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Abstract—Graph signals arise in various applications, ranging
from sensor networks to social media data. The high-dimensional
nature of these signals implies that they often need to be compressed
in order to be stored and transmitted. The common framework
for graph signal compression is based on sampling, resulting in
a set of continuous-amplitude samples, which in turn have to be
quantized into a finite bit representation. In this work, we study the
joint design of graph signal sampling along with quantization, for
graph signal compression. We focus on bandlimited graph signals,
and show that the compression problem can be represented as
a task-based quantization setup, in which the task is to recover
the spectrum of the signal. Based on this equivalence, we propose
a joint design of the sampling and recovery mechanisms for a
fixed quantization mapping, and present an iterative algorithm for
dividing the available bit budget among the discretized samples.
Furthermore, we show how the proposed approach can be realized
using graph filters combining elements corresponding the neigh-
bouring nodes of the graph, thus facilitating distributed implemen-
tation at reduced complexity. Our numerical evaluations on both
synthetic and real world data shows that the joint sampling and
quantization method yields a compact finite bit representation of
high-dimensional graph signals, which allows reconstruction of the
original signal with accuracy within a small gap of that achievable
with infinite resolution quantizers.

Index Terms—Graph signal compression, task-based quanti-
zation, graph filter, sampling, bit allocation.

I. INTRODUCTION

RAPID development of information and communication
technology, has lead to a growing need to process and

store high-dimensional signals [2]. In many families of signals,
such as those representing communication networks, social me-
dia data, and sensors deployment, the interactions between the
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elements of the signal obey some graphical structure. Graph
signal processing (GSP) has emerged as a promising technique
to deal with such complex signals [3], [4].

The high-dimensional nature of graph signals gives rise to the
need of compressing them [5]. A leading strategy to compress
graph signals is based on sampling their elements [6], [7], [8].
Sampling techniques typically build upon the frequency analysis
of graph signals, which is a fundamental tool in GSP, utilized also
for processing such as denoising [9], [10] and interpolation [11].
Generally speaking, the graph signal values associated with the
two end vertices of edges with large weights in the graph tend
to be similar [12]. This property, often observed in practice,
leads to spectral sparsity, and the resulting signals are referred
to as bandlimited [13]. Basic graph sampling theory focuses
on bandlimited graph signals and relates the spectral support
to the number of samples required for representing the signal
such that it can be reconstructed from noiseless samples [6].
Nonetheless, in the presence of noise, it is often challenging
to determine how to select which nodes to sample. In general,
sampling set selection is an NP-hard issue, which is often tackled
using greedy approaches [14]. Recently, sampling theorems for
non-bandlimited graph signals, exploiting sparsity in domains
other than the spectral domain, were proposed in [7], [8].

A key characteristic of graph signal compression by sampling
stems from the fact that it represents the signal by a set of
continuous-amplitude samples, where the number of samples is
treated as the compression dimension. However, when storing
and transmitting graph signals, the level of compression is mea-
sured in the number of bits, rather than continuous-amplitude
samples, required for representing the signal. This implies that
graph signal compression should involve not only sampling, but
also quantization [15]. To date, existing works on quantization
in GSP, e.g., [16], [17], [18], [19], [20], focus on applying
GSP methods to graph signals with quantized elements [16],
[17], [18], [19] or quantizing sampled graph signals [20], rather
than designing joint sampling and quantization methods for
compressing such signals. This motivates the design of graph
signal compression schemes which combine both sampling as
well as quantization designed in a joint manner as papers on
ADC compression.

In this work, we propose a compression method for ban-
dlimited graph signals which maps a high-dimensional sig-
nal into a finite-bit representation via sampling and quantiza-
tion. Our compression method is inspired by the recently pro-
posed task-based quantization framework [21], [22], [23], [24],
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[25], [26]. Task-based quantization studies the acquisition of
multivariate continuous-amplitude signals in order to recover
some underlying information vector, while operating under an
overall bit budget. This is achieved by processing the signal using
a dimensionality-reducing combining mapping, carried out in
the analog domain, followed by scalar quantization and digital
processing, all jointly designed to recover the task vector [25].
Our ability to treat graph signal compression as task-based quan-
tization stems from the observation that graph signal sampling
can be viewed as an analog combining operation, while the
task in reconstructing bandlimited graph signals is the recovery
of their spectrum. Unlike the original task-based quantization
formulation, which focused on the design of analog-to-digital
convertors (ADCs), and thus considered identical quantization
mappings applied to each sampled element, here we consider
a compression problem rather than signal acquisition, and thus
does not enforce this restriction.

Our proposed sampling and quantization design employs a
graph filter prior to the quantization operation. We consider two
types of such graph filters. The first is an unconstrained graph
filter, which is allowed to carry out arbitrary linear operations
on the graph signals during the sampling procedure. For the
unconstrained setup, we begin by studying the case in which
the number of bits used for representing each sample is fixed,
and derive the sampling operator that minimizes the recovery
mean-squared error (MSE). Then, we consider an overall bit
budget, and optimize the number of bits assigned to each sample.
We identify a sufficient condition for which the allocation is
optimized by using identical quantizers, i.e., as in conventional
task-based quantization [21].

The second choice of filter corresponds to frequency domain
graph filters [8]. These filters are constrained to represent local
computations, such that each node can be combined only with
neighbouring nodes. Frequency domain graph filters notably fa-
cilitate distributed implementation, compared to unconstrained
graph samplers which may require each sample to be produced
by observing the entire graph [27]. For this constrained family,
where the sampling operation is modeled by the selection of a
subset of the outputs of a frequency domain graph filter, we first
derive the sampling set and the corresponding assigned number
of bits. Then we propose an alternating optimization algorithm
to design the filter along with the overall compression system.

Our simulation study considers graph signal compression
in three different applications: signals representing sensor net-
works; meteorological real-world data; and natural images. We
consistently demonstrate that the proposed algorithm results in a
distortion which is within a minor gap of that achievable without
bit constraints, while yielding notably more accurate represen-
tations of the graph signal under a given bit budgetcompared to
separately designed sampling and quantization.

The rest of the paper is organized as follows: Section II intro-
duces the graph signal model, and formulates the compression
problem. In Section III, the compression scheme is presented for
generic graph filters, while frequency domain graph filters are
considered in Section IV. Section V details numerical simula-
tions. Finally, Section VI provides concluding remarks. Detailed
proofs are delegated to the Appendix.

Throughout the paper, we use lower-case (upper-case) bold
characters to denote vectors (matrices). The transpose, pseudo-
inverse and trace of a matrix A are respectively denoted as AT ,
A† and Tr(A), while (A)i,j is the (i, j)th entry of A, and AS
represents a sub-matrix of A with rows indexed by S . For a
vector a, ai is its i-th element, and diag(a) is a diagonal matrix
with a on its main diagonal. For a scalar a, �a� and �a� represent
the round up and round down for a, respectively. We use R for
the set of real numbers,Z for the integers, and 1A is the indicator
function for event A.

II. SYSTEM MODEL

In this section we present the system model for which we
derive the joint sampling and quantization compression method.
We first discuss the graph signal model in Subsection II-A,
followed by a brief review of graph sampling and quantization
in Subsection II-B, and a formulation of the considered problem
in Subsection II-C.

A. Bandlimited Graph Signal Model

We consider an undirected and weighted graph G =
(V, E ,W), in which V = {v1, v2, . . ., vN} is the set of nodes
and E is the set of edges. Let W ∈ C

N×N be the adjacency
matrix, such that its (i, j)th element Wi,j models the similar-
ity/relationship between nodes i and j. A graph signal is a func-
tion f : V → R

N defined on the vertices ofG. We adopt the sym-
metric normalized Laplacian matrix L = I−D−1/2WD−1/2

as the variation operator, where D = diag{d1, d2, . . ., dN} is
the degree matrix whose ith diagonal element is given by di =∑

j Wi,j . Since L is diagonalizable, there exists an orthogonal
matrixU and a diagonal matrixΛ satisfyingL = UΛUT . For a
graph signalx ∈ R

N defined overG, its graph Fourier transform
(GFT) is defined as x̂ = UTx. The graph signal is bandlimited if
there exists an integerK ≤ N such that its GFT satisfies x̂k = 0
for all k ≥ K. The smallest value of K denotes the bandwidth
of f . Bandlimited graph signals can be expressed as UKc,
where UK is the first K columns of U, while c ∈ R

K is the
frequency representation. Here, we consider a noisy observation
of a bandlimited graph signal, given by

x = UKc+w, (1)

where w is an i.i.d. zero-mean noise with variance σ2
0 .

