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Abstract—Phase retrieval aims at recovering unknown signals
from magnitude measurements of linear mixtures. In this paper,
we consider the phase retrieval with dictionary learning problem,
which includes another prior information that the signal admits
a sparse representation over an unknown dictionary. The task is
to jointly estimate the dictionary and the sparse representation
from magnitude-only measurements. To this end, we study two
complementary formulations and develop efficient parallel algo-
rithms by extending the successive convex approximation frame-
work using a smooth majorization. The first algorithm is termed
compact-SCAphase and is preferable in the case of moderately
diverse mixture models with a low number of mixing components. It
adopts a compact formulation that avoids auxiliary variables. The
proposed algorithm is highly scalable and has reduced parameter
tuning cost. The second algorithm, referred to as SCAphase, uses
auxiliary variables and is favorable in the case of highly diverse
mixture models. It also renders simple incorporation of additional
side constraints. The performance of both methods is evaluated
when applied to blind channel estimation from subband magni-
tude measurements in a multi-antenna random access network.
Simulation results show the efficiency of the proposed techniques
compared to state-of-the-art methods.

Index Terms—Phase retrieval, dictionary learning, successive
convex approximation, majorization-minimization, nonconvex
optimization, nonsmooth optimization.

I. INTRODUCTION

PHASE retrieval refers to the problem of recovering un-
known signals from the (squared) magnitude of linear

measurements corrupted by additive noise. It has received con-
siderable attention in various applications such as diffraction
imaging [2], [3], astronomy [4], and X-ray crystallography [5],
where the measurement of intensity is much easier than that
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of phase. In some other applications, including non-coherent
direction-of-arrival estimation [6], the loss of phase information
is caused by imperfect phase synchronization.

In recent years, numerous phase retrieval approaches have
been developed, which can be principally classified as noncon-
vex and convex ones. In the nonconvex optimization methods,
the recovery problem is formulated as a nonconvex least-squares
(LS) problem. Stationary points of the nonconvex formulation
can then be obtained by classic continuous optimization al-
gorithms such as alternating projections [4], [7], gradient de-
scent [8], [9], [10], and alternating direction method of multipli-
ers (ADMM) [11], [12]. A popular class of convex optimization
approaches employs semidefinite relaxation [13], [14], [15],
[16], which lifts the problem to a higher dimension and is,
hence, computationally prohibitive for large-scale problems.
Recently, some non-lifting convex optimization approaches have
been developed based on solving a basis pursuit problem in the
dual domain, including PhaseMax [17] and PhaseEqual [18].
A comprehensive review of recent advances in phase retrieval
from a numerical perspective is presented in [19].

On the other hand, additional prior information on the un-
known signal, such as sparsity, can be used to improve unique-
ness and stability of the reconstruction [20]. Most of the afore-
mentioned phase retrieval approaches have been adapted to
recovering signals that are sparse either in the standard basis or
in a known dictionary [18], [21], [22], [23], [24], [25], [26], [27].
The GESPAR algorithm is based on the damped Gauss-Newton
method [21]. Majorization-Minimization (MM) algorithms are
devised in [23]. In [24], the Truncated Amplitude Flow (TAF)
method is extended to recovering sparse signals. The STELA
algorithm proposed in [27] is based on the successive convex
approximation (SCA) and can be parallelized.

Phase retrieval was generalized in [28] to jointly learning
an unknown dictionary and a sparse representation. To tackle
the joint estimation problem, the authors propose a regularized
nonconvex LS formulation with squared magnitude measure-
ments and develop an alternating minimization algorithm termed
DOLPHIn. In [23], the authors apply a similar regularized LS
formulation to magnitude measurements and solve it by an
algorithm based on block successive upper-bound minimization
(BSUM), named SC-PRIME. There, it is shown by both theo-
retical justification and numerical results that the reconstruction
from magnitude measurement outperforms that from intensity
measurements. However, the use of auxiliary variables in both
aforementioned methods depresses the scalability and, more
notably, increases the number of hyperparameters that require
tuning. Moreover, neither of the two methods can take full
benefit of modern parallel hardware architectures. In addition,
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SC-PRIME often suffers from slow convergence due to the loose
approximation used by BSUM.

The SCA framework [29] possesses the advantage of paral-
lelism. However, it can only be applied to a composite problem
with a smooth loss function and a convex but not necessarily
smooth regularization. In this paper, to address the phase re-
trieval with dictionary learning problem given the magnitude
measurements, which is formulated as a nonsmooth and noncon-
vex LS problem, we extend the SCA framework using a smooth
majorization. The extended framework inherits the parallel na-
ture of the original SCA framework. Two efficient parallel algo-
rithms for the phase retrieval and dictionary learning problem
are proposed by applying the extended SCA framework to two
complementary formulations, respectively. Specifically, we first
study a compact formulation that avoids the auxiliary variables
and the proposed extended-SCA algorithm is termed compact-
SCAphase. Then another algorithm based on the extended SCA
framework is proposed for the conventional formulation with
auxiliary variables, which is referred to as SCAphase (Successive
Convex Approximation for phase retrieval with dictionary learn-
ing). The performance of the proposed algorithms is evaluated
when applied to blind sparse channel estimation from subband
magnitude measurements in a multi-antenna random access
network. Simulation results on synthetic data show the fast
convergence of the proposed algorithms compared to the state-
of-the-art method SC-PRIME [23]. In the case with less diverse
linear mixing models, compact-SCAphase is more competitive
than SCAphase in terms of both computational complexity and
parameter tuning cost. However, for highly diverse linear mea-
surement operators, the computational complexity of compact-
SCAphase dramatically grows, compared to SCAphase. To sum-
marize, the main contributions of this paper are:
� We introduce an extension of the SCA framework for

the phase retrieval with dictionary learning problem. Two
efficient parallel algorithms are proposed by applying the
extended SCA framework to two complementary formula-
tions, respectively.

� The convergence of the extended SCA framework is estab-
lished based on a generalized concept of stationarity. Our
novel convergence analysis can also be used to establish
the convergence of SC-PRIME [23].

� To reduce the overall computational complexity of
compact-SCAphase, an efficient procedure based on ra-
tional approximation is devised for solving the �2-norm
constrained LS subproblems.

The paper is organized as follows. In Section II, we introduce
the signal model and provide two different mathematical formu-
lations with and without auxiliary variables, respectively, for the
phase retrieval with dictionary learning problem. The proposed
algorithms for both formulations are described in Section III
and IV, respectively. In Section V, we establish the conver-
gence of the proposed algorithms and analyze the computational
complexity in comparison to SC-PRIME. Simulation results on
synthetic data are presented and discussed in Section VI and
conclusions are drawn in Section VII.

II. NOTATION AND PROBLEM FORMULATION

A. Notation

We use x, x and X to denote a scalar, column vector and
matrix, respectively. For any x∈C, |x| denotes its magnitude,

arg(x) its phase, x̄ its complex conjugate, and �(x) its real
part. The soft-thresholding operator is denoted by Sλ(x)=
max{0, |x| − λ} · ej arg(x). Symbols (·)T, (·)H, (·)−1, and (·)†
denote the transpose, Hermitian transpose, inverse and pseu-
doinverse, respectively. For a matrix X∈C

M×N , xk,l is its
(k, l)th element, xl its lth column, xT

k: its kth row, vec(X)=
[xT

1 , . . . ,x
T
N ]T its vectorized form, and ‖X‖1=

∑
k,l |xk,l| its

elementwise �1-norm. The trace operator is written as tr(·) and
‖·‖F is the Frobenius norm. For a vector x, the kth entry is xk.
Also, the kth entry of a vector xl that itself carries a subscript
will be denoted by xk,l. The Hadamard and Kronecker products
are denoted by � and ⊗, respectively; symbol 0 is a zero matrix.

For a linear operator F(·), F∗(·) is its adjoint operator. For
a real-valued function f(X) with real arguments X∈R

M×N ,
∇Xf(X) is the gradient with respect to X, i.e., an M×N
matrix with the (k, l)th entry being ∂

∂xk,l
f(X), and∇vec(X)f(X)

is the vectorized form of the gradient. The Hessian defined
with the vectorized arguments is denoted by ∇2

vec(X)f(X),
which is an MN×MN matrix with the (m+ (n− 1)M,k +

(l − 1)M)th entry being ∂2

∂xm,n∂xk,l
f(X). Also, ∇2

xk,l
f(X)

is the diagonal entry corresponding to xk,l in the Hessian.
For complex arguments X ∈ C

M×N , the entries of gradient
and Hessian are defined as [∇Xf(X)]k,l=2 ∂

∂x̄k,l
f(X) and

[∇2
vec(X)f(X)]m+(n−1)M,k+(l−1)M =2 ∂2

∂x̄m,n∂xk,l
f(X), where

∂
∂x and ∂

∂x̄ are the Wirtinger derivative operators [30]. Thus, for
both real and complex arguments, a real-valued quadratic func-
tion f(X) can be written as the quadratic Taylor series at anyX0

in a unified form f(X) = f(X0) + �(tr(ΔXH∇Xf(X0))) +
1
2vec(ΔX)H∇2

vec(X)f(X0) vec(ΔX) with ΔX = X−X0.

B. Problem Formulation

We consider the following nonlinear system. For an input
signal X ∈ K

N×I , K ∈ {R,C}, the following noise-corrupted
magnitude-only measurements are observed:

Y = |F(X)|+N, (1)

where F : CN×I → C
M1×M2 is a linear operator, N is a noise

matrix, and the absolute value operation |·| is applied element-
wise. The negative entries of Y caused by noise will be set to 0.
A general linear mixing operator F(X) can be written as

F(X)=
∑K
k=1 AkXBk, (2)

whereAk ∈ C
M1×N andBk ∈ C

I×M2 , k = 1, . . . ,K, perform
the row and column mixing, respectively, and the number of
distinct mixing components K is termed as the diversity of the
mixing operator F in this paper. Note that the linear operator F
in (2) can be written equivalently in a vectorized form

vec (F(X)) = F · vec(X) with F =
∑K
k=1 B

T
k ⊗Ak, (3)

which we will also use in this paper. Moreover, each columnxi of
X is assumed to admit a sparse representation over an unknown
dictionary D∈K

N×P , i.e., xi=Dzi with a sparse code vector
zi ∈ K

P . Let Z=[z1, . . . , zI ] summarize the code vectors. Our
objective is to jointly learn the dictionaryD and the sparse codes
Z so as to minimize the (LS) reconstruction error.

