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Abstract—We propose a generalized sampling framework for
stochastic graph signals. Stochastic graph signals are characterized
by graph wide sense stationarity (GWSS) which is an extension of
wide sense stationarity (WSS) for standard time-domain signals. In
this paper, graph signals are assumed to satisfy the GWSS condi-
tions and we study their sampling as well as recovery procedures.
In generalized sampling, a correction filter is inserted between the
sampling and reconstruction operators to compensate for non-ideal
measurements. We propose a design method for the correction fil-
ters to reduce the mean-squared error (MSE) between the original
and reconstructed graph signals. We derive the correction filters
for two cases: The reconstruction filter is arbitrarily chosen or
predefined. The proposed framework allows for arbitrary sampling
methods, i.e., sampling in the vertex or graph frequency domain.
We show that the graph spectral response of the resulting correction
filter parallels that for generalized sampling for WSS signals if
sampling is performed in the graph frequency domain. The effec-
tiveness of our approach is validated via experiments by comparing
its MSE with existing approaches.

Index Terms—Generalized sampling theory, stochastic priors,
graph wide sense stationarity, graph Wiener filter.

I. INTRODUCTION

GRAPH signal processing (GSP) is a developing field in
signal processing [2], [3]. Applications of GSP are exten-

sive, including learning of graphs [4], [5], [6], [7], [8], restora-
tion of graph signals [9], [10], [11], [12], image/point cloud
processing [13], [14], and graph neural networks [15]. Recent
interest in GSP is to extend classical signal processing theory
to the graph setting [16], [17], [18], [19], [20]. One of the main
differences between standard signal processing and GSP is that
GSP systems are not shift-invariant (SI) in general. This leads to
the challenge that GSP systems may have different definitions
in the vertex and spectral (graph frequency) domains: They do

Manuscript received 27 May 2022; revised 21 November 2022 and 10 Febru-
ary 2023; accepted 30 March 2023. Date of publication 18 April 2023; date of
current version 2 May 2023. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Yue M. Lu. The work of
Junya Hara and Yuichi Tanaka was supported in part by JST PRESTO under
Grant JPMJPR1935 and in part by JSPS KAKENHI under Grants 20H02145,
23H01415, and 22J22176. The work of Yonina C. Eldar was supported in part by
the European Research Council (ERC) through the European Union’s Horizon
2020 Research and Innovation Program under Grant 101000967 and in part
by the Israel Science Foundation under Grant 536/22. (Corresponding author:
Junya Hara.)

Junya Hara and Yuichi Tanaka are with the Graduate School of Engineering,
Osaka University, Suita, Osaka 565-0861, Japan (e-mail: jhara@msp-lab.org;
ytanaka@comm.eng.osaka-u.ac.jp).

Yonina C. Eldar is with the Faculty of Mathematics and Computer Science,
The Weizmann Institute of Science, Rehovot 7610001, Israel (e-mail: yonina.
eldar@weizmann.ac.il).

Digital Object Identifier 10.1109/TSP.2023.3267990

not coincide in general. Such examples include sampling [21],
[22], [23], [24], [25], [26], [27], [28], [29], translation [30], [31],
[32], [33], [34], and filtering [35].

In this paper, we focus on graph signal sampling. Sampling
theory for graph signals has been widely studied [21], [22],
[23], [24], [25], [26], [27], [28], [36], [37]. There are many
promising applications of graph signal sampling, such as sensor
placement [27], filter bank designs [38], [39], [40], [41], traffic
monitoring [42], and semi-supervised learning [43], [44]. Most
works focus on building parallels of the Shannon-Nyquist the-
orem [45], [46] and its generalizations [47], [48] to the graph
setting. Therefore, sampling of bandlimited graph signals has
been widely studied [22], [23], [26], [28]. Other graph signal
subspaces are also useful for practical applications: For example,
piecewise smooth graph signals and periodic graph spectrum
signals have been considered [49], [50], [51], [52].

Since sampling of deterministic signals has been well studied
in the literature of sampling in Hilbert space [47], [48], [53],
[54], we can immediately derive its GSP counterpart. In contrast,
sampling of random graph signals has not been considered so
far because existing (generalized) sampling methods for graph
signals have mainly focused on deterministic signal models [17],
[21], [22], [23], [24], [25], [26], [27], [28], [55].

In this paper, we consider a graph signal sampling framework
for random graph signals. Random graph signals are modeled
by graph wide sense stationarity (GWSS), which is a coun-
terpart of wide sense stationarity (WSS) of standard signals.
WSS is characterized by the statistical moments, i.e., mean and
covariance, that are invariant to shift. Graph signals do not lie
in SI spaces in general. Hence, existing definitions of GWSS
are based on the spectral characteristics of signals [32], [56],
[57], which are extensions of the power spectral density (PSD)
of the standard WSS. However, existing definitions of GWSS
require additional assumptions that are not necessary for WSS.
Therefore, we first define GWSS as a natural extension of WSS
based on signal modulation. Subsequently, we develop a gener-
alized sampling framework to best recover GWSS signals. Our
framework parallels generalized sampling of SI signals [58]. It
consists of sampling, correction, and reconstruction transforms.
The correction transform is inserted between the sampling and
reconstruction transforms to compensate for non-ideal measure-
ments. We derive the correction transform that minimizes the
mean-squared error (MSE). Our framework can be applied to
any sampling method that is linear. In other words, both vertex
and graph frequency domain sampling methods [22], [23], [26],
[27], [28], [29] are applicable without changing the framework.
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TABLE I
COMPARISON OF GENERALIZED GRAPH SIGNAL SAMPLING

Existing works of (generalized) sampling theory on
graphs [17], [55] have been studied only for deterministic signal
models. In contrast, our generalized sampling is designed for
random graph signals as described in Table I. Interestingly,
our solution parallels that in the SI setting [58] when sam-
pling is performed in the graph frequency domain. Moreover,
we show that existing signal recovery methods under different
priors [17] are special cases of our framework. Experiments for
synthetic signals validate that our proposed recovery is effective
for stochastic graph signals with sampling in both vertex and
spectral domains.