As in the classical factor analysis model [12], we impose
a Gaussian prior on the spectral representation c. Specifically,
we assume that c follows a degenerate zero-mean multivari-
ate Gaussian distribution such that c ∼ N (0, Λ̂), where Λ̂ =
diag{σ2

1 , σ
2
2 , . . ., σ

2
K}, and σ2

i represents the variance for i-th
spectral representation ci for i ∈ {1, . . . ,K}. Under this model,
the signal x obeys a zero-mean multivariate Gaussian distribu-
tion with covariance matrix:

Cx = UKΛ̂UT
K + σ2

0I = UΛ̃UT , (2)

where

Λ̃ = diag
{
σ2
1 + σ2

0 , σ
2
2 + σ2

0 , . . ., σ
2
K + σ2

0 , σ
2
0 , . . ., σ

2
0

}
. (3)
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The joint Gaussianity of c and x implies that the minimum
MSE (MMSE) estimate of the spectrum c from the noisy graph
signal x is given by c̃ = Γ∗x, where

Γ∗ = Λ̂(Λ̃K)−1UT
K . (4)

Here, Λ̃K represents a K ×K matrix representing the first K
rows and first K of Λ̃. The resulting estimation error is given by

E{‖c̃− c‖2} = Tr
(
Λ̂−UKΛ̃2UT

KC−1
x

)
. (5)

B. Sampling and Qauntization of Graph Signals

In this work, we combine sampling and quantization for
compressing bandlimited graph signals. We thus next briefly
recall some basics in graph signal sampling and quantization,
starting with the definition of vertex-domain sampling:

Definition 1 (Vertex-domain sampling [8]): A vectory ∈ R
P

is the vertex-domain sampling of a graph signalx ∈ R
N , if there

exists Ψ ∈ R
P×N such that y = Ψx and P < N .

Vertex-domain sampling, abbreviated henceforth as sam-
pling, often restricts Ψ to be a submatrix of the N ×N identity
matrix [6]. This results in the elements of y being also elements
of x. Nonetheless, graph sampling operations and their corre-
sponding methods for reconstructing x from y are studied in
the literature for various forms of Ψ [8]. Sampling matrices
can be generally written as Ψ = ISF, where IS ∈ R

P×N is a
row-selection matrix, F ∈ F ⊆ R

N×N is a graph filter, and F
is the set of feasible graph filters.

We separately consider two forms of graph filters. The first
type is referred to as unconstrained graph filters:

Definition 2 (Unconstrained graph filter): An unconstrained
graph filter can be any N ×N matrix, i.e., F = R

N×N .
For unconstrained graph filters, the sampling matrix Ψ can

be any matrix in R
P×N . The application of sampling using

unconstrained graph filters requires the entire graph signal to
be available for generating each sample, i.e., each element in
the sampled y can be affected by every node in the graph. Such
sampling procedures may be challenging to implement, partic-
ularly when dealing with high-dimensional graph signals. This
motivates the restriction to graph sampling procedures which
involve only local operations, where each sample is affected only
by a subset of neighbouring nodes. Such sampling mechanisms
can be realized by constrainingF to represent frequency-domain
filtering, defined next:

Definition 3 (Frequency-domain graph filter [7]): The set
of frequency-domain graph filters defined over a graph G with
Laplacian L = UΛUT is given by

F = {F = UF (Λ)UT |F (Λ) is diagonal}. (6)

Similarly to unconstrained graph filters in Definition 2,
frequency-domain graph filters are also linear operators, and
are thus represented via a sampling matrix Ψ ∈ R

P×N . The
constraint to represent a frequency-domain graph filter indicates
that Ψ should be of the form Ψ = ISUF (Λ), and thus the
sampled vector y is given by

y = ISUF (Λ)x̂. (7)

The representation of the graph sampling operation via (7)
notably facilitates distributed operation compared with sampling
using unconstrained graph filters. This follows since (7) can be
approximated by interpolation [28], resulting in the frequency-
domain graph filter being expressed as a matrix polynomial
function with respect to L. In particular, a frequency domain
graph filter restricted to combining elements corresponding the
neighbouring nodes of the graph implies that F (Λ) should
be a polynomial function with respect to Λ, i.e., F (Λ) =∑K0

i=0 βiΛ
i, for some coefficients {βi}, where K0 is the length

of the polynomial [27].
Next, we discuss the considered quantization rule. While in

general, quantization encapsulates a broad range of continuous-
to-discrete mappings [15], here we focus on conventional uni-
form scalar quantizaiton, defined as follows:

Definition 4 (Uniform quantization): A uniform quantizer
with resolution M , support γ, and step size δ = 2γ

M , is the
mapping

QM (x) �
{
δ
(�x

δ �+ 1
2

)
, if |x| < γ,

sign(x)
(
γ − δ

2

)
, else.

The non-linear nature of quantization mappings results in a
complex model for the distortion induced in this procedure, i.e.,
the term x−QM (x). In our analysis we model the quantization
operation as non-subtractive dithered quantization, obtained by
adding noise of a triangular distribution over [−δ, δ] prior to
uniform quantization [24], [29]. The main motivation for this
model is that it results in the distortion being uncorrelated
with the input signal when the quantizer is not overloaded, i.e.,
|x| ≤ γ. This model, which notably facilitates the design and
analysis of quantization systems, is also a good approximation
of the distortion model for various quantizer input distributions
without dithering as analyzed in [30] as demonstrated in [21].

C. Problem Formulation

We consider the problem of compressing a noisy graph signal
x into a digital representation comprised of log2 M bits. This
compressed version should preserve the information required
to reconstruct the bandlimited graph signal UKc. We assume
that the structure of the graph signal and its spectral support are
known, i.e., UK is given.

Since the volume of the representation is limited in its overall
number of bits, we study compression mechanisms consisting
of both sampling and quantization, as defined in Subsection
II-B. In such a system, the graph signal is first sampled by
applying the P ×N matrix Ψ, with P < N , and the entries
of the sampled y = Ψx are then discretized by the uniform
quantizers {QMi

(·)}Pi=1, resulting in the finite-bit representation
Q(y) = [QM1

(y1), . . . , QMP
(yP )]

T . The overall bit constraint
implies that

∑P
i=1 log2 Mi ≤ log2 M .

As quantization inherently results in lossy compression [31],
Ch. 23], we do not aim to perfectly recover x, and use the
MSE as our design objective. Consequently, the joint design of
the sampling and quantization mappings can be formulated as
recovering the digital representation from which the bandlimited
portion of x, i.e., UKc, can be reconstructed most accurately.
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Fig. 1. Graph signal compression by sampling and quantization.

This is mathematically formulated as

min
Ψ,Q(•)

E

{
‖UKc− E {UKc|Q(Ψx)}‖2

}
,

s.t.
P∑
i=1

log2 Mi ≤ log2 M, Mi ∈ Z
+, i ∈ P, (P1)

where P � {1, 2, . . . , P}. In the following sections we jointly
design the resulting compression system based on (P1).

III. JOINT SAMPLING AND QAUNTIZATION METHOD WITH

UNCONSTRAINED GRAPH FILTERS

In this section we derive joint sampling and quantization
methods for graph signal compression with unconstrained graph
filters. To that aim, we first present in Subsection III-A an
alternative problem formulation, obtained by introducing some
relaxations to (P1). Then, we present the MSE minimizing
system design in Subsection III-B, and provide a greedy-based
algorithm to tackle it in Subsection III-C.

A. Alternative Optimization Problem

The problem formulation (P1) characterizes the graph signal
compression setup as designing the sampling matrix Ψ and the
scalar quantizers Q(•). The resulting setup bears much simi-
larity to task-based quantization, proposed as a framework for
designing ADCs to extract information from an acquired analog
signal [21], [22], [23], [24]. To exploit task-based quantization in
graph signal compression, we formulate an alternative problem
based on (P1), which can be tackled using these techniques.

First, we note that since the unitary matrix U and its sub-
matrix UK are known, recovering the MMSE estimate of x, as
formulated in (P1), is equivalent to the corresponding estimation
of c. We thus henceforth refer to c as the task vector. Further-
more, recalling the definition of c̃ = E{c|x} = Γ∗x, then by
the orthogonality principle, designing Q(•) and Ψ to minimize
the MSE w.r.t. c is the same as designing them to minimize the
MSE w.r.t. c̃. The objective in (P1) thus becomes

min
Ψ,Q(•)

E

{
‖c̃− E {c̃|Q(Ψx)}‖2

}
. (8)

Next, we relax (8) by focusing on linear recovery. Our motiva-
tion for considering linear schemes stems from their analytical
tractability, and since they are commonly used for reconstructing
sampled graph signals [8]. The compression system is designed
such that the desired vector c can be recovered from Q(Ψx)
using a filter Φ ∈ R

K×P , i.e., the recovered c is given by
ĉ = ΦQ(y), where y = Ψx. This compression and recovery
system is illustrated in Fig. 1.

Quantizers are typically designed to operate within their
dynamic range [15]. Therefore, following [21], we guarantee
that the probability of overloading the quantizers is sufficiently
small, i.e., that Pr(|(Ψx)i| > γi) ≈ 0, by fixing the support
of the ith quantizer to γ2

i = η2E{(Ψx)2i } for each i ∈ P . For
instance, setting η = 2 results in overloading probability < 5%.
When the overloading probability vanishes, then the output of
the dithered quantizers can be written as [29]

Q (Ψx) = Ψx+ eQ, (9)

where the quantization error vector eQ has i.i.d. zero-mean
entries of variance δ2i /4 (with δi = 2γi/Mi), i.e.,

G � E
{
eQe

T
Q

}
= diag

{
γ2
1

M2
1

,
γ2
2

M2
2

, . . . ,
γ2
P

M2
P

}
. (10)

While our setting of γ2
i achieves a small yet non-zero over-

loading probability, we design the compression mechanism by
utilizing the model in (9), which rigorously holds when the
overloading probability is zero, as proposed in [21], [22].

