].

In practice, the state-space relation (7) suffers
from a few limitations: It does not favor long-term
dependencies which is crucial for modeling long
sequences, and it brings about difficulties in train-
ing by introducing the gradient vanishing and
exploding phenomena. To address these issues,
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Fig. 4 Architecture of CNN. Instead of connecting all
neurons in adjacent layers, CNN only connects each neu-
ron to its spatial neighbors in the previous layer. Further-
more, the weights are shared across different spatial

locations. The output neurons in each layer can then be
generated by convolving the input neurons with weights,
followed by a nonlinear activation function. We omit draw-
ing the activation functions for brevity
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Fig. 5 Architecture of RNN. The inputs {x(l )}l are fed into
the network in a sequential order. The state variables {s(l )}l
evolve according to a linear transition model, thus captur-
ing sequential dependencies. The outputs {o(l )}l are

generated by combining the state variables and the inputs.
Parameters U, V, and W are shared across different time
steps
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more advanced architectures have been suggested.
Long-Short-Term-Memory [35] and Gated Recur-
rent Network [36] employ gating units and allow
information to flow freely both in the forward pass
and during back-propagation, which effectively
mitigates the aforementioned limitations of
vanilla RNN. Recently, self-attention mechanisms
have become popular as an effective structure to
reduce computational complexity and enable par-
allel computations, and better capture long-term
dependencies [37]. However, the basic prototype
remains the same: The input sequence is first
encoded into state vectors, and then decoded into
an output sequence. The decoder models the tem-
poral dependencies between the current and pre-
vious timestamps, which can be regarded as an
auto-regressive model.

Representation Power of Deep Neural
Networks

In order to understand the superior representation
power of modern deep neural networks over clas-
sical machine learning models, we will explore
the decision regions of MLP by analyzing its
per-layer mapping (5). Without loss of generality,
we omit the bias term. For the nonlinear activation
function σ,we adopt the ReLU function defined in
(6), and let

o lð Þ ¼ σ g lð Þ
	 


, g lð Þ≔W lð Þo l�1ð Þ: ð8Þ

For an L-layer MLP, the neural network output
for a given input x can be represented by

fΘ xð Þ≔ σ∘g Lð Þ∘σ∘g L�1ð Þ� � �∘g 1ð Þ
	 


xð Þ ¼ B xð Þ┬x
ð9Þ

where 0 ¼ [W(1) . . . W(L)] and

B xð Þ ¼ W 1ð ÞΛ 1ð Þ xð ÞW 2ð ÞΛ 2ð Þ xð Þ� � �Λ L�1ð Þ xð ÞW Lð Þ

ð10Þ

Here, Λ(l )(x) is a diagonal matrix with 0 and
1 elements indicating the ReLU activation
patterns.

Note that the matrix B(x) in (10) depends on
the ReLU activation patterns Λ (l ),l ¼ 1,. . ., L
— 1, which are determined by the input x. In
fact, this ReLU activation-dependent diagonal
matrix plays a key role in enabling inductive
learning and emergence of hierarchical fea-
tures. Specifically, the nonlinearity is applied
after the linear operation, so the on-and-off
activation pattern of each ReLU determines a
binary partition of the feature space at each
layer across the hyperplane that is determined
by the weight matrix. Accordingly, in deep
neural networks, the input space is partitioned
into multiple nonoverlapping regions so that
input images for each region share the same
linear representation, but not across the parti-
tion. This implies that two different input
images are automatically switched to two dis-
tinct linear representations that are different
from each other depending on the partition as
shown in Fig. 6 [38].

This leads to an important insight: Deep neural
networks search for the distinct linear representa-
tion for each input. However, in contrast to clas-
sical optimization-based approaches, deep neural
networks do not solve the optimization problem
for a new input, rather they switch to different
linear representations by changing the ReLU acti-
vation patterns. This is an important advance over
the classical signal-processing approach.