To this end, we solve the following compact formulation for
phase retrieval with dictionary learning (cPRDL) problem:

cPRDL: min
D∈D,Z

1
2‖Y − |F(DZ)|‖2F + λ‖Z‖1. (4)
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The first term evaluates the data fidelity by the LS criterion,
which is nonsmooth and nonconvex due to the absolute value
operation. The second term promotes sparsity in Z with a
regularization parameter λ≥0. To avoid scaling ambiguities,
we restrict D to be in the convex set D={D∈K

N×P | ‖dp‖2≤
1 ∀p=1, . . . , P}. Each column dp is called an atom and the
dictionary size must be below the number of columns in X, i.e.,
P <I . Otherwise, each column xi can be trivially represented
by a 1-sparse vector zi with an atom xi/‖xi‖2.

An alternative formulation for phase retrieval with dictionary
learning (PRDL), which we will also consider, is constructed as
follows with an auxiliary variable X:

PRDL: min
X,D∈D,Z

1
2‖Y−|F(X)|‖2F+ μ

2 ‖X−DZ‖2F+ρ‖Z‖1.
(5)

The additional second term measures how well the signal X
can be approximated by the sparse representation DZ. Two
regularization parameters μ ≥ 0 and ρ≥0 are used to balance
the data fidelity, the approximation quality, and the code sparsity.

The formulation (5) was first proposed in [28], however, with
the intensity measurements Ỹ= |F(X)|2+N, which results in
another smooth data fidelity term 1

4‖Ỹ − |F(X)|2‖2F. In [23],

the authors have shown that, for the intensity measurements Ỹ,
it is also beneficial, in the high SNR regime, to use formula-

tion (5) with the modulus information
√
Ỹ, where

√· is applied

elementwise, due to the reduced noise level in
√

Ỹ. Thus, we
consider the magnitude measurement model (1).

In [23], the state-of-the-art SC-PRIME algorithm is devised
for the conventional formulation (5) based on BSUM, which,
however, does not take full advantage of modern parallel hard-
ware architectures. Also, the conservative majorization in SC-
PRIME often results in slow convergence. Therefore, we de-
velop the compact-SCAphase and SCAphase algorithms for
the compact formulation (4) and conventional formulation (5),
respectively, based on an extension of SCA framework. Both
proposed algorithms can be easily parallelized.

The two proposed algorithms are advantageous in different
scenarios. The conventional formulation (5) is not suitable for
large-scale problems due to the introduction of auxiliary vari-
ables. Also, the complexity of tuning two regularization param-
eters μ and ρ in (5) is significantly higher than that of tuning
one parameter. However, compared to SCAphase, the compu-
tational complexity of compact-SCAphase grows dramatically
with the increase of diversity of the designed linear measurement
operator F . Moreover, the conventional formulation (5) admits
simple incorporation of additional prior information on X such
as nonnegativity in radio astronomy [4].

In the following, we describe the proposed compact-
SCAphase and SCAphase algorithms. The derivations are based
on the model with complex-valued variables. However, the same
derivations can be made for the real-valued case.

III. PROPOSED ALGORITHM FOR FORMULATION CPRDL

In this section, by extending the SCA framework in [29], [31],
we propose an efficient iterative algorithm to find a stationary
point of (4) via a sequence of approximate problems that can
be solved in parallel. We denote the objective function in (4) by
h(D,Z) = f(D,Z) + g(Z) with

f(D,Z) = 1
2‖Y − |F(DZ)|‖2F and g(Z) = λ‖Z‖1. (6)

The problem is challenging since g is nonsmooth and, more
notably, f is nonsmooth and nonconvex. To overcome this diffi-
culty, in each iteration, we first majorize f by a smooth function,
which naturally leads to a majorization for the overall objective
function h. Then the majorizing function is only minimized
approximately. In particular, we obtain a descent direction of the
majorizing function by minimizing exactly its convex approx-
imation. The variable can then be updated along this descent
direction with a suitable step size, which can be efficiently
obtained by exact line search. Consequently, a decrease of the
original objective function h is also ensured.

From the procedure described above, it can be noticed that
the convergence of the proposed compact-SCAphase algorithm
cannot be established under the framework of MM or SCA since
the gradient consistency condition [32, A2.2] is apparently not
satisfied. Nonetheless, in Section V-A, we prove that compact-
SCAphase converges to a stationary point of problem (4) ac-
cording to a generalized concept of stationarity.

Once a stationary point (D�,Z�) of the cPRDL problem in (4)
has been obtained by the compact-SCAphase algorithm, we
optionally perform a debiasing step similar to that in [33] to
further improve the estimation quality, which solves an instance
of the cPRDL problem with λ = 0 and a restriction that the
entries zp,i having zero values in Z� are fixed at zero.

A. Smooth Majorization

We first derive a smooth majorizing function for f in (6) by
following a similar approach as in [23]. Let S = (D,Z) denote
the collection of all variables, and let S(t) = (D(t),Z(t)) be the
current point at iteration t. Also, Function f can be expanded as
f(S)= 1

2 (‖Y‖2F+‖F(DZ)‖2F)−tr(YH|F(DZ)|). We note that

|x| = |x · ejφ| ≥ �(x · ejφ) for any x ∈ C and φ ∈ [0, 2π),
(7)

and that equality holds forφ = − arg(x). DefiningY(t) = Y �
ej arg(F(D(t)Z(t))), where e(·) and arg(·) are applied elementwise,
we construct the following function:

f̂
(
S;S(t)

)
= −tr

(
YH�

(
F (DZ)� e−j arg(F(D(t)Z(t)))

))
+ 1

2

(
‖Y‖2F + ‖F (DZ)‖2F

)
= 1

2‖Y
(t) −F (DZ)‖2F. (8)

As Y contains nonnegative entries, we can infer from (7) that
f̂(S(t);S(t)) = f(S(t)) and f̂(S;S(t)) ≥ f(S) for all S. Thus,
f̂(S;S(t)) is a smooth majorizing function of f at pointS(t) [32],
[34], which has the partial gradients

∇Df̂(S;S
(t)) = F∗

(
F(DZ)−Y(t)

)
· ZH

and ∇Zf̂(S;S
(t)) = DH · F∗

(
F(DZ)−Y(t)

)
. (9)

However, f̂ is nonconvex due to the bilinear map DZ. Then
function ĥ(S;S(t)) = f̂(S;S(t)) + g(Z) is a majorizing func-
tion of the objective function h at S(t).

B. Separable Convex Approximation

Next, departing from the classic MM algorithm [32], [34],
where ĥ is minimized exactly at a high computational cost,
we further construct a convex approximate problem that can
be decomposed into subproblems and solved in parallel.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 22,2023 at 11:02:31 UTC from IEEE Xplore.  Restrictions apply. 



LIU (���) et al.: EXTENDED SUCCESSIVE CONVEX APPROXIMATION FOR PHASE RETRIEVAL 6303

As the regularization g is convex and separable, we leave g
unaltered and only design a separable convex approximation for
f̂ at the current point S(t). As f̂ is partially convex in D and Z,
respectively, we adopt the best-response approximation, where
the approximate function is the sum of several components [29].
In each component, only part of the variables are varied while
the rest are fixed to their current values. Let f̃D(D;S(t)) and
f̃Z(Z;S

(t)) be the approximate functions of f̂(S;S(t)) over D
and Z, respectively. They are devised as

f̃D(D;S(t)) =
∑P
p=1 f̂(dp,D

(t)
−p,Z

(t);S(t)),

f̃Z(Z;S
(t)) =

∑I
i=1

∑P
p=1 f̂(zp,i,D

(t),Z
(t)
−(p,i);S

(t)), (10)

where D−p ∈ C
N×(P−1) is obtained by removing dp from

D and Z−(p,i) the collection of all entries of Z except zp,i.

Then the convex approximation of ĥ(S;S(t)) is h̃(S;S(t)) =

f̃D(D;S(t)) + f̃Z(Z;S
(t)) + λ‖Z‖1 and the approximate prob-

lem reads

(D̃(t), Z̃(t)) = argmin
D∈D,Z

h̃(S;S(t)). (11)

The columns of D and all the entries of Z are separable in the
objective function of (11) and the constraint set D is a Cartesian
product of compact convex sets, each of which involves one
column dp. Consequently, problem (11) can be decomposed
into P + (P × I) subproblems. Each subproblem exclusively
depends on a column dp or a single variable zp,i and, hence, can
be solved in parallel.

Define ΔD=D̃(t)−D(t) and ΔZ= Z̃(t)−Z(t). According
to [29, Prop. 1], the difference (ΔD,ΔZ) is a descent direction
of the majorizing function ĥ(S;S(t)) in the domain of (4). Thus,
the following simultaneous update rule can be applied:

D(t+1) = D(t)+γ(t)ΔD and Z(t+1)=Z(t)+γ(t)ΔZ, (12)

where γ(t) ∈ [0, 1] is the step size. When (D̃(t), Z̃(t)) =
(D(t),Z(t)), a stationary point, in fact, a global minimizer, of
h̃(S;S(t)) is achieved, which is also stationary for the majorizing
problem and the original problem (4) (see Appendix C).

In the following, we describe the efficient solution approaches
for the subproblems decomposed from (11).

Descent direction for D: The P independent subproblems
decomposed from problem (11) involving D can be written as

mindp
f̂(dp,D

(t)
−p,Z

(t);S(t)) s.t. 1
2

(
‖dp‖22 − 1

)
≤ 0. (13)

Each subproblem in (13) is an �2-norm constrained LS, which
has no closed-form solution. However, as Slater’s condition is
satisfied for (13), strong duality holds and, hence, the primal
and dual optimal solutions can be obtained by solving the
Karush-Kuhn-Tucker (KKT) optimality system [35, Sec. 5.5.3].
By vectorization, we express f̂(dp,D

(t)
−p,Z

(t);S(t)) as

f̂(dp,D
(t)
−p,Z

(t);S(t)) = 1
2‖vec(Y

(t)
p )−Hpdp‖22, (14)

where Y
(t)
p = Y(t) −F(D

(t)
−pZ

(t)
−p) with Z−p ∈ C

(P−1)×I ob-
tained by removing the pth row of Z, and Hp=F ·
(z

(t)
p: ⊗ IN ) with F in (3). Then the Lagrangian asso-

ciated with (13) is L(dp, νp) =
1
2‖vec(Y

(t)
p )−Hpdp‖2F +

νp
2 (‖dp‖22 − 1), where νp≥0 is a Lagrangian multiplier. Let

d̃
(t)
p and ν̃(t)p be a pair of primal and dual optimal solutions,

and let Hp=UΣVH be the compact singular value decomposi-
tion (SVD) of Hp and σ1≥· · ·≥σr>0 the nonzero singular

Algorithm 1: Compact-SCAphase.

values with r=rank(Hp), U ∈ C
M1M2×r, Σ ∈ C

r×r, and

V ∈ C
N×r. The solution d̃

(t)
p of problem (13) holds

d̃(t)
p = V

(
ΣHΣ+ ν̃(t)p Ir

)†
ΣHUH vec(Y(t)

p ) (15)

by solving the KKT system. Define the rational function

ψp(νp) =
∑r
i=1

|ci,p|2
(σ2

i+νp)
2 with cp = ΣHUH vec(Y(t)

p ).