To summarize, the alternative optimization problem based on
which we design our scheme is given by

min
Ψ,Φ,{Mi}

E

{
‖Γ∗x−Φ(Ψx+ eQ)‖2

}
,

s.t.
P∑
i=1

log2 Mi ≤ log2 M, Mi ∈ Z
+, i ∈ P. (P2)

Problem (P2) constitutes a simplification and a relaxation of
the original (P1), and is equivalent to (P1) when the the dithered
quantizers are not overloaded. A key benefit of using the relaxed
optimization problem (P2) stems from the fact that it can be
treated as a task-based quantization problem. In task-based
quantization, an analog filter is designed along with the overall
acquisition system in light of the system task [21]. Here, the
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sampling operation implements the pre-quantization combining,
and the system task is to recover the vector c (via its MMSE
estimate). However, as task-based quantization focuses on the
design of ADCs operating in a serial manner, it is restricted to
utilizing identical quantizers, i.e., each quantizer uses the same
number of bits, while our graph signal compression problem
does not share this restriction. Therefore, our design based on
(P2), given in the following subsection, combines task-based
quantization methods with dedicated bit allocation techniques.

B. Compression System Design

In this section, we design a joint graph signal sampling
and quantization scheme based on the identified relationship
between such setups and task-based quantization in (P2). Di-
rectly solving (P2) is difficult due to the coupling between
its optimization variables, combined with the non-linear re-
lationship between these parameters and the statistical model
of the quantization error, observed in (10). Therefore, in the
following, we first design the sampling matrix based on (P2) for
a fixed bit allocation, i.e., when {Mi} is given. To motivate our
quantization-aware design, we first discuss the intuitive setting
of frequency-domain sampling.

Example 1: A natural approach to sample bandlimited graph
signals is to set the sampling matrix to be Ψ = UT

K (where if
P > K, it is padded with zeros, effectively usingK quantizers).
This approach samples by filtering the frequency components of
the noise w in (1) that are outside the signal frequency support.
Using (9), the compressed signal here can be expressed as

Q (Ψx) = c+UT
Kw + eQ. (11)

The compressed signal in (11) is given by the desired spectral
components c corrupted by a distortion term UT

Kw + eQ that is
uncorrelated with c. Further, this distortion term is comprised of
uncorrelated entries, where the variance of its ith entry by (10)
is

σ2
0 +

γ2
i

M2
i

= σ2
0 +

η2(σ2
i + σ2

0)

M2
i

. (12)

The representation of the compressed signal for the intuitive
setting of frequency domain sampling gives rise to three main
insights, that motivate our design in the sequel:

1) Even with infinite resolution quantization, i.e., when
Mi → ∞, simple frequency domain sampling still re-
quires some linear processing to reduce the recovery MSE,
i.e., (11) needs to be multiplied by Λ̂(Λ̃−1)K to minimize
the MSE by (4);

2) The equivalent distortion in each entry of Q(Ψx) depend-
eds not only of the bit allocation {Mi}, but also on the
energy of the corresponding sample. This indicates that
for a given bit allocation, one can possibly identify sam-
pling matrices which yield a distortion profile that better
facilitates recovery compared to that in (12) achieved when
Ψ = UT

K ;
3) The ability to tune the bit allocation {Mi} indicates that

one can control how the distortion is distributed among the
samples, e.g., (12). However, since {Mi} must be positive
integers, not every distortion profile is achieved, and thus

the sampling matrix Ψ should also be tuned and possibly
deviate from the intuitive setting of Ψ = UT

K .
Example 1 indicates that additional processing of the com-

pressed signal is required to improve reconstruction of the
spectrum. We note that for any given sampling matrix Ψ and bit
allocation {Mi}, the MSE minimizing linear recovery matrix Φ
is given in the following lemma:

Lemma 1: For any fixed Ψ and {Mi}, the objective in (P2)
is minimized by setting

Φ∗ = Γ∗CxΨ
T
(
ΨCxΨ

T +G
)−1

. (13)

Proof: The lemma is obtained following [21, App. B]. �
Next, we design the sampling matrix Ψ. Here, we recall

the similarity between our sampling matrix and analog com-
biner design in task-based quantization setups. In particular,
the MSE minimizing analog combiner for task-based quanti-
zation is given in [21, Thm. 1] for an identical bit allocation
M̃ = �M1/P �. For such setups, the MSE is minimized for
a setting of the form Ψ = UΞVT , where V ∈ R

N×N is the
right singular vectors matrix of Γ∗C1/2

x , Ξ ∈ R
P×N is diagonal

with non-negative diagonal entries, and U ∈ R
P×P is a unitary

matrix designed to balance the inputs to the identical quantizers.
Since in our setup, the quantizers are not restricted to be identi-
cal, we cannot adopt the results derived in [21]. Nonetheless, for
a given bit allocation {Mi} sorted in a descending order, we can
characterize the MSE minimizing sampling matrix, as stated in
the following proposition:

Proposition 1: For a bit allocation {Mi} with Mi ≥ Mi+1,
the MSE minimizing unconstrained sampling matrix is given by

Ψ∗ = UΨΞΨΛ̃
−1/2UT , (14)

where UΨ is a unitary matrix satisfying

(UΨΞΨΞ
T
ΨU

T
Ψ)i,i =

M2
i

η2
, (15)

andΞΨ ∈ R
P×N is a diagonal matrix with non-negative entries.

Denoting αi = (ΞΨ)
2
i,i, i ∈ P , the elements of ΞΨ are obtained

as the solution to the following problem:

{αi}Pi=1 = argmin
{α′

i}

P∑
i=1

λ2
Γ,i

α′
i + 1

,

s.t.
1

η2
[M2

1 , . . .M
2
P ]

T ≺ [α′
1, . . . α

′
P ]

T , (16)

where ≺ denotes majorization, i.e., a ≺ b implies that a is
majorized by b [32]. In (16), λΓ,i is the ith largest singular

value of Γ∗C1/2
x . The resulting excess MSE is given by:

E{‖ĉ− c̃‖2} =

P∑
i=1

λ2
Γ,i

αi + 1
. (17)

Proof: The proof is given in Appendix A. �
For the special case of identical bit allocation, i.e., Mi = Mj

for each i, j ∈ P , it can be shown that Proposition 1 coincides
with [21, Thm. 1]. We note that (16) is a convex problem, which
can be solved using existing convex optimization toolboxes
such as CVX. Consequently, while Proposition 1 does not give
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the sampling matrix Ψ∗ in closed form, it can be numerically
computed with an affordable computational effort. Nonetheless,
identifying the bit allocation {Mi} which minimizes the MSE
based on Proposition 1 is a challenging task due to the discrete
nature of the bit assignment, motivating the greedy optimization
algorithm detailed in the following section. However, if one is al-
lowed to assign non-integer bit values, the resulting compression
system and its corresponding MSE can be obtained explicitly via
the following theorem:

Theorem 1: When {Mi} are not limited to be integer, the
optimal unconstrained sampling operator is Ψ∗ = UT

K . The
MSE minimizing bit allocations satisfies

M2
i =

{
η2

−β∗+λ2
Γ,i+

√
λ4
Γ,i−β∗λ2

Γ,i

β∗ β∗ ≤ λ2
Γ,i

4 ,

1 otherwise,
(18)

where the hyperparameter β∗ is set such that
∑P

i=1 log2 Mi =
log2 M . The resulting excess MSE is given by:

E{‖ĉ− c̃‖2} =
K∑
i=1

λ2
Γ̃,i

−
min(K,P )∑

i=1

M2
i λ

2
Γ̃,i

M2
i + η2

. (19)

Proof: The proof is given in Appendix B. �
While Theorem 1 considers a hypothetical system which

can quantize using non-integer number of bits, it reveals an
important challenge arising from the incorporation of quanti-
zation compared to conventional graph sampling. When one
can quantize with arbitrary non-integer levels, the resulting
compression problem reduces to a conventional graph sampling
(without quantization) setup, as shown in Appendix B. For
such cases, the sampling matrix Ψ∗ specializes to conventional
frequency domain sampling of bandlimited signals. This settles
with corresponding results in [8], as well as with the observation
in Example 1, where we note that when using frequency domain
sampling, one can further tune how the distortion is distributed
among the samples via the bit allocation {Mi}. However, since
quantization is inherently restricted to discrete levels, the MSE
minimizing graph sampling matrix does not necessarily reduce
to frequency domain sampling, as the equivalent distortion can-
not be controlled to any desired resolution. In such cases, one
has to utilize Proposition 1 combined with dedicated schemes
for just rounded or optimizing the bit allocation, as proposed
next.

