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Abstract—Array structures based on the high-order difference
co-array concept provide a large number of degrees of freedom, but
are typically difficult to design under multiple optimality criteria.
In this paper, we present a joint across-order (across different
cumulant order q) and inner-order (within the same cumulant
order q) fractal framework to form a fractal array based on the
2qth-order difference co-array (2qth-O-Fractal) by recursively
using a simple generator. We show that multiple properties of in-
terest, including large consecutive difference co-array, closed-form
sensor positions, hole-free difference co-array, robustness to sensor
failures, and resilience to mutual coupling, are inherited from the
generator under appropriate conditions. Part I of the work focuses
on array structures with a large uniform or hole-free (higher-order)
difference co-array. First, we show that for an array of size N ,
O(N2q) consecutive co-array lags can be provided by optimizing
the generator. In addition, the generated structure outperforms
existing structures in terms of the number of consecutive lags
offered. Then, proof is provided that under given requirements
on the generator, the hole-free property is inherited for q = 2,
and O(N4) hole-free fourth-order difference co-array lags can be
achieved by the proposed framework, which is larger than those
of existing structures. Simulation results verify the superiority
of the proposed framework in terms of estimation accuracy and
resolution capability. Part II of this work focuses on the properties
of array robustness and mutual coupling.

Index Terms—Sparse array design, difference co-array, high-
order cumulants, fractal geometry, direction of arrival estimation.

I. INTRODUCTION

ARRAY signal processing plays an important role in the
fields of radar, sonar, communications and radio astron-

omy [1], [2], [3], [4], where array geometry design is one of the
core issues. Sparse linear arrays with non-uniform inter-element
spacings have the ability to resolve more uncorrelated sources
than the number of physical sensors in direction of arrival (DOA)
estimation [2], [5], [6]. The virtual array constructed by using
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the second-order [2], [7], or high-order statistics [8], [9], of
the received signals contributes to this capability. Due to this
advantage, a series of array structure design criteria and methods
have been proposed over the past decade.

For second-order statistics based DOA estimation, the num-
ber of degrees of freedom (DOFs) is closely related to the
second-order difference co-array of the physical array. Minimum
redundancy array (MRA) [10] is a well-known early structure,
which pursues a large number of DOFs by minimizing the
number of redundant sensor positions. The non-closed form
expressions of sensor positions limit the scalability of MRA, in-
creasing the difficulty in large-scale array design. Subsequently,
nested array (NA) [2] and co-prime array (CPA) [5] structures
were studied extensively due to their large difference co-arrays
and closed-form expressions of sensor positions. NA and CPA
have triggered an upsurge of follow-up works, which focus on
further improving the number of DOFs, such as augmented
coprime array (ACA) [11], improved nested array (INA) [12],
enhanced nested array (ENA) [13], and array based on the
maximum element spacing criterion (MISC) [14], [15]. In tra-
ditional subspace-based methods [16], only information from
the continuous segment of the difference co-array is utilized,
so that a hole-free difference co-array is beneficial. Hole-filling
strategies were suggested to form new CPA-like array structures
with a hole-free difference co-array [17], [18], [19], [20].

Due to the dense first-level subarray in NA [21], the esti-
mation performance of NA deteriorates sharply in the presence
of mutual coupling [22]. In order to reduce mutual coupling,
a series of improved structures have been proposed [21], [23],
[24], [25], [26]. Most of these techniques keep the number of
DOFs provided unchanged or even improved [23], [24], [26].
On the other hand, considering the possibility of physical sensor
damage, the robustness of sparse arrays and stability of co-arrays
have been discussed recently [27], [28], [29], while structures
with improved robustness are presented in [30], [31], [32].

Evidently, sparse array design has to address multiple con-
straints rather than a single criterion for achieving a large consec-
utive difference co-array, and appropriate balance among various
criteria is often needed. One solution is sparse array design via
fractal geometry [33] with inherent self-similarity [34], [35],
[36]. In [3], [37], the proposed fractal array inherits a variety
of properties from its simple generator, including properties
of large consecutive difference co-array, hole-free difference
co-array, robustness, and low coupling leakage, leading to high
flexibility in multi-criterion joint design.

The aforementioned works are all based on second-order
statistics leading to difference co-arrays. High-order cumulant-
based methods have been extensively studied within the field of
DOA estimation [8], [38], [39], [40], [41], [42], [43], [44], [45],

1053-587X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 26,2023 at 03:47:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-8442-5177
https://orcid.org/0000-0002-8295-0442
https://orcid.org/0000-0003-2968-2888
https://orcid.org/0000-0003-4358-5304
https://orcid.org/0000-0001-8532-8328
mailto:zixiangyang@foxmail.com
mailto:qing-shen@outlook.com
mailto:cuiwei@bit.edu.cn
mailto:w.liu@sheffield.ac.uk
mailto:yonina.eldar@weizmann.ac.il
mailto:yonina.eldar@weizmann.ac.il


328 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

offering increased virtual array aperture, improved resolution
capability, estimation accuracy, and robustness against Gaussian
noise [8], [40], [44], compared with methods based on second-
order statistics. Although these techniques are not applicable to
Gaussian sources and have higher computational complexity,
many real-world signals are non-Gaussian [39]. Thus, meth-
ods based on high-order cumulants have been employed in
many applications due to their advantages mentioned above.
For example, these methods are typical solutions to direction
finding problems in wireless communication systems [38], [44]
and acoustic systems [45], [46]. By vectorizing an arbitrary
even order (2q) cumulant matrix of the received data, a virtual
array model is obtained with its virtual sensor set defined as
the 2qth-order difference co-array [8]. For an N -sensor array,
there are N2q virtual elements (including redundant ones) in
its 2qth-order difference co-array. However, the unique co-array
elements related to the DOFs rely on the physical array geometry,
raising the array design problem incorporating different prop-
erties. A well-designed geometry should offer O(N2q) DOFs
that can be exploited by high-order cumulant-based methods,
which is far more than O(N2) when second-order statistics
based techniques are considered.

In [8], a 2q-level nested array (2qL-NA) providing O(N2q)
DOFs with N physical sensors is proposed, which is the first
structure designed based on the 2qth-order difference co-array.
By optimizing the redundant co-array lags in 2qL-NA, a sim-
plified and enhanced 2q-level nested array (SE-2qL-NA) with
increased DOFs was derived [9]. Only the criterion of achieving
large consecutive 2qth-order difference co-array with closed-
form expressions of sensor positions is adopted in designing
2qL-NA and SE-2qL-NA. However, the mutual coupling is
relatively high due to the NA-like structure. A number of sparse
structures have been proposed specifically for fourth-order (q =
2), including the expanding and shift (EAS) array structure [47],
sparse array with fourth-order difference co-array enhancement
based on a nested array (SAFO-NA) [48], two level nested sparse
array (2L-FO-NA) [49], compressed nested array (CNA) [50],
and generalized CNA (GCNA) [51], where 2L-FO-NA, CNA,
and GCNA offer hole-free fourth-order difference co-arrays with
O(N2) DOFs. For E-FO-Cantor [52], the number of DOFs
is increased to O(N3.17) under the premise of satisfying the
hole-free property, shortening the gap toward O(N4) provided
by 2qL-NA (q = 2) and SE-2qL-NA (q = 2) without hole-free
co-arrays.

Compared with array structures exploiting the second-order
difference co-array, flexible sparse array design in the higher-
order case is much less investigated. Most existing works only
focus on the property of large DOFs. Sparse array design in-
corporating multiple criteria based on the 2qth-order difference
co-array is difficult due to the extremely large number of co-array
lags (N2q including redundancies) involved in the optimization.

Inspired by the flexible fractal framework proposed in [3],
[37], we introduce commonly adopted criteria to sparse array
design based on the 2qth-order difference co-array, and present
a joint across-order (across different cumulant order q) and
inner-order (within the same cumulant order q, referred to
as fractal order r) fractal framework to form a fractal array
exploiting the 2qth-order difference co-array (2qth-O-Fractal).
Different from existing structures where only fractal factor r
for q = 1 (inner-order) is considered, both fractal factors q and
r are related to the designed array configurations via fractal
geometries, and are considered in the analysis. In this proposed
simple systematic framework, any sparse linear structure can be

treated as a generator, recursively expanded to generate a large
array for the 2qth-order difference co-array exploitation with
multiple properties inherited from the generator. Therefore, by
optimizing the generator array according to given criteria, the
associated 2qth-O-Fractal can be easily obtained incorporating
multiple properties of interest, leading to a flexible framework
for joint multi-criterion design.

Part I of this work is focused on the following contributions:
1) A joint across-order and inner-order fractal framework is

proposed to generate a fractal array based on the 2qth-order
difference co-array, leading to 2qth-O-Fractal whose properties
are inherited from its optimized generator. The properties of
interest include large consecutive difference co-array, closed-
form expression, hole-free difference co-array, robustness and
economy, and low mutual coupling.

