Interception Probability Versus Capacity in Wideband Systems: The Benefits of Peaky Signaling

DIANA CRISTINA GONZÁLEZ1, CLAUDIO FERREIRA DIAS1, EDUARDO RODRIGUES DE LIMA2, YONINA C. ELDAR3, (Fellow, IEEE), MURIEL MÉDARD4, (Fellow, IEEE), AND MICHEL DAOUD YACOUB1, (Member, IEEE)

1School of Electrical and Computer Engineering, State University of Campinas, Campinas, São Paulo 13083-852, Brazil
2Instituto de Pesquisas Eldorado, Campinas, São Paulo 13083-898, Brazil
3Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 7610001, Israel
4Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Corresponding author: Diana Cristina González (dianigon@unicamp.br)

This work was supported in part by EMBRAPII—Empresa Brasileira de Pesquisa e Inovação Industrial, in part by CNPq under Grant 301581/2019-3, and in part by Battelle PO under Grant US0011-0000743557-Line 1.

ABSTRACT Spread-spectrum techniques have found extensive use in broadband communications, both in military and commercial applications, for their low interception probability. However, it has been shown that these techniques prove ineffective on non-coherent fading channels with very large bandwidths since its capacity decreases with the increase of the bandwidth, eventually going to zero as the bandwidth goes to infinity. Peaky frequency-shift keying is a promising alternative modulation technique expected to achieve high data rates while maintaining a low interception probability. The current study explores such modulation techniques and outlines the conditions for which the reliability and capacity of the system increase while reducing the probability of interception compared to typical spread spectrum schemes. We show that peaky frequency-shift keying achieves a considerably higher transmission rate than non-peaky signaling for any given target level of interception probability, especially for outdoor fading scenarios in the low signal-to-noise ratio regime.

INDEX TERMS Direct-sequence spread, peaky frequency-shift keying, probability of interception, wideband channel.

I. INTRODUCTION

The ever-increasing demand for higher data rates coupled with the multitude of new services, ubiquitous coverage, and the shift from personal communications to communications between devices/things are the main driving forces behind new and advanced generations of wireless technologies. Higher data rates are made possible by enhanced transmission techniques and increased bandwidth. The new dynamics introduced by the need for the integration of heterogeneous elements (devices/things) raises various security concerns. Because of the heterogeneity of these elements, systems are more prone to unauthorized interceptions due to their security requirements [1], [2].

Different approaches can ensure security in communications systems. For example, increasing the difficulty of signal interception is a way of improving this security [3]. Direct sequence spread spectrum modulation techniques have been widely used in high data rate communications systems with an add-on feature of providing a low probability of interception/detection (\(P_D\)). This feature arises naturally when the signal power is spread over a frequency band substantially wider than its minimum band required for adequate transmission [4]. Moreover, the signal power spread fulfills the requirements for reliability and secrecy in communications mainly used in military applications.
Time- and frequency-spread signals (e.g., direct sequence spread spectrum, chirp spread spectrum, and frequency-hopping spread spectrum), with the continuous transmission in both domains, are not suitable for non-coherent wideband communications [5], [6], [7], [8]. Therefore, spreading systems operating over multipath channels with no channel information experienced decreased throughput with increasing bandwidth. Particularly, for fixed energy, as the bandwidth increases, the signal energy becomes smaller across the operating band. Detection becomes seriously compromised for the signal falling below the noise level [9]. The authors in [10] and [11] proved that peakey signals in two dimensions achieve the capacity in multipath channels composed of any number of paths.

In [7] and [12], the authors proposed a promising non-coherent low duty cycle frequency-shift keying (FSK) signaling scheme, which achieves the capacity of fading channels at the infinite bandwidth limit. In such a technique, the signal energy is concentrated in time and frequency rather than spread over the entire bandwidth. This scheme is known as Peaky-FSK (PFSK) [12]. In this paper, we pose and answer a new fundamental question: how does the capacity-intercept trade-off of PFSK signaling compare to that of a non-peaky (NP) one? The superior performance of PFSK is already known. But can we just go for it, not knowing how vulnerable the system may be as far as its intercept performance is concerned? And this is an open problem or was. This work is a first attempt to shed light on this challenging subject.

