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Abstract—Lung ultrasound (LUS) is a cheap, safe and
non-invasive imaging modality that can be performed at
patient bed-side. However, to date LUS is not widely adopted
due to lack of trained personnel required for interpret-
ing the acquired LUS frames. In this work we propose
a framework for training deep artificial neural networks
for interpreting LUS, which may promote broader use of
LUS. When using LUS to evaluate a patient’s condition,
both anatomical phenomena (e.g., the pleural line, presence
of consolidations), as well as sonographic artifacts (such
as A- and B-lines) are of importance. In our framework,
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we integrate domain knowledge into deep neural networks
by inputting anatomical features and LUS artifacts in the
form of additional channels containing pleural and vertical
artifacts masks along with the raw LUS frames. By explicitly
supplying this domain knowledge, standard off-the-shelf
neural networks can be rapidly and efficiently finetuned
to accomplish various tasks on LUS data, such as frame
classification or semantic segmentation. Our framework
allows for a unified treatment of LUS frames captured by
either convex or linear probes. We evaluated our proposed
framework on the task of COVID-19 severity assessment
using the ICLUS dataset. In particular, we finetuned simple
image classification models to predict per-frame COVID-19
severity score. We also trained a semantic segmentation
model to predict per-pixel COVID-19 severity annotations.
Using the combined raw LUS frames and the detected lines
for both tasks, our off-the-shelf models performed better
than complicated models specifically designed for these
tasks, exemplifying the efficacy of our framework.

Index Terms— COVID-19, deep learning, image classifica-
tion, lung ultrasound, semantic segmentation.

I. INTRODUCTION

HE diagnosis and treatment of respiratory diseases rely
on the use of various imaging modalities. Chest CT is
considered the imaging gold standard for pulmonary dis-
eases [l], [2]; however, it is expensive and non-portable.
Another standard imaging modality utilized to investigate the
lung is chest X-ray [3]. Both modalities involve ionizing
radiations, which are potentially harmful to the patient. This is
particularly significant for specific patient populations such as
children, pregnant women, and patients who require repeated
examinations over a short period of time. Moreover, CT is
generally not available in every hospital nor applicable at
bedside, thus requiring patients’ mobility. When dealing with
a highly infectious disease, this last aspect further increases
the risk of contamination within the hospital. Compared to
these imaging technologies, ultrasound imaging is safer, cost-
effective, more widely available, and transportable, thus has
the potential of reaching a much larger population, including
non-hospitalized patients. More importantly, there is growing
evidence showing that lung ultrasound (LUS) can be effec-
tively used as an imaging modality for pulmonary diseases
(e.g., [41-[6D).
The recent outbreak of COVID-19 pandemic drove
clinicians to use LUS imaging also in emergency rooms [7].

For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1.

.~ score :3 %

COVID-19 Severity scores. LUS frames exemplifying the severity score of [6] from healthy (score=0, left) to severe (score=3, right). One
can observe the peural line (green), A-lines (blue), subpleural consolidations (red) and vertical artifacts (e.g., B-lines and “white lung”) (

). While

the pleural line and consolidations are anatomical features, the A-lines and vertical artifacts are sonographic echoes.

Findings suggest LUS can assist in both detecting
COVID-19 patients and monitoring their condition throughout
their hospitalization [6], [8]-[11]. However, LUS provides
only local information on the state of the lung surface.
Therefore, it is crucial to carefully define the required amount
and distribution of scanning areas. To this end, multi-centre
studies aimed at finding the optimal trade-off between a fast
and accurate examination were performed. In the context of
COVID-19, a 12-area approach was suggested to represent an
optimal trade-off between accuracy, timing and examination
complexity [12], [13].

When using LUS to evaluate a patient’s condition,
both anatomical findings (e.g., presence of consolidations,
the integrity of the pleural line [14]), as well as sonographic
artifacts (such as A-lines and B-lines [15]) are of importance.
Examples of these phenomena are shown in Fig. 1. However,
spotting these findings and correctly interpreting them requires
highly trained personnel. Consequently, to date, LUS is not
widely adopted as its potential would reasonably suggest,
particularly in the face of dire needs arising in treating patients
with the COVID-19 pandemic.

Deep neural networks (DNN) and deep learning (DL)
proved to be very powerful tools for accomplishing many
challenging tasks, especially in the domain of image under-
standing. Given enough training examples (>millions) and
computational resources, deep models can even exceed human
performance on specific tasks (e.g. [16]-[18]). There is also
growing work on applying DNNs to ultrasound imaging
(see [19] and references therein). Nonetheless, when training
data is hard to come by, as is often the case with medical
imaging, it becomes more challenging to successfully train
these complex models. One approach to combat limited train-
ing data is to use domain knowledge to constraint the space
of learned models. These approaches lead to various forms of
model-based learning [20], [21], resulting with task-specific
architectures.

In this work we take a different path for overcoming
the challenge of limited training data. Instead of design-
ing task-specific DNNs for LUS analysis, we propose a
framework that integrates LUS domain knowledge into the
inputs used by standard DNNs. We explicitly enrich the input
to the model with domain specific knowledge. Specifically,
we suggest to inform the model of important anatomical
features and sonographic artifacts. We detect the pleural line
and vertical artifacts (such as B-lines, “white lung” etc.)
as a preprocessing stage. This automatically extracted

domain-specific information is then fed, as additional input
channels, much like RGB color channels in “natural images”,
to a DL model alongside the raw LUS frame. These domain-
specific channels allow the model to better tune and attend
to relevant features and findings characteristic of this specific
domain. This approach for utilizing domain knowledge puts
the focus on data preparation and alleviates the need to design
task-specific DNNs. A similar approach, i.e., augmenting the
raw input with additional masks, for analysing chest Xray of
COVID-19 patients was proposed in [22].