2) The large consecutive difference co-array criterion is con-
sidered, which was the main metric for array construction based
on the 2qth-order difference co-array in the past. In contrast to
existing structures exploiting the nested idea to design higher
level uniform linear subarrays with different spacings [8], [9],
the proposed 2qth-O-Fractal is sparser with reduced redun-
dancies and flexible configurations. By inheriting the property
of a large consecutive difference co-array from its generator,
we prove that 2qth-O-Fractal is capable of providing uniform
DOFs of Oc(CFN

2q) with a larger coefficient CF compared
with existing structures, and improved performance in terms of
resolution capability and estimation accuracy can be achieved.
Here Oc(CFN

2q) means CFN
2q is asymptotically achieved

when N tends to infinity. It is also proved that for a large sensor
numberN , the ratio of the number of uniform DOFs provided by
2qth-O-Fractal to that provided by existing structures increases
exponentially with order q.

3) For q = 2, the requirement for the generator is given to
ensure the inheritance of hole-free property, leading to 4th-O-
Fractal with O(N4) DOFs provided by hole-free fourth-order
difference co-array, which is larger than that of existing struc-
tures (O(N2) by 2L-FO-NA, CNA, and GCNA, and O(N3.17)
by E-FO-Cantor). A series of structures are then given by choos-
ing various types of generator arrays which are proved to satisfy
the mentioned requirement.

This paper is organized as follows. Section II provides basics
about sparse array design, including signal model, high-order
difference co-array, and design criteria. The proposed fractal
array based on the 2qth-order difference co-array is detailed
in Section III, and the conditions of achieving large consecu-
tive difference co-array and hole-free property are analyzed in
Section IV. Comparisons and simulation results are given in
Section V, while conclusions are drawn in Section VI.

II. PRELIMINARIES OF SPARSE ARRAY DESIGN

A. Signal Model

Consider K narrowband far-field sources impinging on a
linear array, and assumed to be non-Gaussian and independent
of each other. The set of K incident angles is represented by
θ = {θ1, θ2, . . . , θK}. The sensor position set of an arbitrary
linear array with N physical sensors is

A = {pn · d |n ∈ [1, N ]} , (1)

where pnd denotes the position of the n-th sensor, and d is the
unit spacing which is omitted hereafter for simplification.
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The received signals from N sensors are stacked to form an
N × 1 signal vector x[i]. The array output model in discrete
version is expressed as

x[i] = A(θ)s[i] + n[i], (2)

where the steering matrix A(θ) is composed of K column
vectors whose k-th column vector a(θk) is the steering vector
of the k-th source

a(θk) =
[
e−j

2πp1 d sinθk
λ , . . . , e−j

2πpNd sinθk
λ

]T
. (3)

The signal vector s[i] = [s1[i], s2[i], . . . , sK [i]]T with {·}T be-
ing the transpose operator contains all source signals, and n[i]
represents Gaussian white noise.

B. The 2qth-Order Cumulant and Virtual Array

For a given structure, DOA estimation methods based on the
2qth-order cumulants possess better identifiability than second-
order statistics based methods [8], [43], [44]. A larger difference
virtual array can be generated by vectorizing the cumulant
matrix [8].

The 2qth-order circular cumulants of the signal vectorx[i] can
be arranged in an Nq ×Nq cumulant matrix with orientation u
(u ∈ [0, q − 1]), i.e. [9], [53],

C2q,x(u) =

K∑
k=1

c2q,sk

[
a(θk)

⊗u ⊗ a(θk)
∗⊗(q−u)

]

×
[
a(θk)

⊗u ⊗ a(θk)
∗⊗(q−u)

]H
+ σ2

n̄INq · δ(q − 1). (4)

Here, ⊗, {·}∗, {·}H , σ2
n̄, INq , and δ(·) denote the Kronecker

product, conjugate operator, conjugate transpose operator, noise
power, the Nq ×Nq identity matrix, and the Kronecker delta
function, respectively. The 2qth-order circular auto-cumulant of
the k-th source signal sk[i] is given as

c2q,sk = Cum

⎧⎪⎨
⎪⎩sk[i], . . . , sk[i]︸ ︷︷ ︸

q times

,

q times︷ ︸︸ ︷
s∗k[i], . . . , s

∗
k[i]

⎫⎪⎬
⎪⎭ , (5)

where Cum{·} represents the cumulant operator, and the Nu ×
1 vector a(θk)⊗u is defined as

a(θk)
⊗u � a(θk)⊗ a(θk)⊗ . . .⊗ a(θk), (6)

with the Kronecker product ⊗ utilized u− 1 times.
Vectorizing the cumulant matrix C2q,x(u) yields [8], [9]

z = vec{C2q,x(u)} = V(θ)p+ σ2
n̄iNq · δ(q − 1). (7)

In (7), a virtual array is generated by matrix vectorization, where
p = [c2q,s1 , c2q,s2 , . . . , c2q,sK ] is the equivalent signal vector
holding the 2qth-order auto-cumulants ofK sources, the column
vector iNq = vec{INq}, and

V(θ) = [v(θ1),v(θ2), . . . ,v(θK)] (8)

is the equivalent steering matrix with

v(θk) =
[
a(θk)

⊗u ⊗ a(θk)
∗⊗(q−u)

]∗
⊗
[
a(θk)

⊗u ⊗ a(θk)
∗⊗(q−u)

]
. (9)

The array output model in (7) is a general single-snapshot
array model. The equivalent steering matrix V(θ) is the virtual
array manifold composed of virtual sensors located in the set of
the 2qth-order difference co-array, which is defined below. As
proved in [8], V(θ) is independent of the orientation u. Existing
spatial-smoothing MUSIC (SS-MUSIC) as well as CS-based
methods can be applied to this single-snapshot array model in
(7) directly for DOA estimation [8], [9].

Definition 1: The 2qth-order difference co-array [8], [9] for
a linear array A is defined as

D2q =

⎧⎨
⎩

q∑
k=1

μk −
2q∑

l=q+1

μl |μk, μl ∈ A

⎫⎬
⎭ . (10)

For an N -sensor physical array, the number of difference co-
array lags in D2q is N2q including redundancies, implying that
N2q is an upper bound on the cardinality of D2q . No array can
have more than O(N2q) elements in its 2qth-order difference
co-array. It has been shown in [8], [9] that O(N2q) co-array
elements can be achieved for a specifically designed sparse array,
which is larger than O(N2) provided by the set of the second-
order difference co-array (q = 1).

C. Criteria for Sparse Array Design

The number of DOFs of a linear array A exploiting the 2qth-
order difference co-array is the cardinality of D2q , i.e., |D2q|
[8], [9]. Let U2q denote the central ULA segment of D2q . The
cardinality ofU2q (|U2q|) is referred to as the number of uniform
DOFs (uDOFs) [23].

Definition 2: The central ULA segment [3], [27] of the 2qth-
order difference co-array is the longest completely contiguous
ULA symmetric about 0 in D2q , that is,

U2q � arg max
Ul(2q)⊆D2q

|Ul(2q)|,

Ul(2q) � {−l, . . . ,−1, 0, 1, . . . , l}, (11)

where l is a non-negative integer.
In the commonly used subspace-based methods such as SS-

MUSIC [2], [8], [16], only the central ULA segment of the
difference co-array can be utilized [8]. Therefore, the number
of uDOFs generally has a great impact on the estimation per-
formance [8], [23], and it is usually adopted as a metric for
quantitative evaluation, comparison, and optimal design [9],
[21], [54]. Therefore, we introduce the criterion of forming a
large consecutive difference co-array with high uDOFs in the
sparse array design.

Criterion 1 (Large consecutive difference co-array): The
number of uDOFs provided by the sparse array exploiting the
2qth-order difference co-array should be O(N2q), where N is
the number of physical sensors [2], [8], [9].

For the representation of the array structure, we prefer it to be
in closed form.

Criterion 2 (Closed-form sensor positions): A closed-form
expression of sensor positions is preferred for scalability con-
siderations [3], [37].

The hole-free property is also desired in sparse array design.
The co-array of a sparse array that satisfies the hole-free property
is a virtual ULA. Next, the definition of the hole-free 2qth-order
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difference co-array and the corresponding design criterion are
provided.

Definition 3: The 2qth-order difference co-array is defined to
be hole-free if D2q = U2q [3], [27].

Criterion 3 (Hole-free difference co-array): The cardinality
of the central ULA segment reflects the number of sources
resolved by the subspace-based DOA methods such as SS-
MUSIC [3]. A sparse array having a hole-free difference co-
array is preferred, since all information from its difference co-
array can be utilized directly by subspace-based DOA methods
which are easy to implement, and thus CS-based algorithms [21],
[55], [56], [57] or co-array interpolation based techniques [58],
[59] with increased overall complexity can be avoided [3], [7],
[52].

In recent studies, considerations based on practical applica-
tions have received more attention. Typically, the mutual cou-
pling effect [21], [22], [23] and the influence of element loss [27],
[28] are analyzed in DOA estimation. These practical factors
prompt us to consider Criterion 4 (Robustness and economy) and
Criterion 5 (Low mutual coupling), which will be introduced,
discussed, and analyzed in the companion Part II [60].