This paper investigates the performance of PFSK and non-peaky FSK (NPFSK) in terms of their probability of interception and rate limit. We assume that a malicious interceptor decides whether a signal is present or absent without any previous knowledge about the transmitted signal. In addition, the interceptor may explore two known spectrum-sensing detection techniques, namely, energy detection [13], [14] and covariance-based detection [15]. These techniques are robust against multipath fading and do not require any a-priori-specific information about the signal, the channel, or the noise power. As already mentioned, the fundamental question concerning the intercept performance of a PFSK has not been previously investigated. Here, we consider the lower limit capacity for the peakey signal and the upper limit capacity for the NP signal. We adopt this procedure for a fair comparison, i.e., using the worst PFSK performance versus the best NP signal performance. We then attain P_D for each detection technique and signaling scheme. The performance evaluation method uses Monte Carlo simulations for both narrowband and wideband scenarios. The performance investigation is thorough and considers the effect of the various system parameters, such as the peakedness of the PFSK scheme, i.e., the duty cycle, observation time, and coherence time, among others.

The simulation results reveal that PFSK signals show a clear advantage over NP signaling according to P_D and achievable rates by using a suitable duty cycle setting that maximizes the capacity, achieving rate increments of up to 10^3 times for a given target level of P_D in wideband scenarios or low signal-to-noise ratio (SNR) regimes. Importantly, we show that there is a duty-cycle range that should be avoided since it causes PFSK to be more likely intercepted than the NP scheme under the covariance-based detection. The maximum-capacity duty cycle is out of the mentioned range. Additionally, simulations demonstrate that coherence time, observation time, or coherence band considerably impact the P_D in both signaling schemes for frequency-selective channels.

The rest of the paper is organized as follows. Section II describes the system model of the wideband fading channel and the investigated signaling schemes. Section III describes the two non-coherent detection mechanisms employed. In Section IV, we introduce the expressions for the lower-bound capacity of the PFSK signaling and the upper-bound capacity of NP signaling. In Section V, we present some simulation results and discuss the insights. Finally, Section VI provides concluding remarks.

Throughout this paper, I_n represent the identity matrix of size n; $\{s_i\}_{i=1}^n$ denotes an indexed series (e.g., $\{s_i\}_{i=1}^n = \{s_1, s_2, \ldots, s_n\}$); $E[-]$ and $Pr(\cdot)$ are the expectation and probability, respectively.

II. SYSTEM MODEL

A. CHANNEL MODEL

We consider a rich scattering, frequency selective wideband fading channel with gain $h(t)\{1\leq t\leq L\}$ and delay $d(t)\{0\leq t\leq L\}, L$ being the number of propagation paths. In this case, the output $y(t)$ of a multipath fading channel with input $x(t)$ is given by

$$y(t) = \sqrt{P} \sum_{i=0}^{L-1} h_i(t)x(t - d_i(t)) + z(t), \quad (1)$$

where $z(t)$ is complex white Gaussian noise with power spectral density $\frac{N_0}{2}$ and P denotes the average received signal power. Let T_s, T_c and T_d be the symbol time, the coherence time and the delay spread, respectively. We consider a frequency-selective block-fading channel model [12]. In other words, the symbol time is smaller than the coherence time of the channel (i.e., $T_s < T_c$) and greater than the delay spread (i.e., $T_s > T_d$). Thus, the path gains and delays remain constant over T_c. For simplicity, we will drop the time index within each coherence time so that $h_i(t) = h_i$ and $d_i(t) = d_i$. These gains and delays change independently from block to block.

B. SIGNALING MODEL

1) PEAKY FREQUENCY-SHIFT KEYING SIGNALING

We investigate the low duty-cycle FSK scheme introduced in [16]. In this scheme, each symbol is represented by a single-frequency signal, selected from a large set of frequencies, using a low duty cycle $\delta \in (0, 1]$ and a high-peak-power. Hence, the transmitter is active only for a fraction δ of time with boosted signal power P/δ followed by the $(1 - \delta)$
signal is given by
\[M = B T \]

where \(H \) is a hypothesis testing problem (P and covariance-based detection, which are used to obtain the detection (spectrum sensing) mechanisms, energy detection (ED), and variance-based detection, respectively, \(n \) is the sample index, both \(H_0 \) and \(H_1 \) refer to the two hypotheses of no signal transmitted and signal transmitted, respectively, and \(z(n) \) are complex Gaussian noise samples with zero mean and variance \(\sigma_z^2 = N_0 B, i.e., z(n) \sim N(0, N_0 B) \).