Fig. 2 illustrates our approach: Fig. 2 (top) shows an
example of an input LUS frame and the automatically detected
vertical artifacts and pleural line channels. The resulting
concatenation of these masks and the raw input frame is
then used as an input to a standard DNN model (bottom
of Fig 2). Explicitly providing the model with this automati-
cally extracted domain knowledge allows using simple off-the-
shelf image classification neural network architectures, and
rapidly and efficiently finetuning them to perform well on
LUS data. Our framework allows to effectively and efficiently
train DNN on LUS data, even when only several thousands of
training examples are available. Moreover, we train a single
task-specific DNN model capable of handling LUS frames
acquired by either convex or linear probes.

We demonstrate the efficacy of our framework on
COVID-19 severity assessment, both on LUS frame classifica-
tion as well as the task of semantic segmentation. We evaluated
our proposed framework using the ICLUS dataset curated by
the Ultrasound Laboratory Trento, Italy [23]. We finetuned
simple image classification models on the combined raw LUS
frames and the detected lines. We also finetune a semantic
segmentation model to predict per-pixel COVID-19 annota-
tions. Our finetuned off-the-shelf models performs better than
complicated models specifically designed for these tasks.

To summarize, in this work we make the following contri-
butions:

(a) A widely applicable framework for incorporating LUS
domain-specific knowledge into deep neural networks.

(b) A unified framework capable of handling LUS frames
acquired by either linear or convex probes.

(c) Exceeding state of the art results on the ICLUS
COVID-19 severity prediction benchmark, both for LUS frame
classification and semantic segmentation.

This paper is organized as follows: the guiding principles
of our framework are outlined in §1I, while the specific details
of our implementation are provided in §III. We exemplify
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(a) input B-mode frame

Combined image

Fig. 2.

(b) Vertical artifacts information

(¢) Pleural line information

LUS
prediction

DNN

Our framework for integrating domain knowledge into deep neural networks (DNN) for LUS. Top: Input frame (a) is augmented

with two additional channels containing LUS domain specific knowledge: (b) Automatically detected vertical artifacts (e.g., B-lines, “white lung”).
(c) A signed distance mask from the pleural line. Bottom: The concatenation of these three channels (viewed as RGB image) are used as input for

the DNN, enhancing the relevant frame regions.

(a) Healthy

(b) COVID-19

Fig. 3. Relative location and interpretation. Visually similar regions in
LUS frames may account for very different findings if located above the
pleural line ( arrow) or below it. For instance, the blue region below
the pleural line shows A-lines, while the red region above the pleural line
shows muscle tissue.

the efficacy of our framework training DNNs to perform
LUS frame classification in §IV and on the task of semantic
segmentation in §V. We conclude in §VI.

Il. METHOD

LUS frames have a strong artefactual nature. The pleural
line partitions the frame into two parts: the top part showing
the exterior tissue and the bottom part showing the aer-
ated lung cavity. Due to the dramatic difference in their
acoustical properties, these two regions appear quite differently
in LUS. Moreover, this change in acoustical conditions gives
rise to sonographic artefacts such as A-lines, B-lines and
“white lung”. When interpreting LUS one needs to take
these unique characteristics into account: For instance, bright
horizontal lines can be A-lines if they are under the pleural
line (Fig. 3 blue), but may account for a completely dif-
ferent findings if they are observed above the pleural line
(Fig, 3 red), leading to a radically different interpretation.
While the presence of A-lines usually suggests healthy con-
dition (Fig. 3a), observing these bright lines above the
pleural line may lead to erroneous assessment for the
COVID-19 patient in Fig. 3b.

DNN architectures designed for image analysis tasks are
oblivious to these idiosyncrasies of LUS. Our framework

proposes to make DNNs aware of these idiosyncrasies not by
changing their design, but rather by highlighting relevant and
salient features via preprocessing of the input LUS frames.
Specifically, we propose to augment the raw input LUS frame
with additional channels, each channel highlights domain spe-
cific information. Fig. 2 illustrates our approach: the input raw
frame (a), is augmented with additional channels highlighting
vertical artifacts (b) and the location of the pleural line (c).

Our framework for incorporating domain knowledge as
additional special input channels is not restricted to any num-
ber of additional channels or any specific choice of channels.
In this work we made a design choice, selecting only two
additional input channels: one highlighting the vertical artifacts
and the other the location of the pleural line.