(16)
The dual optimal point ν̃(t)p required in (15) is determined by

ν̃(t)p =0 if ψp(0) ≤ 1, otherwise ν̃(t)p ∈ {νp > 0 | ψp(νp)=1}.
(17)

In the case where ψp(0) > 1, ν̃(t)p is the unique solution of

ψp(νp) = 1 for νp ∈ (0,+∞), (18)

which has no closed-form expression, except for the case where
all singular values σi are identical. In the general case, to
solve (18), we develop an efficient iterative algorithm based
on successive rational approximation (cf. [36], [37]), which is
outlined in Algorithm 2 and will be described in Section III-D.

For the particular cases with linear operator F in (43) that are
investigated in the simulations, the SVD ofHp can be calculated
analytically given the SVD of A. Hence, the complexity is
significantly reduced compared to the general case where an
iterative algorithm, e.g., QR algorithm [38], is needed to obtain
the SVD of Hp for every column dp in each iteration. Then
the proposed SCA algorithm for the cPRDL problem in (4) is
competitive with that for the PRDL problem in (5) in terms of
complexity. Details on the simplified solution approach for F in
(43) can be found in Appendix A.

Descent direction for Z: The subproblem decomposed
from (11) involving each entry zp,i is a univariate LASSO [39]
in Lagrangian form, which admits a closed-form solution

z̃
(t)
p,i=

1

‖Fid
(t)
p ‖22

Sλ
(
‖Fid(t)

p ‖22z
(t)
p,i−∇zp,i f̂

(
S(t);S(t)

))
. (19)

Matrix Fi in (19) is the ith block of F in the partition

F = [F1, . . . ,FI ] with Fi ∈ C
M1M2×N for i = 1, . . . , I.

(20)

C. Step Size Computation

The majorizing function ĥ is nonsmooth due to the regular-
ization g. Thus, to efficiently find a proper step size γ(t) for the
update in (12), we follow [29] and perform an exact line search
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Algorithm 2: Rational Approximation for Solving (18).

on a differentiable upper bound of ĥ. Ignoring constants, we can
write the computation of step size γ(t) as

γ(t) = argmin
0≤γ≤1

{
f̂
(
D(t) + γΔD,Z(t) + γΔZ;S(t)

)
+γ

(
g(Z̃(t))− g(Z(t))

) }
,

(21)
which is a minimization of fourth-order polynomial on the
interval [0,1] and can be solved by computing the real roots of
its derivative, a cubic polynomial, in [0,1] with the well-known
cubic formula. If multiple roots are found in [0,1], evaluating
the objective function in (21) is then needed to obtain γ(t).

The line search (21) always finds a nonzero step size γ(t)

since (ΔD,ΔZ) is a descent direction of ĥ, until a stationary
point of h is attained. With the step size γ(t) obtained by the line
search (21), the update (12) then ensures a monotonic decrease
of the original objective function h in (4), cf. [29].

Finally, the proposed compact-SCAphase algorithm for solv-
ing the cPRDL problem in (4) is outlined in Algorithm 1.

D. Rational Approximation

Borrowing the idea in [36], [37], we develop a successive
rational approximation algorithm, outlined in Algorithm 2, for
efficiently solving the rational equation (18), which yields the
dual optimal solution of (13). We omit the column index p in the
derivations below as we discuss only one column.

Let ν(l) be the approximate solution at iteration l. As ψ(ν)
has all negative poles, it decreases monotonically in [0,+∞).
Hence, we interpolate ψ(ν) at ν(l) by a simple rational function

F (ν;α, β) = α/(β − ν)2, (22)

where parameters α and β are chosen such that F (ν(l);α, β) =
ψ(ν(l)) and F ′(ν(l);α, β) = ψ′(ν(l)). It is easily verified that

α=4
(
ψ(ν(l))

)3/(
ψ′(ν(l))

)2

, β=ν(l) + 2ψ(ν(l))
/
ψ′(ν(l)).

(23)
Then the unique solution ofF (ν;α, β)=1 in (0,+∞) is chosen
as the next iterate ν(l+1). Omitting intermediate calculations, we
can express the update rule at the lth iteration as

ν(l+1) = ν(l) + 2ψ(ν(l))
(
1−

√
ψ(ν(l))

)/
ψ′(ν(l)). (24)

Define δi=−σ2
i , i=1, . . . , r, which are the poles of ψ with

δ1≤ . . .≤δr< 0. Ignoring the trivial case where all poles δi are
identical, we derive the following bounding property.

Theorem 1: F (ν;α, β) < ψ(ν) for all ν > δr and ν �= ν(l).
Proof: See Appendix B.
Thus, if ψ(ν(l))>1, i.e., ν(l) is below the solution ν̃ of

equation ψ(ν)=1, then the solution of F (ν;α, β)=1 falls
between ν(l) and ν̃, i.e., ν(l)<ν(l+1)<ν̃. Hence, using the
proposed rational approximation, we monotonically approach ν̃
from an initial point ν(0)<ν̃. Moreover, as we solve the rational

equation in the case where ψ(0)>1, ν can be simply initialized
as ν(0)=0.

Like Newton’s method, Algorithm 2 can be shown to have
an asymptotically quadratic convergence. However, whereas
Newton’s method successively interpolates ψ by its tangent,
Algorithm 2 interpolates ψ by a rational function, which leads
to faster convergence due to the convexity of the rational func-
tions in the considered interval. In the simulations, Algorithm 2
usually attains an accuracy of 10−9 within 4 iterations.

E. Stopping Criterion

As mentioned in Section III-A, ifS(t) is stationary for the ma-
jorizing function ĥ(S;S(t)), it is also stationary for the original
problem (4). Thus, to evaluate the quality of solution, we first
derive the following stationarity condition for ĥ(S;S(t)) in the
domain of problem (4) according to the C-stationarity defined
in Section V-A: for all p = 1, . . . , P and i = 1, . . . , I ,

∇dp
f̂(S;S(t))=

{
0, ‖dp‖2<1,

−‖∇dp
f̂(S;S(t))‖2dp, ‖dp‖2=1,

(25a)

and

{
∇zp,i f̂(S;S(t)) = −λej arg(zp,i), zp,i �= 0,

|∇zp,i f̂(S;S(t))| ≤ λ, zp,i = 0.
(25b)

Then we define the minimum-norm subgradient1 ∇Sĥ of an
extension of ĥ as follows [40]: for all p = 1, . . . , P and i =
1, . . . , I ,

∇S
dp
ĥ(S;S(t)) =⎧⎨⎩∇dp

f̂(S;S(t)), ‖dp‖2<1,

∇dp
f̂(S;S(t))− min{0,�(dH

p∇dp
̂f(S;S(t)))}

‖∇dp
̂f(S;S(t))‖2

dp,‖dp‖2=1,

∇S
zp,i

ĥ(S;S(t)) =

{
∇zp,i f̂(S;S(t)) + λej arg(zp,i), zp,i �= 0,

max{0, |∇zp,i f̂(S;S(t))| − λ}, zp,i = 0.

The minimum-norm subgradient ∇Sĥ(S;S(t)) vanishes at S(t)

if and only if S(t) fulfills the stationarity conditions (25). This
leads to a termination criterion that the minimum-norm subgra-
dient must be small, i.e., given a tolerance ε > 0,

‖∇S
Dĥ(S

(t);S(t))‖F ≤M1M2 ·
√
NP · ε

and ‖∇S
Zĥ(S

(t);S(t))‖F ≤M1M2 ·
√
PI · ε, (26)

where the sizes of measurements and variables are considered.

IV. PROPOSED ALGORITHM FOR FORMULATION PRDL

With the increase of diversity of linear measurement operator
F , the per-iteration complexity of compact-SCAphase dramati-
cally grows due to the computation of partial Hessians and SVD
of Hp. Therefore, in this section, we propose the SCAphase
algorithm for the conventional formulation (5) based on the same
extended-SCA framework as in Section III.

Let h(X,D,Z) = f(X,D,Z) + g(Z) denote the objec-
tive function in (5) with f(X,D,Z) = 1

2‖Y − |F(X)|‖2F +
μ
2 ‖X−DZ‖2F and g(Z) = ρ‖Z‖1. The first component f is
nonconvex and nonsmooth, and the sparsity regularization g is

1It is the (Clarke) subgradient with the minimum �2-norm for the extended-

value extension of ĥ, whose values at points with D /∈ D are set to infinity.
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convex but nonsmooth. In each iteration, we first find a descent
direction by solving a separable convex approximate problem
that is constructed based on a smooth majorization of f . Then all
variables are jointly updated along the descent direction by exact
line search, which ensures a decrease of the original function h.
An optional debiasing step, similar to that in Section III, can be
applied to the PRDL problem after a stationary point is obtained,
to further improve the accuracy.

A. Smooth Majorization and Separable Convex Approximation

Similarly, letS = (X,D,Z) be the collection of all variables.
In iteration t, we first derive a smooth majorizing function

f̂(S;S(t)) = 1
2‖Y

(t) −F(X)‖2F + μ
2 ‖X−DZ‖2F (27)

for f at the current point S(t) = (X(t),D(t),Z(t)) with Y(t) =

Y � ej arg(F(X(t))) by the property in (7). It has the partial
gradients

∇Xf̂(S;S
(t)) = F∗(F(X)−Y(t)) + μ(X−DZ),

∇Df̂(S;S
(t)) = μ(DZ−X)ZH,

∇Zf̂(S;S
(t)) = μDH(DZ−X). (28)

Note that f̂ is nonconvex due to the bilinear map DZ. Then
ĥ(S;S(t)) = f̂(S;S(t)) + g(Z) is a majorization of h at S(t).

We then minimize a separable convex approximation of the
majorizing function ĥ as ĥ is expensive to minimize exactly. The
best-response approximation for ĥ is given by

h̃(S;S(t))= f̃X(X;S(t))+f̃D(D;S(t))+f̃Z(Z;S
(t))+ρ‖Z‖1,

where f̃X(X;S(t)), f̃D(D;S(t)) and f̃Z(Z;S
(t)) denote the

approximate functions of f̂ over three block variables, respec-
tively. The approximate functions f̃D and f̃Z are constructed in
the same way as (10) in Section III.To limit the complexity of
minimizing h̃, we perform the best-response approximation on
each entry of X, which leads to the approximation

f̃X(X;S(t)) =
∑I
i=1

∑N
n=1 f̂(xn,i,X

(t)
−(n,i),D

(t),Z(t);S(t)),

where X−(n,i) is the collection of all entries of X except xn,i.
The approximate problem at the tth iteration then reads

(X̃(t), D̃(t), Z̃(t)) = argmin
X,D∈D,Z

h̃(S;S(t)). (29)

Likewise, problem (29) can be decomposed into independent
subproblems, each of which exclusively depends on a column
dp or a single variable xn,i or zp,i and can be solved in parallel.