To quantify the representation power of mod-
ern deep networks such as CNN, researchers are
conducting rigorous theoretical analysis to extend
the classical universal approximation theorem.
Zhou et al. [39] prove that deep CNNs can
approximate continuous functions supported on
a compact space of any accuracy as long as its
depth is sufficiently high. They also analyze the
approximation property of deep CNNs over a
family of functions in Sobolev space, which,
loosely speaking, comprises smooth functions
that are differentiable to a certain order. Similarly,
Yarotsky et al. [19] analyze the approximation
property of deep neural networks with ReLU acti-
vation functions on the Sobolev space. In addi-
tion, they provide upper and lower bounds of
network complexity, i.e., the number of networks
layers, weights, and neurons required to reach a
given approximation error.
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Other Properties of Deep Neural
Networks

Splines, or piecewise polynomials, are another
form of function approximators. It is therefore
interesting to see how splines are connected to
deep neural networks. Unser et al. [12] establish
a conceptual connection between deep neural net-
works and piecewise linear functions, i.e., first-
order uniform splines. Suppose we are given an
MLP of the following form:

f x; W lð Þ,σ lð Þ
n o

l

	 

≔ σ Lð Þ∘g Lð Þ∘σ L�1ð Þ∘g L�1ð Þ���∘g 1ð Þ
	 


xð Þ

where g(l ) ≔ W(l )o(l � 1)and σ(l )’s are arbitrary
nonlinear activation functions.

Given a collection of training samples {(xm,
ym)}m, we train the network f through the follow-
ing optimization problem:

min
W lð Þ, σ lð Þf g

ΣM
m¼1‘ ym, f xm; W lð Þ, σ lð Þ

n o
l

	 
	 


þ λR W lð Þ
n o

l

	 

þ μT σ lð Þ

n o
l

	 

sT ð11Þ

where ‘ is a general convex loss function, R is
some arbitrary convex regularization function
over the network weights, T is a regularization
over σ(l ), s which promotes sparsity of their deriv-
atives, and λ and μ are positive regularization
parameters. The authors prove that, in order for f
to be an optimal solution to the problem (11), it

must be the case that σ(l ),s are piecewise linear. In
other words, the original infinite-dimensional
optimization becomes finite-dimensional because
σ(l ) now adopts a parametric spline form.

Another intriguing property of deep neural net-
works is their amazing generalization capability,
which seems mysterious from the perspective of
classic machine learning. In particular, the num-
ber of trainable parameters in deep neural net-
works is often greater than the training data set,
this situation being notorious for overfitting from
the point of view of classical statistical learning
theory. However, empirical results have shown
that a deep neural network generalizes well in
the testing phase, resulting in high performance
for the unseen data.

This apparent contradiction has raised ques-
tions about the mathematical foundations of
machine learning and their relevance to practi-
tioners. Recently, the authors in [40, 41] have
suggested how to reconcile classical understand-
ing and modern practice in a unified framework.
In classical machine learning theory, models with
exceedingly high capacity are subject to over-
fitting and exhibit high test errors due to the fun-
damental bias-variance trade-off. However, the
authors argue that, once the model capacity
increases beyond a certain point called interpola-
tion point, its performance starts improving in the
test phase. Increasing the functional class capacity
to the overparameterized area thus improves the
generalization performance of the resulting

Fig. 6 Piecewise linear
representation by a deep
neural network
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classifiers. The authors further justify their claim
empirically through experiments.

Algorithm Unrolling: From Iterative
Algorithms to Deep Networks

Parallel to the revolution of machine learning
models, another thread of research constructs
deep networks from iterative algorithms by map-
ping each iteration to a network layer. This line of
research centers around an important technique
called algorithm unrolling, which originated from
Gregor et al.’s seminal technique on learnable
sparse coding, called Learned Iterative Shrinkage
and Thresholding Algorithm (LISTA) [7]. We first
review this method and related theoretical findings.
We then discuss general formulations of algorithm
unrolling and provide practical examples.

Learned Iterative Shrinkage
and Thresholding Algorithm

LISTA aims to approximately solve the sparse
coding problem at a higher efficiency than itera-
tive methods, by learning an unknown dictionary
from real data. Specifically, given an observation
vector y � ℝ.m,we seek a vector x � ℝn such that
y ≈Wx and encourage as many coefficients in x to
be zero (or small in magnitude) as possible [42]. A
typical approach to achieve this is by solving an
unconstrained convex minimization problem:

min
x�ℝm

1

2
y�Wxk k22 þ λ xj jj j1, ð12Þ

where λ > 0 is a regularization parameter that
controls the sparsity of the solution. A well-
known class of methods for solving (12) are prox-
imal methods such as Iterative Shrinkage and
Thresholding Algorithm (ISTA) [43], which per-
form the following iterations:

xl¼1¼sλ I � 1

μ
WTW

� �
x1 þ 1

μ
WTy

� �
, l ¼ 0, 1, � � �

ð13Þ

Here, I � ℝ nxn is the identity matrix, μ is a
positive parameter that controls the iteration step
size, Sλ(�) is the soft-thresholding operator
defined as for a scalar x, and Sλ(�) operates
element-wise on vectors and matrices.