As noted, the pleural line plays a key role in interpret-
ing LUS. Therefore, we choose to encode the pleural line
information by measuring the signed distance of each pixel
to the pleural line: negative distance above the pleural line
(Fig 2c, blue shade), and positive below (Fig 2c, red shade).
Integrating the signed distance into the input channels allows
the network to trivially distinguish between the exterior tissue
(upper part of the frame, negative signed distance), the lung
cavity (lower part of the frame, positive signed distance), and
the pleural line region (small distance). Another important
phenomenon unique to LUS are vertical artifacts, such as
B-lines and “white lung”, indicating loss of aeration of the
lung. Their presence usually indicate a pathological condition.
We therefore add another channel with a segmentation mask
indicating possible locations of vertical artifacts (Fig. 2b).
We concatenate the two masks as the second and third chan-
nels on top of the original gray-level channel of the input
LUS frame. The resulting 3-channel image efficiently encodes
LUS-specific information allowing for training DNN models
to perform LUS-specific predictions as shown in the bottom
of Fig. 2. This multi-channel representation is applicable for
LUS frames obtained by either convex or linear probes, allow-
ing to train a single task specific DNN capable of handling
convex as well as linear frames.
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To summarize, our framework preprocesses a LUS frame
into a three channel image, similar in structure to an RGB
natural image. These additional input channels represent LUS
domain specific expert knowledge. Training DNNs for various
LUS tasks is more efficient using these additional channels.
Our framework thus consists of the following steps:

Preprocessing stage: extract vertical artifacts and pleural
line masks from LUS frames, and combine them as additional
input channels.

DNN training stage: train a DNN on the combined
3-channel input frames.

Our approach to processing LUS is applicable to many LUS
frame analysis applications and tasks. It does not dictate the
use of any specific DNN architecture. Moreover, it handles
LUS frames obtained by either convex or linear probes in
a unified manner. Indeed, we demonstrate our framework on
two different tasks: classification and semantic segmentation
of COVID-19 severity assessment, where for each task we
train one DNN model for both convex and linear frames.

[1l. IMPLEMENTATION DETAILS

In the previous section we outlined the concepts on which
our framework is based. This section describes a practical
implementation of our framework.

A. Vertical Artifacts Estimation

Robustly and accurately detecting vertical artifacts
(i.e., B-lines) is a challenging task [15], [24], [25]. Existing
approaches were either probe-type specific [24], [25] or
requiring LUS videos [26]. Here, we do not aim to perfectly
solve it, but only to steer the downstream DNN model in the
right direction. Therefore, we resort to a simplistic approach,
that is fast, unsupervised and provides an informative, albeit
noisy, estimation of vertical artifacts.

According to recent developments in LUS [27], [28], verti-
cal artifacts are sonographic signs caused by complex interac-
tion of the multiple scattering phenomena that may form in the
presence of an alteration occurring at the lung surface. When
forming the LUS frame, the ultrasound signals produced by the
multiple scattering events, in case of resonance phenomena,
are then interpreted as a bright-vertical-line emitting from the
pleural line and aligned along the ultrasound beam axis.

Our approach is based on the observation that the orientation
of the vertical artifacts is known and depends only on the
probe type used. For a linear probe, these artifacts are exactly
vertical. For convex probes, the orientation of these artifacts
depends on their polar coordinate: the further away they are
from the center of the frame, the more tilted towards the
outside they are. Consequently, if we rectify a convex frame
according to the polar coordinates induced by the convex probe
(see Fig. 4) all vertical artifacts will become strictly vertical,
as in frames captured using linear probes. This phenomenon
may be observed in Fig. 5a, where the orientation of the
vertical artifacts vary according to their polar coordinate.
Fig. 5b shows the rectified frame. Note how all these artifacts
are now vertical. The rectification process is detailed in the
Appendix.

The canonical orientation of the vertical artifacts allows us
to detect them quite easily. Let I, be the intensity at the

(a) Input convex frame

(b) Rectified frame

Fig. 4. Rectifying convex frames. (a) Original frame in Cartesian x-y
coordinates and the induced polar r-¢ coordinates. (b) The rectified frame
according to its polar coordinate system. The transformation from one
coordinate system to the other is invertible given the focal point of the
transducer. This process is detailed in the Appendix.

(x,y) coordinate. We look for columns at the lower half of
the frame that are bright and have relatively low noise. To find
such columns we perform the following steps:

Linear fit: For each column, x, we fit its intensities,
Iy, with a linear function of the vertical coordinate. That
is, we estimate scalars slope, a,, and intercept b, for each
column x that minimizes the squared error between a linear
function of the y coordinate, ay -y+b,, and the actual intensity
of the pixel I,y: argming, p, Zy |ax -y + by — Ixy|2. Fig. 5c
shows the linear fit of the intensities for each column.

Error estimation: We then compute the error between the
fit and the actual pixel value, >, |ax -y 4 by — Ly | (Fig. 5d).
Vertical artifacts have relatively low error, as opposed to
consolidations, speckles or columns intersecting with A-lines.

Thresholding: All columns whose linear fit is above thresh-
old tprigh; and the error is below threshold ., are marked
as vertical artifacts (Fig 5e¢). We empirically determined the
values of the thresholds based on a small set of representative
frames sampled from the training set.

The resulting binary mask is then transformed back from
polar coordinates to the original Cartesian coordinates to form
the vertical artifacts mask for the input frame (Fig. 5f). Note
that for frames captured using linear probes we do not need to
change to polar coordinates, and can do the same processing
in the original Cartesian coordinate system.

It is important to note that although the vertical artifacts
appear in a more consistent manner in the polar coordinates
for convex frames, the actual underlying anatomy (e.g., ribs,
pleura etc.) is distorted: the beamforming process is aimed
at representing the true underlying anatomy in the original
Cartesian coordinates. Therefore, we only use the polar coor-
dinates to estimate the vertical artifacts, but maintain all other
analysis and processing in the original Cartesian coordinates,
as they authentically reflect the underlying anatomy.