The remainder of this paper is organized as follows. Section II
reviews generalized sampling for time-domain signals. For WSS
signals, we introduce the standard Wiener filter. In Section III, a
generalized sampling framework for stochastic graph signals is
introduced. In Section IV, we define GWSS as an extension of
WSS for time domain signals. Section V derives graph Wiener
filters for recovery of a GWSS process based on minimization of
the MSE between the original and reconstructed graph signals.
In the special case of graph frequency domain sampling, the
graph frequency response parallels that of sampling in SI spaces.
In Section VI, we discuss the relationship among the proposed
Wiener filter and existing generalized graph signal sampling.
Signal recovery experiments for synthetic and real-world signals
are demonstrated in Section VII. Section VIII concludes the
paper.

Notation: We consider a weighted undirected graph G =
(V, E), where V and E represent the sets of vertices and edges,
respectively. The number of vertices isN = |V|unless otherwise
specified. The adjacency matrix of G is denoted by A where
its (m,n)-element amn ≥ 0 is the edge weight between the
mth and nth vertices; amn = 0 for unconnected vertices. The
degree matrix D is defined as D = diag (d0, d1, . . . , dN−1),
where dm =

∑
n amn is the mth diagonal element. We use a

graph Laplacian L := D−A as a graph variation operator. A
graph signal x ∈ C

N is a mapping from the vertex set to the set
of complex numbers, i.e., x : V → C.

The graph Fourier transform (GFT) of x is defined as

x̂(λi) = 〈ui,x〉 =
N−1∑
n=0

ui[n]x[n], (1)

where ui is the ith column of a unitary matrix U and it is
obtained by the eigenvalue decomposition of the graph Lapla-
cian L = UΛU∗ with the eigenvalue matrix Λ = diag (λ0, λ1,
. . . , λN−1). We refer toλi as a graph frequency. We let [·]n,k and
(·)n denote the (n, k)-element in the matrix and n-th element in
the vector, respectively, (∗), 〈·, ·〉 and tr(·) denote the convolu-
tion, the inner product between two vectors and trace of a matrix,

respectively, and (◦) represents the Hadamard (elementwise)
product.

For time-domain signals, x(t) and x[n] denote a continuous-
time signal and discrete-time signal, respectively. The
continuous-time Fourier transform (CTFT) of a signalx(t) ∈ L2

is denoted by X(ω) and the discrete-time Fourier transform
(DTFT) of a sequence x[n] ∈ �2 is denoted by X(ejω).

II. GENERALIZED SAMPLING IN SI SPACES

Generalized sampling for stochastic standard signals is re-
viewed in this section [58]. Detailed derivations and discussions
can be found in [47], [58]. The Wiener filter introduced in this
section parallels that in our graph signal sampling framework.

A. Sampling and Recovery Framework for Time-Domain
Signals

We first review standard generalized sampling for time-
domain signals [47]. The framework is depicted in Fig. 1.

Let x(t) be a continuous-time signal and η[n] be stationary
noise. We consider samples c[n] at t = nT of a filtered signal
of x(t), c(t) = x(t) ∗ s(−t), where s(−t) denotes a sampling
filter. The DTFT of the samples, C(ejω), can be written as

C
(
ejω
)
=

1

T

∑
k∈Z

S∗
(
ω − 2πk

T

)
X

(
ω − 2πk

T

)
, (2)

where S(ω) is the CTFT of s(t) ∈ L2. The measured samples
are corrupted by noise and are given by

y[n] = 〈s(t− nT ), x(t)〉+ η[n]. (3)

The reconstructed signal is constrained to lie in a SI space W ,
spanned by the shifts of a reconstruction kernel w(t) ∈ L2, i.e.,

x̃(t) =
∑
n∈Z

d[n]w(t− nT ), (4)

where d[n] ∈ �2 are unknown expansion coefficients, which
yield the best possible recovery x̃(t). To obtain an appropri-
ate d[n], we apply a digital correction filter h[n] to y[n], i.e.,
d[n] = (h ∗ y)[n]. The CTFT of x̃(t) can be expressed as

X̃(ω) = D
(
ejωT

)
W (ω), (5)

where D(ejω) is the DTFT of d[n] and W (ω) is the CTFT of
w(t).

In practice, sampling and reconstruction filters, i.e., s(t) and
w(t), may be predefined prior to sampling based on technical
requirements. For generalized sampling, instead, we assume that
we can design the correction filterh[n] freely. The best correction
filter h[n] is designed such that the input signal x(t) and the
reconstructed signal x̃(t) are close enough in some metric.
This is a widely-accepted sampling framework for time-domain
signals and we follow it here for the graph setting [58], [59].

B. Wiener Filter

Next, suppose that x(t) is a zero-mean WSS process with
known power spectral density (PSD) Γx(ω) and η[n] is a
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Fig. 1. Generalized sampling framework in SI spaces and its counterpart in the Fourier domain. Dashed-lined and solid-lined areas in the bottom represent input
and filtered spectra, respectively. Colored areas represent spectral responses of each filter.

zero-mean WSS noise process with known PSD Γη(e
jω), in-

dependent of x(t). Detailed definitions of WSS are given in
Appendix A.