A. ENERGY DETECTION (ED)

For ED, a bandpass filter process the received signal. Next, the result is squared and integrated over the observation time \(T_{obs} \), producing \(y_{ED} \) that is the energy of the received waveform. By using the sampling theorem representation for bandlimited signals, we can write the decision metric for ED as
\[
y_{ED} = \sum_{n=0}^{N_s} |y(n)|^2 ,
\]
where \(N_s \) is the size of the observation vector. From the binary hypothesis testing defined in (5), \(P_D \) (or probability of interception) and the probability of false alarm (\(P_{FA} \)) are given by
\[
P_D = \Pr (y_{ED} > \lambda_E | H_1)
\]
\[
P_{FA} = \Pr (y_{ED} > \lambda_E | H_0).
\]
where \(\lambda_E \) is a decision threshold. Based on the statistics of \(y_{ED} \), \(P_{FA} \) can be calculated as [17]
\[
P_{FA} = Q \left(\frac{\lambda_E - N \sigma_z^2}{\sqrt{2N \sigma_z^2}} \right).
\]

While the analytical framework for calculating \(P_D \) in AWGN or slow-fading channels is well known in the literature [14], [18], it is not the case for the fast-fading channel, which intrinsically makes the analytical investigation impracticable. Monte Carlo simulation is a handy tool that gives useful insights in cases like this, and this shall be the approach here. The choice of the detection threshold \(\lambda_E \) is based on the required \(P_{FA} \) [15].

B. COVARIANCE-BASED DETECTION

We provide a short description of the covariance-based detection algorithm for self-containment. (The reader is referred to [15] for a detailed explanation of this method.) Let us define the statistical covariance matrices of the received signal as
\[
R_s = E \left[s(n)s^T(n) \right] \tag{10}
\]
\[
R_y = E \left[y(n)y^T(n) \right], \tag{11}
\]
where \(s(n) \) and \(y(n) \) are vectors composed of the \(F \) consecutive samples of the noiseless and noisy version of the received
signal, respectively. (Parameter F is called the smoothing factor.) Note that the vector $s(n)$ considers the transmitted signal and the effects of channel strength. We can also write the covariance matrix of the received signal as

$$R_y = R_s + \sigma^2 I_F.$$ \hspace{1cm} (12)

Observe that, in the absence of the signal $s(n)$, $R_s = 0$, the off-diagonal elements of R_y are all zero. Now, in the presence of the signal, $s(n)$ and the signal samples are correlated, some of the off-diagonal elements of R_y should be nonzero. Hence, this detection method uses the following two decision variables:

$$T_1 = \frac{1}{F} \sum_{n=1}^{F} \sum_{m=1}^{F} |r_{nm}|$$ \hspace{1cm} (13)

$$T_2 = \frac{1}{F} \sum_{n=1}^{F} |r_{nm}|,$$ \hspace{1cm} (14)

where r_{nm} denotes the element of the matrix R_y at the nth row and mth column. Because, in the absence of signal $T_1/T_2 = 1$ and the presence of signal $T_1/T_2 > 1$, the ratio T_1/T_2 is an effective metric for signal detection.

Due to the limited number of signal samples in practice, the statistical covariance matrix is approximated by the sample covariance matrix, which can be expressed as

$$\hat{R}_y(N_s) = \begin{bmatrix} \phi(0) & \phi(1) & \cdots & \phi(F - 1) \\ \phi(1) & \phi(2) & \cdots & \phi(F - 2) \\ \vdots & \vdots & \vdots & \vdots \\ \phi(F - 1) & \phi(F - 2) & \cdots & \phi(0) \end{bmatrix},$$ \hspace{1cm} (15)

where $\phi(j)$ is the sample autocorrelations of the received signal and is given as follows:

$$\phi(j) = \frac{1}{N_s} \sum_{m=0}^{N_s - 1} x(m)x(m - j), \hspace{0.5cm} j = 0, 1, \ldots, F - 1.$$ \hspace{1cm} (16)

Based on the sample covariance matrix, we use the following signal detection method:

1) COVARIANCE ABSOLUTE VALUE (CAV) DETECTION ALGORITHM [15]