Sλ xð Þ ¼ sign xð Þ max xj j � λ, 0f g, ð14Þ

The slow convergence rate of ISTA can be
problematic in real-time applications. Further-
more, the matrix W may not be known exactly.
In their seminal work, Gregor and Lecun [7] pro-
pose a highly efficient learning-based method that
computes good approximations of optimal sparse
codes in a fixed amount of time, with the help of
W learned optimally from real data [7]. Specifi-
cally, iteration (13) can be recast into a single
network layer as depicted in Fig. 7. This layer
comprises a series of analytical operations
(matrix-vector multiplication, summation, and
soft-thresholding), which is of the same nature as
a neural network. A diagram representation of one
iteration step reveals its resemblance to a single
network layer. Executing ISTA L times can be
interpreted as cascading L such layers, which
essentially forms an L-layer deep network.
Note that, in the unrolled network, an implicit
substitution of parameters has been made:
Wt ¼ I � 1

μW
ΤW and We ¼ 1

μW
T .

After unrolling ISTA into a network, named
Learned ISTA (LISTA), the network is trained
through back-propagation using real datasets to
optimize the parameters Wt, We, and λ. Training is
performed in a supervisedmanner, meaning that for
every input vector yt � ℝ, t ¼ 1, . . , T, its
corresponding sparse output x�t � ℝn, t ¼ 1, . . ,
T is known. The sparse codes x*t can be deter-
mined, for example, by executing ISTA when W
is known. Feeding vector yt into the network results
in a predicted outputbxt yt;Wt,We, λð Þ. The network-
training loss function is formed by comparing the
prediction with the known sparse output x*t:

‘ Wt,We, λð Þ ¼ 1

T
ΣT
t¼1 bxt yt;Wt,We,λð Þ � x�t

�� ��2
2

ð15Þ
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The network is trained through loss minimiza-
tion, using popular gradient-based learning tech-
niques such as stochastic gradient descent, to learn
the unknown parameters Wt, We, and λ [24]. With
optimized parameters, LISTA may achieve higher
efficiency compared to ISTA. Indeed, it has been
shown empirically that the number of layers L in
(trained) LISTA can be an order of magnitude
smaller than the number of iterations required for
ISTA to achieve convergence corresponding to a
new observed input, thus dramatically boosting
the sparse coding efficiency [7]. Furthermore,
when the dictionary Wt and We are unknown or
hard to determine analytically, they can be learned
from real datasets. In practice, Wt, We, and λ can
be untied and vary in each layer.

In addition to empirically observed superior
efficiency, researchers have recently confirmed
the faster convergence speed of LISTA over
ISTA by conducting rigorous theoretical analysis.
In particular, recent studies reveal the conver-
gence rate of LISTA, and relevant techniques,

and characterize the optimality conditions. For
instance, Xin et al. [44] study the unrolled Itera-
tive Hard Thresholding (IHT) algorithm, which
has been widely applied in various sparsity-
constrained estimation problems. IHT largely
resembles ISTA except that an ‘0 norm is
employed instead of the ‘1 norm. The authors
prove that, in order for the unrolled IHT network
to recover a maximally sparse solution (i.e., a
vector with minimal ‘� norm), a weight coupling
scheme must be satisfied; furthermore, under the
weight-coupling constraint and certain additional
Restricted Isometry Property (RIP) conditions
[11], a linear convergence rate can be deduced.
Compared to classical IHT, the learned version
poses a much milder requirement on the RIP
condition, meaning that the unrolled network is
capable of recovering sparse signals from a much
broader family of dictionaries.