In array design based on second-order statistics, a balance
is achieved among multiple criteria. For example, super nested
array (SNA) [23], [24] is designed according to Criteria 1-3 and
Criterion 5; robust MRA (RMRA) [30] is designed according
to Criteria 1, 3, and 4; Cantor array [7] is designed according to
Criteria 2, 3, and 4. The recently proposed fractal array inherits
multiple properties from its simple generator array, and thus it
is a generalized flexible array construction scheme via multi-
criterion joint design [3].

In the design of sparse arrays exploiting 2qth-order difference
co-arrays, only one or two criteria have been considered in the
literature. Two representative structures, i.e., 2qL-NA [8] and
SE-2qL-NA [9], are designed based on Criteria 1 and 2. In the
special case of q = 2, several array configurations including 2L-
FO-NA [49], CNA [50], and GCNA [51] are designed based on
Criteria 2 and 3. Optimizing the sparse array configuration with
closed-form sensor positions and a large hole-free difference co-
array (Criteria 1-3) is a difficult problem. The E-FO-Cantor [52]
offers O(N3.17) hole-free fourth-order difference co-array lags,
which narrowing the gap toward O(N4) claimed in Crite-
rion 1 compared with existing structures satisfying Criteria 2
and 3.

In the following, the fractal idea for sparse array design is in-
troduced based on higher-order statistics, and the popular prop-
erties of the proposed structure (including the number of uDOFs,
potential hole-free difference co-array, robustness, and mutual
coupling effect) are analyzed, showing property inheritance with
the generator array and flexibility in joint multi-criterion design.
The new structure and discussions on the number of uDOFs
and hole-free property are presented in this part, while the
companion Part II focuses on the analysis of array robustness
and the mutual coupling effect [60].

III. FRACTAL ARRAYS BASED ON THE 2qTH-ORDER

DIFFERENCE CO-ARRAY

A. Fractal Array Based on the Difference Co-Array

Fractal arrays based on the difference co-array (also known
as the second-order difference co-array) with a generator array

G, referred to as SO-Fractal, are constructed as [3], [37]

F0 � {0},
Fr+1 �

⋃
n∈G (Fr + nMr) , r ∈ N

+, (12)

where M � |U| and r is the fractal order belonging to the set of
positive integersN+. HereU is the longest central ULA segment
in the second-order difference co-array of the generator G, and
| · | returns the cardinality of the input set. It has been shown
in [3] that the second-order difference co-array of Fr contains
consecutive lags in U2(Fr) =

[−Mr−1
2 , Mr−1

2

]
.

The connection between the maximum consecutive lag
max(U2(Fr)) and the physical sensors in Fr is a topic of interest.
Which pair of physical sensors produces max(U2(Fr))? What
is the relationship between this sensor pair and the elements
in the generator array G? The answers are given in Lemma 1.
Furthermore, as will be introduced in the next subsection, Fr

is part of the sparse array based on the 2qth-order difference
co-array generated from G, and this lemma is beneficial for
improvement of DOFs via sensor sharing between adjacent
subarrays under design.

Lemma 1: For the SO-Fractal Fr (r ≥ 1) generated from
G, the largest consecutive lag guaranteed in its second-order
difference co-array is constructed by

fr(i) − fr(j) = max(U2(Fr)) =
Mr−1

2 , (13)

and the sensor pair (fr(i), fr(j)) ∈ F
2
r can be expressed as

fr(i) =

r−1∑
k=0

giM
k, fr(j) =

r−1∑
k=0

gjM
k, r ∈ N

+, (14)

where the specific sensor pair (gi, gj) ∈ G
2 satisfying gi − gj =

max(U) = M−1
2 . Note that (gi, gj) is one potential pair to pro-

duce the largest consecutive lag. In particular, if the second-order
difference co-array of G is hole-free, then gi = max(G) and
gj = min(G).

Proof: To begin, we prove that sensor positions fr(j) and fr(i)
in (14) are elements in Fr by mathematical induction.

For r = 1, one has (f1(i), f1(j)) = (gi, gj) ∈ G
2 andG = F1,

yielding f1(i) − f1(j) =
M−1
2 and (f1(i), f1(j)) ∈ F

2
1.

For r = k, assume that (fk(i), fk(j)) ∈ F
2
k. Then, for r = k +

1, the definition of Fk+1 is

Fk+1 =
{
l + nMk | l ∈ Fk, n ∈ G

}
. (15)

Since (fk(i), fk(j)) ∈ F
2
k and (gi, gj) ∈ G

2, one obtains
fk+1(i) = fk(i) + giM

k, fk+1(j) = fk(j) + gjM
k, and

(fk+1(i), fk+1(j)) ∈ F
2
k+1, which completes the induction.

The difference between fr(i) and fr(j) is

fr(i) − fr(j) =

r−1∑
k=0

(gi − gj)M
k

= M−1
2 · 1−Mr

1−M = Mr−1
2 , (16)

wheremax(U2(Fr)) =
Mr−1

2 is the largest consecutive lag guar-
anteed in the difference co-array of Fr. �

Several examples are given in Fig. 1 to demonstrate the SO-
Fractal structure and Lemma 1. The nested array {0, 1, 2, 5} and
expanded coprime array {0, 2, 3, 4, 6} are chosen as generators.
The nested array provides a maximum consecutive lag of 5 in
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Fig. 1. Examples of SO-Fractal arrays and their difference co-arrays (non-negative part only): (a) nested array (as generator), (b) the second-order difference
co-array of the nested array, (c) SO-Fractal (r = 2) generated from the nested array, (d) the second-order difference co-array of the SO-Fractal generated from the
nested array, (e) expanded coprime array (as generator), (f) the second-order difference co-array of the expanded coprime array, (g) SO-Fractal (r = 2) generated
from the expanded coprime array, (h) the second-order difference co-array of the SO-Fractal generated from the expanded coprime array.

its hole-free second-order difference co-array. The expanded
coprime array provides a maximum consecutive lag of 4 and
has holes in its virtual array. The SO-Fractal (r = 2) is gen-
erated from the generators with M = |U| = 2 · 5 + 1 = 11 or
M = 2 · 4 + 1 = 9. For the nested array without holes in its
second-order difference co-array, the maximum consecutive lag
5 is obtained by the difference between the rightmost sensor
and the leftmost sensor, i.e., gi − gj = 5− 0 = max(U) = 5.
As shown in Fig. 1(d), the largest virtual sensor (in the con-
secutive difference co-array lags) provided by the SO-Fractal
generated from the nested array is obtained by f2(i) − f2(j) =∑1

k=0(gi − gj)M
k = 60. For the fractal array generated by the

expanded coprime array, it is similar to the previous one, as
verified in Fig. 1(h).

B. Fractal Array Exploiting 2qth-Order Difference Co-Array

We now introduce fractal arrays based on the 2qth-order
difference co-array, referred to as 2qth-O-Fractal.

Definition 4: The 2qth-O-Fractal E2q
r =

⋃q
l=1 Er(l) consists

of q subarrays, i.e., Er(1),Er(2), . . . ,Er(q), where

Er(1) �
⋃
n∈Fr

(n · T1 +m1) = Fr, (17)

Er(2) �
⋃

n∈Er(1)

(n · T2 +m2) , (18)

...

Er(q) �
⋃

n∈Er(1)

(n · Tq +mq) . (19)

The original SO-Fractal is denoted by Fr. The expanding factor
Tq and the offset term mq are defined by recursive expressions,
given by

T0 = 0, T1 = 1,

Tq = Mr · Tq−1 + (Mr − 1) · Tq−2, q ≥ 2, (20)

m0 = 0, m1 = 0,

mq = −fr(j) · Tq + fr(i) · Tq−1 +mq−1, q ≥ 2, (21)

where (fr(i), fr(j)) ∈ E
2
r(1) is a sensor pair satisfying (13). The

above across-order fractal design ensures structural similarity
across cumulant order q (also considered as an across-order

fractal factor). The sensor position set of the p-th level subarray
Er(p) (1 ≤ p ≤ q) with a fractal order r (inner-order fractal
factor within the same cumulant order) is recursively defined
as

E0(p) = {mp} ,

Er(p) =
⋃

n∈Er(1)

(n · Tp +mp) (22)

=
⋃
u∈G

(
Er−1(1) · Tp + u · TpM

r−1 +mp

)
, r ∈ N

+,

where M � |U| is the length of the central ULA segment in the
second-order difference co-array of the generator G.