Define ΔX = X̃(t) −D(t), ΔD = D̃(t) −D(t), and ΔZ =
Z̃(t) − Z(t). Then the following simultaneous update rule along
the descent direction (ΔX,ΔD,ΔZ) of ĥ(S;S(t)) is applied:

(X(t+1),D(t+1),Z(t+1)) = (X(t),D(t),Z(t))

+ γ(t)(ΔX,ΔD,ΔZ) (30)

with γ(t) ∈ [0, 1] being the step size. When (X̃(t), D̃(t), Z̃(t)) =
(X(t),D(t),Z(t)), the algorithm has converged to a stationary
point of the convex approximation h̃(S;S(t)), which is also
stationary for the majorization and the original problem (4).

In the following, the closed-form solutions for the sub-
problems decomposed from (29) are derived. First, since f̂ is
quadratic with respect toX, each subproblem involving an entry

xn,i is a univariate quadratic program and has a solution

x̃
(t)
n,i = x

(t)
n,i −∇xn,i

f̂(S(t);S(t))/∇2
xn,i

f̂ , (31)

where ∇2
xn,i

f̂=‖fn+(i−1)N‖22 + μ with fn+(i−1)N being the
(n+ (i− 1)N)th column of F in (3). Next, the P independent
subproblems decomposed from (29) that involve D are

d̃(t)
p =argmin

dp

1
2‖X

(t)−D
(t)
−pZ

(t)
−p−dpz

(t)
p:

T‖2F s.t. ‖dp‖2 ≤ 1,

(32)
which can again be solved via the KKT optimality system.
Unlike (13), problem (32) has a simple closed-form solution

d̃(t)
p =

̂dp

max{1,‖̂dp‖2}
with d̂p = d(t)

p − ∇dp
̂f(S(t);S(t))

μ‖z(t)
p: ‖22

. (33)

Then each subproblem involving an entry zp,i is a Lagrangian
form of univariate LASSO and has a closed-form solution [41]

z̃
(t)
p,i =

1

‖d(t)
p ‖22

S ρ
μ

(
‖d(t)

p ‖22z
(t)
p,i− 1

μ∇zp,i f̂(S
(t);S(t))

)
. (34)

B. Step Size Computation

Similarly to Section III-C, to efficiently find a step size γ(t) for
the update in (30) that ensures a decrease of the original function
in (5), we perform an exact line search on a differentiable upper
bound of ĥ, which is formulated as

γ(t)=argmin
0≤γ≤1

{
f̂
(
X(t)+γΔX,D(t)+γΔD,Z(t)+γΔZ;S(t)

)
+γ

(
g(Z̃(t))− g(Z(t))

)}
. (35)

Problem (35) is also a minimization of fourth-order polynomial
and can be solved analytically by rooting the derivative of the
objective function; we omit the straightforward details.

Finally, the proposed SCAphase algorithm for solving the
PRDL problem in (5) is outlined in Algorithm 3.

C. Stopping Criterion

If S(t) is stationary for the majorizing function ĥ(S;S(t)),
then it is also stationary for the original problem (5). Hence,
analogously to Section III-E, we derive the stationarity condition
for ĥ(S;S(t)) according to the concept of C-stationarity in
Section V-A. Based on the stationarity condition, the minimum-
norm subgradient of the extension of ĥ(S;S(t)) is introduced to
evaluate the quality of the current solution.

Similar to (25), for a stationary point of ĥ(S;S(t)), the gra-
dients ∇Df̂ and ∇Zf̂ given in (28) must satisfy the following
conditions: for all p = 1, . . . , P and i = 1, . . . , I ,

∇dp
f̂(S;S(t))=

{
0, ‖dp‖2<1,

−‖∇dp
f̂(S;S(t))‖2dp, ‖dp‖2=1,

(36a)

and

{
∇zp,i f̂(S;S(t)) = −ρej arg(zp,i), zp,i �= 0,

|∇zp,i f̂(S;S(t))| ≤ ρ, zp,i = 0.
(36b)

Then the components of the minimum-norm subgradient with
respect to matrices Z and D are defined in the same way as
in Section III-E. As for the gradient with respect to matrix X,
stationarity simply requires the gradient ∇Xf̂ to vanish, i.e.,

∇Xf̂(S;S
(t)) = 0. (37)

Thus, the component ∇S
Xĥ of the minimum-norm subgradient

with respect to X is simply defined as the gradient ∇Xf̂ .
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Algorithm 3: SCAphase.

In summary, the stationary conditions of the majorizing func-
tion ĥ(S;S(t)) consist of (36)–(37). The algorithm is terminated
when the minimum-norm subgradient is sufficiently small, i.e.,
with a given tolerance ε>0,⎧⎪⎨⎪⎩

‖∇S
Dĥ(S

(t);S(t))‖F ≤M1M2 ·
√
NP · ε,

‖∇S
Zĥ(S

(t);S(t))‖F ≤M1M2 ·
√
PI · ε,

‖∇S
Xĥ(S

(t);S(t))‖F ≤M1M2 ·
√
NI · ε.

(38)

D. Comparison With SC-PRIME

The proposed SCAphase algorithm and the state-of-the-art
SC-PRIME [23] adopt the same formulation, i.e., the PRDL
problem in (5), and the same successive majorization tech-
nique (27). However, there are two important differences
between the two algorithms. First, SC-PRIME updates the
variables in a block coordinate descent (BCD) manner, i.e.,
minimizes the majorizing function ĥ alternatively with respect
to each block variable X, Z, and each column of D, instead
of using parallel updates. Then, to avoid the expensive exact
minimization of ĥ, SC-PRIME minimizes a different separable
convex approximation for each block variable from SCAphase.
Instead of using the best-response approximation, SC-PRIME
further majorizes the LS function f̂ by replacing the partial Hes-
sian with respect to a block variable by the identity matrix scaled
by an upper bound of its eigenvalues. This majorization can be
minimized in closed form and a decrease of the original objective
function h is ensured without a step size search. However, since
the Hessian is typically ill conditioned, this majorization tends
to be conservative, which may lead to slow convergence. In con-
trast, the best-response approximation f̃ equivalently preserves
all diagonal entries of the Hessian but is not necessarily a ma-
jorization of the original function f . Thus, discarding the global
upper bound constraint provides more flexibility in designing an
approximation that yields faster convergence to a good stationary
point. This advantage is demonstrated numerically in Section VI.

V. CONVERGENCE AND COMPLEXITY

A. Convergence Analysis

For a nonsmooth optimization, the gradient consistency con-
dition [32, A2.2] in the classic MM algorithms and BSUM
requires the consistency of directional derivatives between the
original nonsmooth function and its majorant at the current
point in all directions, which apparently cannot be satisfied at a

non-differentiable point of the original function if the majorant
is restricted to be smooth, such as in the proposed algorithms. On
the other hand, the convergence in the SCA framework is only
established for composite problems with smooth loss functions.
Hence, neither the convergence analysis of MM nor that of SCA
can be applied to the proposed algorithms. In this subsection,
we establish the convergence of our proposed algorithms based
on a generalized concept of stationarity.

To this end, we first introduce a generalization of the subd-
ifferential of a function, since the usual convex subdifferential
does not exist at every point for a nonconvex function. Consider
a general continuous but nonconvex and nonsmooth function
f(s) : Rn→R that is locally Lipschitz [42, Def. 1]. It implies
that the Clarke directional derivative of f exists at every point
s ∈ R

n in any direction r ∈ R
n and is defined as [43]

f ◦(s; r) = lim sups′→s,t↓0
f(s′+tr)−f(s′)

t . (39)

The Clarke subdifferential (C-subdifferential) of f at s is then
defined based on the Clarke directional derivative as [43]

∂Cf(s) =
{
v ∈ R

n | vTr ≤ f ◦(s; r) ∀r ∈ R
n
}
. (40)

Now consider a general constrained problem

mins∈C f(s), (41)

where f is locally Lipschitz and C⊆R
n is a closed convex

set. One possible generalization of stationarity for the con-
strained nonsmooth problem (41) is the Clarke stationarity
(C-stationarity) [43], [44], which is defined as follows.

Definition 2 (C-stationarity): A point s∈R
n is said to be a

C-stationary point of problem (41) if it satisfies

0 ∈ ∂Cf(s) +NC(s), (42)

where NC(s) is the Clarke normal cone of set C at s [43].
Definition 2 is motivated by the following two facts. First,

condition (42) is a necessary condition for s being a locally
minimal point of problem (41) [43, Prop. 2.4.3], but not sufficient
unless problem (41) is convex, which is similar to the usual
stationarity condition in the smooth case. Second, Definition 2
is consistent with the usual concept of stationarity in the special
cases where the problem is smooth or convex. Particularly, the
stationarity conditions in (25) and (36) for the majorization
in compact-SCAphase and SCAphase, respectively, are special
cases of condition (42).

Although the above definitions of subdifferential and station-
arity are described for a problem with real-valued variables, the
same concepts can be immediately extended to the complex-
valued case.

Then we claim that the compact-SCAphase algorithm con-
verges according to the following theorem.

Theorem 3: Every limit point of the solution sequence
(D(t),Z(t))t generated by the compact-SCAphase algorithm is
a C-stationary point of problem (4).

Proof: See Appendix C.
A similar theorem can be claimed for SCAphase, since

compact-SCAphase and SCAphase can be viewed as instances
of the same extended SCA framework on different problems.

The classic MM algorithms possess the convergence to the
set of directional stationary points [32], which can be shown to
be a subset of C-stationary points by the definition of Clarke
directional derivative. Hence, compared to the classic MM
algorithms, which, in our problem, require a nonsmooth upper
bound and high computational complexity, the proposed algo-
rithms basically sacrifice the strictness of stationarity so as to
construct a surrogate problem that can be easily addressed.
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TABLE I
COMPUTATIONAL COMPLEXITY OF DOMINANT OPERATIONS IN EACH ITERATION

In [23], the authors address the convergence of SC-PRIME,
which employs the same smooth majorization in (7), under the
framework of BSUM [45]. However, the convergence analysis
in [23] is incomplete since the authors ignored the aforemen-
tioned fact that the gradient consistency condition required by
BSUM cannot be satisfied at non-differentiable points of the
original function. The convergence analysis in Appendix C can
be used to fill this gap and justify that SC-PRIME converges to
a stationary point of (5) corresponding to the same generalized
concept of stationarity, i.e., C-stationarity.