Chen et al. [45] observe similar behaviors of
the LISTA network with layer-specific parame-
ters. They prove that, in order for LISTA to

Algorithm: Input x0, Output xL

for l = 0, 1, . . . , L − 1 do

xl+1 = Sλ

((
I − 1

μW
TW

)
xl + 1

μW
Ty

)
end for

xl + Sλ xl+1
Wt = I − 1

μW
TW

We = 1
μW

T

Iterative Shrinkage and Thresholding Algorithm A Single Network Layer

y

S
ta
ck
in
g

Wt

We

x0 + Sλ x1 + Sλ x2 · · · xL

y · · ·

Unrolled Deep Network

Wt Wt

We We

Fig. 7 Illustration of LISTA: One iteration of ISTA exe-
cutes a linear and then a nonlinear operation and thus can
be recast into a network layer; by stacking the layers, a
deep network is formed. The network is subsequently

trained using paired inputs and outputs by back-
propagation to optimize the parameters We, Wt, and λ.
The trainable parameters in the network are colored in blue
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recover the underlying sparse solutions, a similar
weight-coupling constraint must be satisfied
asymptotically. They further introduce a
so-called support-selection scheme, which,
together with weight coupling and a few other
mild conditions, ensures linear convergence rate
of the unrolled network. As a follow-up, Liu et al.
[46] introduce certain mutual coherence condi-
tions and analytically characterize optimal net-
work parameters based on those conditions.
Similar to the networks with trained weights, net-
works adopting analytic weights converge at a
linear rate, which implies that analytic weights
can be as efficient as learned weights. In addition,
analytic weights are of much lower dimensional-
ity compared to trained weights. However, deter-
mining the analytic weights can be a nontrivial
task as they are solutions to another dedicated
optimization problem.

Unrolling Generic Iterative Algorithms

Although the initial focus of Gregor et al.’s work
[7] was on sparse coding techniques, the underly-
ing principles could be easily generalized. More
specifically, provided with a certain iterative algo-
rithm, we can unroll it into a corresponding deep
network, following the procedures depicted in
Fig. 8 [8]. The first step is to identify the analytic

operations per iteration, which we represent
abstractly as an h function, and the associated
parameters, which we denote collectively as θl.
The next task is to generalize the functional form

of h into a more generic version h
_

, and corre-
spondingly expand the parameters θl into an
enlarged version θl

_

if necessary. For instance, in
LISTA, the parameterW is substituted withWt and
We through the formula Wt ¼ I � 1

μW
TW and

We ¼ 1
μW

T . After this procedure, each iteration

can be recast into a network layer in the same
spirit as LISTA. By stacking the mapped layers
together, we obtain a deep network with
undetermined parameters and then obtain optimal
parameters through end-to-end training using
real-world datasets.

The exact approach to generalize h and θls

toward h
_

and θl
_

s is largely case specific. An
extreme scenario is to strictly follow the original
functional forms and parameters, i.e., to take h

_¼ h
and θl

_

¼ θl,8l. In this way, the trained network
corresponds exactly to the original algorithm with
finite truncation and optimal parameters. In addi-
tion to efficiency enhancement thanks to training
[7], the unrolled networks can aid with estimating
structured parameters such as filters [47] or dic-
tionaries [48] which are hard to design either
analytically or by handcrafting. Alternatively,
some operations may be replaced with a stand-

Algorithm: Input z0, Output zL

for l = 0, 1, . . . , L − 1 do

zl+1 ← h zl; θl
)
,

end for

z0 · · · zl ĥ
(
·; θ̂l

)
zl+1 · · · zL

Generalize

ĥ
(
·; θ̂l

)
≈ h ·; θl

)

Unrolling

Iterative Algorithm
Unrolled Deep Network

Fig. 8 Illustration of the general idea of algorithm
unrolling: given an iterative algorithm, we map one itera-
tion (described as the function h parametrized by θl,
l ¼ θl,...,L— 1), into a single network layer, and stack a
finite number of layers to form a deep network. Feeding the
data forward through an L-layer network is equivalent to

executing the iteration L times (finite truncation). The
parameters θl,l ¼ 0,...,L— 1 are learned from real datasets
by training the network end-to-end to optimize the perfor-
mance. They can either be shared across different layers or
varying from layer to layer. The trainable parameters are
colored in blue
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alone deep neural network such as Convolutional
Neural Network (CNN) or Recurrent Neural Net-
work (RNN). For instance, in [49], the authors
replace a proximal gradient update step with a
CNN. In addition, the parameters can be layer
specific instead of being shared across different
layers. For instance, in [50], the authors plug in a
CNN in each iteration step (layer) and allow the
network parameters to differ. As it is, networks
with shared parameters generally resemble RNN,
while those with layer-specific parameters mimic
CNN, especially when there are convolutional
structures embedded in layer-wise operations.
While custom modifications may potentially
invalidate the convergence guarantees, they are
practically beneficial and critical for performance
improvement because the representation capacity
of the network can be significantly extended.