C. Greedy Optimization Algorithm Design

The MSE characterized Theorem 1 is generally not achievable
for graph signal compression schemes since it ignores the fact
that the bit assignment must take integer values. Nonetheless,
the closed-form MSE expression (19) can be used to facilitate
the setting of the (discrete) bit allocation {Mi} using greedy
optimization. In the following we first introduce the greedy
algorithm for setting the bit budget, after which we identify a
sufficient and necessary conditions for which the bit assignment
is designed by using identical quantizers, and identify the num-
ber of quantizers P which minimizes the MSE without setting
any quantizer to be inactive.

Algorithm 1: Greedy Bit Allocation Algorithm.

Input: {λΓ̃,i}
Output: Bit allocation {Mi}.
Initialize: k = 1 and set M (0)

i = 1 for ∀i ∈ P .

1: while
∑P

i=1 log2 M
(k)
i ≤ log2 M do

2: Compute g(k) via (20);
3: Update M

(k+1)
i = M

(k)
i + 1

i=argminj gj(M
(k)
j )

;

4: k = k + 1;
5: end while
6: return {M (k−1)

i }

1) Greedy Bit Assignment: The proposed greedy algorithm
starts by setting the minimal bit allocation for all the quan-
tizers, i.e., M (0)

i = 1 for each i ∈ P . Then, it increments the
number of levels for the quantizer which contributes most
to the objective (19). While this procedure does not impose
the constraint Mi ≥ Mi+1 for each i ∈ {1, 2, . . ., P − 1}, it is
implicitly maintained due to the descending order of {λΓ,i}.
Specifically, the gradient of the objective (19) w.r.t. Mi is

g(Mi) := − ∂
∂Mi

∑min(K,P )
i=1

M2
i λ

2
Γ̃,i

M2
i +η2 , which equals

gi(Mi) =

{
−Miη

2λ2
Γ,i

(M2
i+η

2)2
i ≤ K,

0 otherwise.

At the kth iteration, the gradient vector g(k) is thus given by

g(k) = [g1(M
(k)
1 ), g2(M

(k)
2 ), . . ., gP (M

(k)
P )]T . (20)

The elements in (20) respectively represent the distortion de-
creasing efficiency of the extra level we assign to each quantizer
at the kth iteration. The smallest entry of (20) determines which
quantizer is assigned an additional level, repeating until the
budget M is exhausted. The resulting greedy allocation algo-
rithm is summarized as Algorithm 1. Once the bit assignment is
obtained, the sampling operator and its corresponding MSE are
obtained using Proposition 1, while the digital reconstruction
filter is computed via Lemma 1.

2) Analysis of Algorithm 1: In the method summarized as
Algorithm 1, we use a greedy approach based on an MSE
measure achievable using real-valued assignments to optimize
the discrete bit allocation. Therefore, to assess the validity
of this approach, we first numerically compare the ability of
Algorithm 1 to approach the excess MSE in (19) using discrete
bit assignments. Then, we characterize a sufficient condition for
which Algorithm 1 yields an identical bit allocation. Since the
number of quantized samplesP is inherently a design parameter
of the system, we derive the setting of P which optimizes the
MSE achievable using Algorithm 1. Finally, we analyze the
computational complexity of Algorithm 1.

Empirical Evaluation: Fig. 2 compares the MSE achieved
with the discrete bit assignment computed using Algorithm 1
to the MSE evaluated via (19) for 30 i.i.d. examples with P =
K = 10. As the purpose of this study is to evaluate the ability
of Algorithm 1 to approach (19), we consider a toy example
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Fig. 2. 30 examples with randomly generated λΓ,i.

where the descending sequence {λΓ̃,i} is randomly generated
with normal Gaussian distribution; more realistic experiments
corresponding to different forms of graph signals are reported
in our simulation study in Section V.

Observing Fig. 2, we note that when the overall bit budget
is tight, i.e., log2 M = 10 bits as in Fig. 2(a), there is a small
gap between the MSE achieved using the discrete assignment
and that which can reached given the ability to assign arbitrary
quantization levels. However, as the bit budget increases to
log2 M = 20, which is still a relatively tight budget (allowing
merely 2 bits per quantizer for a standard identical bit assign-
ment), we observe in Fig. 2(b) that the gap becomes negligible.
This study indicates that although Algorithm 1 is designed based
on an MSE measure typically not achievable with integer bit
assignments, it allows to approach it to within a small gap, which
effectively vanishes as the bit budget grows.

Identical Bit Assignment: As discussed in Subsection III-B,
while our derivation relies on representing the joint sampling
and quantization of bandlimited graph signals as a task-based
quantization setup, the resulting formulation differs from that
studied in the context of ADC design in [21]. One of the key
differences between the graph signal compression task consid-
ered here and the design of hybrid analog/digital acquisition
studied in [21] stems from the additional degree of freedom
in the ability to allocate different bit assignments between the
quantizers. As the restriction to utilize identical quantizers may
facilitate the design of the compression system, we next identify
a sufficient and necessary condition for which Algorithm 1 yields
an identical bit allocation:

Corollary 1: Algorithm 1 yields an identical bit assignment
Mi ≡ Ma := �M1/P � for each i = 1, . . . , P where P ≤ K
when the following conditions are satisfied:

(Ma)
P ≤ M < (Ma)

P + (Ma)
P−1, (21a)

g1(Ma) < gP (Ma − 1). (21b)

Proof: The proof is given in Appendix C. �
Corollary 1 identifies conditions for which, when satisfied,

one can simply utilize conventional identical bit allocation
rather than go through the greedy optimization in Algorithm 1.
Nonetheless, the conditions (21) are not that commonly satisfied
by graph signals. The condition (21b) hints that the λΓ,P should
be close to λΓ,1. However, the smoothness of the graph signal
determines that the weight of the low-frequency component is
usually much greater than the weight of the high-frequency
component, i.e., σ1 � σP , which potentially contradicts (21b).

On the other hand, when (21a) is not satisfied, the greedy-based
algorithm we proposed can also improve the performance by
using the redundant bits.

Number of Quantized Samples: Algorithm 1 assigns the over-
all bit budget among P quantized samples, where P is fixed.
Nonetheless, it may yield an assignment Mi = 1, implying that
the ith quantizer has a single quantization level and is thus
inactive. For instance, since the gradients in (20) equal zero
for i > K and are strictly negative for i ≤ K, it follows that
Algorithm 1 assigns zero bits (i.e., Mi = 1) for quantizers of
index i > K. While increasing P to be larger than the spectral
support K thus does not affect the MSE as these quantizers will
no be active, using less than K quantized samples may result in
different achievable MSE values. Consequently, in the following
corollary we identify the number of quantized samples P which
minimizes the MSE without setting any quantizer to be inactive:

Corollary 2: The MSE minimizing number of actively quan-
tized samples P ∗ satisfies lP ∗ ≤ log2 M < lP ∗+1, where

li =

{
1 +

∑i
j=1 log2�l̃j,i�, i ≤ K,

+∞, i > K.
(22)

Here, l̃j,i ∈ R is given by the solution to the following equality:

gj(l̃j,i) = gi(1), (23)

where gi(•) is i-th element in the gradient of (19) w.r.t. Mi.
Proof: The proof is given in Appendix D. �
Corollary 2 provides an increasing sequence, which divides

the feasible interval of M decision levels into K sub-intervals.
Before designing the graph signal compression system, we can
determine the expected number of quantizers according to the
size ofM . When the total number of bits is large enough satisfy-
ing log2 M ≥ lK , K samples are actively quantized; When the
total number of bits is limited, as discussed above, some inactive
quantizers can be removed. In such a case, the reduction in the
number of quantized samples also reduces the computational
complexity of Algorithm 1 since it needs to compute P -length
gradient vector in each iteration. However, for a specific graph
signal compression task, if the number of samples that can be
taken P is less than P ∗ of Corollary 2, then all samples should
be quantized with at least two bits.

Complexity Analysis: To characterize the complexity order of
Algorithm 1, we first focus on the complexity in each iteration.
Each iteration is comprised of evaluating g(k) (Step 2) and the
update of Mi (Step 3). Since the computation of each element
of g(k) via (20) is fixed and does not grow with the system
parameters, the complexity order of Step 2 is O(P ). Updating
Mi involves identifying the smallest entry of the P × 1 vector
g(k), and thus its complexity order is at most O(P ). Thus
the complexity in each iteration is O(P ), and since the The
maximum number of iterations of Algorithm 1 is M , the overall
complexity order of Algorithm 1 is O(MP ).

IV. OPTIMIZATION OF SAMPLING AND QUANTIZATION USING

FREQUENCY-DOMAIN GRAPH FILTERS

Section III designs the compression rule without imposing
any constraints on the sampling matrix, i.e., setting Ψ = ISF,
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thus allowing the graph filter F to be any N ×N matrix. In
this section, we specialize our analysis to frequency-domain
graph filters. Since we consider bandlimited graph signals, we
henceforth focus on frequency domain graph filters applied
in the spectral support of the signal, i.e., filters of the F =
UKF (Λ)UT

K , with F (Λ) being a K ×K diagonal matrix.
We first present in Subsection IV-A an alternative problem
formulation, obtained by restricting the graph filter in (P2)
to implement frequency-domain graph filtering. Based on the
modified problem formulation, we propose an algorithm to tune
the bit allocation and sampling set design in Subsection IV-B,
after which we provide an alternating optimization algorithm to
obtain the overall compression scheme in Subsection IV-C, and
discuss the resulting design in Subsection IV-D.