- Sample the received signal.
- Chose a smoothing factor F and the threshold λ_C. The decision threshold must be determined to comply with a target P_{FA}.
- Compute the sample covariance matrix (15).
- Calculate the decision variables $T_1(N_s)$ and $T_2(N_s)$ using the expressions in (13) and (14), and considering $r_{nm} = r_{nm}(N_s)$, where $r_{nm}(N_s)$ are the elements of a sample covariance matrix $\hat{R}_y(N_s)$.
- Detect the signal’s presence by comparing the decision metric $y_{cov} = T_1(N_s)/T_2(N_s)$ against a threshold λ_C. The P_D and the P_{FA} are given by

$$P_D = \Pr \left(y_{cov} > \lambda_C \mid H_1 \right)$$ \hspace{1cm} (17)

$$P_{FA} = \Pr \left(y_{cov} > \lambda_C \mid H_0 \right).$$ \hspace{1cm} (18)

An approximation of P_{FA} for the CAV algorithm is obtained in [15] as

$$P_{FA} \approx 1 - Q \left(\frac{1}{\sqrt{2/F}} \left(1 + \left(F - 1 \right) \sqrt{\frac{2}{N_s \pi}} \right) \right).$$ \hspace{1cm} (19)

Here again, we compute P_D by means of simulation.

IV. RATE LIMITS

This section introduces the theoretical limits for the considered signaling schemes.

A. LOWER BOUND CAPACITY FOR PFSK

In [19], the lower bound of the achievable rate in a wideband non-coherent channel with i.i.d fading channels, using a peaky signal with duty cycle $\delta \in (0, 1]$ was introduced as

$$R_{LB, PFSK} = \frac{P}{N_0} \left[1 - \frac{P_k}{2B N_0} \right] - \frac{\delta B}{B_c T_c} \log \left(1 + \frac{P}{2B N_0 B_c T_c} \right),$$ \hspace{1cm} (20)

where κ is the kurtosis of the fading coefficients, for Rayleigh fading equals $\kappa = 2$. The maximum of the capacity lower bound $R_{LB, PFSK}$, here denoted with *, is obtained by approximating the optimal function of the product δB for any finite $B_c T_c$ as

$$(\delta B)^* = \frac{P}{N_0} \left[\frac{B_c T_c \kappa}{\log (B_c T_c)} + o \left(\frac{B_c T_c}{\log (B_c T_c)} \right) \right].$$ \hspace{1cm} (21)

$$R_{LB, PFSK} \geq \frac{P}{N_0} \left[1 - \sqrt{\frac{(1 + \log (B_c T_c)) \kappa \log \pi}{B_c T_c}} \right] - o \left(\frac{\log (B_c T_c)}{B_c T_c} \right).$$ \hspace{1cm} (22)

For details, the reader is referred to [19].

B. UPPER BOUND CAPACITY FOR NON-PEAKY SIGNALING

In order to derive the upper bound of the achievable rate in a wideband non-coherent channel with i.i.d Rayleigh-faded taps, the authors in [20] model the channel as a tapped delay line with its number of taps calculated as $L = [B T_d]$. Let $\left\{ h_{\ell} \right\}_{\ell=0}^{L-1}$ be the tap gains during a time coherence interval, and $g_\ell = E \left[| h_{\ell} |^2 \right]$ be the average power of the ℓth tap satisfying $\sum_{\ell=0}^{L-1} g_\ell = 1$. For no-sparse channel, $g_\ell > 0 \forall \ell$. Thus, the upper bound of the achievable rate using NP signaling can be
estimated as [20, Eq. 48]

$$R_{NP}^{UB} \leq B \log_2 \left(1 + \frac{P}{N_0 B} \right) - \frac{B}{B_c T_c} \sum_{\ell = 0}^{L-1} \log_2 \left(1 + \frac{P}{N_0 B} B_c T_c \cdot L g_\ell \right). \tag{23}$$

For large B, $\tilde{L} = BT_\delta$. For more details on this, please refer to [20].

V. SAMPLE CASES AND INTERPRETATION

In this section, we assess the detection performance and the achievable rate of the investigated schemes by Monte Carlo simulations and the expressions presented in Sections III and IV. We employ the probability of misdetection P_{MD} (detection failure) as an intercept metric. Thus, $P_{MD} = 1 - P_s$. Furthermore, we explore two representative scenarios, indoor narrowband and outdoor wideband systems.