In addition to performance and efficiency ben-
efits, unrolled networks can potentially reduce the
number of parameters and hence storage foot-
prints. Conventional generic neural networks typ-
ically reuse essentially the same architectures
across different domains and thus require a large
amount of parameters to ensure their representa-
tion power. In contrast, unrolled networks gener-
ally carry significantly fewer parameters, as they
implicitly transfer problem structures (domain
knowledge) from iterative algorithms to unrolled
networks, and their structures are more specifi-
cally tailored toward target applications. These
benefits not only ensure higher efficiency, but
also provide better generalizability especially
under limited training schemes.

Unrolling techniques have been widely used in
medical applications. An important imaging
modality is ultrasound, which has the advantage
of being a radiation-free approach. When used for
blood flow depiction, one of the challenges is the
fact that the tissue reflections tend to be much
stronger than those of the blood, leading to strong
clutter resulting from the tissue. Thus, an impor-
tant task is to separate the tissue from the blood.
Various filtering methods have been used in this
context such as high-pass filtering, and filtering
based on the singular value decomposition.
Solomon et al. [51] suggest using a robust Princi-
pal Component Analysis (PCA) approach by

modeling the received ultrasound movie as a
low-rank and sparse matrix where the tissue is
low rank and the blood vessels are sparse. The
robust PCA problem can be solved via a general-
ized version of ISTA, which is further unrolled
into a deep network, called Convolutional rObust
pRincipal cOmpoNent Analysis (CORONA). As
the name suggests, they replace matrix multipli-
cations with convolutional layers, effectively
converting the network into a CNN-like architec-
ture. Compared with state-of-the-art approaches,
CORONA demonstrates vastly improved recon-
struction quality and has much fewer parameters
than the well-known ResNet [52].

In optical microscopy, a fundamental chal-
lenge is to enhance spatial resolution, which is
limited by the physics of light. Solomon et al.
[47] exploit the sparse nature of the fluorophores
distribution and improve the spatial resolution via
a sparsity-constrained estimation approach, called
SPARsity based super-resolution COrrelation
Microscopy (SPARCOM). Recently, Dardikman
et al. [53] unroll SPARCOM into a deep network
called Learned SPARCOM (LSPARCOM). The
structure of the network resembles LISTA, except
that they adopt a customized proximal operator.
Experimental results show that LSPARCOM can
obtain super-resolution images from a small num-
ber of high-emitter density frames without knowl-
edge of the optical system, and has clear runtime
advantages.

Interpretations of Deep Learning

We have so far covered the origin of deep learning
and how it connects to classical machine learning
models and traditional iterative algorithms. In this
section, we investigate other ways to interpret
deep neural networks, in addition to a methodo-
logical perspective. Specifically, we first take a
biological perspective, where we illustrate how
hierarchical features, an essential component of
deep neural networks, are also commonly found
in biological visual systems. We then switch to a
geometric standpoint and contend that deep neural
networks effectively capture the low-dimensional
data manifolds.
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Hierarchical Features in the Visual
System

The visual system is a part of the central nervous
system that enables organisms to detect and inter-
pret information from visible light to create a
representation of the environment. In pursuit of
understanding the visual system, Hubel and Wie-
sel [54] found two classes of functional cells in the
primary visual cortex: simple cells and complex
cells. More specifically, simple cells at the pri-
mary visual cortex at the V1 L4 layer respond
best to edge-like stimuli with a certain orientation,
position, and phase within their relatively small
receptive fields. They realized that such response
of the simple cells could be obtained by pooling
the activity of a small set of input cells with the
same receptive field that is observed in Lateral
Geniculate Nucleus (LGN) cells. This observation

has been extended to higher areas of the visual
cortex to result in a class of object recognition
models [3]. Specifically, there is a neuronal con-
nection along this path, which forms a neuronal
hierarchy such that neurons become sensitive to
more complex inputs. An extreme form or surpris-
ing example of this information-processing hier-
archy can be found in the discovery of the
so-called “Jennifer Aniston Cell” [55], which
identified a single neuron that is sensitive to a
complex but specific concept or object.