B. Pleural Line Detection

The pleural line is a bright thin line that roughly crosses
the frame from side to side (See Fig. 3 and Fig. | green).
A straightforward approach for pleural line detection was
proposed in [24]. They use the Radon transform of the frame



FRANK et al.: INTEGRATING DOMAIN KNOWLEDGE INTO DEEP NETWORKS FOR LUS 575

(b) Rectified frame (c) Linear fit (d) Error w.r.t fit (e) B-line mask (f) Un-rectified mask

(a) Input frame

Fig. 5. Detecting vertical artifacts as bright columns. (a) Input. (b) Rectified convex frame according to its polar coordinates (Fig. 4). (c) Fit of
the intensities of the lower half of each column with a linear function: ax - y + bx. (d) Error between the actual intensity and the linear fit. B-lines,
“white lung” and similar vertical artifacts have low error. (€) Columns whose linear fit is above threshold 7pyign and the error is below threshold Terr

are marked as vertical artifacts. (f) Un-rectify masks of convex frames back to their Cartesian coordinates.

and apply an iterative optimization process to locate a distinct
and significant bright horizontal line in the Radon space.

Once we obtain the location and orientation of the pleural
line from [24] we applied a signed distance transform. We fur-
ther scale the signed distance such that the distance from the
pleural line to the bottom of the frame is equal 1. An example
of a pleural line mask is shown in Fig 2c: negative distance at
the top part of the frame and positive distance at the bottom.

Both approaches for vertical artifacts and pleural line
detection are simple but inexact. Nevertheless, the domain
knowledge they extract is introduced in a “soft” manner to the
network via additional input channels. This way the network
is trained to reason with this noisy data and distil meaningful
cues from it to facilitate better performance on any down-
stream target LUS task.

C. DNN Models

Our framework is not restricted to any specific deep neural
network architecture. In fact, working with three input chan-
nels (i.e., the raw frame, vertical artifacts mask and pleural
signed-distance) allows us to use models pre-trained on natural
3-channel RGB images “as-is”. This gives us the flexibil-
ity to opt for large models (e.g., ResNet-18 [29]) when
accuracy is of importance, or trade it for a light-weighted
model (e.g., MobileNetV2 [30]) when computing resources
are scarce. For the semantic segmentation task we used the
DeepLabV3++ [31] model.

All these models were pre-trained on natural RGB images
to perform image classification [32] or semantic segmentation
[33], and their trained weights are readily available on-line.
Once we choose our model, we can use its pre-trained weights
except of the last task-specific prediction layer that needs to
be trained from scratch.

D. Finetuning the Models

To make our trained model more robust to small changes
in the input frames we applied various augmentations to the
training data. The set of augmentation functions, each applied
with a randomly sampled strength bounded by a set maximum,
consists of: affine transformations (translation (max. £10%),
rotation (max. +23°), scaling (max. 10%)), horizontal flipping
(50%). We additionally applied random jittering to the raw
gray-level frame channel (contrast (max £30%), brightness
(max +30%)). These augmentations were verified by [23] to
be clinically meaningful, e.g., a LUS frame rotated by up

to 23° is still considered a plausible LUS frame. To encourage
the model to be more robust to the exact location of the pleural
line we applied a random global shift to the signed distance
channel (max £8%). We used the same augmentations for the
image classification and the semantic segmentation tasks.

We implemented our framework using pytorch [34] and
used the supplied torchvision.models and their pre-
trained weights. We finetuned the models using Adam opti-
mizer [35]. We used a fixed learning rate of 4 = 0.0075
(le — 4 for the semantic segmentation task) and default values
F1=0.9 and fr = 0.999.

We used the same loss functions as [23]: the Soft ORDinal
(SORD) loss for the classification task and cross-entropy loss
for the semantic segmentation task.

IV. COVID-19 SEVERITY GRADING RESULTS

We evaluated our proposed framework on the task of
COVID-19 severity grading. It has been recently shown
that LUS can be used for stratification and monitoring of
patients with COVID-19 [6], [10]. Soldati et al. [6] proposed
a 4-level scoring system with scores ranging from 0 to 3.
Score O indicates a healthy lung characterised by a contin-
uous pleural-line and visible A-lines artifacts. In contrast,
score 1 indicates first signs of abnormality mostly related
to small alterations in the pleural-line, and the appearance
of few vertical artifacts. Scores 2 and 3 are representative
of a more advanced pathological state, with the presence
of small or large consolidations, respectively, and significant
presence of vertical artifacts (B-lines and “white lung”). Fig. |
shows example frames representative of each score. This scor-
ing system is the only imaging protocol and scoring system
specific to COVID-19. It has been validated against other
imaging protocols [13] and there is evidence of its prognostic
value [11].

We use our framework to train a deep model to classify
LUS frames to their annotated COVID-19 severity score, and
compare the performance of models trained in our framework
to previously published results.

A. Data

We use the ICLUS dataset [23] curated by the Ultrasound
laboratory in Trento, Italy.! The ICLUS dataset contains
277 LUS videos of 35 patients, from 5 different medical cen-
ters with total of 58,924 frames, out of which 45,560 frames

1 https://iclus-web.bluetensor.ai/
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acquired using convex probes and 13,364 frames acquired
using linear probes.