The optimal correction filter proposed in [58] is obtained by
solving the following problem:

min
h[n]

E

{
|x̃(t)− PWx(t)|2

}
, (6)

where PW is an orthogonal projection onto the reconstruction
subspace W . Since the recovered signal x̃(t) is constrained by
(4) to lie in W , we want it to best approximate the orthogonal
projection of x(t) onto that same space W [58]. The frequency
response of the solution of (6) is given by [58]:

HPRE
(
ejω
)
=∑

k∈Z Γx

(
ω
T + 2πk

T

)
S
(
ω
T + 2πk

T

)
W ∗ (ω

T + 2πk
T

)
RW (ejω)

(∑
k∈Z Γx

(
ω
T + 2πk

T

) ∣∣S (ωT + 2πk
T

)∣∣2 + Γη (ejω)
) ,

(7)

where RW

(
ejω
)
=
∑

k∈Z
∣∣W (

ω
T + 2πk

T

)∣∣2.
When the reconstruction filter is unconstrained, we can op-

timize the correction filter jointly with the reconstruction filter.
The optimal filter in the unconstrained setting is a special case
of (7), where w(t) is optimally chosen. In order to obtain the
unconstrained solution, we thus solve (6) with respect to w(t)
by substituting (7) for (6) [47]. The resulting optimal correction
filter in the unconstrained case is given by

HUNC
(
ejω
)
=

1∑
k∈Z Γx

(
ω
T + 2πk

T

)∣∣S(ωT + 2πk
T

)∣∣2+Γη (ejω)
,

(8)

with the reconstruction filter W (ω) = Γx(ω)S(ω).
In Section III, we introduce a sampling framework for GWSS

as a counterpart to what we described in this section.

III. SAMPLING OF GRAPH SIGNALS

We next introduce the sampling and recovery framework
used throughout the paper. Then, two representative sampling
methods for graph signals are reviewed.

A. Sampling and Recovery Framework for Graph Signals

We begin by reviewing generalized graph signal sampling [1],
[17], illustrated in Fig. 2. The main differences among various
methods stem from the sampling domain and signal generation
model.

Let c ∈ C
K(K ≤ N) be the sampled graph signal. When

S∗ is the sampling transformation, c = S∗x, we would like to
recover x from the noisy samples y = c+ η using a recon-
struction transformation W ∈ C

N×K . The recovered signal is
then

x̃ = WHy = WH(c+ η) = WH(S∗x+ η), (9)

where H ∈ C
K×K is some transformation that compensates

for non-ideal measurements. It is an analog of the generalized
sampling framework introduced in Section II-A: We use three
filters S, H, and W. In the following, we seek the best H so
that x̃ is close to x in some sense under appropriate signal
assumptions [58], [59].

B. Sampling Methods

Here, we introduce representative graph signal sampling op-
erators in the vertex and graph frequency domains.

1) Sampling in Vertex Domain: Vertex domain sampling is
expressed as the selection of samples on a vertex subset. There-
fore, it corresponds to nonuniform sampling in the time domain.

Sampling in the vertex domain is defined as follows:
Definition 1 (Sampling in the vertex domain): Letx ∈ C

N be
the original graph signal and G ∈ C

N×N be an arbitrary graph
filter. In addition, let IM ∈ {0, 1}K×N be a submatrix of the
identity matrix IN extracting K = |M| rows corresponding to
the sampling set M ⊂ V . The sampled graph signal c ∈ C

K is
given as follows:

c = IMGx. (10)

The sampling matrix is then expressed as S∗ = IMG. In
contrast to time domain signals, IM may depend on the graph
since local connectivity of the graph is often irregular. This
implies that there may exist a “best” vertex set for graph signal
sampling described in [21].
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Fig. 2. Generalized sampling framework for graph signals.

2) Sampling in the GFT Domain: When sampling SI signals,
the spectrum folding phenomenon occurs [47]. Graph frequency
domain sampling utilizes the behavior in the graph spectrum.

Formally, graph frequency domain sampling, which is a coun-
terpart of (2), is defined as follows:

Definition 2 (Sampling in the graph frequency domain [29]):
Let x̂ ∈ C

N be the original signal in the graph frequency do-
main, i.e., x̂ = U∗x, and let S(λi) be an arbitrary sampling
filter defined in the graph frequency domain. For any sampling
ratio M ∈ Z,1 the sampled graph signal in the graph frequency
domain is given by ĉ ∈ C

K , where K = N/M , and

ĉ(λi) =

M−1∑
l=0

S(λi+Kl)x̂(λi+Kl). (11)

In matrix form, the sampled graph signal is represented as ĉ =
DsampS(Λ)x̂, where Dsamp = [IK IK · · · ] ∈ C

K×N . Then, we
define the sampling matrix S∗ as [17]

S∗ = UreducedDsampS(Λ)U∗, (12)

where Ureduced ∈ C
K×K is an arbitrary unitary matrix, which

may correspond to the GFT for a reduced-size graph. The-
oretically, we can use any unitary matrix for Ureduced. One
choice which has been studied in multiscale transforms for graph
signals is graph reduction [60].

Here, we define reconstruction in the graph frequency domain,
which is the counterpart of (5), as follows:

[U∗x̃](λi) = d̂(λimodK)W (λi), (13)

where d̂ ∈ C
K is a vector composed of expansion coefficients

andW (λi) is the reconstruction filter kernel defined in the graph
frequency domain. Correspondingly, the reconstruction matrix
is represented as

W = UW (Λ)D∗
sampU

∗
reduced. (14)

The reconstruction in (13) is performed by replicating the orig-
inal spectrum in the same manner as standard signal process-
ing [29].

In the following, we propose a definition of GWSS based
on the classical WSS, in which the covariance is invariant to
modulation.

IV. GRAPH WIDE SENSE STATIONARITY

In this section, we consider the stationarity of random graph
signals. We begin by defining GWSS as the invariance of sta-
tistical moments with modulation which extends the classical

1M is assumed to be a divisor of N for simplicity.

WSS definition. We then derive the properties of our GWSS. For
clarity, the classical definition of WSS is detailed in Appendix A.

A. Definition of GWSS

Several definitions of GWSS have been proposed [32], [56],
[61]. A definition of GWSS based on the WSS by shift (see
Collorary 1 in Appendix A) is shown in Appendix B-A.

In this paper, we define GWSS based on the WSS by modu-
lation (see Collorary 2 in Appendix A) as follows:

Definition 3 (Graph Wide Sense Stationary by Modulation
(GWSSM)): Let x be a graph signal on a graph2 G. Then, x is a
graph wide sense stationary process if and only if the following
two conditions are satisfied for all m:

1) E[(x � δn)m] = μx = const, (15)

2) E[(x � δn − μx1)m(x � δk − μx1)
∗
m] = [Γx]n,k. (16)

The operator · � δk is defined as follows:

x � δk := Mdiag(u0[k], u1[k], . . .)U
∗x, (17)

where M =
[
ej2π·0/N1, ej2π·1/N1, . . .