In 2qth-O-Fractal with q subarrays, the basic construction
idea is that the p-th subarray is designed by dilating the first
subarray with an expansion factor Tp (2 ≤ p ≤ q), followed by
a shift with an offset mp along the end-fire direction of the
linear array. By doing so, 1) self-similarity is guaranteed among
all subarrays; 2) a series of Tp (2 ≤ p ≤ q) is designed to ensure
a large consecutive 2qth-order difference co-array; 3) a series
of specifically designed mp enlarges the number of consecutive
co-array lags by providing an additional virtual ULA segment,
and reduces the sensor number by sharing one physical sensor
between every two neighboring subarrays. Therefore, the ex-
panding factor Tp is defined as the unit inter-element spacing
of the p-th subarray, which is equal to the number of central
ULA sensors in the 2(p− 1)-th order difference co-array of
the 2(p− 1)th-O-Fractal E2(p−1)

r =
⋃p−1

h=1 Er(h), leading to a
large consecutive difference co-array (see φ′

2 in the proof of
Proposition 1). The offset mp in (21) is constructed based on
the idea that a common physical sensor is shared by the subarrays
with adjacent indices, i.e., Er(p−1) and Er(p), and an additional
ULA set (see φ3 in the proof of Proposition 1) can be obtained
to increase uDOFs by optimizing this relationship between mp

and mp+1. As a result, more uDOFs can be provided with a
fixed number of physical sensors. Detailed derivations of (20)
and (21) are given in the proof of Proposition 1.

Proposition 1: For the 2qth-O-Fractal E2q
r =

⋃q
l=1 Er(l), its

2qth-order difference co-arrayD2q has at least Tq+1 consecutive
co-array lags ranging from −Tq+1−1

2 to Tq+1−1
2 , expressed as

D2q ⊇ U
′
2q =

[
−Tq+1−1

2 ,
Tq+1−1

2

]
, q ≥ 1. (23)

Proof: See Appendix A. �
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Fig. 2. An example for the process from a generator array to the 4th-O-Fractal, (a) generator array, (b) the second-order difference co-array of the generator
array (non-negative part only), (c) SO-Fractal with fractal order r = 2, (d) the second-order difference co-array of the SO-Fractal (non-negative part only),
(e) 4th-O-Fractal with fractal order r = 2, (f) the fourth-order difference co-array of the 4th-O-Fractal (which has holes and only the non-negative and consecutive
part is shown here).

Based on (21), we verify the sensor sharing strategy between
every two adjacent subarrays. For the p-th and (p− 1)-th sub-
arrays (2 ≤ p ≤ q) where

Er(p) = {n1 · Tp +mp |n1 ∈ Er(1)},
Er(p−1) = {n2 · Tp−1 +mp−1 |n2 ∈ Er(1)}, (24)

set n1 = fr(j), n2 = fr(i), and one gets

fr(j) · Tp +mp ∈ Er(p),

fr(i) · Tp−1 +mp−1 ∈ Er(p−1). (25)

According to (21), fr(j) · Tp +mp = fr(i) · Tp−1 +mp−1, in-
dicating that the sensor at fr(j) · Tp +mp is shared by Er(p)

and Er(p−1). As mentioned earlier, sharing a sensor reduces the
number of physical sensors, and an additional ULA set (see φ3

in the proof of Proposition 1) can be obtained to increase the
number of consecutive co-array lags.

C. Examples

We give an example to illustrate how a simple genera-
tor is gradually expanded to a fractal array based on high-
order cumulants. A MRA {0, 1, 3} (see Fig. 2(a)) is chosen
as the generator, and its second-order difference co-array is
{−3,−2,−1, 0, 1, 2, 3}withM = 7. From (12), the SO-Fractal
F2 = E2(1) (see Fig. 2(c)) is generated from G = {0, 1, 3} with
the fractal order r = 2, and its second-order difference co-array
contains continuous virtual sensors from −24 to 24. Therefore,
the expanding factor of the second-level subarray of the 4th-O-
Fractal is T2 = |{−24,−23, . . . , 23, 24}| = 72 · 1 + (72 − 1) ·
0 = 49. By setting the offset termm2 = −0 · 49 + 24 · 1 + 0 =
24, the physical sensor at 24 is shared by the first subarray and
the second subarray as shown in Fig. 2(e).

IV. PROPERTIES OF 2qTH-O-FRACTAL

For the proposed 2qth-O-Fractal with closed-form sensor
positions, the 2qth-O-Fractal of large consecutive difference co-
array (Criterion 1) and hole-free difference co-array (Criterion
3) are now discussed.

A. Analysis of Consecutive 2qth-Order Difference Co-Array

We first analyze the2qth-order difference co-array of the 2qth-
O-Fractal. Based on Proposition 1, and the following corollary
related to the consecutive co-array segment can be derived.

Corollary 1: Consider a generator array G with L sensors
whose second-order difference co-array satisfies |U| = M =
O(L2). Let E2q

r = ∪q
l=1Er(l) denote the 2qth-O-Fractal with N

sensors created by G. The number of consecutive lags in its
2qth-order difference co-array is

|U2q| = O(N2q), (26)

where N ≤ qLr − q + 1.
Proof: We first focus on the number of physical sensors in

2qth-O-Fractal. According to Theorem 2 in [3], the number of
sensors in the first subarray Er(1) satisfies N1 ≤ Lr. As we
have seen, a common sensor is shared by every two adjacent
subarrays, and thus the number of sensors in 2qth-O-Fractal
becomes

N = qN1 − q + 1 ≤ qLr − q + 1. (27)

In addition, if the generator G has hole-free second-order dif-
ference co-array, then N = qLr − q + 1 is achieved.

Next, we consider the number of consecutive lags provided
by 2qth-O-Fractal. It is concluded in Proposition 1 that |U2q| ≥
Tq+1 (q ≥ 1). We use mathematical induction to prove that
Tq+1 = Oc(ct(q)M

rq) (q ≥ 1) and the coefficient of highest-
order term (denoted by ct(q)) is 1. The notation Oc(g(N))
indicates g(N) can be achieved asymptotically when N tends to
infinity with the argument g(N) as the highest-order term includ-
ing coefficient, and f(N) = Oc(g(N))means limN→∞

f(N)
g(N) =

1.
For q = 1 and q = 2, it is obvious that T2 = Mr =

Oc(ct(1)M
r) with ct1 = 1 and T3 = M2r +Mr − 1 =

Oc(ct(2)M
2r) with ct(2) = 1. Assume that Tk =

Oc(ct(k−1)M
r(k−1)) with ct(k−1) = 1 for q = k − 1 and

Tk+1 = Oc(ct(k)M
r(k)) with ct(k) = 1 for q = k. Then for

q = k + 1,

Tk+2 = Mr · Tk+1 + (Mr − 1) · Tk

= Oc(ct(k)M
r(k+1) + ct(k−1)M

rk − ct(k−1)M
r(k−1)).

(28)
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Extracting the highest-order term (with degree r(k + 1)) of
Tk+2, we obtain

Tk+2 = Oc(ct(k+1)M
r(k+1)) = Oc(M

r(k+1)). (29)

Therefore, we conclude that

Tq+1 = Oc(ct(q)M
rq), q ≥ 1

ct(q) = 1. (30)

SinceM = O(L2) andN ≤ qLr − q + 1 = O(Lr), we have

Mr = O(N2). (31)

Therefore, the number of consecutive 2qth-order difference co-
array lags provided by 2qth-O-Fractal satisfies

|U2q| ≥ Tq+1 = O(Mrq) = O(N2q). (32)

Since no array can have more than O(N2q) elements in its 2qth-
order difference co-array according to Definition 1, we have
|U2q| ≤ O(N2q). In conclusion, |U2q| = O(N2q) is derived,
which completes the proof. �

According to (32) in Corollary 1, O(N2q) uDOFs (consec-
utive 2qth-order difference co-array lags) can be provided by
the proposed 2qth-O-Fractal, which is significantly larger than
O(N2) provided by the original fractal array or other structures
exploiting the second-order difference co-array. Furthermore,
for an example with INA [12] as the generator, we can prove
that the associated 2qth-O-Fractal provides more uDOFs than
existing structures (SE-2qL-NA [9] and 2qL-NA [8]) based on
the 2qth-order difference co-array, as shown in the following
proposition. The INA withNG = N ′

1 +N ′
2 + 1 (NG > 5) phys-

ical sensors is defined as

G
′ = G

′
1 ∪G

′
2 ∪G

′
3, G

′
1 = [0, N ′

1 − 1],

G
′
2 = {n · (N ′

1 + 2) +N ′
1 |n ∈ [0, N ′

2 − 1]},
G

′
3 = {N ′

1N
′
2 +N ′

1 + 2N ′
2 − 1}, (33)

where (N ′
1, N

′
2) =

(
NG

2 − 1, NG

2

)
ifNG is even, or (N ′

1, N
′
2) =(

NG−1
2 − 1, NG+1

2

)
if NG is odd [12], [14].

Proposition 2: For the 2qth-O-Fractal E
2q
1 = ∪q

l=1(E1(l))
(q ≥ 2) generated by G

′, the number of consecutive lags pro-
vided by its 2qth-order difference co-array exceeds those of
SE-2qL-NA [9] and 2qL-NA [8] under the same number of
physical sensors.