All frames in the ICLUS dataset were carefully and man-
vally annotated into one of the four severity scores. The
annotations were additionally verified by expert clinicians.
Nevertheless, Roy et al. [23] reported only 67% agreement
across annotators per LUS video, emphasising the difficulty
of the task. The ICLUS dataset is then split into a train and
test set, with the test set comprising of 10,709 frames. The
split is performed at patient level: data from any patient is
either in the train or test set, but not in both. More details
about the ICLUS dataset can be found in [23].

As a pre-processing stage, we computed vertical artifacts
masks and pleural line signed distance masks, as described
in §III-A and §III-B. We concatenate these two masks to the
original input frame to form an input tensor with 3 channels.

B. Results

We used our framework to finetune a ResNet-18 model
to classify each frame to its annotated severity score. We mea-
sured the performance of models trained using our framework
in terms of F1-score, which is the harmonic mean of precision
and accuracy. Similar to [23] we used two settings: Setting 1
considers the F1 score computed on the entire test set. Setting
2 considers the F1 score computed on a modified version of
the test set obtained by dropping, for each video, the K frames
before and after each transition between two different ground
truth scores, potentially removing ambiguous frames, thereby
allowing us to identify the impact of noisy labeling on the
performance of the model. Table I compares our results (3¢
row) to the results of Roy ef al. [23] (rows 1 and 2) using the
two settings.

Using the same ResNet-18 architecture our model
achieved F1=68.8% score compared to F1=62.2% achieved
by the same architecture, but without the explicit use of the
vertical artifacts and pleural line information. Moreover, our
ResNet-18 model outperforms the CNN-Reg-STN archi-
tecture proposed by [23] that was specifically designed to cope
with the idiosyncrasies of LUS data. We see that it is more
advantageous to incorporate domain knowledge as additional
input channels than as deep neural architecture designs. We
also presented results of F1=68.7% on this task in [36].
However this required an elaborate use of an ensemble of task
specific ResNet-18 models.

We further used the GradCAM method [37] to visually
inspect the predictions of ResNet-18 models. Fig. 6 shows a
visual comparison of correct classifications by our framework
to misclassifications of the baseline of [23]. That is, using
the same deep neural architecture (ResNet-18), our model
uses all three input channels whereas the baseline [23] uses
only the raw frame. The first column shows a frame captured
by a linear probe of a healthy patient (score=0). Our model
(second row) attends well to the clear region below the pleural
line and to the A-lines shown on the left part of the frame.
Note that despite the thin vertical artifact falsely detected in
the frame, the trained model was able to compensate and
ignore it. In contrast, the baseline model falsely predicts
severity score=2 and attends to irrelevant regions as the
exterior tissue at the top of the frame or the void at the

bottom. The second column shows a frame with score=1,
misclassified by the baseline as score=0. Our model attends
to the pleural line region, which holds important information
for the score=1 class. In the third column is a frame labeled
as score=2. The baseline model misclassified it as score=3.
The GradCAM visualization shows how our model focuses
on the vertical artifacts — thanks to the focused input mask,
while the baseline model “spreads” all over the bottom part
of the frame. Visualizing results for the most severe case,
with score=3, on the fourth column, we see that our model
successfully focuses on the wide “white lung” region below
the pleural line. In contrast, the baseline model attends to
irrelevant regions above the pleural line and thus misclassify
this frame as score=2.

These visualizations suggests that our framework, namely,
providing a model for LUS analysis with additional pleural
line and vertical artifacts masks, is able to effectively steer the
model to the relevant regions of the frame: It is able to inspect
the pleural line and suspicious regions inside the lung cavity,
while paying less attention to the tissue above the pleural line.

C. Ablation Study

1) Input Channels: To show the complementary nature of
the two additional input channels, we performed an ablation
study. We used the same deep neural architecture, namely
ResNet-18, and trained it using different combinations of
input channels: Once with only the vertical artifacts masks
and once with only the pleural line mask. Rows 3-6 of
Table I show the performance of these trained ResNet-18
models. Adding only one additional channel (either vertical
artifacts or pleural line channel) helps to increase perfor-
mance by ~ 2% showing that these channels do contain
useful information and the model is able to take advantage
of it. However, when combining both channels (3" d row in
Table I) performance increase dramatically to F1=68.8%,
significantly exceeding previous methods. Nevertheless, these
additional channels cannot replace the raw input frames com-
pletely, as suggested by the 6/ row of the table. Discarding
the raw input frame significantly degrades performance to
merely F1=45.1%.

In their work on LUS classification [38] also considered
incorporating domain knowledge using relevant semantic seg-
mentation maps as inputs. However, their VGG-Seg model
performs worse than their baseline VGG despite the additional
semantic information. It seems that overriding the raw input
channel in favour of semantic information prevents the model
from compensating for inevitable inaccuracies in the input
masks. In contrast, we leave the raw LUS frame intact as
one of the input channels and only augment it with additional
domain specific knowledge.