]
.

Note that · � δk corresponds to the standard sinusoidal
modulation, since (x � δk)n = (U exp(jΩ)U∗x)k where Ω =
diag(0, 2π/N, . . . , 2π(N − 1)/N). Therefore, we refer to · � δk
as a modulation operator on a graph.

B. Properties of GWSS

Next, we study the properties of Definition 3 for GWSS used
in our generalized sampling, as a counterpart of Corollary 2 in
Appendix A.

In Definition 3, the condition in (15) is identical to

E[x � δn] = Mdiag(u0[n], u1[n], . . .)U
∗
E[x]. (18)

Since Mdiag(1, 0, . . . , 0) = [10 · · · 0], equality holds if and
only if E[x] = μxu0 = μx1. Therefore, · � δn does not change
the mean of graph signals. The condition in (16) implies that the
covariance Γx has to be diagonalizable by U. We show this fact
in the following lemma.

Lemma 1: Let x and Γx be a stochastic signal on G and its
covariance matrix, respectively, by Definition 3. Then, Γx is
diagonalizable by U.

Proof: The LHS of (16) is expressed as

E[(x � δn − μx1)m(x � δk − μx1)
∗
m]

= [Mdiag(u0[n], u1[n], . . .)Γ̂xdiag(u∗
0[k], u

∗
1[k], . . .)M

∗]m,m

2We suppose that G is connected for simplicity. Nevertheless, we can extend
our definition of GWSS to the non-connected case.
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= δ∗mMdiag(U∗δn)Γ̂xdiag(U∗δk)M∗δm

= δ∗nUdiag(M∗δm)Γ̂xdiag(M∗δm)U∗δk

=
[
U
(
Γ̂x ◦M∗δmδ∗mM

)
U∗]

n,k

=
[
U(Γ̂x ◦Ξ)U∗]

n,k
, (19)

where Γ̂x = E[U∗(x− μx1)(x− μx1)
∗U] and [Ξ]i,l =

[M∗δmδ∗mM]i,l = exp(−j2π(i− l)/N). Since [Ξ]i,l = 1
for i = l and [Ξ]i,l �= 1 otherwise, the condition satisfying
(19), i.e., Γ̂x = Γ̂x ◦Ξ, holds if and only if Γ̂x is diagonal.
Therefore, Γx is diagonalizable by U, which completes the
proof. �

One of the important properties of Definition 3 is that Γx

is diagonalizable by U, as stated in Lemma 1. We refer to
Γ̂x(Λ) := U∗ΓxU as the graph PSD. This property is preferred
in GSP since it parallels the Wiener-Khinchin relation in the
time domain [62] and it is advantageous for exploiting spectral
tools in GSP.

Recall that the autocovariance function is invariant to shift in
the standard WSS [62]. Since a graph operator is often used as
a shift operator in the graph setting, the invariance with shift for
GWSS can be translated to

ΓxL = LΓx. (20)

This property is also used in [63], [64]. Note that Γx is diago-
nalizable by U if and only if (20) is satisfied [65]. In fact, the
alternative definitions of GWSS require additional assumptions
to satisfy (20). For example, [32] requires that all eigenvalues of
L are distinct. However, we sometimes encounter graphs whose
graph operator has an eigenvalue with multiplicity greater than
one [56]. Moreover, [56], [61] require that the covariance Γx

is expressed by a polynomial in L, while this assumption may
not be true in general, including the multiple eigenvalue case.
On the other hand, our GWSS definition does not require such
assumptions, but it still satisfies (20). As a result, Definition 3
can be regarded as a more natural extension of the classical
WSS than existing GWSSs. The relationship among the GWSS
definitions is discussed in detail in Appendix B-B. Note that our
generalized sampling is applicable under different definitions of
GWSS with slight modifications.

We develop a Wiener filter for our generalized sampling
framework. We consider two scenarios of reconstruction design:
predefined and unconstrained reconstruction. We demonstrate
the similarity of the resulting filters to the classical ones.

V. GRAPH WIENER FILTER: RECOVERY FOR STOCHASTIC

GRAPH SIGNALS

We now consider the design of the correction filter. It is
optimized such that the reconstructed graph signal is close to the
original one in MSE. We show that the resulting Wiener filter
parallels that in the SI setting when graph spectral sampling
(Definition 2) is performed.

A. Graph Wiener Filter

Suppose that x is a zero-mean GWSS process with a known
covariance Γx and η is a zero-mean GWSS noise process
with a known covariance Γη , independent of each other. For
simplicity, we suppose that columns of W and S satisfy the
Riesz condition [47], i.e., W∗W and S∗S are invertible.

We now formulate the design the correction filter. Unlike the
formulation (6) in the time domain, we can directly minimize
the expectation of the normed error in the graph setting because
the subspace of graph signals is finite-dimensional. We consider
minimizing the MSE between the original and reconstructed
graph signals by solving

min
H

E
[ ‖x̃− x‖2 ] . (21)

The optimal correction filter is obtained in the following Theo-
rem.

Theorem 1: Suppose that the input signal x and noise w
are zero-mean GWSS processes with covariances Γx and Γw,
respectively, which are uncorrelated with each other. Then, the
solution of (21) is given by

HPRE = (W∗W)−1W∗ΓxS(S
∗ΓxS+ Γη)

−1. (22)

Proof: The MSE εMSE = E[‖x̃− x‖2] is given by

εMSE = E[tr (WHS∗xx∗SH∗W∗)]

+ E[tr (−xx∗SH∗W∗ − xx∗WHS∗ + xx∗)]

+ E[tr (WHηη∗H∗W∗ − xη∗H∗W∗)]

+ E[tr (−WHηx∗ + ηη∗)]

= tr (WHS∗ΓxSH
∗W∗ − ΓxSH

∗W∗)

+ tr (−ΓxWHS∗ + Γx)

+ tr (WHΓηH
∗W∗ + Γη)

= tr (S∗ΓxSH
∗W∗WH− 2S∗ΓxWH+ Γx)

+ tr (ΓηH
∗W∗WH+ Γη) , (23)

where the second equality holds since expectation and trace
are interchangeable and the third equality follows by the cyclic
property of trace.