In addition, another extension of SCA framework is proposed
in [46] based on the difference of convex technique, which
differs from our proposed algorithm in the following two aspects.
First, the algorithm in [46] tackles a composite problem with a
smooth but not necessarily convex loss function and a nonconvex
nonsmooth regularization, whereas in this paper, as shown in (4)
and (5), a composite problem with a nonconvex nonsmooth
loss function and a convex but not necessarily smooth regu-
larization is addressed. Second, a different generalization of
stationarity is employed in [46] to establish the convergence.
The set of C-stationary points can be shown to be a subset
of the stationary points defined in [46] by the subadditivity of
C-subdifferential [43, Prop. 2.3.3].

B. Computational Complexity

In this subsection, we present a theoretic comparison on the
complexity of the proposed algorithms, compact-SCAphase and
SCAphase, and the state-of-the-art SC-PRIME [23].

As presented in Table I, for each algorithm, we count the num-
ber of flops [38] required by the dominant operations, such as
matrix-matrix multiplication, in each iteration, which reflects the
per-iteration complexity in the worst case where the flops are ex-
ecuted in sequence. The per-iteration complexity of the proposed
algorithms are dominated by three components: the computation
of gradient and partial Hessians of the smooth majorization f̂ ,
which are required for solving the convex subproblems, and the
computation of polynomial coefficients of the line search func-
tion in the step size computation. In the simulations, the rational
approximation algorithm employed by compact-SCAphase for
solving the subproblems requires 3 or 4 iterations to achieve
a precision of 10−9. Therefore, the complexity of the rational
approximation is comparable to that of computing a closed-form
solution as in SCAphase and SC-PRIME, which is negligible
compared to the other operations. In Table I, c(F) stands for
the complexity of the linear operator F or, equivalently, that
of its adjoint F∗, which depends on the structure of F and the
specific implementation. In principle, c(F) admits the bounds
2NI ·max{M1,M2} ≤ c(F) ≤ 2M1M2NI .

Compared to SCAphase, in the general case, compact-
SCAphase has a per-iteration complexity of higher order due
to the computation of partial Hessians and SVD of matrix Hp

in (14). However, in the special case with the linear operator F

Fig. 1. Multi-antenna Random Access Network.

in (43), such as Cases 1 and 2 in the simulations, the complex-
ity of computation of partial Hessians in compact-SCAphase
dramatically decreases and the SVD of Hp can be analytically
calculated given the SVD of A. Then compact-SCAphase and
SCAphase have comparable per-iteration complexity. On the
other hand, as shown in Fig. 2, compared to SCAphase, compact-
SCAphase typically uses half the number of iterations to achieve
a stationary point due to the reduction of variables, which makes
compact-SCAphase more competitive than SCAphase in the
case with F in (43).

Next, we compare the complexity of SCAphase and SC-
PRIME. The line search is not required in SC-PRIME as it
employs the BCD update. In the specific implementation of
SC-PRIME used in this paper, constant rough upper bounds
for the eigenvalues of the partial Hessians are used to construct
the surrogate subproblems and, hence, only the gradient of f̂ is
needed. However, compared to SC-PRIME, the additional line
search in SCAphase does not cause a significant increase on
the overall per-iteration complexity as several intermediate vari-
ables in the computation of gradient can be updated recursively.
For example, F(X(t)) required in (28) is updated recursively
by F(X(t+1)) = F(X(t)) + γ(t)F(ΔX), where F(ΔX) was
previously calculated in the computation of coefficients of line
search function. Thus, SCAphase and SC-PRIME also have sim-
ilar per-iteration complexity, especially in the case with a highly
diverse linear operator F , where the per-iteration complexity is
dominated by the complexity of F . On the other hand, with the
additional line search, SCAphase exhibits faster convergence in
terms of number of iterations.

Finally, we remark that, in contrast to the BCD update in
SC-PRIME, the computation of solutions of subproblems in
compact-SCAphase and SCAphase can be fully parallelized
with suitable hardware architectures.

VI. SIMULATION RESULTS

In this section, we compare the performance of the two
proposed algorithms and the state-of-the-art SC-PRIME [23]
on synthetic data in the context of blind channel estimation in
a multi-antenna random access network. All experiments were
conducted on a Linux machine assigned with two 2.3 GHz cores
and 7 GB RAM running MATLAB R2021b. Although, theo-
retically, all the subproblems in each iteration in the proposed
algorithms can be solved in parallel, for simplicity, the subprob-
lems involving different block variables (i.e., X, D, or Z) are
solved sequentially, whereas the computation of solutions for
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Fig. 2. Performance vs. densityL/P using compact-SCAphase (solid), SCAphase (dashed), and SC-PRIME (dotted) in Case 1 withN=64,M1=4N, I=16N .

subproblems involving the same block variable are parallelized
by using vectorization in MATLAB.

A. Simulation Setup

We consider a multi-antenna random access network with
magnitude-only measurements in Fig. 1. The base station is
equipped with N antennas and P single-antenna users with
unknown spatial signatures {dp∈C

N}Pp=1 sporadically access
the channel in I time-slots. In time-slot i user p transmits an
unknown information symbol zp,i �=0 with probability L/P
and zp,i=0 with probability (P − L)/P , where L defines
the expected sparsity level of the transmitted symbol vectors
zi=[z1,i, . . . , zP,i]

T, i = 1, . . . , I . With D=[d1, . . . ,dP ], the
received symbol vector xi=[x1,i, . . . , xN,i]

T at the antennas
is given by xi=Dzi, which cannot be directly observed due
to heavy phase errors caused by the phase noise of the local
oscillators in the down-converters and analog-to-digital con-
verters [47]. Hence, before down-converted and sampled, the
received signals are first processed by an analog mixing net-
work at radio frequency composed of analog phase shifters
and analog filters. Then the objective is to jointly learn the
spatial signature matrix D and the sparse transmitted symbol
vectors zi from spatially and temporally filtered subband mag-
nitude measurements, which can be expressed by the model
in (1), whereas the heavily corrupted phase measurements are
discarded. Furthermore, the subband measurements can be ac-
quired at a reduced sampling rate according to the bandwidth
of the respective subband filters. In this application, as shown
in Fig. 1, the linear operator F in (2) is interpreted as K
independent chains of linear spatial mixing networks {Ak∈
C
M1×N}Kk=1 and temporal mixing networks {Bk∈C

I×M2}Kk=1.
Note that the order of the spatial and temporal mixing is in-
terchangeable for each chain. In our simulations, the spatial
mixing networks {Ak}Kk=1 are generated from a standard com-
plex Gaussian distribution, and the following three particular
cases of linear operator F of different levels of diversity are
investigated:
� Case 1: Time-invariant spatial mixing and no temporal

mixing. In this case, F is interpreted by a single chain of
mixing networks, i.e., K=1. For simplicity, we omit the
subscript on the mixing networks and F reduces to

F(X) = AXB. (43)

Moreover, the temporal mixing is set to be B = I.
� Case 2: Time-invariant spatial mixing and STFT temporal

mixing. In this case, F can also be expressed by the
model (43), whereas the temporal mixing B is designed
to be the short-time Fourier transform (STFT) [16], which
can be implemented by analog subband filters.

� Case 3: Time-variant spatial mixing and no temporal
mixing. In this case, F is expressed by the model (2)
with K = I , and the kth temporal mixing is set to be
Bk = [0, . . . ,0, ek,0, . . . ,0] with ek being a standard

basis vector, which simply selects the kth snapshot. Also,
Ak is the spatial mixing network designed for the kth
snapshot.

The basic simulation setup is as follows. In each time-slot i,
L randomly selected elements of the true transmitted sparse
signal ztrue

i are set to be nonzero. The nonzero elements of ma-
trix Ztrue, all elements of spatial mixing matrices {Ak}Kk=1 and
the true spatial signature Dtrue are drawn from an i.i.d. standard
complex Gaussian distribution. The magnitude measurementsY
are generated according to (1) with additive white Gaussian
noise. The number of Monte-Carlo runs is 50.

From the solutions D and Z obtained by compact-SCAphase,
the variable X is constructed as X=DZ for the performance
evaluation. Note that the analog mixing network architecture
in Fig. 1 is also applicable in other applications of the phase
retrieval with dictionary learning problem such as diffraction
imaging, where various optical masks and filters can be used
to increase the diversity of the intensity measurements with the
objective to improve the signal recovery. In this application, the
signal X is the parameter of interest, and the dictionary D and
sparse code matrix Z are considered as nuisance parameters. In
contrast, in the considered application of multi-antenna network,
our main target is the spatial signature matrix D and transmitted
signals Z. Hence, only the estimation qualities of D and Z are
presented in the following simulations. However, the solution X
is still required in the disambiguation step, which is described
afterwards.

In both formulations (4) and (5), the variables can only be
recovered up to three trivial ambiguities. Specifically, any com-
bination of the following three trivial operations conserve the
magnitude measurements and the sparsity pattern ofZ: 1) global
phase shift: (X,Z)→(Xejφ,Zejφ), 2) scaling: (dp, zp:)→
(αpdp, α

−1
p zp:) with any αp∈C and αp �=0, 3) permutation:

(D,Z)→(DPT,PZ) with any permutation matrix P∈R
P×P .

Also, if no temporal mixing is applied, the signal in each
time-slot is measured independently and, hence, the global phase
ambiguity holds columnwise, i.e., (xi, zi)→(xie

jφi , zie
jφi).

A disambiguation step is required to measure the estima-
tion quality of the solutions. Let Xtrue=DtrueZtrue be the
true received signals. To resolve the global phase ambiguity,
the solution X is corrected by the global phase shift φ�=
argminφ∈[0,2π)‖Xejφ −Xtrue‖2F in the case with temporal mix-
ing, and the phase correction is applied columnwise with φ�i =
argminφi∈[0,2π)‖xiejφi − xtrue

i ‖22 for i = 1, . . . , I in the case
without temporal mixing. For the permutation ambiguity on D
and Z, a heuristic method is used to find the permutation that
best matches the ground-truth with respect to the normalized
cross correlation between columns in D and Dtrue. After per-
mutation, the estimation quality of D is evaluated by the mini-
mum normalized squared error (MNSE) defined as MNSE(D)=

min{αp∈C}Pp=1
(
∑P
p=1 ‖αpdp−dtrue

p ‖22)/‖Dtrue‖2F. As for Z, af-
ter permutation, we first perform the same global phase
shift ejφ

�
on Z or ejφ

�
i on each column zi and then
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the MNSE of Z is analogously calculated as MNSE(Z)=
min{βp∈C}Pp=1

(
∑P
p=1 ‖βpzp:−ztrue

p: ‖22)/‖Ztrue‖2F. Moreover, the
accuracy of the support of the estimated Z is evaluated by
F-measure = 2TP/(2TP + FP + FN), defined from the number
of correctly and incorrectly estimated nonzeros: true positives
(TP), false positives (FP), and false negatives (FN) [48].