2) Choice of Backbone: Our proposed framework for train-
ing DNN models for LUS data is not restricted to any
specific DNN architecture, and in fact allows for flex-
ible choice of DNN architecture based on the require-
ments of the downstream task. We further experimented
with different image classification DNN architectures for the
task of COVID-19 severity classification within our frame-
work. We compared light-weighted MobileNetV2 [30] and
MobilenetV3 [39], as well as the classic VGG16 [40]
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TABLE |
QUANTITATIVE RESULTS: F1 SCORES FOR PER-FRAME COVID-19 SEVERITY CLASSIFICATION

I T Y T2 =S = W =S =
1

Settings2
Drop Transition Frames (K)

ResNet-18 (Roy etal.) v 62.2 63.9 65.5 66.9 67.8
2 CNN-Reg-STN (Royetal) W/ 65.1 66.7 68.3 69.5 70.3
3 Resnet-18 v v v 68.8 70.2 72.4 73.9 75.2
4 S ResNet-18 v v 64.5 65.7 67.6 69.0 70.1
5 ®  ResNet-18 v v 64.7 66.1 68.5 70.3 71.8
6 < ResNet-18 v Vv 45.1 45.7 46.7 47.4 47.6
7 VGG 16 v v v 65.7 67.0 69.0 70.6 72.0
8 c VGG 16 v v 63.4 64.6 66.2 67.3 68.1
9 fou VGG 16 v v 62.5 64.0 66.3 68.2 69.6
10 < VGG 16 v 61.8 62.8 64.4 65.5 66.5
11 MobileNet V2 v v Vv 67.3 68.9 71.2 72.9 74.6
12 ¢ < MobileNetV2 < v 65.8 67.0 68.5 70.0 70.5
13 O f?, MobileNet V2« v 64.6 65.9 67.9 69.4 70.5
14 2 MobileNet v2 v 60.0 60.6 62.0 63.2 64.5
15 MobileNet V3 v v Vv 66.3 67.6 69.6 70.9 72.0
16 c MobileNetV3 v v 64.6 65.8 67.7 69.1 70.2
17 L‘oi MobileNet V3 v v 64.6 65.9 67.9 69.5 71.1
18 < MobileNet v3 v 61.5 62.6 64.4 65.7 67.0
19 ResNet-101 v v Vv 62.2 63.3 64.9 65.9 66.4
20 s ResNet-101 v v 60.1 61.5 63.4 65.0 66.4
21 ®  ResNet-101 v v 61.3 62.5 64.3 65.7 67.1
22 < ResNet-101 v 59.4 60.5 61.9 62.8 63.6

architectures. Rows 7, 11 and 15 of Table I show the per-
formance of these models using our framework (all input
channels). Despite the fact that these are “general-purpose”
image classification architectures that were not tailored to the
idiosyncrasies of LUS, they perform on-par and even better
than the specifically designed CNN-Reg-STN architecture
of [23]. We additionally verified that all these different DNN
models perform well thanks to the use of our framework,
namely, utilizing all 3 input channels. When removing either
the vertical artifacts or the pleural line channels, performance
of all DNN models degrades significantly, in the same manner
observed for ResNet-18 DNN model in §IV-C.1.

We note that even the light-weighted MobileNetV2 and
MobileNetV3 models perform very well. This is in contrast
to the findings of [38] that reported a significant drop in
performance when using a “mobile” architecture for LUS
classification. When having no access to domain knowledge
thin mobile architecture are indeed likely to fail to extract
meaningful features from the raw LUS frames. In constrast,
in our framework, domain knowledge is easily accessible via
the additional input channels making it easy to exploit even
for light-weighted models.

Finally, when using a very deep DNN architecture, e.g.,
ResNet-101 (rows 19-22), performance degrade signifi-
cantly: the training set is too small for this very large model
(42M parameters compared to 11M of ResNet-18 or merely

1.5M of MobileNetV3). Hence, despite the fact that our
framework is independent of the choice of DNN, the down-
stream task and the size of the training set may affect the
performance of the chosen DNN architecture and may dictate
the preference of one architecture over another.

D. Effect of Training Set Size

Although our masks do not add any external information
that is not already “in the pixels”, explicitly extracting it for the
network to use, makes the finetuning process efficient, quick
and robust. We postulate that it would require substantially
more labeled training examples for deep networks to auto-
matically distill this specific domain knowledge directly from
the “raw” pixels. To experimentally validate this assumption,
we sub-sampled the training set, at a patient-level, and trained
ResNet-18 backbone - once using our framework with all
additional input masks, and once using only the raw input
frames. The graph in Fig. 7 shows the F1 score (Settings 1)
on the fixed test set as a function of the training set size, and an
extrapolation of the trend. It can be seen that the gap between
our framework and the baseline diminishes as the training set
size increases. However, it seems like it requires a significantly
larger training set (roughly x3 larger) to bridge the gap
between the baseline and our proposed framework. Obtaining
these amounts of labeled data, especially in the medical
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ground truth score=0

ground truth score=1

ground truth score=2 ground truth score=3

Input frame
and our
computed
channels

ResNet-18
using all 3
input
channels

ResNet-18
using only
the raw
frame [23]

Fig. 6. Visualizing predictions using GradCAM. Visualizing regions in the frame that most influence the model’s prediction. Top row: Overlay of
the raw input frame and our estimated pleural line and vertical artifacts masks. Middle row: visualization of correct classifications by our framework —
when all input masks are used. Bottom row: visualization of misclassifications by [23] — the same DNN architecture when only the raw input frame

is used without the additional input masks.

imaging domain, is extremely challenging, highlighting the
practical benefit of our framework.