Proof: Note that |E2q
1 | = qNG − q + 1. For even NG, one

has |E2q
1 | = qNG − q + 1 = 2q(N ′

1 + 1)− q + 1. Then, for the
SE-2qL-NA with 2q(N ′

1 + 1)− q + 1 =
∑2q

m=1(Nm − 1) + 2
physical sensors, set (N1, . . . , Nq−1, Nq, . . . , N2q) = (N ′

1 +
2, . . . , N ′

1 + 2, N ′
1 + 1, . . . , N ′

1 + 1), which implies the optimal
allocation strategy is adopted and the number of consecutive lags
achieved is Lq = 2q(N ′

1 + 2)q−1(N ′
1 + 1)q+1 + 2q−1(N ′

1 +
2)q−1(N ′

1 + 1)q−1 + 1. For the 2qth-O-Fractal, T2 = Mr =
2(N ′

1 + 1)2 + 4(N ′
1 + 1)− 3 according to the number of DOFs

obtained by the second-order difference co-array of INA [12].
Next, we prove that Tq+1 > Lq is true for q ≥ 2 by mathe-

matical induction. For q = 2 and q = 3, one obtains

T3 − L2 = 2N ′
1(6N

′2
1 + 20N ′

1 + 11)− 2 > 0, (34)

T4 − L3 = 2N ′
1{N ′

1[4N
′
1(N

′
1(4N

′
1 + 27) + 61)

+ 199] + 44} − 10 > 0. (35)

Assume that Tk+1 > Lk and also Tk+2 > Lk+1 for q = k and
q = k + 1. Then, for q = k + 2,

Tk+3 − Lk+2 = MrTk+2 + (Mr − 1)Tk+1 − Lk+2

> MrLk+1 + (Mr − 1)Lk − Lk+2

= 2k[2N ′
1(N

′
1 + 2) + 3]{N ′

1[2N
′
1(N

′
1 + 3) + 5]− 1}

(N ′
1 + 1)k−1(N ′

1 + 2)k−1 + 4N ′
1(N

′
1 + 4) + 4 > 0, (36)

which completes the proof of Tq+1 > Lq (q ≥ 2 and NG is
even).

For odd NG, one has |E2q
1 | = qNG − q + 1 = q(2N ′

1 +
3)− q + 1, and T2 = Mr = (2N ′

1 + 3)2/2 + 2(2N ′
1 + 3)−

7/2 [12], [14]. Then, the sensors of SE-2qL-NA are allocated
by (N1, . . . , N2q−1, N2q) = (N ′

1 + 2, . . . , N ′
1 + 2, N ′

1 + 1) ac-
cording to the optimization strategy, and the number of con-
secutive lags is Lq = 2q(N ′

1 + 2)2q−1(N ′
1 + 1) + 2q−1(N ′

1 +
2)2q−2 + 1. Similarly, one can prove Tq+1 > Lq for q ≥ 2 by
mathematical induction, and the details are omitted.

Due to Corollary 4 in [9], an optimized SE-2qL-NA always
provides more consecutive lags than any configurations of 2qL-
NA with the same number of sensors with N2q > 2. Therefore,
the number of consecutive 2qth-order difference co-array lags
provided by the proposed 2qth-O-Fractal is greater than those
provided by SE-2qL-NA and 2qL-NA. �

In Proposition 2, we prove that the number of uDOFs provided
by 2qth-O-Fractal with INA (NG > 5) as the generator array
exceeds those of SE-2qL-NA and 2qL-NA, where the number
of physical sensors covers a wide range including both small
and large numbers. However, the asymptotic number of uDOFs
when N tends to infinity and its relationship with q are of great
interest, which depends on the coefficient of the highest-order
term. Assume that Oc(CFN

2q) uDOFs can be provided by the
2qth-O-Fractal. To further compare the coefficientCF with those
of existing structures and explore its relationship with cumulant
order q, Proposition 3 is given below. The IMISC structure
with 6 subarrays based on the second-order difference co-array
is chosen as the generator array, and its sensor position set is
defined as [15]

GIM = GIM1 ∪GIM2 ∪GIM3 ∪GIM4 ∪GIM5 ∪GIM6,

GIM1 = {2g1 | g1 ∈ [0, NM

4 − 1]},
GIM2 = {g2 + NM

2 − 1 | g2 ∈ [0, 1]},
GIM3 = {NM−2

2 g3 +NM − 2 | g3 ∈ [0, NM

4 − 2]},

GIM4 =
{
NMg4 +

N2
M+6NM

8 | g4 ∈ [0, NG −NM − 1]
}
,

GIM5 =
{

NM+2
2 g5 +NMNG − 7N2

M−2NM−8

8 |

g5 ∈ [0, NM

4 − 2]
}
,

GIM6=
{
2g6 +NMNG − 3N2

M+2NM−4

4 | g6 ∈ [0, NM

4 −1]
}
,

(37)

where NG > 9 is the sensor number, and NM = 4
NG+2
6 �.
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Proposition 3: The number of consecutive co-array lagsTq+1

provided by 2qth-O-Fractal with generator GIM is given by

Tq+1 = Oc(CFN
2q) = Oc

(
2q

q2q3q
N2q

)
, q ≥ 1, (38)

where N is the physical sensor number. Consider 2qL-NA [8]
and SE-2qL-NA [9] with the same sensor number. The number of
consecutive co-array lags in 2qL-NA and SE-2qL-NA is denoted
as Lq = Oc(CLN

2q) and Sq = Oc(CSN
2q), respectively. We

have

lim
N→+∞

Tq+1

Lq
=

CF

CL
=

8q

2 · 3q > 1, q ≥ 2, (39)

lim
N→+∞

Tq+1

Sq
=

CF

CS
=

4q

3q
> 1, q ≥ 2. (40)

Proof: In Corollary 1, we have proven that Tq+1 =
Oc(ct(q)M

rq) (q ≥ 1) and the coefficient of the highest-order
term ct(q) = 1.

Choosing IMISC as the generator, the parameter Mr of the
2qth-O-Fractal E2q

r for r = 1 satisfies

Mr =
2N2

G

3
− 2NG

3
+ ct0, (41)

where ct0 is a constant with [15]

ct0 =

⎧⎨
⎩
−1, mod (NG, 6) = 3 or 4,
5
3 , mod (NG, 6) = 2 or 5,
3, mod (NG, 6) = 0 or 1.

(42)

According to NG = N+q−1
q and (41), we obtain

Mr =
2N2

3q2
+N

(
2

3q
− 4

3q2

)
+

2

3q2
− 2

3q
+ ct0. (43)

Combining (30) and (43) leads to

Tq+1 = Oc(ct(q)M
rq) = Oc

(
2q

3qq2q
N2q

)
= Oc(CFN

2q).

(44)

For 2qL-NA and SE-2qL-NA, the sensor number of the i-th
subarray is Ni =

Nt+2q−1
2q . Ni follows the optimal allocation

strategy achieving maximum number of consecutive co-array
lags without constrainingNi to be an integer [8], [9]. As a result,
the number of consecutive lags in 2qL-NA and SE-2qL-NA is
respectively [8], [9]

Lq = 22−2q
(

N+2q−1
q

)2q−1 (
N+2q−1

2q + 1
)
− 1, q ≥ 2,

(45)

Sq = 2−q
(

N+2q−1
q

)2q
+ 21−q

(
N+2q−1

q

)2q−2

+ 1, q ≥ 2.

(46)

Focusing on the coefficient of the highest-order term (i.e., N2q),
we obtain

Lq = Oc(CLN
2q) = Oc

(
1

22q−1q2q
N2q

)
, (47)

Sq = Oc(CSN
2q) = Oc

(
1

2qq2q
N2q

)
. (48)

Combining (47), (48) and (44), it can be derived that

lim
N→+∞

Tq+1

Lq
=

CF

CL
=

8q

2 · 3q > 1, q ≥ 2, (49)

lim
N→+∞

Tq+1

Sq
=

CF

CS
=

4q

3q
> 1, q ≥ 2. (50)

Therefore, CF > CL and CF > CS . For a large sensor number
N , the number of consecutive co-array lags provided by the
proposed structure is approximately 8q

2·3q times that of 2qL-NA
and 4q

3q times that of SE-2qL-NA. The ratio of uDOFs number
provided by 2qth-O-Fractal to that provided by existing struc-
tures increases exponentially with cumulant order q. �

Recently, a tight upper bound κ4(N) on the number of DOFs
for q = 2 was derived in [61], given by

κ4(N) =
N4

4
− N3

2
+

7N2

4
− 3N

2
+ 1 = Oc

(
N4

4

)
, (51)

where the notation Oc(g(N)) indicates g(N) can be achieved
asymptotically whenN tends to infinity with the argument g(N)
as the highest-order term including coefficient, and f(N) =

Oc(g(N)) means limN→∞
f(N)
g(N) = 1. For a sufficiently large

N , we have limN→∞ κ4(N) = N4

4 .
Derivation of a tight upper bound on the number of DOFs for

any q is a challenging problem due to the extremely large number
of co-array elements (more complicated cases similar to those
in [61] should be considered) and also space limit. In Proposition
3, we focus on the coefficient of highest-order term, indicating
that the asymptotic number of uDOFs of the proposed structure
is larger than those of existing structures when the number of
sensors N tends to infinity. Therefore, we study the asymptotic
upper bound on the number of DOFs when N tends to infinity
instead to further verify the results in Proposition 3, and this
bound can also be considered as a loose upper bound on the
number of uDOFs.