The infinitesimal perturbation of εMSE with respect to H
results in

dεMSE = tr (2S∗ΓxSH
∗W∗WdH)

+ tr (−2S∗ΓxWdH+ 2ΓηH
∗W∗WdH) . (24)

Here, dεMSE is defined by

dεMSE =
∑
n,m

[
∂εMSE

∂H
◦ dH

]
n,m

= tr

((
∂εMSE

∂H

)∗
dH

)
.

(25)

As a result, the derivative of εMSE in (23) with respect to H
results in

∂εMSE

∂H
= W∗WH(S∗ΓxS+ Γη)−W∗ΓxS. (26)

Setting (26) to zero, we obtain the optimal H of (22). �
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In Theorem 1, we consider the predefined case. Next, we move
on to the unconstrained case: The reconstruction filter W can
also be freely chosen along with H. The optimal solution is
obtained by solving

min
W,H

E
[ ‖x̃− x‖2 ] . (27)

The optimal correction filter is given in the following Theorem.
Theorem 2: Suppose that the input signal x and noise w

are zero-mean GWSS processes with covariances Γx and Γη ,
respectively, which are uncorrelated with each other. Then, the
solution of (27) is given by

HUNC = (S∗ΓxS+ Γη)
−1, WUNC = ΓxS. (28)

Proof: Since (22) is optimal for an arbitrary W, we plug it
into (23) and have

εMSE = tr(PWZS∗ΓxSZ
∗PW − 2ΓxSZ

∗PW + Γx)

+ tr(PWZΓηZ
∗PW + Γη), (29)

where PW = W(W∗W)−1W∗ and Z = ΓxS(S
∗ΓxS+

Γη)
−1. In the same manner as (26), the derivative of εMSE with

respect to W is derived from (29) as

∂εMSE

∂W
= 2PWZS∗ΓxSZ

∗W(W∗W)−1

− 2ΓxSZ
∗W(W∗W)−1

+ 2PWZΓηZ
∗W(W∗W)−1. (30)

By setting (30) to zero, we have

(PWΓxS− ΓxS)Z
∗W(W∗W)−1 = 0. (31)

Therefore, PW is necessary to be the identity mapping over
R(ΓxS), leading to W = R(ΓxS) where R(·) is the range
space of a matrix. Graph signal recovery with (22) can be
expressed as

WH = PWΓxS(S
∗ΓxS+ Γη)

−1. (32)

SinceW = R(ΓxS), we can chooseW = ΓxS and obtainH =
(S∗ΓxS+ Γη)

−1. This completes the proof. �
We note that graph signal restoration based on Bayesian

estimation in [28, Proposition 1] coincides with the proposed
recovery transformation in Theorem 2. This implies that the pro-
posed recovery transformation in the unconstrained case can also
be viewed as a Bayesian estimation. The recovery transformation
in Theorem 1 covers both of the unconstrained and predefined
cases: This situation is not studied in [28]. Additionally, the
Wiener filter presented in [63, Theorem 5] appears similar to the
one presented in Theorem 2, however, it requires the bandlimited
assumption. In contrast, our Wiener filter can be applied to
full-band graph signals.

So far, we considered a general solution for stochastic re-
covery. By choosing graph frequency domain sampling, we can
show that the resulting recovery parallels that in SI space, studied
in [47], [58].

B. Special Cases for GFT Domain Sampling

Suppose that the graph signal and noise conform to zero-
mean GWSS processes with PSD Γ̂x(λ) and Γ̂η(λ), respectively.
We assume that S∗ and W are defined in the graph frequency
domain by (12) and (14), respectively. In this setting, (22) is
diagonalizable byUreduced, i.e., it has a graph frequency response

HPRE(λi) =

∑
l Γx(λi+Kl)W

∗(λi+Kl)S(λi+Kl)

RW (λi)
(∑

l Γ̂x(λi+Kl)|S(λi+Kl)|2+Γ̂η(λi)
) ,

(33)

where

RW (λi) :=

M−1∑
l=0

W ∗(λi+Kl)W (λi+Kl). (34)

Similarly, the graph spectral responses of (28) are given by

HUNC(λi) =
1∑

l Γx(λi+Kl)|S(λi+Kl)|2 + Γη(λi)
, (35)

with reconstruction filter W (λi) = Γx(λi)S(λi). The correc-
tion filters (33) and (35) inherit frequency responses of the
Wiener filter in standard sampling (7) and (8), respectively.

In the following, we discuss the relationship among the pro-
posed graph Wiener filter and existing generalized graph signal
sampling.

VI. RELATIONSHIP TO OTHER PRIORS

In this section, we consider the relationship between the
proposed graph Wiener filter and graph signal recovery under
subspace and smoothness priors [17]. For simplicity, we only
consider the predefined case. The unconstrained case can be
derived in a similar fashion.