A. Problem Formulation

To formulate the compression problem using frequency-
domain graph filters, we return to (P2), which serves as a basis
for the design of the unconstrained system in Section III. The
resulting formulation is stated in the following lemma:

Lemma 2: When the sampling matrix Ψ is re-
stricted to represent frequency-domain graph filtering,
i.e., Ψ = ISUKF (Λ)UT

K , then, by defining H �
UKF (Λ)Λ̃2

KF (Λ)UT
K and X � UKF (Λ)Λ̃KF (Λ)UT

K ,
(P2) is specialized into

max
IS ,F (Λ),{Mi}

Tr
(
ISHITS

(
ISXITS +G

)−1
)
,

s.t.
P∑
i=1

log2 Mi ≤ log2 M, Mi ∈ Z
+, i ∈ P. (P3)

Proof: The proof is given in Appendix E. �
Problem (P3) specializes (P2) to sampling using frequency-

domain graph filtering. It translates the compression system
design into the joint optimization of the frequency-domain graph
filter F = UKF (Λ)UT

K , the sampling set selection IS , and the
bit allocation {Mi}. In particular, F (Λ) affects the matrices
H and X, while the bit setting is implicitly encapsulated in
the distortion matrix G (10). Problem (P3) is non-convex due
to the coupling of its variables, i.e., the fact that its objective
includes products of its multiple different optimization variables.
To tackle this challenging optimization, in the following subsec-
tions, we first show how one can tune IS and {Mi} for a given
graph filter F, based on which we propose an alternating opti-
mization algorithm to set the compression system parameters.

B. Sampling Set and Bit Allocation Design

Here, we solve (P3) under a given filter F to obtain the sam-
pling setS and bit allocation{Mi}. While the number of samples
taken is |S| = P , the number of actively quantized samples can
be smaller, as revealed by Corollary 2. Consequently, while
the number of samples P , is fixed here, the optimization of
the sampling set should account for the fact that possibly less
than P samples are actively quantized. This requirement was
not encountered when considering unconstrained graph filters,
where Ψ can be any P ×N matrix, while here Ψ needs to be

explicitly divided into sampling set selection IS and the graph
filter F.

To optimize the sampling set along with the bit allocation
{Mi} in light of the above consideration, we allow S to contain
only the actively quantized, i.e., |S| ≤ P . We can now define
the following optimization variables

M̃i �
{
Mj i = (S)j ,
1 otherwise,

(24)

where (S)j is the j-th sampling vertex in S . Note that in (24)
there is a one-to-one correspondence between {Mj}, S and
{M̃i}. In particular, when M̃i = 1, then the ith node of the
graph signal at the output of the graph filter F is quantized with
zero bits, i.e., its value is ignored, and it is thus not sampled.
Consequently, {Mj} and S are uniquely determined by {M̃i}.
Therefore, by letting G{M̃j} be the matrix G in (10) with the bit

allocation n {M̃j}, the optimization of the sampling set and the
bit allocation for a given F can be formulated as

max
{M̃i}

Tr

(
ISHITS

(
ISXITS +G{M̃i}

)−1
)
,

s.t.
P∑
i=1

log2 M̃i ≤ log2 M, M̃i ∈ Z
+, i ∈ P,

S = {j|M̃j > 1}, |S| ≤ P. (25)

To solve (25), we propose a greedy method starting with
M̃

(0)
i = 1 for each i ∈ N � {1, 2, . . . , N} and select a quan-

tizer to assign an additional level, as in Algorithm 1. In the k-th
iteration, we define the sampling set and bit allocation as S(k)

and {M̃ (k)
i } respectively. The objective (25) is now

f({M̃ (k)
i })�Tr

(
IS(k)HITS(k)

(
IS(k)XITS(k)+G{M̃(k)

i }
)−1

)
.

In each iteration, we select which M̃i to increment by approxi-
mating the derivative of f(·) w.r.t. each M̃i. The derivative w.r.t.
the integer M̃i is approximated by

∂f({M̃ (k)
i })

∂M̃j

≈ q
(k)
j � f({M̃ (k)

i + 1i=j})− f({M̃ (k)
i }).

At the kth iteration, the approximated gradient vector q(k) is

∇{M̃(k)
i }f({M̃

(k)
i }) ≈ q(k) � [q

(k)
1 , q

(k)
2 , . . ., q

(k)
N ]T . (26)

Our proposed greedy method iteratively updates {M̃i} while
accounting for the constraints on the overall number of bits and
the maximal number of actively qauntized samples imposed in
(25). To that aim we define a set of possible sample indices
I, which is initialized to N , i.e., all possible samples. In each
iteration, we choose one quantizer index in I to assign an addi-
tional level, by selecting the one which we expect to contribute
most substantially to the objective in (25), determined by the
largest entry of (26). Since the number of actively quantized
samples cannot go beyond P , once P different samples are
actively quantized, we fix the setI to only consider the indexes of
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Algorithm 2: Bit Allocation for a Given Graph Filter.
Input: Graph filter matrix F, maximal number of samples
P ;

Output: Bit allocation Mi and Sampling set S;
Initialize: k = 0, bit allocation M̃

(0)
i = 1 for ∀i ∈ N ,

possible indices I = N , and sampling set S(0) = ∅.
1: while

∑
i log2 M̃

(k)
i ≤ log2 M do

2: Compute q
(k)
i for each i ∈ I;

3: Update M̃
(k+1)
i = M̃

(k)
i + 1

i=argmini∈I q
(k)
i

;

4: if |S(k)| = P then
5: Set possible indices I = S(k+1) = S(k);
6: else
7: Update S(k+1) = {i|M̃ (k+1)

i > 1};
8: end if
9: k = k + 1;

10: end while
11: return {M̃i} = {M̃ (k−1)

i }, S = S(k−1).

these samples subsequently. The overall process is summarized
in Algorithm 2.

C. Alternating Optimization Algorithm Design

We proceed to solve (P3) for a given bit allocation {Mi} and
sampling set S . In this case, (P3) is simplified to

max
F (Λ)

Tr
(
ISHITS

(
ISXITS +G

)−1
)
. (27)

The dependency of (27) on F (Λ) is encapsulated in H and X.
Recalling the definition of the frequency domain graph filter
in (Definition 3) and the imposed polynomial structure, i.e.,
F (Λ) =

∑K0

i=0 βiΛ
i, we aim to optimize (27) with respect to

the coefficients {βi}. Since F (Λ) is diagonal, we do this by first
optimizing its diagonal entries, denoted {λ̃i}Ni=1, after which we
approximate them using a setof {βi}K0

i=1.
To solve (27) with respect to {λ̃i}, we consider the alternate

optimization method. In particular, we optimize each λ̃i for fixed
{λ̃j}j �=i, repeating and updating this process for each i until
convergence is achieved. Now, for a fixed index i ∈ N , it follows
from the definitions of X (see Lemma 2) and G in (10) that
ISXITS +G = λ̃

2

iB+C, where the |S| × |S| matrices B and
C are independent of λ̃i, and are defined as

(B)p,q � mp,q

(
σ2
i + σ2

)
(U)(S)p,i(U)(S)q,i,

(C)p,q � mp,q

N∑
j=1,j �=i

λ̃
2

j

(
σ2
j + σ2

)
(U)(S)p,j(U)(S)q,j ,

with mp,q � 1 + 2η2

3M2
p
1p=q . We can now write (and solve) the

optimization of (27) w.r.t. a single λ̃i as

max
λ̃i

Tr

(
ISHITS

(
λ̃iB+C

)−1
)
. (28)

Algorithm 3: Constrained Graph Filter for Compression
Design.

Input: Sampling set S and bit assignment {Mi};
Output: Graph filter matrix F;

Initialize: λ̃
(0)

i = 1, i ∈ N .
1: for k = 1, 2, . . . , T do
2: for i ∈ S do
3: Update λ̃

(k)

i = λ̃
∗
i computed via Lemma 3;

4: end for
5: if

∥∥[λ̃(k)

1 , . . . , λ̃
(k)

N ]− [λ̃
(k−1)

1 , . . . , λ̃
(k−1)

N ]
∥∥2
2
≤ ε

then
6: Break;
7: end if
8: end for
9: Compute F (Λ) = diag{λ̃(k−1)

1 , λ̃
(k−1)

2 , . . ., λ̃
(k−1)
N };

10: return F = UF (Λ)UT .