Recall the definition of the 2qth-order difference
co-array, i.e., D2q = {∑q

k=1 μk −∑2q
l=q+1 μl |μk, μl ∈ A}.(

N
q

)
= N !

q!(N−q)! returns the number of combinations of choosing
q distinct elements from N , with N ! being the factorial of N .
Similar to the analysis in [61] and [43], only for the case
where μ1, μ2, . . . , μ2q are all distinct, the number of virtual
elements associated reaches O(N2q). For all other cases, the
highest-order is smaller than 2q. By picking q non-ordered
distinct numbers from N physical sensors to form

∑q
k=1 μk,

followed by picking another q non-ordered distinct numbers
from the rest N − q sensors to generate −∑2q

l=q+1 μl, the
number of combinations is

F2q =

(
N

q

)
·
(
N − q

q

)
=

N !

q!q!(N − 2q)!
= Oc

(
N2q

q!q!

)
.

(52)

Therefore, when N tends to infinity, the number of DOFs
(unique difference co-array elements) should be smaller than

Oc

(
N2q

q!q!

)
, with N2q

q!q! being the asymptotic upper bound. Simply,

we have

Cub(2q) =
1

q!q!
≥ 1

qqqq
=

1

q2q
. (53)
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Let CF , CL, and CS represent the coefficients of the highest-
order term N2q of the number of uDOFs provided by 2qth-O-
Fractal, 2qL-NA, and SE-2qL-NA, respectively. As proved in
Proposition 3, we have

CF =
2q

3qq2q
, CL =

1

22q−1q2q
, CS =

1

2qq2q
. (54)

All of them are smaller than Cub(2q) (the coefficient of the upper

bound). Furthermore, the asymptotic upper bound N2q

q!q! indicates
that it decreases rapidly with the increase of q, clarifying poten-
tial margin for further improvement.

B. Discussion on the Hole-Free Property for q = 2

Optimizing the sparse array configuration with a large and also
hole-free difference co-array (Criteria 1 and 3) is a difficult prob-
lem. For q > 2, the hole-free property has not been considered in
the literature to the best of our knowledge. The hole-free property
requires that the largest element q[max(A)−min(A)] in the
2qth-order difference co-array (according to Definition 1) must
belong to the central virtual ULA segment. This requirement is
in conflict with the criterion of achieving a large consecutive
difference co-array.

In previous works, the array structures designed for the 2qth-
order cumulants only achieve hole-free in the case of q = 2,
and provide O(N3.17) DOFs at most. Several sparse arrays
providing hole-free fourth-order difference co-array include 2L-
FO-NA [49], CNA [50], GCNA [51], and E-FO-Cantor [52].
These structures are not flexible, and the other criteria are not
considered in the design process. Therefore, we focus on the
most common special case of q = 2, and consider the selection of
the generator array based on which the generated 4th-O-Fractal
provides hole-free fourth-order difference co-array.

The hole-free property of the generator G is inherited by
the corresponding SO-Fractal for q = 1 [37]. However, the
generator G has a hole-free second-order difference co-array,
which is not a sufficient condition for 4th-O-Fractal to achieve a
hole-free fourth-order difference co-array. A stronger constraint
on G is required to ensure the hole-free property for q = 2.
Before discussing this constraint in Proposition 4, Lemma 2 is
introduced first.

Lemma 2: Consider a generator array G with hole-free sum
co-array S and second-order difference co-array D. The sum
co-array Sr of the associated Fr has |Sr| = Mr consecutive
lags with

Sr =
[
2(Mr−1)min(G)

M−1 , Mr + 2(Mr−1)min(G)
M−1 − 1

]
.

Proof: Proved by mathematical induction. For r = 0, one
has F0 = {0} and S0 = {0} = [0,M0 − 1], while for r = 1,
F1 = G and S1 = S = [2min(G), 2max(G)]. Since D is hole-
free and |D| = M , one has M = 2max(G)− 2min(G) + 1
and S1 = [2min(G),M + 2min(G)− 1]. For r = k,
assume

Sk =
[
2(Mk−1)min(G)

M−1 , Mk + 2(Mk−1)min(G)
M−1 − 1

]
. (55)

Then, for r = k + 1,

Sk+1 = {μ1 + μ2 |μ1, μ2 ∈ Fk+1}
= {s+ u ·Mk + (t+ v ·Mk) | s, t ∈ Fk, u, v ∈ G}
= {(s+ t) + (u+ v) ·Mk | s, t ∈ Fk, u, v ∈ G}

= {p+ q ·Mk | p ∈ Sk, q ∈ S1}. (56)

According to Sk with |Sk| = Mk in (55), Sk+1 is hole-free and

Sk+1 =
[
2(Mk+1−1)min(G)

M−1 ,Mk+1 + 2(Mk+1−1)min(G)
M−1 − 1

]
,

which completes the proof. �
Proposition 4: A sufficient condition for the 4th-O-Fractal

E
4
r to possess a hole-free fourth-order difference co-array D4 is

that the associated generator array G has hole-free second-order
difference co-array D and sum co-array S. In this case, D4 can
be expressed as

D4 =
[
1−M2r,M2r − 1

]
. (57)

Proof: From Proposition 1, one has

D4 ⊇ φ4 =
[−T3−1

2 , T3−1
2

]
=
[
−M2r+Mr−2

2 , M2r+Mr−2
2

]
.

Based on the given G, construct a set φ5 ⊆ D4, given by

φ5={(μ1−μ2)−(μ3 − μ4)|μ1, μ4 ∈ Er(2), μ2, μ3 ∈ Er(1)}
={(μ1 + μ4)−(μ2+μ3)|μ1, μ4 ∈ Er(2), μ2, μ3 ∈ Er(1)}
= {(s+ t) · T2 − (u+ v) + 2m2 | s, t, v, u ∈ Fr}
= {(s+ t) ·Mr − (u+ v) + 2m2 | s, t, v, u ∈ Fr}
= {p ·Mr − q + 2m2 | p, q ∈ Sr}. (58)

According to Lemma 2, one obtains

φ5 =
[
2m2 +

2(M2r−2Mr+1)min(G)
M−1 −Mr + 1,

2m2 +
2(M2r−2Mr+1)min(G)

M−1 +M2r −Mr
]
.

The offset term m2 is

m2 = −fr(j) ·Mr + fr(i) = (gi − gjM
r) · Mr−1

M−1 . (59)

Since G has hole-free second-order difference co-array, gi =
max(G) = min(G) + M−1

2 and gj = min(G). Then, 2m2 can

be represented as Mr − 1− 2(M2r−2Mr+1)min(G)
M−1 , and thus

φ5 = [0,M2r − 1]. (60)

Similarly,

φ6={(μ1 − μ2)− (μ3−μ4)|μ1, μ4 ∈ Er(1), μ2, μ3 ∈ Er(2)}
= [1−M2r, 0] ⊆ D4. (61)

Note that the self-differences within subarrays are included in
the set of cross-differences between subarrays, and therefore
D4 = φ4 ∪ φ5 ∪ φ6. The longest central ULA inD4 isφ4 ∪ φ5 ∪
φ6. As a result, the 4th-O-Fractal E4

r has hole-free fourth-order
difference co-array with

D4 = [1−M2r,M2r − 1], (62)

and the number of consecutive lags in the fourth-order difference
co-array is |D4| = 2M2r − 1. �

According to Proposition 4, to ensure the hole-free property
of G is inherited by the 4th-O-Fractal, both the second-order
difference and sum co-arrays of G should be hole-free. The se-
lection of an appropriate generator is a challenging problem. For
example, the notable NA has contiguous second-order difference
co-array, but its sum co-array has holes.
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C. Examples of Appropriate Generator Arrays

We present several array structures meeting the mentioned
constraint on the generator, including ULA, postage stamp
bases [62], [63] extracted from number theory, general sym-
metric array [30], [64], and concatenated NA [64]. By choosing
a proper generator, 4th-O-Fractal with N physical sensors can
provide O(N4) hole-free fourth-order difference co-array lags.

1) ULA: For a ULA, obviously its sum and difference co-
arrays are hole-free, satisfying Proposition 4.

2) Extremal Restricted Additive 2-Bases: The extremal re-
stricted additive 2-bases comes from the postage stamp problem
in number theory [62], [63], [65], [66].

For an extremal restricted additive 2-bases Ak = {0 < a1 <
a2 < · · · < ak}, every integer in [0, 2ak] is the sum of two
elements in Ak [63], [66]. By regarding Ak as the set of sensor
positions, its sum co-array SA � {μ1 + μ2 |μ ∈ Ak} is hole-
free. The algorithms in [63], [66] effectively reduce the feasible
region for search and obtain Ak for 1 ≤ k ≤ 47. Furthermore,
for each k, there is at least one Ak that is symmetric, i.e.,
Ak = ak − Ak [63], [66]. According to the definition of the
extremal restricted additive 2-bases and the following proposi-
tion, the symmetric Ak (k ≤ 47) provided in [63], [66] can be
employed as the generator.