A. Subspace Prior

Under the subspace prior, we assume the following graph
signal model [17].

x = Ad, (36)

where A ∈ C
N×K is a known generator and d ∈ C

K is ex-
pansion coefficients. Suppose that d is a random vector and
Σd = E[dd∗] is the covariance of d. The covariance of x is
then written as

Σx = E[Add∗A∗] = AE[dd∗]A∗ = AΣdA
∗. (37)

By substituting (37) to (22), we have the following correction
filter:

HMX,SUB = (W∗W)−1W∗AΣdA
∗S(S∗AΣdA

∗S+ Γη)
−1.
(38)

For a subspace prior, ifS∗A is invertible and there is no noise,
(38) reduces to

HMX,SUB = (W∗W)−1W∗AΣdA
∗S(S∗AΣdA

∗S)−1

= (W∗W)−1W∗AΣdA
∗S(A∗S)−1Σ−1

d (S∗A)−1

= (W∗W)−1W∗A(S∗A)−1, (39)
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TABLE II
AVERAGE MSES (IN DECIBELS) OF THE RECONSTRUCTED SIGNALS FOR SYNTHETIC DATA ON 20 INDEPENDENT REALIZATIONS (IN DECIBELS). WE ALSO SHOW

THE STANDARD DEVIATIONS ALONG WITH THE MSES. ER, BL, FB, VS AND SS DENOTE AN ERDŐS-RÉNYI GRAPH, BANDLIMITED, FULL-BAND, VERTEX DOMAIN

SAMPLING AND SPECTRAL DOMAIN SAMPLING, RESPECTIVELY. UNC, PRE, LS AND MX DENOTE UNCONSTRAINED, PREDEFINED, LEAST-SQUARES AND

MINIMAX CRITERIA, RESPECTIVELY

Fig. 3. Graph frequency responses of several functions used for experiments.

where we assume that Σd is invertible. As observed, HMX,SUB

does not depend on Σd. Interestingly, the solution in (39) co-
incides with the minimax solution for signal recovery under
subspace prior [17]. As a result, we can view the minimax
recovery under the subspace prior (39) as a special case of (22)
with random expansion coefficients and known A.

B. Smoothness Prior

Next, we consider a smoothness prior [17]:

‖Vx‖2 ≤ ρ2, (40)

where V = UV (Λ)U∗ is a smoothness measuring function,
i.e., graph high-pass filter, and ρ > 0 is a constant. We assume
that V is bounded, i.e., V∗V is invertible.

To derive the solution of (21) subject to the constraint in (40),
the problem may be written as minimization of the Lagrangian

L(H, ξ) = E
[‖x̃− x‖2]+ ξ

(
E
[‖Vx‖2]− ρ2

)
, (41)

where ξ is a constant. The optimal solution of (41) satisfies the
following identity [70]:

λ
(
E
[‖Vx‖2]− ρ2

)
= ξ

(‖VΣxV
∗‖2F − ρ2

)
= 0. (42)

The second equality of (42) is satisfied with either ξ = 0 or
‖VΣxV‖2F = ρ2. Therefore, the nontrivial solution of (41) is
obtained with ‖VΣxV‖2F = ρ2. Since ‖V(V∗V)−1V∗‖2F =
‖I‖2F = N , Σx can be written as

Σx =
ρ2

N
(V∗V)−1. (43)

Since the derivative of L(H, ξ) with respect toH coincides with
(23), we immediately obtain the following solution:

HMX,SMO = (W∗W)−1W∗(V∗V)−1S
(
S∗(V∗V)−1S

)−1
,

(44)

where we also assume the noiseless case (Γη = 0 in (23)) as
in the subspace prior. In fact, (44) coincides with the minimax
solution under the smoothness prior [17]. Similar to (39), we
may view minimax recovery under the smoothness prior (44) as
a special case of (22).

VII. SIGNAL RECOVERY EXPERIMENTS

In this section, we validate the effectiveness of the proposed
method via signal recovery experiments. We demonstrate that
the approach described in Section V reduces the reconstruction
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Fig. 4. Signal recovery experiments for noisy graph signals on a random sensor graph with N = 256. Sampling is performed by (46) in the vertex domain. UNC
and PRE denote the unconstrained and predefined solutions. SM and ST denote recovery with smoothness and stochastic priors. LS and MX denote least-squares
and minimax criteria.

TABLE III
AVERAGE MSES (IN DECIBELS) OF THE RECONSTRUCTED SIGNALS FOR THE SEA SURFACE TEMPERATURE DATA (IN DECIBELS). NOTATIONS ARE THE SAME AS

TABLE II

error in comparison with existing recovery techniques under the
stochastic setting.

A. Synthetic Graph Signals

In this subsection, we perform signal recovery experiments
for synthetic graph signals.

1) Sampling and Recovery Setting: We perform signal re-
covery experiments of synthetic graph signals. The recovery
framework is illustrated in Fig. 2.

Here, we consider the following three graphs with N = 256:
� Random sensor graph;3

3Random sensor graphs are implemented byk nearest neighbor graphs, whose
vertices are randomly distributed in 2-D space [0, 1]× [0, 1] [71].

� Erdős-Rényi (ER) graph with edge connection probability
p = 0.3; and

� 2D grid graph.
We use the following functions throughout the experiments.
� PSD function:

Γ̂x(λi) = exp

(
−
{
2λi − λmax√

λmax

}2
)
. (45)

� Sampling function #1 (for full-band sampling):

S(λi) =

{
1 λmax/λi ≤ 2

2− 2λi/(λmax) otherwise.
(46)
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Fig. 5. Signal recovery experiments for the sea surface temperature data on a 5-nearest neighbor graph. Sampling is performed by (46) in the vertex domain.
Abbreviations are the same as those in Fig. 4.

� Sampling function #2 (for bandlimited sampling):

S(λi) =

{
1 i ∈ [0,K − 1],

0 otherwise.
(47)

� Reconstruction function (for constrained recovery):

W (λi) = cos

(
π

2
· λi

λmax

)
. (48)

� Smoothness function (for recovery with smoothness prior
by [17]):

V (λi) =
λi

λmax
+ ε (49)

where we set to ε = 0.1.
Their spectral responses are shown in Fig. 3.

A stochastic graph signal is generated by x ∼ N (0,Γx),
whereΓx satisfies the GWSS conditions described in Section IV,

i.e., Γx = UΓ̂x(Λ)U∗. As mentioned in Appendix B, existing
definitions of GWSS coincide when Γx is diagonalizable by U.
Therefore, this setting simultaneously satisfies Definition 3 and
the other existing definitions of GWSS [32], [56], [61].