In the indoor narrowband case, the system is chosen to operate in a bandwidth used by a current IoT scheme [21]. In the outdoor wideband case, the settings are chosen as in [20], in which the performance of NP signals is explored. These cases shall be analyzed in the next sections. Although our main interest is to assess the detectability performance of these signaling schemes in a wideband regime, the narrowband scenario serves as a benchmark, allowing for a more flexible, speedy, and detailed evaluation since the complexity and the computational load of the simulations increase rapidly with the increase of the bandwidth. Interestingly, after many independent runs, we maintain that the detection behavior in both scenarios is relatively similar. The most significant difference, as expected, concerns the required SNR and the achieved transmission rate for equivalent performance.

We assume an environment with one source, one destination, and one observer/interceptor. Communication is established between source and destination using a defined setting, i.e., duty cycle and transmission rate. At the same time, the observer/interceptor attempts to determine whether or not the transmission is taking place. We locate the observer/interceptor closer to the source (far from the destination), aiming to have a received energy level P_{obs} at the observer much higher than the received energy level P_R at the destination. This difference in power levels must be considered because the observer does not know the transmitted signal and must deal with the noise of the entire scanned bandwidth. Therefore, the observer requires a very high P_{obs}/N_0 to obtain a P_D large enough to be analyzed. We avoid the scenario where the interceptor and the destination are co-located and therefore have the same SNR levels. In this scenario, the power levels are so high that they would force the system to leave the low-SNR regime, and the capacity expressions (20), (22) and (23) are no longer valid.

Concerning security application requirements, we are more interested in P_{MD} rather than in P_{FA}. On the other hand, it is essential to set a maximum permitted P_{FA} to find an adequate threshold to perform the detection. This setting avoids the arbitrary selection of a very low detection threshold, which may cause the interceptor to detect all transmissions without distinguishing between actual transmission and noise. Hence, the choice of the said parameter is paramount.

A. INDOOR NARROWBAND CASE

Consider an indoor system at $f_c = 1$ GHz. Assume a velocity $v = 5$ km/h, corresponding to $T_c = c/(2f_c v) = 0.10$ s, and a typical delay spread $T_\delta = 8$ µs, leading to $B_c = 125$ kHz. Altogether, $B_c T_c = 13.5 \times 10^3$. We assume a $B = 125$ kHz and $T_{obs} = 100T_s$ and $T_{obs} = 500T_s$, with $T_s = 1$ ms being the symbol duration. This results in $M = 125$ possible frequencies. We set the target $P_{FA} = 0.01$ following the results reported in [15] and chose $F = 10$ for the covariance-based detection.

Figs. 3 and 4 show the simulation results for this case considering the observation times 100T_s and 500T_s, respectively. Figs. 3a and 4a illustrate P_{MD} of the candidate signals schemes NPFSK (continuous red curves) and PFSK (dashed black curves), using the detection mechanisms ED and CAV while varying the observer/interceptor average SNR$_{obs}$, where SNR$_{obs} \triangleq P_{obs}/(BN_0)$. We simulate different δ values for the PFSK scheme and the optimal δ set that approximates the optimal relation (δB)* in the equation (21). This set is composed of a δ value for each transmitted P_{R}/N_0 and determines the maximum capacity lower bound R_{LB} in (22). Furthermore, in Figs. 3b and 4b, we illustrate P_{MD} versus the achievable rate between the source and the destination, applying the foregoing analytical expressions for the limit rates of the signaling schemes, considering a -14 dB $< P_{R}/N_0 < 20$ dB for both observation time cases. These figures show the upper bound capacity for NP and the lower bound capacity for PFSK using $\delta = 1$ and the optimal δ set. The following can be observed from the curves.

1) INTERCEPTION PERFORMANCE OF THE NP SIGNALING

In both investigated cases, $T_{obs} = 100T_s$ and $T_{obs} = 500T_s$ and through all of the several other simulation runs, the NPFSK signals with ED achieve a lower P_{MD} than those with CAV. It suggests that ED is the most appropriate mechanism for detecting this type of signal because of its low computational and implementation complexity.

