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Abstract—Many wearable Internet of Medical Things (IoMT)
devices have limited computing power and small storage space.
Additionally, the healthcare data sensed by a single IoMT device
is not enough to train a sophisticated deep learning model. To
address these challenges, we propose a federated split learning
(FedSL) framework that allows for collaborative healthcare ana-
lytics on multiple IoMT devices with limited resources. Compared
to centralized learning, FedSL can protect user privacy by not
sending raw data over wireless networks. Furthermore, FedSL
offers more flexibility than other federated learning methods.
It enables even low-end IoMT devices to participate in model
training and result inference. Experimental results show that
our FedSL performs well on medical imaging tasks with different
data distributions.

Index Terms—Federated split learning, healthcare analytics,
Internet of Medical Things, user privacy, wearable devices.

I. INTRODUCTION

The Internet of Medical Things (IoMT) enables real-time
body data collection in a cost-effective way, which is changing
existing healthcare industries [1]. Moreover, with the success
of deep learning (DL) in medical diagnosis tasks, online
healthcare platforms can now train powerful models using data
from massive IoMT devices [2], [3]. This enables patients to
get telemedicine services quickly without visiting a clinic, and
doctors can make more reliable and faster decisions [4]. But
how to use wearable IoMT devices for collaborative healthcare
analytics is still a challenge, especially with limited resources.

Due to the highly sensitive nature of medical information,
sending IoMT data over wireless networks may pose a signif-
icant privacy concern. Recently, federated learning (FL) has
emerged as a potential solution to overcome this issue [5], [6].
However, FL requires all devices to train the full DL model,
which can be resource-intensive, especially for models with
millions of parameters [5], [6]. This is impractical for many
small-size and low-cost wearable IoMT devices, such as patch
sensors and smart watches [1]. To this end, the split learning
paradigm can be adopt to divide the complete DL model into
a server-side model and a device-side model [2]. By doing
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Fig. 1. An illustration of the proposed FedSL framework for IoMT devices.
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Fig. 2. One training round of FedSL in the IoMT-based healthcare system.

so, IoMT devices only need to train a small portion of the DL
model, effectively reducing their computational burden [7]. As
a federated variant of split learning, in this paper, we propose
a federated split learning (FedSL) framework to alleviate local
hardware requirements and support semi-distributed learning
while partially preserving user privacy.

II. FRAMEWORK DESIGN

As illustrated in Fig. 1, we propose a FedSL frame-
work for resource-limited wearable IoMT devices to train a
shared DL model collaboratively using the medical health-
care data collected. The set of devices is denoted as K =
{1, 2, . . . ,K}. The layers of the DL model are denoted as
L = {L1, L2, . . . , LN}. According to the depth of neu-
ral networks, the full DL model is divided into two sub-
networks [2]. Specifically, these high-level layers LS =
{Lc+1, Lc+2, . . . , LN} are kept at the server, while the low-
level layers LD = {L1, L2, . . . , Lc} are stored on IoMT
devices, where Lc is the cut layer [3]. FedSL’s model splitting
paradigm offers several advantages: 1) Similar to FL, FedSL
can fully utilize the distributed data collected by wearable
IoMT devices while preserving user privacy. This is achieved
by transferring only the intermediate features extracted by
the device-side model to the server, enabling collaborative
model training without disclosing sensitive raw data. 2) Un-
like FL, which requires clients with sufficient computing
and storage resources, FedSL enables computing-limited and
storage-constrained IoMT devices to participate in the model
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Fig. 3. Normal chest X-ray image (left) versus viral pneumonia image (right).

training process. This is because only shallow neural networks
are computed on these devices, reducing computational and
storage requirements. Compared to the scheme in [7], FedSL
only needs one edge server to coordinate model training,
and thus the communication flow is different. Specifically, as
shown in Fig. 2, each training round of FedSL has two stages.

• Stage 1 (Multi-user split learning): At the beginning, all
devices feed sub-networks with mini-batch data samples
in sequence or parallel. Next, the smashed data obtained
at the cut layer and the label are sent to the edge server
for completing the rest of the forward propagation [7].
Then, with the loss values obtained at the output layer,
the gradients are computed for different devices and back
propagated from the server to devices.

• Stage 2 (Federated sub-network averaging): In the
sequel, to share knowledge and accelerate convergence,
all devices upload their updated sub-network parameters
to the server. After aggregation, the averaged sub-network
parameters are sent back to all devices for the next
training round [5], [6]. The learning process terminates
when the loss value stabilizes or the maximum number
of training rounds is reached.

III. EXPERIMENTAL RESULTS

We conduct simulations in an IoMT-based healthcare mon-
itoring system with K = 5 devices. Specifically, an 18-layer
ResNet is employed to classify Chest X-Ray (two classes
as shown in Fig. 3) and Optical Coherence Tomography
(OCT, four classes) images [4] with independent identically
distributed (IID) and non-IID settings. The cut layer is set as
Lc = 3, the learning rate is 10−4, and the maximum number
of training rounds is 400. For comparison, we consider four
schemes: i) Centralized learning (CL), ii) FL, iii) Sequential
FedSL, and iv) Parallel FedSL.

Fig. 4 shows the learning performance of training ResNet-
18 on the Chest X-Ray dataset with IID and non-IID settings.
From this figure, we have the following observations: 1) In
the first half of the training process, the sequential FedSL
scheme is able to achieve similar performance to CL, while
the parallel FedSL scheme is close to the FL baseline. This is
because in the sequential FedSL scheme, the server only needs
to train one server-side model for all devices, while in the
parallel FedSL scheme, the server needs to compute different
sub-networks for different devices in parallel. 2) When the
number of training rounds is greater than 50, the performance
gap between any two schemes is very small. This is due to the
fact that the DL model is well trained in the second half of
all schemes, and thereby all schemes achieve almost similar
prediction accuracy. 3) Compared to the IID setting, these
results in the non-IID case fluctuate more significantly and the
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Fig. 4. Accuracy on the chest X-Ray dataset with IID and non-IID settings.
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Fig. 5. Prediction accuracy on the OCT dataset with IID and non-IID settings.

sequential and parallel FedSL schemes slightly outperform the
traditional CL and FL benchmarks, respectively. This shows
that our FedSL has good adaptability to the non-IID datasets.
Similar observations can be seen in Fig. 5, due to the page
limit, we omit the analysis here for brevity. Please go to
our site at https://github.com/niwanli/FedSL-IoMT for more
details. Overall, the findings above reveal the effectiveness and
superiority of the proposed FedSL in healthcare systems.

IV. CONCLUSION

In this paper, we proposed the FedSL framework to im-
plement medical data analysis on multiple wearable IoMT
devices. This framework is friendly to resource-constrained,
low-cost terminals in comparison to traditional CL and FL
schemes, especially when the size of the trained DL model is
large. Furthermore, since only intermediate features are shared
between servers and devices, our FedSL can protect user
privacy partially without compromising data accessibility, thus
making it suitable for privacy-sensitive cases. Experiments
showed that our FedSL achieves the similar performance as
FL, and the gap between FedSL and CL is small.
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