B. Hyperparameter Choices

Sparsity parameter of the cPRDL problem in (4): The solution
for Z in problem (4) tends to 0 as λ→ ∞ and there exists an
upper bound λmax such that, for λ≥λmax, any point with Z=0
is stationary for problem (4) [49]. With knowledge of λmax,
the problem of searching for a suitable sparsity regularization
parameter λ for an instance is significantly reduced, since any
λ ≥ λmax is ineffective.

From the stationarity conditions (25), an upper bound
λmax = ‖Y‖F ·maxi=1,...,I{σmax(Fi)} (44)

can be derived, whereσmax(·) denotes the largest singular value.
For λ≥λmax, any point (D,0) with D ∈ D is stationary for the
original problem (4). Moreover, it is easy to verify that all points
(D,0) with D∈D are equally optimal for problem (4).

For the three investigated cases of linear operatorF ,λmax can
be further decreased. In Case 1 and 2, where the spatial mixing
is time-invariant, λmax can be decreased to

λmax = σmax(A) ·maxi=1,...,I

{∑M2

m=1 |bi,m| · ‖ym‖2
}
.

(45)
Then, in Case 3, λmax can be decreased to

λmax = maxi=1,...,I {σmax(Ai) · ‖yi‖2}. (46)
The intermediate derivations of the upper bounds λmax

in (44)–(46) can be found in Appendix D.
Regularization parameters of the PRDL problem in (5): Prob-

lem (5) has two regularization parameters μ and ρ. Similar to λ
in (4), ρ adjusts the sparsity level of matrixZ, whereasμ controls
the trade-off between the data fidelity and the approximation
quality of the sparse representation.

Similarly, for the sparsity parameter ρ in (5), there exists an
upper bound ρmax such that, for any ρ≥ρmax, problem (5) al-
ways admits a stationary point with Z=0. From the stationarity
conditions (36)–(37), we obtain an upper bound

ρmax = μ · σmax(F) · ‖Y‖F
/(
σ2
min(F) + μ

)
. (47)

σmin(·) denotes the smallest singular value, which may be zero.
Furthermore, in Case 1 and 3, where no temporal mixing is
applied, each snapshot xi is observed independently and, hence,
the upper bound ρmax can be decreased to
ρmax=maxi=1,...,I

{
μ · σmax(Ai)·‖yi‖2

/(
σ2
min(Ai)+μ

)}
.

(48)
Note that Case 1 can be viewed as a special case of Case 3 where
Ai = A for all snapshots. The derivations of the upper bounds
ρmax in (47)–(48) are provided in Appendix E.

Next, to analyze the effect of parameter μ, we write
the gradient ∇Xf̂ as ∇vec(X)f̂(X,D,Z;S

(t)) = (FHF+

μINI) vec(X)− (FH vec(Y(t)) + μ vec(DZ)) with the vec-
torized form in (3). Then the stationarity condition (37) can be
rewritten as

vec(X) = (FHF+ μINI)
−1FH vec(Y(t))

+
(

1
μF

HF+ INI

)−1

vec(DZ). (49)

As shown in (49), μ offers some control over how much the
value of vec(X) at a stationary point of ĥ is influenced by the
data fitting solution F† vec(Y(t)) and the sparse representation
vec(DZ). Also, the trade-off depends on both μ and FHF.
Thus, we propose to set μ to be proportional to σ2

min,nz(F),
where σmin,nz(·) denotes the smallest nonzero singular value.
However, a suitable ratio has to be found by experiments.

If training data are available, one can quickly obtain the
suitable values of the regularization parameters by grid search
with the upper bound λmax (ρmax) derived above, which is
how we choose the regularization parameters in our simulations.
Advanced approaches such as Expectation-Maximization-based
methods [50] may be applied for simultaneous estimation of
hyperparameters, which is subject of future research.

C. Computational Experiments

In the following, we evaluate the complexity and estimation
accuracy of the proposed algorithms under various parameter
setups, in comparison to SC-PRIME. The number of receive
antennas is set to N=64. The algorithms are terminated when
the minimum-norm subgradient has achieved the tolerance ε=
10−5 or after a maximum number of 2000 iterations. A following
debiasing step is performed with the same termination condition.
By default, the SNR is 15 dB, the spatial over-sampling rate is
M1/N=4, and I=16N time-slots are taken.

1) Case 1 – Time-Invariant Spatial Mixing and No Tem-
poral Mixing: We first consider the case without temporal
mixing. The regularization parameters are set as follows: μ=
σ2
min,nz(F)=σ

2
min,nz(A) for both SCAphase and SC-PRIME,

λ=0.7516λmax with λmax in (45) for compact-SCAphase, and
ρ=0.7516ρmax with ρmax in (48) for SCAphase. Although
SC-PRIME adopts the same formulation, i.e., problem (5), as
SCAphase, it typically requires a larger sparsity parameter ρ for
achieving a good solution, due to the loose majorization on the
data fitting term employed in the surrogate subproblems. Thus,
for SC-PRIME, ρ is set to be 0.7515ρmax and 0.7514ρmax in the
cases with P =N/2 and P =N , respectively.

Varying sparsity level: In the first simulation, as depicted
in Fig. 2, the performance of the algorithms is evaluated for
various choices of {P,L/P}. The number of users P is varied
in {N/2, N}, and the density of active users in each time-slot,
i.e., L/P , is limited to be {0.025, 0.05, 0.1, 0.2, 0.4}. As both
problems (4) and (5) are nonconvex, multiple random initial-
izations are used to increase the chance of finding the global
optimal solution. Specifically, for each Monte-Carlo trial, 10
initializations are performed, and the best reconstructed signal,
determined by the lowest objective function value, is retained
and further improved by a debiasing step. The total number of
iterations and computational time, including that of the debias-
ing step, are reported in Fig. 2. The robustness of the algorithms
to initialization is investigated afterwards in Fig. 3.

From Fig. 2, it can be observed that sparse channel access is
required, i.e., a small value ofL/P , for all algorithms to achieve
good recovery performance. However, in the extremely sparse
case, the received signals Xtrue=DtrueZtrue contain only few
linear combinations of columns of spatial signatureDtrue, which
results in a degradation of estimation qualities. Furthermore,
for all choices of {P,L/P}, SC-PRIME does not converge
within 2000 iterations. The solution obtained by SC-PRIME
within 2000 iterations can be improved by using a larger sparsity
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Fig. 3. Estimation quality vs. number of initializations using compact-
SCAphase (solid), SCAphase (dashed), and SC-PRIME (dotted) in Case 1 with
N=64, M1=4N, I=16N .

Fig. 4. Estimation quality vs. number of initializations using compact-
SCAphase (solid), SCAphase (dashed), and SC-PRIME (dotted) in Case 2 with
N=64, M1=4N, I=16N .

parameter ρ than that in SCAphase, as in the parameter setup of
this simulation. However, in Fig. 2, SC-PRIME still exhibits the
poorest accuracy performance for most choices of {P,L/P},
compared to the other algorithms.

In Fig. 2, when P = N/2, all algorithms show good recov-
ery performance, whereas compact-SCAphase and SCAphase
exhibit faster convergence. Moreover, compared to SCAphase,
compact-SCAphase uses half the number of iterations to attain a
stationary point. However, the reduction of CPU time achieved
by compact-SCAphase is not as significant as the reduced num-
ber of iterations because, as discussed in Section V-B, compact-
SCAphase has the highest per-iteration complexity. In contrast,
when the number of users is comparable to that of antennas, i.e.,
P =N , only compact-SCAphase achieves the given tolerance
within 2000 iterations. This is intuitive as in the regime of
P ≥N , and with sparse channel access, the information of the
users’ channels contained in the measurements is insufficient.
To resolve this challenge, a higher spatial oversampling rate
is required. Nevertheless, compared to SC-PRIME, compact-
SCAphase and SCAphase show a significant improvement of
estimation accuracy. Then, compared to SCAphase, compact-
SCAphase further improves the estimation quality of Z due to
fast convergence.

Varying number of initializations: In the second simulation,
we investigate the robustness of the algorithms to initialization.
The performance behavior of the algorithms with the number of
random initializations varied from 1 to 50 is presented in Fig. 3.
The number of users P and density are set to be {N/2, N}
and {0.05, 0.1}, respectively. In Fig. 3, for most choices of

{P,L/P}, all algorithms show similar robustness to initial-
ization as the estimation quality achieved by each algorithm
remains constant after the trial of10 initializations, and compact-
SCAphase possesses the lowest estimation errors. In the cases
with P = N , SC-PRIME shows a significant degradation on
the estimation quality compared to the proposed algorithms,
which, as demonstrated in Fig. 2, results from the fact that
SC-PRIME generally does not converge within the limit of
2000 iterations. Additionally, if only the spatial signature D
needs to be recovered, then 5 initializations are sufficient for
all algorithms to attain a good estimation accuracy. Particularly,
whenP = N/2, compact-SCAphase achieves a good stationary
point for D even with a single initialization.

2) Case 2 – Time-Invariant Spatial Mixing and STFT Tempo-
ral Mixing: Next, a temporal mixing network that performs the
same STFT independently on each output channel of the spatial
mixing network is introduced (see [16] for more details of the
STFT measurement model). For the STFT, we use an I-point
DFT, a rectangular window of length I/2, a hop size of I/4.
The above parameter setup results in a temporal oversampling
rate of 5. Similar to the previous simulation, in Fig. 4, the
estimation accuracy of the algorithms is evaluated as a func-
tion of number of initializations. We set P =N/2 and density
L/P ={0.05, 0.1}. The regularization parameters are chosen to
be λ=0.7525λmax, μ=σ

2
min,nz(F)=σ

2
min,nz(A)σ2

min,nz(B),
and ρ=0.7528ρmax and ρ=0.7523ρmax for SCAphase and SC-
PRIME, respectively, with ρmax in (47).

Comparing the results in Fig. 3 and 4, we observe that, given
a sufficient number of initializations, the estimation qualities
are significantly improved in the case with STFT temporal
mixing due to the increase of overall sampling rate. However,
all algorithms become less robust to initialization. In particular,
compact-SCAphase and SCAphase require 20 initializations
to attain a good stationary point, whereas SC-PRIME cannot
achieve the same estimation accuracy as the other algorithms
even with 50 initializations since, as we discussed, SC-PRIME
does not converge within 2000 iterations.

3) Case 3 – Time-Variant Spatial Mixing and No Temporal
Mixing: As discussed in Section V-B, compared to the other two
algorithms, compact-SCAphase has a per-iteration complexity
of higher order in the general case with a linear measurement
operator F in (2) with multiple chains of mixing networks.
Therefore, in the case with time-variant spatial mixing, we only
compare SCAphase with SC-PRIME, as the running time of
compact-SCAphase is unaffordable. As depicted in Fig. 5, the
accuracy and complexity of the algorithms are evaluated for
various choices of {P,L/P}. All parameters are the same as in
Fig. 2, except that the spatial mixing Ai for each snapshot is
generated independently.