Lemma 3: The solution to (28) is λ̃
∗
i =

√
λ̂
∗
i , where

λ̂
∗
i = min

λ̂i≥0

P∑
j=1

aj

λ̂i + (Λx)j,j
. (29)

In (29), we define ai � (A)2i,i(Λx)j,j −
∑N

n=1,n�=i λ̂n(A)2i,j ,

where A � UT
xB

−1/2ISUΛ̃, with Ux and Λx being the eigen-
vectors and eigenvalues of B−1/2CB−1/2, respectively.

Proof: The proof is given in Appendix F. �
Problem (29) is a concave-convex fractional programming

problem, which can be efficiently solved using the quadratic
transform [33]. After λ̃

∗
i is obtained, we update the value ofF (Λ)

and optimize the remaining λ̃i. This procedure is repeated until
a pre-specified convergence condition ε is met, or a maximal
number of iterations T is reached. The resulting alternating
algorithm for constrained graph filter design is summarized in
Algorithm 3, where ε is the threshold and T is the maximum
number of iterations.

Finally, the overall alternating optimization based algorithm
for setting the frequency domain graph filter, sampling set, and
bit allocation based on (P3) is summarized as Algorithm 4.
The algorithm alternates between setting the frequency-domain
graph filter for fixed sampling set and bit allocation via Algo-
rithm 3, and optimizing the sampling set and bit allocation for
fixed graph filter via Algorithm 2.

D. Discussion

Our proposed compression scheme is based on alternating op-
timization designing the sampling and quantization mappings to
achieve a finite bit representation of the graph signal in a manner
which allows its accurate reconstruction. This is achieved utiliz-
ing a sampling matrix which, instead of selecting a subset of the
nodes as in [6], samples linear combinations of the graph signal
elements using frequency domain graph filtering. The increased
flexibility in the design of the sampling mapping is exploited
to generate a sampling set such that the graph signal spectrum
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Algorithm 4: Compression System Design with Frequency
Domain Graph Filters.

Input: Graph Fourier basis matrix UT , maximal samples
P ;

Output: Graph filter F, bit allocation {Mi}, sampling set
S;

Initialize: F(0) = I, k = 0.
1: repeat
2: Compute S(k) and {M (k)

i } for F(k) via Algorithm 2;
3: Update F(k+1) for S(k) and {Mi}(k) via

Algorithm 3;
4: k = k + 1;
5: until ‖F(k) − F(k−1)‖ ≤ ε

6: return F = F(k), {Mi} = {M (k−1)
i }, S = S(k−1).

can be accurately recovered from the quantized samples. In
particular, we do this by accounting for the statistical moments
of the noisy graph signal via the relaxed formulation (P3) when
alternately tuning the sampling matrix and the quantization rule.
We focus here on implementing such compression mechanisms
using either unconstrained graph filters as well as structured
frequency domain graph filters. However, one can consider ad-
ditional forms of graph filtering which may be preferable in some
applications, e.g., vertex domain graph filters [8]. Nonetheless,
we leave the specialization of the proposed alternating optimiza-
tion based sampling and quantization mechanism to alternative
forms of graph filters for future work.

Finally, we note that our design considers a limit on the overall
number of bits used by the quantizers to generate the finite bit
representation. A less distorted finite bit representation can be
obtained by replacing the uniform scalar quantizers with vector
quantization [31], Ch. 23], though such mappings tend to be
highly complex, as opposed to simplified uniform quantization.
An alternative approach to improve upon the existing mechanism
is to further compress Q(Ψx) via lossless source coding, e.g.,
entropy coding [34], Ch. 13], to Q(Ψx), as done in [35]. Doing
so results in an equivalent representation whose number of bits
is dictated by the entropy of Q(Ψx) (which is not larger than
log2 M ). This implies that the resulting finite bit representation
can be further compressed, and motivates extending our analysis
to constrain the entropy of Q(Ψx) rather than its bit budget, i.e.,
via entropy-constrained quantization [15], which we leave for
future research.

V. NUMERICAL EVALUATIONS

In this section, we evaluate the performance of the pro-
posed joint sampling and quantization methods for graph signal
compression.1 In Subsection V-A, we simulate graph signals
representing measurements taken using parameters provided in
GSP toolbox [36]. We then use the proposed scheme to compress

1The source code used in this section is available online in the following link:
https://github.com/Pei65536/Graph_Signal_Compression.git

TABLE I
SIMULATION PARAMETERS

graph signals representing real-world temperature data in Sub-
section V-B. Finally, in Subsection V-C, we apply the proposed
sampling algorithm to image compression.

Throughput this section, we evaluate we use the MSE as the
performance measure, defined as follows

MSE = E{‖ĉ− c‖2}, (30)

where ĉ and c are the recovered and the true graph signal
frequency representations, respectively, and the expectation is
computed via empirical averaging. In particular, we consider
compressing the graph signal using the following schemes:
(1) Joint sampling and quantization with unconstrained filters
via Algorithm 1; (2) Separate sampling and quantization with
non-identical quantizers as in [20]; (3) the MMSE estimate
achievable of Ukc which is achievable with infinite resolution
quantization, i.e., without quantization constraints; (4) Joint
sampling and quantization with identical quantizers as in [21];
and (5) Alternating sampling and quantization with frequency
domain graph filters via Algorithm 4.

A. Synthetic Data

We begin with synthetic simulated scenario. Here, the graph
signals represent measurements acquired by a sensor network
comprised of N = 100 nodes, where each node is connected
with its neighbors located within its transmission range, and
the bandwidth is K = 20. We then take 1000 different noisy
bandlimited graph signals with zero mean and covariance Cx,
in which the non-zero GFT coefficients are randomized from
N (0, (Λ†)K), where Λ is the eigenvalue of L. The specific
simulation parameters are shown in Table 1.

We first numerically evaluate the MSE in compressing the
graph signals versus the bit budget log2 M , which takes val-
ues in [20, 120], while setting the Gaussian noise power to
σ2
0 = −30 dB. The results, depicted in Fig. 3. Observing Fig. 3,

we note that Algorithm 1 achieves better performance than
using separately designed sampling and quantization as well
as applying the joint design with identical quantizers of [21].
The separate sampling and quantization mechanism of [20],
in which the sampling operation is carried out by mere node
selection without accounting for the underlying statistics of the
signal, achieves the highest MSE values here, while the proposed
schemes is within a small MSE gap of less than 0.02 from the
MMSE for bit budgets as small as log2 M = 40. We also noted
that Algorithm 4 allows achieving MSE which is comparable to
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Fig. 3. MSE versus the number of bits for different schemes.

Fig. 4. MSE versus the variance of noise.

that achieved using unconstrained graph filters for bit budgets
satisfying log2 M ≥ 40.

Next, we numerically evaluate the effect of the additive noise
power on the compression accuracy. To that aim, we compare
the achievable MSEs of the schemes simulated in Fig. 3, while
fixing the bit budget to be log2 M = 60, and letting the noise
variance σ2

0 grow from −30 dB to −20 dB. The results, depicted
in Fig. 4, demonstrate that our proposed schemes maintains their
improved MSE over the competing schemes for different levels
of the noise variance. Our scheme is shown to be notably more
robust to the presence of noise compared to all the reference
techniques, except for the MMSE estimate, which is not con-
strained to any bit budget.

To visualize how the observed MSE gains are translated into a
more faithful recovery of compressed graph signals, we depict a
realization of a graph signal along with its reconstruction using
scheme (1) and the benchmarks (2) and (4) in Fig. 5. Here, the
noise level is set to σ2

0 = −30dB, while the overall bit budget
is log2 M = 60. Fig. 5 demonstrates that the proposed scheme
based on joint sampling and quantization allows to compress the
graph signal into a compact bit representation while resulting
in recovered graph filters within a close match of the original
graph signal. When using identical quantizers as in [21], the
quality of the recovery signal in Fig. 5(d) is degraded and
not as smooth as it is in Fig, 5(b). This follows since the low
frequency components usually occupy a relatively large range,
and using identical quantizers limits the recovery of the low

Fig. 5. Synthetic graph signal recovery experiments: (a) Graph signal;
(b) Reconstructed signal via Algorithm 1; (c) Reconstructed signal with separate
sampling and quantization with non-identical quantizers; (d) Reconstructed
signal with joint sampling and quantization with identical quantizers.

Fig. 6. (a) Geographical location of China ground sensors. (b) A temperature
example in formulated graph structure.

frequency components. For the separate sampling and quantiza-
tion scheme of [20], we observe in Fig. 5(c) poor recovery on
some vertexes, which is caused by the amplification of quanti-
zation noise and additive Gaussian noise in restoring unsampled
vertexes.