Moreover, it can be seen from Fig. 7 that ResNet-18
trained with our framework was able to achieve F1~ 62.2%
by training on only ~50% of the data compared to the same
network naively trained on all the raw frames of the training
data.

This result highlights the ability of our framework to
overcome the challenge of limited training data in the domain
of LUS; it reduced the amount of training data needed to train
the network adequately.

E. Vertical Artifacts Masks

Our approach for vertical artifacts detection is extremely
simple yet, our experiments suggest it is still effectively
guiding the downstream model in the right direction.

To get a sense of how informative our masks are we
measured the relative width our detected vertical artifacts span,
per frame, in the ICLUS dataset. To avoid noisy frame labeling
we used the restricted test set of Settings 2 with K = 7. Recall
that [6] defined the scores such that when vertical artifacts
are detected it usually suggests that the frame should not
be scored 0, and the wider these artifacts the more severe
the condition is. Table II shows the relative width of vertical

70 )
7 028
260
-~ e
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S .
% 40 U
—
o

30

© All masks
20
10 ® Raw frame only
0
0 50 100 150 200 250 300

Training set size (%)

Fig. 7. Performance as a function of training set size: F1 scores of
ResNet-18 backbone trained with all masks (blue), vs. trained using the
raw frames only (orange), as a function of training set size. Extrapolating
the trend shows the gap between the two approaches diminishes as
significantly more training data is introduced.

artifacts detected by our method per-frame. We can see that
there is a distinction between frames with score=0,1 and
those with score=2,3. However, the variance is quite large,
highlighting the limitations of our simplistic approach.

Since B-lines visualization is strongly dependent on the
imaging settings and utilized hardware, traditional severity



FRANK et al.: INTEGRATING DOMAIN KNOWLEDGE INTO DEEP NETWORKS FOR LUS 579

TABLE Il
DISTRIBUTION OF DETECTED VERTICAL ARTIFACTS ACCORDING TO
COVID-19 SEVERITY SCORE OF [6]: THE TABLE SHOWS THE

RELATIVE FRAME WIDTH PER FRAME (STD) THE DETECTED
VERTICAL ARTIFACTS SPAN, AND THEIR AVERAGE NUMBER.
SCORE=0 IS HEALTHY WHILE SCORE=3 INDICATES ACUTE
RESPIRATORY CONDITION. VERTICAL ARTIFACTS USUALLY

INDICATE A PATHOLOGICAL CONDITION OF THE LUNG,

AND THUS APPEAR MORE AS THE SCORE INCREASES

score 0 1 2 3
Width [%] 0.69+6.0 0.05+0.48 3.27+6.89 13.86+12.14
# B-lines 0.11+1.41 0.10+1.65 1.574+4.40 7.36+6.94

assessment by counting B-lines tends to be very subjective,
compared to relative span suggested by [6]. Nevertheless,
Tab. II also reports counts of vertical artifacts that leads to
similar conclusions.

Our simple approach aims at highlighting any vertical
artifacts, not just B-lines, consequently, using the Radon-
based method of [24], [25] for B-lines detection, attained only
F1=67.6% [41].

V. SEMANTIC SEGMENTATION OF COVID-19 MARKERS

To further demonstrate the applicability of our framework,
we tested it on a different type of task: training a semantic
segmentation DNN to segment LUS frames.

A. Data

In addition to per-frame COVID-19 severity score anno-
tations, the ICLUS dataset [23] provides detailed pixel-level
annotations for the biomarkers indicative of each score. These
detailed semantic annotations were provided for 2,154 frames
across 33 patients, of which 1,602 frames were captured using
convex probes and 552 using linear probes (note that we
are using an updated view of the ICLUS dataset with more
annotations compared to [23]). We further split the data into
train and test sets according to the same patient-level split
used in §IV with 1,601 (1,237 convex, 364 linear) training
frames. For the frames in the training set, relative pixel-level
occurrences for score 0, 1, 2 and 3 are 3.8%, 0.1%, 2.0% and
3.2% respectively. For the test set the relative occurrences are
5.6%, 0.2%, 1.6% and 4.7% respectively. Notably almost 90%
of the pixels do not display clear characteristics of any specific
class (severity score) and are, therefore, labeled as background.
Unlike [23] we treat pixels outside the LUS field of view as
“ignore” and discard them completely from the training and
evaluation (e.g., gray pixels in Fig. 8d).

B. Results

We used our framework to finetune a DeepLabV3++
semantic segmentation model with ResNet-50 backbone
that was pre-trained on a subset of MS-COCO dataset [33]
to predict a per-pixel severity score according to the semantic
annotation of the ICLUS dataset. Table III shows the segmen-
tation performance of our trained model measured, similar
to [23], by accuracy across all categories (Acc.), the Dice
coefficient for the union of COVID-19 related scored vs.
background (Dice), and the mean Dice across scores 0, 2 and 3

TABLE IlI
SEMANTIC SEGMENTATION RESULTS: SEGMENTATION PERFORMANCE
MEASURED BY ACCURACY ACROSS ALL CATEGORIES (ACC.), THE
Dice COEFFICIENT FOR THE UNION OF COVID-19 RELATED SCORED
(DICE), AND THE MEAN DICE ACROSS SCORES 0, 2 AND 3
(CAT. DICE) AS IN [23]. ACCURACY AND DICE SCORES ARE
HEAVILY BIASED TOWARDS THE DOMINANT BACKGROUND
CLASS, WHILE CAT. DICE REFLECTS BETTER THE
PERFORMANCE ON THE RELEVANT
ANNOTATED PIXELS

B n |

DeeplabV3++* (Royetal) 0.95 0.71 0.62
Ensemble* (Roy etal.) v 0.96 0.75 0.65
DeeplabV3++ (ours) v v v 0.93 0.76 0.70

s DeeplabV3++ v 0.92 0.72 0.64

K DeeplabV3++ v v 0.93 0.74 0.70

2 DeeplabV3++ v v 0.93 0.74 0.68

* Note that Roy er al. [23] trained and evaluated only on convex frames,
while our method used both linear and convex.