Under the presence of noise, we suppose that noise conforms
to i.i.d. zero-mean Gaussian distribution with σ2 = 0.3, i.e., η ∼
N (0, 0.3) and thus Γη(λi) = 0.3 for all i. Graph signals are
sampled with sampling ratio N/K = 4.

We perform experiments for two cases. 1) The sampling
function S(λi) is full-band as in (46). 2) S(λi) is bandlimited
as in (47). In addition, two sampling domains, i.e., samplings in
vertex and graph frequency domains, are considered. For vertex
domain sampling, sampled vertices are selected randomly. For
the predefined recovery, we use the given kernel W (λi) in (48).

We calculate the average MSE in 20 independent
runs and compare with existing graph signal interpolation
methods, MKVV [66], MKVD [67], NLPD [23], GSOD [68]



1430 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

and NLPI [69], and recovery methods under smoothness priors
proposed in [17]. Smoothness is measured by the energy of high
frequency graph spectra with the measuring function V (λi) in
(49). We also show the result of the bandlimited reconstruc-
tion [29], i.e., reconstruction with the sampling filter #2 without
correction.

Since there has been no prior work on graph signal sampling
with stochastic prior, we also compare with graph signal recov-
ery with smoothness prior [17] as a benchmark.

2) Results: Table II summarizes the average MSEs with the
standard deviations (in decibels). Examples of recovered signals
via full-band sampling are visualized in Fig. 4.

From Table II, it is observed that the proposed methods present
the best MSEs in most cases regardless of the sampling domain.
Sometimes, the MSEs for bandlimited sampling are close to the
proposed method, especially for the ER graph. This is because
of the eigenvalue distribution: The ER graph may produce
eigenvalues sparsely distributed in low graph frequencies, i.e.,
λ < λmax/2 where we consider L as a graph operator, and
many eigenvalues exist in high graph frequencies (λ ≥ λmax/2).
This implies that the cutoff frequency at the Kth eigenvalue
can be relatively high, resulting in wide bandwidth. This also
results in the fact that the bandlimited sampling filter in (47)
may pass the spectra in the middle graph frequencies (λ ∈
[λmax/4, 3λmax/4]); This behavior improves the reconstruction
MSEs. Note that the proposed method presents stable recovery
performances for all the graph and signal models considered.

The recovery with smoothness prior increases MSEs espe-
cially for vertex domain sampling because the PSD function
Γ̂x(λi) does not represent smooth signals in this setting. For
the noiseless cases, the proposed methods demonstrate MSE
improvements by 3–5 dB on average compared to the noisy case.
The unconstrained solution of the proposed stochastic recovery
results in the best performance for almost all cases.

B. Real-World Data

We also perform signal recovery experiments on real-world
data.

1) Sampling and Recovery Setting: We use the global sea
surface temperature dataset [72]. It records snapshots of sea sur-
face temperatures for every month from 2004 to 2021. They are
spatially sampled at intersections of 1-degree latitude-longitude
grids. For the experiment, we used data for 24 months from
2018 to 2020. For this dataset, we randomly sample N = 291
intersections and they are regarded as vertices. We then construct
a 5-nearest neighbor graph based on Euclidean distance. Edge
weights are set to be unweighted. We then remove the edges
crossing land areas. The number of samples is set to K = 73.
For each time instance, we estimate the covariance from the
data in the previous year. We use the method proposed in [56].
The estimated covariance is used for the proposed graph Wiener
filter. We calculate the average MSEs of 24 months for samplings
in vertex and graph frequency domains, and compare with the
existing methods in the previous subsection. For vertex domain
sampling, we perform the experiments on 20 random sampling
patterns of vertices for calculating the average MSE.

2) Results: Table III summarizes the average MSEs with the
standard deviations (in decibels). Recovered graph signals are
visualized in Fig. 5. From Table III, we observe that the proposed
method outperforms existing methods for almost all cases. This
is also validated in Fig. 5.

VIII. CONCLUSION

Generalized graph signal sampling with stochastic priors is
proposed in this paper. We define stationarity of random graph
signals based on classical WSS. We then derive the graph
Wiener filter for unconstrained and predefined reconstruction,
based on minimization of the expectation of the squared norm
error between the original and reconstructed graph signals. We
show that, when sampling is performed in the graph frequency
domain, spectral responses of the graph Wiener filter parallel
those in generalized sampling for WSS signals. We also reveal
a theoretical relationship between the proposed graph Wiener
filter and existing signal recovery under different priors. In the
recovery experiments, we validate the MSE improvement of the
proposed methods for various graphs and two sampling domains.

APPENDIX A
WIDE SENSE STATIONARITY

Stationarity of time-domain signals is reviewed here since this
is useful to understand the connection between WSS and GWSS.

We consider a continuous-time signal x(t). Its stationarity is
defined as follows:

Definition 4 (Wide sense stationary for time-domain signals):
Let x(t) and γx(t) be a stochastic signal in the time domain and
its autocovariance function, respectively. The signal x(t) is a
wide sense stationary process if and only if the following two
conditions are satisfied:

1) E[x(t)] = μx = const, (50)

2) E [(x(t)− μx)(x(τ)− μx)
∗] = γx(t− τ). (51)

A WSS process can be characterized in the Fourier domain
by the Wiener-Khinchin theorem [73]. If x(t) is a WSS process,
then its power spectral density (PSD) function coincides with
the CTFT of the autocovariance function of x(t), γx(t) ∈ L1,
i.e.,

Γx(ω) =

∫ ∞

−∞
γx(t)e

−jωtdω. (52)

Not surprisingly, WSS has several equivalent expressions be-
cause of the correspondence between time-shift and frequency-
modulation, i.e., x(t− τ) ↔ e−jτωX(ω). Here, we present an-
other two expressions of WSS to show the connection with
GWSSs.