B. Non-Synthetic Graph Signals

In order to further illustrate the practicability of our graph
signal compression algorithms, we apply the proposed Algo-
rithm 1 and Algorithm 4 to compress non-synthetic graph signals
representing temperature data.2 The data is obtained from the
China Meteorological Data Center, representing measurements
taken in January of each year from 2018 to 2021 via China’s me-
teorological sensors whose distribution is is shown in Fig. 6(a).
The location of each sensor is determined by its latitude and
longitude. It is noted that temperature data distribution depends
not only on the geographical location, but is also affected by
the surrounding environment and human actions. Therefore, we

2The dataset could be downloaded in the following link: http://data.cma.cn
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Fig. 7. MSE versus the number of bits.

construct the graph structure for these measurements based on
the smoothness of the data, rather than directly constructing
the graph structure based on the distance threshold, e.g., as in
K-nearest neighbours construction. We formulate an optimiza-
tion problem with setting the smoothness as the objective. The
specific processing has been investigate in existing works [12].
It can learn graph structure via input data, which results that the
graph signals with smooth variations on the resulting Laplacian
matrix. An example of a resulting graph signal is illustrated
in Fig. 6(b). Note that the temperature data is selected in a
short time period of each year. Specifically, the temperature in
a fixed node of graph (a sensor in reality) tends to a stable state,
which means that we can impose a Gaussian probabilistic prior
on the frequency presentation of these graph signals and the
latent noise. The statistical information of the temperature data
shows that when the bandwidth is greater than 10, the frequency
domain component is close to 0. Therefore, we assume that the
bandwidth of the data is K = 10.

The achievable reconstruction MSE for these non-synthetic
graph signals versus the overall number of bits is depicted in
Fig. 7. It is noted that in this scenario there is no noise signal
that is manually introduced, and the equivalent noise is that
which stems from the error in approximating the graph signal
as have bandwidth of K = 10. We observe in Fig. 7 that the
MSE trends versus the total number of bits is preserved as in the
synthetic case reported in the previous subsection. Specifically,
it is found that compression with unconstrained graph filters via
Algorithm 1 outperforms all considered bit-constrained bench-
marks, and that similar performance is achieved with frequency
domain graph filters for at least 20 bits using Algorithm 4.

C. Application in Image Compression

GSP is not only applied to the data with irregular structures,
but can also be used to represent signals such as images, video
signals, etc. Here, we apply our proposed Algorithm 1, which
designs joint sampling and quantization using unconstrained
graph filters to image compression. Due to the self-similarity
in images, the same or similar structures are likely to recur
throughout. For simplicity, we apply regular line and grid graph
topologies, but with unequal edge weights that can adapt to the
specific characteristic of an image or a set of images [37].

Fig. 8. Image compression. (a) The original image; (b) The compressed image
via DCT; (c) The compressed image via joint sampling and quantization with
identical quantizers; (d) The compressed image via Algorithm 1.

In particular, we use the classic ‘Lena‘ image comprised
512× 512 pixels, which we model as a graph signal with a
grid topology with edge weights obtained by low-resolution
GFT [37]. The image is thus expressed as a concatenation of
16384 signals, each representing 4× 4 patches. For each graph
signal, we approximate its bandwidth to be K = 4, i.e., we
discard high-frequency components, which is relatively quite
small. The statistical moments used in our derivation are ob-
tained by averaging over the patches of the image. We compare
the performance of three image compression schemes: 1) The
Discrete Cosine Transform (DCT); 2) Separate sampling with
quantization with non-identical quantizers [20]; 3) The proposed
Algorithm 1. For consistency, we set the block size of DCT to
be 4× 4. We set log2 M = 64 for each GFT block and DCT
block. The results, depicted in Fig. 8, indicate that the proposed
mechanism for joint sampling and quantization which considers
graph signals can also be beneficial for image compression,
resulting in a faithful recovery of natural images compressed
into a low bit representation.

VI. CONCLUSION

In this work, we studied the compression of bandlimited graph
signals into a finite-length sequence of bits by joint sampling and
quantization. Our derivation is based on the identified similarity
between graph signal compression and task-based quantization,
which is a framework for configuring ADCs with analog pre-
processing. We formulated the design problem, which is in
general shown to be non-convex. We then presented a relaxed
formulation considering linear recovery with non-overloaded
quantizers. The relaxed problem was used to design sampling
mechanisms for a given allocation of the available bit budget
among the quantizers, which in turn is used to derive a greedy bit
allocation algorithm. Next, we proposed a sampling operator as a
row-selection matrix with a graph filter, restricted to combining
elements corresponding to the neighbouring nodes of the graph.
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We applied the proposed algorithm to both synthetic and non-
synthetic data. Numerical results show that the proposed scheme
compresses high dimensional graph signals into a limited
amount of bits while allowing their recovery with an error within
a small gap from the MMSE, achievable with infinite resolution
quantziation.

APPENDIX

A. Proof of Proposition 1

We first note that the MSE achievable using the linear recovery
matrix Φ∗ in Lemma 1 is given by

MSE(Ψ) = Tr
(
Γ∗CxΓ

∗T )
− Tr

(
Γ∗CxΨ

T
(
ΨCxΨ

T +G
)−1

ΨCxΓ
∗T
)
.

(A.1)

By discarding the constant term Tr(Γ∗CxΓ
∗T ) in (A.1), the

matrix Ψ∗ that minimizes the MSE can be obtained via

Ψ̂∗ = argmax
Ψ̂

Tr
(
Γ̂Ψ̂T

(
Ψ̂Ψ̂T + I

)−1
Ψ̂Γ̂T

)
, (A.2)

where Ψ̂ �= G−1/2ΨC1/2
x , Γ̂ �= Γ∗C1/2

x . Now, by writ-
ing the singular value decomposition Ψ̂ = UΨΞΨV

T
Ψ, and

recalling the definition of G, we obtain that Gi,iM
2
i

η2 =

(ΨCxΨ
T )i,i = (G1/2Ψ̂Ψ̂TG1/2)i,i, which results in

(UΨΞ
2
ΨUΨ

T )i,i =
M2

i

η2
. (A.3)

According to majorization theory [38], (A.3) is satisfied if and
only if {M2

i /η
2} ≺ {αi}, where αi = (ΞΨ)

2
i,i. Then problem

(A.2) is transformed into

max
VΨ,ΞΨ

Tr
(
VT

ΨΓ̂
T Γ̂VΨΞ

T
Ψ

(
ΞΨΞ

T
Ψ + I

)−1
ΞΨ

)
,

s.t.

{
3M2

i

2η2

}
≺ {αi} , αi = (ΞΨ)

2
i,i. (A.4)

We note that ΞT
Ψ(ΞΨΞ

T
Ψ + I)

−1
ΞΨ is a diagonal matrix

with diagonal elements αi

αi+1 , i ∈ P , which are a descending
sequence since {αi} is arranged in descending order. Then,
the optimal VΨ should be the right singular vectors matrix
of Γ̂. By substituting (2) and (4) into the definition of Γ̂, we
obtain Γ̂ = Λ̂(Λ̃−1)KUT . Note that Λ̂(Λ̃−1/2)K is a diagonal
matrix with descending diagonal elements, i.e., VT

Ψ = UT .
Consequently, Γ̃ = VT

ΨΓ̂
T Γ̂VΨ is a diagonal matrix, whose

diagonal elements arrange in a descending order. The remaining
optimization of (A.4) is thus

max
αi

P∑
i=1

λ2
Γ,iαi

αi + 1
,

s.t.

P∑
i=1

αi =

P∑
i=1

M2
i

η2
,

p∑
i=1

αi ≥
p∑

i=1

M2
i

η2
, ∀p ∈ P, (A.5)

where λΓ,i is the i-th singular value of Γ̂. The constraints in

(A.5) are the expanded form of
{

M2
i

η2

}
≺w {αi}. We note that

(A.5) is convex. Once {αi} are obtained, the resulting sampling
matrix is Ψ∗ = G1/2UΨΞΨV

T
ΨC

−1/2
x . While the entries of

G depend on Ψ, we can still obtain the sampling matrix by
letting gi = G

1/2
i,i , and substituting the expression of Ψ∗ into

the definition of G. This results in η2(ΨCxΨ
T )i,i

M2
i

= g2i , and

thus (G1/2UΨΞ
2
ΨUΨ

TG1/2)i,i =
g2
iM

2
i

η2 , which holds for any
gi by (A.3). We can thus compute Ψ with G = I, obtaining
Ψ∗ = UΨΞΨΛ̃

−1/2UT , concluding the proof. �

B. Proof of Theorem 1

Lemma 1 characterizes the MSE minimizing sampling opera-
tor Ψ for fixed bit allocation {Mi}. To optimize {Mi}, we focus
on the case where {Mi} are not limited to be integer, resulting
in the following formulation

max
{Mi},{αi}

P∑
i=1

λ2
Γ,iαi

αi + 1
,

s.t.

{
M2

i

η2

}
≺ {αi},

P∑
i=1

log2 Mi ≤ log2 M, Mi ≥ 1.

(B.1)

Problem (B.1) is non-convex and difficult to solve, Hence, we
first propose the following lemma to simplify (B.1).

Lemma B.1: The solution of (B.1) satisfies M2
i

η2 =αi, ∀i ∈ P .
Proof: We first recall the following result from [38]. Let

φ : Dn → R be a real-valued function continuous on Dn �
{x ∈ R

n : x1 ≥ . . . ≥ xn} and continuously differentiable on
the interior of Dn. Then φ is Schur-convex (Schur-concave) on
Dn if and only if ∂φ(x)

∂xi
is decreasing (increasing) in i = 1, . . ., n.