Proposition 5: Consider an integer set Ak = {a0 < a1 <
· · · < ak} representing the sensor positions of a symmetric ar-
ray, whereAk = a0 + ak − Ak. If the sum co-array (denoted by
SA) of Ak is hole-free, then its second-order difference co-array
DA is also hole-free, and vice versa.

Proof: Due to the symmetric property ofAk, the second-order
difference co-array of Ak is

DA = {μ1 − μ2 | μ1, μ2 ∈ Ak}
= {μ1 − (a0 + ak − μ3) | μ1, μ3 ∈ Ak}
= {μ1 + μ3 − a0 − ak | μ1, μ3 ∈ Ak}. (63)

If the sum co-array SA is hole-free, we simply have SA =
[2a0, 2ak], and the following can be derived:

DA = {μ1 + μ3 − a0 − ak | μ1, μ3 ∈ Ak}
= {μ4 − a0 − ak | μ4 ∈ SA} = [a0 − ak, ak − a0].

(64)

As a result, the second-order difference co-arrayDA is also hole-
free.

Next, we consider the case where the second-order difference
co-array DA is hole-free. Since DA = [a0 − ak, ak − a0] is
hole-free, we obtain

SA = {μ5 + a0 + ak − μ6 | μ5, μ6 ∈ Ak}
= {μ7 + a0 + ak | μ7 ∈ DA} = [2a0, 2ak], (65)

which means that the sum co-array SA is also hole-free. �
The symmetric extremal restricted additive 2-bases Ak is a

possible generator to ensure that hole-free property is inherited
by the associated 4th-O-Fractal E4

r . Moreover, the definition of
extremal restricted additive 2-bases implies that its redundancy
is low. Utilizing this class of arrays as a generator leads to a large
number of DOFs.

3) General Symmetric Array: Any linear array with hole-
free second-order difference co-array is able to form a general
symmetric array according to Definition 5.

Definition 5: The symmetric array Asym is constructed from
an original array A1 with Asym � A1 ∪ A2, where A2 �

TABLE I
COMPARISON OF THE CONSECUTIVE LAGS FOR DIFFERENT ARRAY

STRUCTURES BASED ON THE 2qTH-ORDER (q ≥ 2) DIFFERENCE CO-ARRAY

TABLE II
EXAMPLES OF DIFFERENT STRUCTURES FOR q = 2

{max(A1) + min(A1)− μ |μ ∈ A1} is the reversed version of
the original array A1 [30].

Proposition 6: Denote the second-order difference (sum) co-
array of Asym and A1 as Dsym (Ssym) and D1 (S1), respectively.
If D1 (S1) is hole-free, then Dsym (Ssym) is also hole-free.

Proof: Since the maximum and minimum values in Asym and
A1 are the same, if D1 is hole-free, Dsym ⊆ D1. According to the
definition, we have Asym ⊇ A1 and Dsym ⊇ D1. Therefore, A1

and Asym share the same second-order difference co-array with
Dsym = D1, which means Dsym is also hole-free.

Similarly, if S1 is hole-free, Ssym is also hole-free, which
completes the proof. �

According to Proposition 5 and Proposition 6, the general
symmetric array satisfies the condition given in Proposition
4. Symmetric structures of this type greatly expand the op-
tional range of generators, and the proposed 4th-O-Fractal offers
hole-free fourth-order difference co-array with O(N4) DOFs.
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TABLE III
EXAMPLES OF DIFFERENT STRUCTURES FOR q = 3

Based on Propositions 4, 5, and 6, we have the following
Corollary 2.

Corollary 2: Consider A1 having hole-free second-order dif-
ference co-array with O(N2

1 ) DOFs, where N1 = |A1|. The
symmetric array Asym is constructed from A1. By setting the
generator G = Asym, the generated N -sensor 4th-O-Fractal has
hole-free fourth-order difference co-array with O(N4) DOFs.

Proof: The number of sensors in Asym (Definition 5) is not
greater than 2N1 − 2, since the maximum and minimum ele-
ments are shared by A1 and A2 at least. The number of DOFs
provided by the second-order difference co-array of Asym is
Msym = O(N2

1 ) = O(N2
2 ), where N2 represents the number of

sensors in Asym. By choosing the array generator G = Asym,
the 4th-O-Fractal containing N ≤ 2Nr

2 − 1 sensors has hole-
free fourth-order difference co-array with |D4| DOFs achieved.
Since both the sum and difference co-arrays of G are hole-
free, one has M = 2max(G)− 2min(G) + 1 = O(N2

2 ), and
|D4| = 2M2r − 1 = O(N4r

2 ) = O(N4) according to Proposi-
tion 4. �

4) Concatenated NA: Concatenated NA is proposed in active
sensing applications exploiting sum co-arrays [64]. It is defined
as follows.

Definition 6: The sensor position set of a concatenated NA
is defined as CN1,N2

� C1 ∪ C2 ∪ C3, where C1 = [0, N1 −
1], C2 = {μ · (N1 + 1) +N1 | μ ∈ [0, N2 − 1]}, C3 = {μ+
N2(N1 + 1) | μ ∈ [0, N1 − 1]}, N1 and N2 are non-negative
integers.

We discuss the number of DOFs by giving the following
corollary, which is related to Proposition 4.

Corollary 3: If the generator is chosen as G = CN1,N2
, the

associated 4th-O-Fractal with N sensors has a hole-free fourth-
order difference co-array with O(N4) DOFs achieved.

Proof: The number of sensors in the generator is L = |G| =
|CN1,N2

|, and N ≤ 2Lr − 1. According to [64], both the sum
and difference co-arrays are hole-free, and the number of DOFs
offered by the second-order difference co-array of CN1,N2

is Mcn = O(L2). Therefore, M = Mcn = O(L2), and |D4| =
2M2r − 1 = O(L4r) = O(N4) according to Proposition 4. �

Fig. 3. Comparison of the number of consecutive co-array lags.

Fig. 4. DOA estimation results of different array structures. Results of
(a) 2qL-NA (q = 2), (b) SE-2qL-NA (q = 2), and (c) 2qth-O-Fractal (q = 2).

Fig. 5. DOA estimation results of MRA based on the second-order difference
co-array.

We have shown that for the special case of q = 2, Criteria 1-3
can be satisfied. Other generalized properties in Criteria 4–5 will
be discussed in the companion paper of Part II [60].

V. COMPARISONS AND SIMULATION RESULTS

In this section, the superiority of the proposed design is
verified in terms of estimation accuracy and resolution capability
compared with existing structures.

A. Comparisons With Existing Structures Having Large
2qth-Order Difference Co-Array

Two existing array structures, i.e., 2qL-NA [8] and SE-2qL-
NA [9], are designed to pursue large 2qth-order difference
co-array. The number of achievable consecutive 2qth-order dif-
ference co-array lags are compared in Table I.

We first focus on the property of large consecutive difference
co-array. MRA [10], ENA [13], INA [12], and IMISC [15], con-
taining high uDOFs in their second-order difference co-arrays,
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Fig. 6. Estimation performance of different structures with holes in their
difference co-arrays.

are chosen as generators, and the properties of large consecutive
difference co-array and closed-form sensor positions (Criteria
1 and 2) can be inherited by their associated 2qth-O-Fractal. For
q = 2 and q = 3, specific examples with details of generators,
number of sensors, and fractal orders, etc., are listed in Tables II
and III. Obviously, significantly increased consecutive co-array
lags (equivalent to the uniform DOFs) have been achieved by
our proposed structure 2qth-O-Fractal compared with existing
structures.

In the previous Proposition 2, we theoretically proved that
the 2qth-O-Fractal with INA as a generator can provide more
consecutive lags than existing structures with the same number
of sensors, which is consistent with the results in Tables II and
III. Proposition 3 is verified in Fig. 3, where IMISC is the
generator for the 2qth-O-Fractal. The number of consecutive
co-array lags with respect to the sensor number for q = 2 is
shown in Fig. 3(a), while the number of consecutive co-array
lags versus the cumulant order q is given in Fig. 3(b). It can be
seen clearly that the proposed 2qth-O-Fractal always offers the
largest number of consecutive lags among all structures.

B. Simulation Results for Structures With Large 2qth-Order
Difference Co-Array

Next, DOA estimation performance for structures with large
2qth-order difference co-array is evaluated. 2qth-O-Fractal,
2qL-NA, and SE-2qL-NA with N = 7 physical sensors and
q = 2 as listed in Table II are considered (here 2qth-O-Fractal
refers to 4th-O-Fractal 2 in Table II). The SS-MUSIC method [8]
is employed for DOA estimation.

For the first set of simulations, the maximum number of
resolvable sources of different array structures is studied. Here
45 sources are uniformly distributed between−60◦ and 60◦. The
input SNR and the number of snapshots are 20 dB and 500000,
respectively. To evaluate the number of distinguishable sources,
a large number of snapshots is used to calculate the fourth-order
cumulant matrix [9]. The DOA estimation results for q = 2 are
shown in Fig. 4, where it is obvious that only the 2qth-O-Fractal
is capable of resolving all the 45 sources successfully. In addi-
tion, based on the second-order difference co-array (q = 1), the
optimized MRA with 7 physical sensors provides 35 consecutive
co-array lags, which is smaller than those offered by high-order
cumulants based 7-sensor arrays listed in Tables II and III. As
shown in Fig. 5, MRA can only resolve up to 17 sources (equal to
half of its number of consecutive co-array lags minus one). The
identifiability of high-order cumulants based method is much

Fig. 7. Number of consecutive lags versus the number of physical sensors for
different array structures satisfying the hole-free property (q = 2).

better than that of second-order statistics based approach with a
fixed sensor number.