Corollary 1 (WSS by Shift): Let Tt0{·} be the shift operator
that delays the signal by t0, i.e., Tt0{x(t)} = x(t− t0). Defini-
tion 4 can be written as follows:

1) E[Tt0{x(t)}] = μx = const, (53)

2) E[(Tt0{x(t)} − μx)(Tt0{x(τ)} − μx)
∗]

= γx(t− τ). (54)
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TABLE IV
COMPARISON AMONG WSS AND GWSSS. OPE AND COV DENOTE OPERATOR AND COVARIANCE, RESPECTIVELY

The equivalence of conditions (53) and (50) is easy to verify.
Since the autocovariance only depends on the time difference,
(54) is identical to (51).

Noting that

x(τ) = x(t) ∗ δ(t− τ), (55)

leads to the following corollary.
Corollary 2 (WSS by Modulation): Definition 4 can be ex-

pressed equivalently by using δ(t) as follows:

1) E[x(t0) ∗ δ(t0 − τ)] = μx = const, (56)

2) E[(x(t0) ∗ δ(t0 − t)− μx)(x(t0) ∗ δ(t0 − τ)− μx)
∗]

= γx(t− τ). (57)

In the paper, we utilize these expressions of WSS for formally
defining GWSS.

APPENDIX B
GRAPH WIDE SENSE STATIONARITY

In this Appendix, we describe and compare some definitions
of GWSS, including ours. These definitions differ in whether
Corollary 1 or 2 in Appendix A is used for the baseline. They
coincide for time-domain signals, but this is not the case for
graph signals, leading to slightly different definitions of GWSS.
The definitions are mainly divided according to whether the co-
variance is diagonalizable by the GFT basisU. These differences
are summarized in Table IV.

A GWSS Followed by Corollary 1

First, we show the definition of GWSS [32] as a counterpart
of Corollary 1. In the literature of GSP, the graph Laplacian L
is often referred to as a counterpart of the time-shift operator
(translation operator) [24], [61]. However, L changes the sig-
nal energy, i.e., ‖Lx‖ �= ‖x‖, while time shift does not, i.e.,
‖Tτ{x[n]}‖ = ‖x[n]‖.

The definition of GWSS introduced here is based on a graph-
translation operator which preserves the signal energy.

Definition 5 (Graph Wide Sense Stationary by Translation
(GWSST) [74]): Let x be a graph signal on a graph G. Suppose

that a graph-translation operator TG is defined by

TG := exp

(
jπ

√
L

ρG

)
, (58)

where ρG = maxm∈V
√

2dm(dm + dm), dm =
∑N−1

n=0 amndn

dm

and ρG ≥ λmax [75]. Then, x is a graph wide sense station-
ary process by translation, if and only if it the following two
conditions are satisfied,

1) E[(TGx)n] = μx = const, (59)

2) E[(TGx− μx1)n(TGx− μx1)
∗
k] = [Γx]n,k (60)

.
The condition (59) implies that E[x] is also constant. To see

this, note that (59) can be expressed as

TGE[x] = U exp
(
jπ
√

Λ/ρG
)
U∗

E[x]. (61)

Since λ0 = 0 and u0 = 1 are always satisfied, i.e., L1 = 0 · 1,
(61) holds if and only if E[x] = μxu0 = μx1. It also implies
that TG1 = 1.

When {λi}i=0,...,N−1 are distinct, the condition (60) implies
that Γx is diagonalizable by U because (60) can be expressed
as

Γx = TGE[(x− μx1)(x− μx1)
∗]T∗

G

= U exp
(
jπ
√
Λ/ρG

)
U∗ΓxU exp

(
−jπ

√
Λ/ρG

)
U∗

= U
(
Γ̂x ◦Θ

)
U∗, (62)

where Γ̂x = U∗ΓxU and [Θ]i,l = exp{jπ(√λi/ρG −√
λl/ρG)}. The third equality follows by the relationship

diag(a)Xdiag(b∗) = X ◦ ab∗. Since [Θ]i,l = 1 for λi = λl

and [Θ]i,l �= 1 otherwise, the equality holds if and only if
[Γ̂x]i,l = 0 for λi �= λl. If the eigenvalues are distinct, then this
condition is equivalent that Γx is diagonalizable by U.
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TABLE V
DIAGONALIZABILITY OF THE COVARIANCE FOR GWSS DEFINITIONS. IF ALL

EIGENVALUES IN Λ ARE DISTINCT, THEY COINCIDE WITH EACH OTHER

B Relationship Among GWSS Definitions

We now discuss the relationship among some representative
definitions of GWSS from the viewpoint of the PSD. These
results are summarized in Table V.

Existing definitions of GWSS are defined as counterparts of
the classical WSS definitions in Corollaries 1 and 2. In terms
of diagonalizability, GWSSM (the counterpart of Corollary 1)
is stricter than GWSST (the counterpart of Corollary 2). This
is because the covariance is always diagonalizable by U in
GWSSM, while that is not the case with GWSST in general.

Next, we compare Θ in (62) with Ξ in (19). In (19), off-
diagonal entries in Ξ are not equal to 1. In contrast, those
in Θ can take the value 1 in the case λi = λl for i �= l, i.e.,
eigenvalues with multiplicity greater than 1. Therefore, GWSST

allows the existence of non-zero off-diagonal elements of Γ̂x for
some graphs having repeated eigenvalues, while GWSSM always
yields the diagonal Γ̂x regardless of graphs. In fact, GWSSM

and GWSST coincide with each other if all eigenvalues of L are
distinct (cf. Lemma 1). Therefore, GWSST effectively assumes
distinct eigenvalues of L in [32].

It is often assumed that Γx is a polynomial in L [56],
[61].4 This is sufficient for the diagonalizability of Γx. It is
noteworthy that the polynomial assumption is equivalent to
Γ̂x(λi) = Γ̂x(λl) for all λi = λl [56]. This is a special case
of GWSSM, since GWSSM allows for Γ̂x(λi) �= Γ̂x(λl) for any
λi = λl. As a result, GWSSM is a good compromise between
applicability and a rigorous relationship to the WSS definition.
Therefore, we use GWSSM as our GWSS definition.
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