What stands out in Fig. 5 is that the use of time-variant
spatial mixing overcomes the challenge of lack of diversity
in the extremely sparse case observed in Fig. 2. On the other
hand, the convergence rates of the two algorithms measured
by number of iterations in Fig. 5 are similar to that in Fig. 2.
However, due to the increased complexity of linear operator
F , the two algorithms possess similar per-iteration complexity.
Hence, compared to SC-PRIME, SCAphase exhibits a signifi-
cantly improved convergence rate in terms of both number of
iterations and computational time, when P =N/2.

Finally, we summarize the performance of the three consid-
ered cases. Comparing the two cases without temporal mixing,
i.e., Cases 1 and 3, we observe that the use of time-variant
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Fig. 5. Performance vs. density L/P using SCAphase (solid) and SC-PRIME (dashed) in Case 3 with N=64, M1=4N, I=16N .

spatial mixing in Case 3 overcomes the challenge of lack of
diversity observed in Case 1 in the extremely sparse case and
results in a better estimation quality. On the other hand, in the
case without temporal mixing, the signal in each time-slot is
measured independently and, hence, from the magnitude-only
measurements, the signals can only be recovered up to a global
phase ambiguity for each time-slot. Thus, the temporal mixing,
which is applied in Case 2, is introduced to further recover the
relative phase between the signals in different time-slots.

VII. CONCLUSION

In this paper, we introduce an extension of SCA framework
for the phase retrieval with dictionary learning problem. Two
efficient parallel algorithms are proposed by applying the ex-
tended SCA framework to two complementary formulations,
respectively. The first algorithm, termed compact-SCAphase,
employs a compact �1-regularized nonconvex LS formulation,
which avoids the auxiliary variables required in state-of-the-art
methods such as SC-PRIME and DOLPHIn. The second algo-
rithm, denoted by SCAphase, solves the conventional formula-
tion as in SC-PRIME. An efficient procedure based on rational
approximation is devised for solving the �2-norm constrained LS
subproblems under the SCA framework. For both algorithms, we
refined the search range for suitable values of the sparsity param-
eter. Simulation results on synthetic data in the context of blind
channel estimation in multi-antenna random access network
demonstrate the fast convergence of SCAphase compared to
SC-PRIME. Moreover, compact-SCAphase is more competitive
than SCAphase in terms of both computational complexity and
parameter tuning cost in the case with less diverse linear mea-
surement operators. Nevertheless, SCAphase also has several
advantages over compact-SCAphase. Compared to SCAphase,
the computational complexity of compact-SCAphase dramat-
ically grows with the increase of diversity of the designed
linear measurement operator. Also, SCAphase can easily include
potential side constraints on the signal of interest.

Several questions that have been answered for the classic
phase retrieval remain open for phase retrieval with dictionary
learning. First, further work needs to be done to establish the
theoretical conditions for a guaranteed unique recovery (up to
trivial ambiguities) of the dictionary and/or the sparse codes.
Moreover, the simulation results in Section VI show that multiple
random initializations are required for attaining (near-)global
minima of our nonconvex formulations. Hence, it is of great
interest to develop a more sophisticated initialization strategy
that can help avoid poor stationary points.

APPENDIX A
SUBPROBLEM (13) WITH F IN (43)

For the linear operator F in (43), the matrix F in the vec-
torized form is F = BT ⊗A and then we have Hp = (BT ⊗

A) · (z(t)p: ⊗ IN ) = (BTz
(t)
p: )⊗A. Let A = UAΣAV

H
A and

BTz
(t)
p: = UBΣBV

H
B be the compact SVDs of A and BTz

(t)
p: ,

respectively. The compact SVD of Hp can be analytically cal-
culated as [38]:

Hp = (UB ⊗UA)︸ ︷︷ ︸
U

(ΣB ⊗ΣA)︸ ︷︷ ︸
Σ

(VB ⊗VA)
H︸ ︷︷ ︸

VH

.

As a column vector, BTz
(t)
p: has VB=1 and only one nonzero

singular value ‖BTz
(t)
p: ‖2. Thus, we have UΣ = (UBΣB)⊗

(UAΣA) = (BTz
(t)
p: )⊗ (UAΣA), and the nonzero singular

values of Hp are given by ‖BTz
(t)
p: ‖2 · σAi , i=1, . . . , r, where

{σAi }ri=1 are the nonzero singular values of A and r=
rank(Hp)=rank(A). Consequently, vector cp in (16) can be
written as

cp=(BTz(t)p: )
H⊗(UAΣA)

H · vec(Y(t)
p )=ΣH

AU
H
AY

(t)
p BHz̄(t)p: .

Finally, after having obtained the dual optimal solution ν̃p by the
same procedure as described in Section III, we can also compute
the optimal solution d̃p using the SVD of A:

d̃p = VA

(
ΣH
AΣA + ν̃pIr

)†
cp.

APPENDIX B
PROOF OF THEOREM 1

The original rational function ψ(ν) in (16) and its derivative
ψ′(ν) can be rewritten as

ψ(ν) =
∑r
i=1

|ci|2
(δi−ν)2 and ψ′(ν) =

∑r
i=1

2|ci|2
(δi−ν)3

with the poles δ1 ≤ · · · ≤ δr < 0. We ignore the trivial case
where all poles δi are identical. Define ζ(ν) = F (ν;α, β)−
ψ(ν) with the approximate function F defined in (22). It is
sufficient to show that ζ(ν) < 0 for all ν > δr and ν �= ν(l).
To this end, define

ξ(ν) = ζ(ν)(β − ν)2
∏r
i=1(δi − ν)2.

Then ξ is a polynomial of degree 2r with real coefficients:

ξ(ν) = α
r∏
i=1

(δi − ν)2 − (β − ν)2
r∑
i=1

|ci|2
r∏

j=1,j �=i
(δj − ν)2.

(50)

The product rule for differentiation determines that ξ(ν(l)) = 0
and its derivative ξ′(ν(l)) = 0 since ζ(ν(l)) = 0 and its deriva-
tive ζ ′(ν(l)) = 0. Hence, ν(l) is a double root of ξ, and we can
extract the factor (ν − ν(l))2 and rewrite (50) as

ξ(ν) =
(
α−

∑r
i=1|ci|2

) (
ν − ν(l)

)2 ∏r−1
i=1(ν

2 − 2aiν + bi)

with appropriately chosen coefficients ai, bi ∈ R.
We claim that ν(l) is the only real double root of ξ in

(δr,+∞). To see this, observe from (23) that the pole of F
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Fig. 6. Original and approximate rational functions, r = 4.

β = 2
ψ′(ν(l))

∑r
i=1

δi|ci|2
(δi−ν(l))3

∈ (δ1, δr). The roots of ζ are also
the roots of ξ. The following result can be intuitively observed
from Fig. 6. Each interval (δi, δi+1) with δi �= δi+1 contains
either two real roots of ζ or the real part of a pair of complex con-
jugate roots. In contrast, if δi = δi+1 for some i = 1, . . . , r − 1,
it can be trivially identified from (50) that δi is a double root of
ξ. Hence, the real parts of the remaining 2r − 2 roots of ξ fall
in the interval [δ1, δr]. The claim is established; it can be proved
more formally by factorizing (50).

This argument shows that sign(ξ(ν)) remains constant
in [δr, ν

(l)) ∪ (ν(l),+∞). Therefore, it follows from (50)
that, for all ν > δr and ν �= ν(l), sign(ζ(ν)) = sign(ξ(ν)) =
sign(ξ(δr)) = −1. This implies that F (ν;α, β) < ψ(ν) for all
ν > δr and ν �= ν(l). �

APPENDIX C
PROOF OF THEOREM 3

In this paper, Algorithm 1 and Algorithm 3 are developed for
the phase retrieval with dictionary learning problem. However,
this framework can be easily generalized to another nonconvex
nonsmooth problem with a continuous and locally Lipschitz
objective function, and the convergence is ensured under several
assumptions on the approximate functions. Therefore, we first
demonstrate the convergence of the generalized algorithm for
the general constrained problem (41). Then we verify that the
required assumptions are satisfied in the compact-SCAphase
algorithm and, thus, Theorem 3 can be proved. In the follow-
ing analysis, for simplicity, we ignore the convex nonsmooth
regularization, e.g., the �1-regularization in (4). However, a
regularized problem can be written in the standard form (41)
with the reformulation in [29, Eq. (18)] and then the analysis
below can be directly applied.

Let f̂(s;w) be a smooth majorizing function of f in (41) at
w ∈ C and f̃(s;w)be a pseudoconvex approximation of f̂ (s;w)

at the same point w in the generalized algorithm. Precisely, f̂
and f̃ are constructed to satisfy the following assumptions:

(A1) f̃(s;w) is pseudoconvex in s ∈ C for any w ∈ C;
(A2) f̃(s;w) and f̂(s;w) are C1-smooth in s ∈ C for any

w ∈ C and continuous in w ∈ C for any s ∈ C;
(A3) f̂(s;w) ≥ f(s) ∀s,w ∈ C and f̂(w;w) = f(w) ∀w ∈

C;
(A4) ∇sf̃(w;w) = ∇sf̂(w;w) ∈ ∂Cf(w) ∀w ∈ C;
(A5) f̃(s; s(t)) has an attainable minimizer in C for t ∈ N, and

the sequence (s̃(t))t is bounded.
Then, under assumptions (A1)–(A5), the solution sequence

obtained by the generalized algorithm converges to a C-
stationary point of problem (41). The proof is as follows. The
convergence analyses of the MM algorithms [32] and the SCA
framework [29] for a smooth function f are actually equivalent
in the sense that they both rely on the two essential facts
corresponding to the two cases where the current point s(t) is a
fixed point and where s(t) is not a fixed point, respectively:

Fact 1: s(t) is a fixed point, i.e., a stationary point of the ma-
jorizing/approximate problem, if and only if it is a stationary
point of the original problem;

Fact 2: otherwise, if s(t) is not a fixed point, then a strict
decrease of f is obtained through the solution of the ma-
jorizing/approximate problem.