Assume that {Ḿi} is the optimal bit allocation and
{άi} is the corresponding diagonal elements satisfying
{Ḿ2

i /η
2} ≺ {άi}. Denote M (1) =

∑P
i=1 log2 Ḿ

2
i /η

2 and
M (2) =

∑P
i=1 άi. Since

∑
log2 Mi is Schur-concave with re-

spect to Mi, then M (1) ≥ M (2). Thus, one can propose another
{M̀i} and {ὰi} satisfying M̀2

i /η
2 = ὰi = άκ0

i , where κ0 =

M (1)/M (2) ≥ 1. Clearly, {M̀i}, {ὰi} are feasible for (B.1),
with better MSE than {άi}, proving the lemma. �

By Proposition 1, the sampling matrix should be

Ψ∗ = UΨΞΨΛ̃
−1/2UT . (B.2)

Substituting Lemma B.1 into (B.2), the matrix UΨ becomes
the identity. Hence, the sampling matrix would be a diagonal
matrix multiplied by the unitary UT . The proof of Proposition 1
reveals that the diagonal matrix G−1/2 which is leftmost in the
expression for Ψ∗ could be arbitrarily set. As a result, the MSE
is minimized by the sampling matrix Ψ∗ = UT

K .
To determine {Mi}, we write problem (B.1) as

max{Mi}
∑P

i=1

λ2
Γ,iM

2
i

M2
i +η2 , s.t.

∑P
i=1 log2 Mi ≤ log2 M, Mi ≥

1, Mi ≥ Mi+1, which is still non-convex. To tackle this, we
obtain a local solution and prove its optimality. According
to Lagrange Duality theorem,we introduce the multipliers
β∗ ∈ R and ν∗ ∈ R

P . While this procedure does not impose
monotonicity on {Mi}, it is implicitly maintained since
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λΓ,i are arranged in a descending order. For simplicity,
we denote mi = M2

i , and write the KKT constraints as∑P
i=1 log2 m

∗
i ≤ 2 log2 M , with m∗

i ≥ 1, ν∗i (m
∗
i − 1) = 0 and

λ2
Γ,iη

2

(mi+η2)2 − ν∗i − β∗
mi

= 0, for each i ∈ P . Eliminating the slack

variable ν∗i , we obtain that
(

β∗
mi

− λ2
Γ,iη

2

(mi+η2)2

)
(m∗

i − 1) = 0

should hold.
We focus on the equation β∗

mi
− λ2

Γ,iη
2

(mi+η2)2 = 0, which is solv-

able if and only if β∗ ≤ λ2
Γ,i/4. The local optimalmi is obtained

here by (18). The optimal bit allocation is expressed by the dual
coefficient β∗, which satisfies the sum bits constraint f(β) =∑P

i=1 log2 m
∗
i ≤ 2 log2 M . Similar as the proof of lemma B.1,

we obtain that f(β) = 2 log2 M should be satisfied. Further,
f(β) is a decreasing function with respect to β, i.e., the optimal
β∗ is the only one. �

C. Proof of Corollary 1

We first focus on the necessary condition. Due to the def-
inition of Ma, (Ma)

P := (�M1/P �)P ≤ M , and M ≥ MP
a

should be obviously satisfied. We then assume that M ≥
MP

a +MP−1
a , there exists another scheme of bit assignment as

[Ma + 1,Ma, . . . ,Ma] obtained by Algorithm 1, which against
the previous assumption. The range of M is thus determined,
which corresponds to the necessity of (21a).

We note that λΓ̃,i is a descending sequence, thus gi(Mi) ≥
gj(Mj) for Mi = Mj , and gi(Mi) > gi(Mi + 1) for Mi ≥
1. When Mi = Mj = Ma for each i ∈ P , we define k0 =

(Ma)
P − 1, as we discussed above, the state M

(k0)
i should be

[Ma,Ma, . . . ,Ma] and (k0 + 1)-th iteration should select P -th
quantizer rather than others, which means that gP (Ma − 1) >
gi(Ma) for each i ∈ P , and then simplified as gP (Ma − 1) >
g1(Ma). The necessity of (21b) is thus proven.

For the sufficient case, we assume both (21a) and (21b) are
satisfied. Greedy-based method is applied in Algorithm 1, we try
to describe the bit assignment process. In k-th iteration, the par-
ticular index is selected by e = argmini gi(M

(k)
i ). For example,

we assume that in k1-th iteration, the state of M (k1−1)
1 change

fromMa − 1 toMa, i.e.,M (k1)
1 = Ma. Here the other bit assign-

ment should satisfy that Mi(k1) < Ma for each i = 2, . . . , P
since gi(Mi) ≥ gj(Mj) for Mi = Mj . When (21b) is satisfied,
it holds that g1(Ma) < gP (Ma − 1) < gP−1(Ma − 1) · · · <
g2(Ma − 1). This, before the state of MP change from Ma − 1
to Ma, the state of M1 would not be changed. Further, we
assume that in kP -th iteration, the state ofM (kP−1)

P change from

Ma − 1 to Ma, i.e., M (kP )
P = Ma. Consequently, gP−1(Ma) <

gP−2(Ma) · · · < g1(Ma) < gP (Ma − 1) As a result, after the
kP -th iteration, Mi = Ma for each i = 1, . . . , P . Since (21a)
limit the upper bound of M , the greedy-based algorithm would
be ended here due to the termination condition, concluding the
proof. �

D. Proof of Corollary 2

We first focus on the case when sum of bits is limited, which
may lead to P < K. We would complete this proof in two parts,

in which we separately propose that

P < i if log2 M < li + 1, (PartI)

P ≥ i if log2 M ≥ li + 1. (PartII)

Define P ∗ as the number of quantizers obtained by Algo-
rithm 1, and its bit allocation as {M ∗

1 ,M
∗
2 , . . ..,M

∗
P ∗}. For any

P ≤ P ∗, we assume that P -th quantizer is added in the k0-th
iteration, i.e., P = argmaxk0

g(k0), thus

gP (1) ≥ gj(M
(k0)
j ) ≥ gj(M

∗
j ), ∀j < P. (D.1)

For the proof of the (PartI), we assume that P ≥ i
and log2 M < li + 1. Then, we define the bit allocation as
{Ṁ1, Ṁ2, . . ., ṀP }, which should satisfy gi(Ṁi) ≤ gP (1).
It follows that Ṁi ≥ �l̃j�. Then we obtain

∑P
i=1 Ṁi ≥∑P−1

i=1 Ṁi + 1 ≥ li + 1, which contradicts the assumption.
To prove (PartII), consider the k1th iteration, where

gi(M
(k)
i ) ≥ gP (1) and gi(M

(k)
i + 1) ≤ gP (1) for i < P . Note

that M
(k)
i ≤ l̃j ≤ M

(k)
i + 1 and �l̃j� = M

(k)
i + 1. Thus, for

the (k1 + P − n)th iteration, where 1 ≤ n ≤ P − 1, P =
argmaxk g

(k) is obtained, proving (PartII). Further, when
log2 M ≥ lK , the Kth quantizer is added, and there is no
(K + 1)th quantizer since the gradient vector satisfies gi(Mi) =
0 for i > K. This results in (22). �

E. Proof of Lemma 2

To prove the equivalence between (P2) and (P3),
we first note that that Lemma 1, which character-
izes the MSE minimizing digital recovery filter, holds
for any sampling matrix Ψ, including those representing
frequency-domain graph filtering. Consequently, by substitut-
ing the resulting recovery matrix Φ = Γ∗CxΨ

T (ΨCxΨ
T +

G)−1, we arrive at maxΨ,{Mi} Tr(Γ∗CxΨ
T (ΨCxΨ

T +

G)−1ΨCxΓ
∗T ), s.t.

∑P
i=1 log2 Mi ≤ log2 M,Mi ∈ Z

+. By
setting Ψ = ISUKF (Λ)UT

K to represent frequency-domain
filtering, we transform the objective into (P3), proving the
lemma. �

F. Proof of Lemma 3

We first transform (λ̃
2

iB+C)−1 into

(λ̃
2

iB+C)−1 = B−1/2
(
λ̃
2

i I+B−1/2CB−1/2
)−1

B−1/2

(a)
= B−1/2

(
λ̃
2

i I+UxλxU
T
x

)−1

B−1/2

= B−1/2Ux

(
λ̃
2

i I+Λx

)−1

UT
xB

−1/2, (F.1)

where (a) follows from the eigenvalue decomposition, where
Ux is a unitary matrix since both B and C are symmetric.
Substituting (F.1) and the definition of A into (28) yields

max
λ̃i

Tr(AΛ̃2F (Λ)2AT (λ̃
2

i I+Λx)
−1). (F.2)

Noting that λ̃i is in form of λ̃
2

i in (F.2), thus we define

λ̂i = λ̃
2

i , simplifying (F.2) into: maxλ̂i≥0

∑P
j=1

∑N
n=1 λ̂n(A)2j,n

λ̂i+(Λx)j,j
.

Substituting the definition of {ai} yields (29). �
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