A similar phenomenon can be observed in the
convolution neural network, once it is properly
trained. In particular, VGGNet [2] provides very
intuitive information that is well correlated with
the visual information processing in the brain. For
example, Fig. 9 illustrates the input signal that
maximizes the filter response at specific channels
and layers of VGGNet [2]. Here, an input image

Fig. 9 Input images that maximize filter responses at specific channels and layers of VGGNet
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that activates this filter most is displayed for spe-
cific channel and layer filters. This is similar to the
Hubel and Wiesel experiments where they ana-
lyzed the input image that maximizes the neuronal
activation. Specifically, at the earlier layers the
input signal-maximizing filter response is com-
posed of directional edges similar to the Hubel
and Wiesel experiment. As we go deeper into the
network, the filters build on each other and learn
to code more complex patterns. Finally, in Fig. 9
the input images that maximize the response on
the last softmax level in the specific classes corre-
spond to the visualization of the input images that
maximize the class categories. The emergence of
the hierarchical feature from simple edges to the
high-level concept is similar to visual information
processing in the brain.

Geometric Understanding of Deep
Neural Networks

Themanifold structure of real-world data has been
heavily exploited in classical machine learning
techniques. Structured data are often assumed to
lie on a manifold whose dimensionality is much
lower than its ambient space. In particular, it has
been long recognized that natural images lie on a
low-dimensional manifold [34], and the key to

success in many machine learning tasks hinges
on capturing the underlying manifold structure.
As illustrated in Fig. 10, researchers have spent
intensive efforts to model the bidirectional map-
ping between the data manifold and the underly-
ing latent space. The forward mapping φα,
commonly called the encoder, maps each data
sample (such as an image) into a low-dimensional
latent vector, while the inverse mapping φα�1,
commonly called decoder, generates a sample
(such as an image) from a provided latent vector.

In classical machine learning, modeling the
encoder and decoder has been a key topic in
unsupervised learning. For instance, Principal
Component Analysis (PCA), as a widely applied
linear dimensionality reduction technique, esti-
mates a linear encoder which projects the data
onto a low-dimensional subspace, and a linear
decoder which recovers the data approximately
from this subspace. However, the subspace usually
does not offer an accurate approximation when the
data manifold is nonlinear. To improve the approx-
imation accuracy, nonlinear dimensionality tech-
niques have been developed by either modeling
the topological relationship among inputs [56], or
capturing their metric structure [57]. Nonetheless,
these techniques lack a deep hierarchical decom-
position of the mapping, φα, and hence do not
faithfully model the data manifold.

−1

Fig. 10 Manifold structure of natural images. Many
unsupervised learning techniques aim to discover the
encoding mapping φα from the low-dimensional manifold

of natural images to its latent space. Generative models
capture the inverse mapping, which generates natural
image samples given the latent vectors
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In recent years, deep unsupervised learning has
achieved tremendous progress. The essence of
many such techniques is how to learn the
encoder/decoder using deep neural networks. Var-
iational Auto Encoders (VAE) [58] jointly learns
both the encoding mapping φα and the decoding
mapping φα�1 by integrating auto-encoder with
variational Bayes. There are also generativemodels
which effectively learn the mapping φα�1 and gen-
erate high-quality data samples providing the latent
vectors. Typical generative models include Gener-
ative Adversarial Networks (GAN) [59] and Nor-
malizing Flows (NF) [60]. The deep hierarchical
architecture ensures high capacity in modeling
complicated functional mappings, which is the
key to success for these approaches.

Summary and Outlook

In this chapter, we reviewed the historical devel-
opments of deep learning, following two main
threads: the evolution from classical machine
learning models to modern deep learning models,
and the transition from traditional iterative algo-
rithms to contemporary deep networks. We
explained the limitations of traditional machine
learning models and algorithms, in terms of
expressivity, and discussed how deep learning
successfully can overcome these limitations. We
also reviewed recent theoretical breakthroughs
which justify the superior representation power
of deep networks and help in understanding their
properties and behaviors.

Although there is already a rich body of
research on the mathematical foundation of deep
learning, we are still far from understanding the
full mystery of deep learning. As it is, so far there
is little knowledge on what weights are optimal in
order for the networks to approximate a certain
function. In addition, currently network training is
largely empirical, and network performance
largely relies on heuristics in training and hyper-
parameter tuning. In the context of medical imag-
ing, developing more methods that are
interpretable and robust is of key importance.
With the many recent exciting advances and the
many researchers entering this field, the next

decade will surely lead to further insights and
methods in these directions.
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