Similarly, in the following, we first justify that Facts 1 and 2, with
the generalized concept of stationarity, hold for our proposed
algorithm so as to demonstrate the convergence. First, if s(t)

is not a fixed-point, assumptions (A1), (A2), and (A4) ensure
that the minimizer of f̃ indicates a descent direction of the
majorizing function f̂ . Then a decrease of the original function
f is achieved in our proposed algorithm by exact line search on
f̂ in this descent direction:

f(s(t+1)) ≤ f̂(s(t+1); s(t)) < f̂(s(t); s(t)) = f(s(t)). (51)

Second, to avoid the exact minimization of the majorizing
function f̂(s; s(t)), which is required in the classic MM algo-
rithm, our algorithm develops a pseudoconvex approximation
f̃(s; s(t)) that is easier to minimize and retains the gradient of
f̂(s; s(t)) at s(t). Specifically, from the smoothness assumption
(A2) and subgradient consistency assumption (A4), we have

∂C f̃(w;w) +NC(w) = ∂C f̂(w;w) +NC(w)

⊆ ∂Cf(w) +NC(w) (52)

with ∂C f̃(w;w)={∇sf̃(w;w)} and ∂C f̂(w;w)=

{∇sf̂(w;w)} for any w ∈ C [43]. By the definition of
C-stationarity in (42), (52) justifies that Fact 1 holds for
our proposed algorithm. In other words, the minimization
of f̃(s; s(t)) is sufficient for determining whether s(t) is
a C-stationary point of f and, hence, the minimization of
f̂(s; s(t)) is not required.

If a fixed point is achieved in a finite number of iterations, then
Fact 1 ensures the convergence to a C-stationary point of the
original problem. Otherwise, by following the same procedures
as in [29], we show that (s(t))t asymptotically converges to a
C-stationary point of the original problem for t→ ∞, based on
Fact 2. Fact 2 implies that (f(s(t)))t is a monotonically decreas-
ing sequence, which, by the monotone convergence theorem,
converges to a local minimum of f in C, assuming that f is
bounded below in C. Thus, for any two convergent subsequences
(s(t))t∈T1⊆N and (s(t))t∈T2⊆N, it holds that limt→∞ f(s(t)) =
limt∈T1,t→∞ f(s(t)) = limt∈T2,t→∞ f(s(t)). Since f(s) is a con-
tinuous function, it follows that

f
(
limt∈T1,t→∞ s(t)

)
= f

(
limt∈T2,t→∞ s(t)

)
. (53)

Now consider a convergent sequence (s(t))t with limit point
z ∈ C, i.e., limt→∞ s(t) = z. Let z̃ be one minimizer of the
approximate function f̃(s; z) and define the set S(z) = {z̃ |
z̃ = argmins∈C f̃(s; z)}.Under the assumptions that f̃(s;w) is
continuous in both s andw, and that (s̃(t))t is bounded, it follows
from the maximum theorem [51, Sec. VI.3] that there exists
a convergent subsequence (s̃(t))t∈Ts⊆N with limt∈Ts,t→∞ s̃(t) ∈
S(z). Further applying the maximum theorem on the exact
line search problem implies that there exists a subsequence
(s(t+1))t∈Ts′⊆Ts that converges to z′ defined as z′ = z+ γ(z̃−
z), where γ is the step size obtained by the exact line search on
f̂(s; z) at z in the direction z̃− z. If z is not a C-stationary point
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of f , which, by (52), is neither a stationary point of the approx-
imate function f̃(s; z), then Fact 2 implies that f(z′) < f(z),
which contradicts (53). Therefore, any limit point of (s(t))t is a
C-stationary point of the original problem.

Moreover, provided that assumptions (A2) and (A3) are satis-
fied, assumption (A4) is satisfied under the following assumption
that is easier to verify:

(A6) ∇f̃(w;w) = ∇f̂(w;w) for any w ∈ C and f(s) is
directionally differentiable for all s ∈ C.

In other words, the convergence of the generalized algorithm
is also ensured under assumptions (A1)–(A3), (A5), and (A6).
The proof is as follows. Under the smoothness assumption (A2),
the directional derivative of f̂(s;w) in any direction r ∈ R

n is
given by f̂ ′(s;w, r) = rT∇sf̂(s,w) ∀s,w ∈ C. As f is direc-
tionally differentiable, the majorization assumption (A3) implies
that rT∇sf̂(w;w) ≥ f ′(w; r) ∀r ∈ R

n. It follows that, for all
w ∈ C and r ∈ Rn,

−rT∇sf̂(w;w) ≤ −f ′(w; r) ≤ f ◦(w;−r), (54)

where the last inequality comes from the definition of Clarke di-
rectional derivative in (39). By the definition of C-subdifferential
in (40), we conclude from (54) that ∇sf̂(w;w) ∈ ∂Cf(w) and,
consequently, assumption (A4) is satisfied.

Now, for the compact-SCAphase algorithm that solves (4),
it is trivial to verify that the assumptions (A1)–(A3), (A5),
and (A6) are satisfied. Consequently, the solution sequence
generated by compact-SCAphase converges to a C-stationary
point of problem (4) and Theorem 3 is proved. �

APPENDIX D
DERIVATION OF UPPER BOUND λmax

We derive the upper bound λmax for the sparsity parameter
λ in (4) using the stationarity conditions (25) with the gradients
in (9). Condition (25a) is trivial for Z=0 as ∇Df̂(D,0;S

(t))=
0 for anyD. Then, adopting the vectorized form in (3) forF and
the partition in (20), we can write the gradient ∇zp,i f̂ at Z = 0

as ∇zp,i f̂(D,0;S(t)) = −dH
pF

H
i vec(Y

(t)). It follows that

|∇zp,i f̂(D,0;S(t))|≤‖FH
i vec(Y

(t))‖2 (55a)

≤‖Fi‖2‖Y‖F, (55b)

where (55a) comes from the Cauchy–Schwartz inequality and
the constraint of problem (4), and the matrix �2-norm ‖Fi‖2 is
equal to the largest singular value of Fi, denoted by σmax(Fi).
Inequality (55) holds for any solution withZ = 0. Consequently,
comparing (55) with (25b) yields the following result. Define

λmax = ‖Y‖F ·maxi=1,...,I{σmax(Fi)}.
For λ≥λmax, any point (D,0) with D ∈ D satisfies the con-
ditions (25) and, therefore, is stationary for ĥ in the domain of
problem (4). Note that λmax above does not depend on the point
S(t) where the majorization is made. Hence, (D,0) is stationary
for ĥ taken at any point, including (D,0). This implies that,
for λ ≥ λmax, any point (D,0) is stationary for the original
problem (4). Also, it is easy to verify that all points (D,0) with
D∈D are equally optimal for both ĥ and h.

In addition, λmax can be further decreased in the investigated
cases 1 and 2 in Section VI, where the linear operator F is given

by (43). In this case, we have, for i = 1, . . . , I,

Fi = bi: ⊗A and FH
i vec(Y

(t)) = AHY(t)b̄i:. (56)

Then, directly substituting Fi in (56) into (55b), we obtain

|∇zp,i f̂(D,0;S(t))| ≤ ‖A‖2‖bi:‖2‖Y‖F. (57)

On the other hand, exploiting the structure of Fi in (56), we can
further derive the following inequality from (55a):

|∇zp,i f̂(D,0;S(t))| ≤ ‖AHY(t)b̄i:‖2≤‖A‖2‖Y(t)b̄i:‖2

= ‖A‖2 ·
∥∥∑M2

m=1 b̄i,my
(t)
m

∥∥
2
≤‖A‖2 ·

∑M2

m=1 |bi,m| · ‖ym‖2.
(58)

It is shown by Cauchy–Schwartz inequality that (58) is a tighter
bound for ∇zp,i f̂ than (57). Consequently, in the case with
F(X) = AXB, the upper bound λmax can be decreased to

λmax = σmax(A) ·maxi=1,...,I

{∑M2

m=1 |bi,m| · ‖ym‖2
}
.

Furthermore, in Case 3 in Section VI, where spatial mixing is
time-variant and temporal mixing is not applied, we have Fi =
ei ⊗Ai from the vectorized form in (63). Therefore, following
the same procedure as in (58), we obtain the following bound
for ∇zp,i f̂ tighter than (55b): |∇zp,i f̂(D,0)| ≤ ‖Ai‖2‖yi‖2.
Consequently, in Case 3, λmax can be refined to

λmax = maxi=1,...,I {σmax(Ai) · ‖yi‖2}.

APPENDIX E
DERIVATION OF UPPER BOUND ρmax

We derive the upper bound ρmax for the sparsity parameter
ρ in (5) using the stationarity conditions (36)–(37) with the
gradients in (28). Condition (36a) is trivial for Z=0 as, for
any X and D, ∇Df̂(X,D,0;S

(t))=0. As for (36b), we have

|∇zp,i f̂(X,D,0;S(t))|=μ|dH
pxi|≤μ‖dp‖2‖xi‖2≤μ‖xi‖2.

(59)
Meanwhile, an upper bound for ‖xi‖2 can be derived from the
vectorized form (49) of condition (37), which reduces to

vec(X) = (FHF+ μINI)
−1FH vec(Y(t)), (60)

for Z = 0. It leads to the following upper bound for ‖xi‖2:

‖xi‖2 ≤ ‖X‖F ≤ ‖(FHF+ μINI)
−1‖2‖F‖2‖Y‖F. (61)

As an oversampling operator F is considered, i.e., M1M2 ≥
NI , we have ‖(FHF+μINI)

−1‖2 = (σ2
min(F)+μ)

−1. Conse-
quently, combining (59) and (61) yields the following result.
Define

ρmax = μ · σmax(F) · ‖Y‖F
/(
σ2
min(F) + μ

)
. (62)

For ρ ≥ ρmax, there always exists a feasible point (X,D,0)
that satisfies the stationarity conditions (36) and (37), and is,
therefore, stationary for the majorizing function ĥ. As ρmax does
not depend on the point S(t) where the majorization is made,
following the same line of arguments as in Appendix D, we
further conclude that, for any ρ ≥ ρmax, the original problem (5)
admits a stationary point with Z = 0.

In the investigated cases 1 and 3 in Section VI, where temporal
mixing is not applied, the linear operator F and the correspond-
ing matrix F can be expressed as

F(X) =
∑I

i=1
AiXBi and F =

∑I

i=1
BT
i ⊗Ai, (63)

where Bi=[0, . . . ,0, ei,0, . . . ,0] selects the i-th snapshot xi
and Ai is the spatial mixing designed for xi. In Case 1, where
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the spatial mixing is time-invariant, all matrices Ai are set to be
the same value A. Substituting F in (63) into (62), we obtain

ρmax =
μ·maxi=1,...,I{σmax(Ai)}
mini=1,...,I{σ2

min(Ai)}+μ · ‖Y‖F.
However, the upper bound ρmax can be further decreased con-
sidering that each snapshot xi is observed independently when
temporal mixing is not applied. Using the matrix F in (63), we
can reformulate the stationary condition (60) as

xi = (AH
i Ai + μIN )−1AH

i y
(t)
i for i = 1, . . . , I.

This results in a tighter bound of ‖xi‖2 than (61):

‖xi‖2 ≤ ‖(AH
i Ai + μIN )−1‖2‖Ai‖2‖y(t)

i ‖2.
Thus, in Cases 1 and 3, the upper bound ρmax is refined to

ρmax=maxi=1,...,I

{
μ · σmax(Ai) · ‖yi‖2

/(
σ2
min(Ai) + μ

)}
.
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