The second set of simulations is focused on estimation ac-
curacy. There are 10 independent sources uniformly distributed
from −60◦ to 60◦. Fig. 6(a) gives the root mean square error
(RMSE) results with respect to input SNR, where the number of
snapshots is fixed at 10000. As the SNR increases, the RMSE
for each array structure decreases with that of the proposed 2qth-
O-Fractal (q = 2) being the best. The estimation performance
versus the number of snapshots is shown in Fig. 6(b) with the
input SNR being 20 dB. Similarly, the RMSE of each structure
decreases with the increase of the snapshot number, and the
best performance is achieved by the proposed 2qth-O-Fractal
(q = 2).

C. Comparisons of Structures Satisfying Hole-Free Property

Comparisons of array structures with the hole-free fourth-
order difference co-arrays are presented next. Representative
hole-free structures include 2L-FO-NA [49], CNA [50], and
GCNA [51]. However, their fourth-order difference co-arrays
only provide O(N2) DOFs with N physical sensors. As dis-
cussed in Section IV-B, when the concatenated NA is chosen as
the generator, O(N4) DOFs can be achieved by the associated
4th-O-Fractal with hole-free co-array.

Fig. 7 shows the number of consecutive co-array lags versus
the number of physical sensors N of 2L-FO-NA, CNA, GCNA,
and 4th-O-Fractal (with concatenated NA as the generator ar-
ray). The 4th-O-Fractal always achieves the largest number of
consecutive co-array lags among all structures for N ≥ 15. In
addition, examples are given in Table IV for comparison, where
the 4th-O-Fractal provides 1457 and 4049 consecutive lags for
N = 15 and N = 21, which is superior to other structures. Note
that 4th-O-Fractal in Table IV specifically refers to fractal array
satisfying the sufficient condition in Proposition 4.

D. Simulation Results for Structures Satisfying Hole-Free
Property

4th-O-Fractal (refers to 4th-O-Fractal 9), 2L-FO-NA, CNA,
and GCNA with N = 15 physical sensors (as listed in Table IV)
are involved in estimation performance comparison using the
SS-MUSIC method [8]. The maximum number of resolvable
sources is tested. There are 52 sources uniformly distributed
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TABLE IV
COMPARISONS OF DIFFERENT ARRAY STRUCTURES SATISFYING HOLE-FREE

PROPERTY (q = 2)

Fig. 8. DOA estimation results of different array structures satisfying hole-free
property. Results of (a) 2L-FO-NA, (b) CNA, (c) GCNA, and (d) Proposed
structure.

from −60◦ to 60◦, and the input SNR and the number of
snapshots are set as 20 dB and 50000, respectively. The DOA
estimation results are shown in Fig. 8, where only the 4th-O-
Fractal is capable of resolving all 52 sources successfully.

Then, consider 16 sources uniformly distributed between
−60◦ and 60◦. The RMSE versus the input SNR are shown in
Fig. 9(a) with the number of snapshots fixed at 1000, while the
RMSE versus the number of snapshots are given in Fig. 9(b)

Fig. 9. RMSE results of different array structures satisfying hole-free property.

with the input SNR equal to 20 dB. Clearly, the proposed
4th-O-Fractal with hole-free fourth-order difference co-array
outperforms other existing structures.

VI. CONCLUSION

Based on the 2qth-order difference co-array, sparse array
design via fractal geometries was studied, and a simple but
effective systematic fractal framework was proposed. By opti-
mizing the generator according to given requirements, a fractal
array exploiting the 2qth-order difference co-array, referred to
as 2qth-O-Fractal, was generated recursively with its properties
of interest inherited from the generator, showing high flexibility
in sparse array design satisfying multiple criteria. Specifically,
theoretical support was given to ensure that, O(N2q) DOFs can
be achieved by the proposed framework if the generator has
O(N2) second-order difference co-array lags. We also showed
that O(N4) hole-free fourth-order difference co-array lags can
be achieved for q = 2 if the sum and difference co-arrays of the
generator are hole-free. Simulation results demonstrated that by
employing an optimized array as the generator, the associated
fractal array generated by the proposed framework offers larger
DOFs than existing structures, with better performance achieved
in terms of estimation accuracy and resolution capability.

Properties of robustness and mutual coupling of the proposed
framework are analyzed in the companion Part II [60]. In future
work, it is interesting to further investigate the theoretical per-
formance analysis of estimation methods based on high-order
difference co-arrays, especially for the underdetermined case.

APPENDIX A
PROOF OF PROPOSITION 1

We prove the proposition by mathematical induction. For
q = 1, it can be easily obtained by the recursive expression
(20) that T2 = Mr. According to Theorem 1 in [3], the second-
order difference co-array of SO-Fractal satisfies D2 ⊇ U

′
2 =[−T2−1

2 , T2−1
2

]
.

For q = p, assume that the 2pth-order difference co-array of
2pth-O-Fractal satisfies

D2p ⊇ U
′
2p =

[
−Tp+1−1

2 ,
Tp+1−1

2

]
. (66)
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Then, for q = p+ 1, the (2p+ 2)th-order difference co-array of
(2p+ 2)th-O-Fractal is denoted by

D2p+2 =

{
p∑

k=0

(μ2k+2 − μ2k+1) |μk ∈ E
2p+2
r

}

=

{
(μ2p+2 − μ2p+1)−

p−1∑
k=0

(μ2k+2 − μ2k+1) |μk ∈ E
2p+2
r

}

⊇ {(μ2p+2 − μ2p+1)− s |μk ∈ E
2p+2
r , s ∈ D2p

}
. (67)

According to (66), denote φ1 = {(μ1 − μ2)− μ3 |μ1, μ2 ∈
E
2p+2
r , μ3 ∈ U

′
2p} satisfying φ1 ⊆ D2p+2. Construct two sets

φ2 ⊆ φ1 ⊆ D2p+2 and φ3 ⊆ φ1 ⊆ D2p+2, defined as

φ2 =
{
(μ1 − μ2)− μ3 |μ1, μ2 ∈ Er(p+1), μ3 ∈ U

′
2p

}
=
{
(μ4 − μ5) · Tp+1 − μ3 |μ4, μ5 ∈ Er(1), μ3 ∈ U

′
2p

}
=
{
μ6 · Tp+1 − μ3 |μ6 ∈ D2, μ3 ∈ U

′
2p

}
⊇ φ′

2 =
{
μ6 · Tp+1 − μ3 |μ6 ∈ U

′
2, μ3 ∈ U

′
2p

}
=
[
−Tp+1M

r−1
2 ,

Tp+1M
r−1

2

]
, (68)

φ3 =
{
(μ1 − μ2)− μ3 |μ1 = fr(i)Tp+1 +mp+1,

μ2 = fr(j)Tp +mp, μ3 ∈ U
′
2p

}
=
{
(fr(i)Tp+1+mp+1−fr(j)Tp−mp)−μ3 |μ3 ∈ U

′
2p

}
.

(69)

Substituting (21) into (69) and using Lemma 1, one obtains

φ3 =
{
(fr(i) − fr(j))(Tp+1 + Tp)− μ3 |μ3 ∈ U

′
2p

}
=
{
(Mr − 1)

Tp+1+Tp

2 − μ3 |μ3 ∈ U
′
2p

}
=
[
Tp+1(M

r−2)+Tp(M
r−1)+1

2 ,
Tp+1M

r+Tp(M
r−1)−1

2

]
.

(70)

The upper bound of the set φ′
2 is always greater than the lower

bound of φ3 since

(Tp+1M
r − 1)− [Tp+1(M

r − 2) + Tp(M
r − 1) + 1]

= 2Tp+1 − TpM
r + Tp − 2,

= TpM
r + 2Tp−1(M

r − 1) + Tp − 2 > 0, (71)

where (20) is substituted to obtain the final result at the last step.
Therefore, the union of φ′

2 and φ3 is

φ′
2 ∪ φ3 =

[
−Tp+1M

r−1
2 ,

Tp+1M
r+Tp(M

r−1)−1
2

]
. (72)

Due to the symmetric property of difference co-arrays, and the
relationships φ′

2 ⊆ φ2 ⊆ D2p+2 and φ3 ⊆ D2p+2, one has

D2p+2 ⊇
[
−Tp+1M

r+Tp(M
r−1)−1

2 ,
Tp+1M

r+Tp(M
r−1)−1

2

]
.

(73)

From (20),

Tp+2 = Tp+1M
r + Tp(M

r − 1). (74)

Finally, (73) is simplified to

D2p+2 ⊇
[
−Tp+2−1

2 ,
Tp+2−1

2

]
= U

′
2p+2, (75)

which completes the proof.
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