(Cat. Dice). Score=1 is omitted due to its under representation
in the pixel annotations. It is worthwhile noting that due to
the disproportionate size of the background class (~90%) the
accuracy and the Dice measures are quite biased and do not
reflect well the performance of the model on the relevant
COVID-19 classes. In contrast, the category Dice (Cat. Dice)
measure focuses on the relevant labels and reflects better the
performance of the model on this specific task.

We train the same DeepLabV3++ architecture, once using
our framework with all input channels (e.g., the raw frame,
vertical artifacts and pleural-line channels) and once using
only the raw input frame as in [23]. We trained and evaluated
on frames obtained from both convex and linear probes.
Adding the linear frames slightly improves the Cat. Dice from
0.62 reported by [23] to 0.64 (15* and 4" rows of Tab. III).
However, adding the additional input channels boost the Cat.
Dice score even further to 0.70 (3¢ row of Tab. III).

Fig. 8 shows four examples of input frames, the correspond-
ing predicted segmentation masks and the ground truth anno-
tations. The color of the segments indicate their corresponding
COVID-19 severity score from blue for score=0 through
yellow, and orange all the way to red corresponding to scores
1, 2 and 3 respectively. Note how our trained model is
capable of handling both linear (first two rows) as well as
convex (bottom rows) frames, as opposed to [23] that was
restricted to convex frames only. Providing a model with the
domain specific knowledge in the form of the location of
the pleural line allows it to better detect small discontinuities
corresponding to the challenging score=1 category (first two
rows). Explicitly providing the model with information on
vertical artifacts allows it to better classify “white lung”
regions as score=3 rather than score=2 4™ row).

C. Ablation Study

To show the impact of the two additional input channels,
we performed an ablation study. We used the same deep
neural architecture, namely DeepLabV3++, and trained it
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(a) Input

Fig. 8. Semantic segmentation: Pixels indicating score=0 are annotated blue, score=1 in

(c) Using all input channels  (d) Ground truth annotations

, score=2 in orange and score=3 are annotated

red. Note that the gray pixels outside the LUS scan are ignored. (a) Input frame and the additional channels computed by our framework. (b) Semantic
segmentation results of DeepLabV3++ model utilizing only the raw input frames (as in [23]), Cat. Dice=0.64. (c) Segmentation results of the same
DeepLabV3++ architecture utilizing all three input channels, Cat. Dice=0.70. (d) Ground truth annotations.

using different combinations of input channels: Once with
only the vertical artifacts masks and once with only the
pleural line mask. The bottom two rows of Table III show
the performance of these two trained DeepLabV3++ models.
Adding only the pleural line channel already increase the Cat.
Dice score to 0.70 leaving only a difference of 0.02 on the Dice
score compared to the model trained using all three channels,
showing the power of pleural-line location information for the
localization of relevant biomarkers. In contrast, adding only
the vertical artifacts channel resulted with a less prominent
performance gain: Cat. Dice increased to only 0.68. This is
probably due to the inaccuracies in B-line detection of our
method already discussed in §IV-E.

VI. CONCLUSION

In this work we introduced a framework for combining the
power of deep neural networks with prior domain knowledge
specific to LUS resulting in a fast and efficient way of training
DNNs on LUS data. The key insight is to explicitly provide
domain-specific knowledge to the models. However, instead

of incorporating this knowledge in the form of elaborate
and task-specific DNN architecture design, we propose to
introduce it as part of the input data. In the context of LUS
we demonstrated that informing the model of the location
of the pleural line and the presence of vertical artifacts,
such as B-lines and “white lung”, can significantly improve
performance. Moreover, it allows to treat frames captured by
either linear or convex probes in a unified manner — using
a single DNN for both types of frames. We exemplified
the applicability of our framework on COVID-19 severity
assessment, both on the task of LUS frame classification as
well as the task of LUS semantic segmentation.

Although our masks do not add any external information
that is not already “in the pixels”, explicitly extracting it for
the network to use, makes the finetuning process efficient,
quick and robust, and can be done on much smaller datasets.
Experiments suggest that it would require significantly longer
training time and substantially more labeled training examples
for deep networks to automatically distill this specific domain
knowledge directly from the “raw” pixels.
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Our proposed framework is, therefore, more widely
applicable to LUS than COVID-19 severity prediction. The
framework can be used not only to train different DL archi-
tectures, but to address other challenges in the analysis of
LUS frames. Moreover, our framework does not rely on any
specific implementation of pleural line or vertical artifacts
detection algorithms and allows for incorporating other domain
knowledge e.g., A-lines, and more, in a similar manner.
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