Notice that, for the ED approach, the average energy is the only signal attribute that matters. Therefore, the observations drawn here for NPFSK can be extended to all NP signaling.
2) IMPACT OF FADING ON THE INTERCEPTION PERFORMANCE

In Fig. 3a, which illustrates the scenario with $T_{\text{obs}} < T_c$, a higher P_{MD} can be observed for the considered SNR range, as compared to that achieved in Fig. 4a that illustrates the scenario $T_{\text{obs}} > T_c$. This is because when $T_{\text{obs}} < T_c$, all the received signal samples are affected by a single fading coefficient, α_1 in Fig. 1. Therefore, the entire signal may go below the minimum required value for detection under a deep fade. On the other hand, in scenario $T_{\text{obs}} > T_c$, the received signal samples experience a time diversity of the fading channel, $\alpha_1, \ldots, \alpha_i$ in Fig. 1, preventing the signal from being fully attenuated.

3) INTERCEPTION PERFORMANCE OF THE PFSK SIGNALING

a: ENERGY DETECTION APPROACH

The PFSK and NP schemes intuitively yield the exact same P_{MD} using the ED approach since its detector utilizes the reserved energy from an observation time. Therefore, it seems indifferent whether transmission occurs at each T_s or in spaced intervals with the corresponding concentrated energy.

However, the simulations reveal two conditions where this behavior is not observed.

1) Small duty cycles make the signal less susceptible to interception. Given that the PFSK signal transmission only occurs δ of the time, the decrease of the duty cycle can lead to a temporal sparsity of transmission greater than the observation time, affecting the next observation intervals. Fig. 2 illustrates an example of this situation. Here, a transmission occurs in the first observation period followed by a silent cycle $T_{\text{obs}} = 2T_s$. Therefore, the detector cannot find any transmission in the second observation period, which increases P_{MD}. The curve $\delta = 0.005$ represents this scenario in Fig. 3a. We can observe a considerable increase in P_{MD} over medium and high SNR ranges and a slight decrease for low SNR. This decrease is because the energy concentration allows a better detection at very low SNRs, in which the detector fails in most time intervals.

2) Low temporal diversity of the fading channel reduces the probability of interception. As previously mentioned, a lower P_{D} is obtained with the decrease of the temporal diversity of fading channel, defined by the relationship $\frac{T_{\text{obs}}}{T_c}$. Small duty cycles can force the
system to have silence cycles greater than \(T_c \), reducing the number of fading coefficients that affect the sample signal. This reduction occurs for \(\delta \)’s smaller than a fixed duty cycle, namely \(\delta_f \), defined as

\[
\delta_f = \frac{T_s}{T_c}.
\]

(24)

We observe this behavior in Fig. 4a, with \(T_{\text{obs}} > T_c \). Particularly in this scenario, the signal is affected by five fading coefficients \(\alpha_1, \ldots, \alpha_5 \) and has a \(\delta_f = 0.01 \). The signal sample will always be affected by all five coefficients as long as \(\delta > \delta_f \). For \(\delta < \delta_f \), the coefficient number decreases. For instance, the curve of \(\delta = 0.002 \) represents the case of a single transmission during the entire observation time. Different from what is expected, a considerable increment in \(P_{\text{MD}} \) is observed due to the reduction to a single coefficient. This behavior is not presented in the scenario \(T_{\text{obs}} = 100T_s \) in Fig. 3a; since \(T_{\text{obs}} \leq T_c \), the sample signal is always affected by a single channel realization.

b: COVARIANCE-BASED DETECTION APPROACH

Unlike the ED mechanism, covariance-based detection performance varies with the duty cycle. For the PFSK scheme, decreasing the delta results in transmissions more spaced in time with a higher power concentration, which increases the sample auto-correlations and, therefore, \(P_{\text{MD}} \). Note that in Figs. 3a and 4a, \(\delta = 0.01 \) achieves the lowest \(P_{\text{MD}} \). These curves show an outperformance of CAV as compared to the ED. \(P_{\text{MD}} \) is progressively increased by using smaller duty cycles than a specific \(\delta \), namely \(\delta_f \). For reasons similar to those previously described for ED, \(\delta_f \) depends on the relation \(T_{\text{obs}}/T_c \) and it is defined in (24). Furthermore, for \(\delta < \delta_f \), the covariance detection method exceeds the performance of ED, especially for low SNR. The explanation given in (i) of the ED approach concerning the low \(P_D \) of PFSK also applies here.

4) INTERCEPTION PERFORMANCE VERSUS DATA RATE

Figs. 3b and 4b show the achievable rate bounds of the analyzed signaling schemes vs. \(P_{\text{MD}} \), considering the upper bound for the NPFSK signaling (ED and CAV-UB, NPFSK curves), the lower bound for the PFSK signaling for \(\delta = 1 \) (ED and CAV-LB1, PFSK curves) and, the lower bound for PFSK signaling for \(\delta_{\text{opt}} \) (ED and CAV-LBopt, PFSK curves). The lower-bound misdetection of PFSK outperforms the upper-bound misdetection NPFSK, rendering the advantage of the former over the latter technique unambiguous. Despite the slight difference in performance, especially in the scenario \(T_{\text{obs}} = 500T_s \), these results reveal that, even in narrowband regimes, the PFSK scheme can achieve higher rates with a fixed \(P_{\text{MD}} \) regarding NPFSK schemes, especially in low-SNR (equivalent to a high probability of misdetection). From the figures, note that the gap formed by the lower limits for PFSK signaling for \(\delta = 1 \) and \(\delta_{\text{opt}} \) defines an area that can be explored by the PFSK technique depending on the available resources, such as peak power or hardware constraints.

B. OUTDOOR WIDEBAND CASE

Consider an outdoor system operating at \(f_c = 2 \) GHz. A velocity of \(v = 250 \) km/h corresponds to \(T_c = c/(2f,cv) = 1.1 \) ms. In turn, a typical delay spread \(T_d = 2 \) \(\mu s \) gives \(B_c = 500 \) kHz [20]. Altogether, \(B_cT_c = 550 \) (Reproduced from [20]). This case is applicable to a high-speed train with \(B = 30 \) MHz as well as the time of observation \(T_{\text{obs}} = 500T_s \) with \(T_s = 100\mu s \) being the symbol duration. This results in \(M = 2640 \) possible frequencies. We set the target \(P_{\text{FA}} = 0.01 \) and chose \(F = 10 \) for the covariance-based detection.

Fig. 5 illustrates the detection performance for this wideband case. The simulations performed here follow those whose curves are presented in Figs. 3 and 4 for the indoor narrowband case. \(P_{\text{MD}} \) in Fig 5a presents the same behavior observed for the narrowband scenario, illustrated in Figs. 3a and 4a. The main observed difference is in the \(\delta_{\text{opt}} \) set curves. Since this set satisfies the relationship \(\delta B \) in (21), when the bandwidth increases, the duty cycle is reduced proportionally (i.e., \(\delta \rightarrow 0 \)), which increases \(P_{\text{MD}} \).

Fig. 5b shows the achievable rate vs. \(P_{\text{MD}} \). It can be observed that unlike narrowband scenarios, in which the use of the PFSK signaling revealed a slight gain regarding the NPFSK signals (Figs. 3 and 4), in wideband scenarios, PFSK vastly outperforms NPFSK if a suitable \(\delta \) configuration is...
used. In particular, PFSK can achieve rates thousands of times higher than NPFSK rates without impacting the P_{MD}; i.e., for $P_{MD} = 0.96$, PFSK can achieve a rate 9.15×10^7 times higher than NPFSK.

The sample cases also reveal that the time-frequency coherence block B_T plays a crucial role. The higher (smaller) B_T, the less (more) noticeable the performance advantage of PFSK with respect to NPFSK signaling, as shown in Fig. 4b and Fig. 5b. Note that B_T may increase for multiple reasons, including a lower velocity, a lower carrier frequency, and a more confined propagation scenario (indoor). In particular, this renders PFSK especially advantageous for high-mobility and high-frequency scenarios.

VI. CONCLUSION

This work analyzes and compares the trade-off between achievable transmission rates and the interception probability for a traditional NP wideband modulation technique and the emerging alternative PFSK. Interception behavior is investigated using two non-coherent detection methods: energy detection and a method based on the sample covariance matrix by simulation. Our results revealed that, given any target interception probability, PFSK achieves significantly higher transmission rates than NPFSK or any other NP signaling scheme in wideband regime, especially for outdoor environments. Additionally, our discussions indicate that (i) the (less complex) energy detection technique outperforms the covariance method for NP signals; (ii) there is a small duty-cycle range that should be avoided, since it causes PFSK to be more likely intercepted than the NP scheme under the covariance method; and (iii) the PFSK detection performance is strongly affected by the relationship between observation time and coherence time.

We showed that PFSK signaling arises as a novel benchmark for designing effective wideband communication systems where both capacity and security are paramount. On the other hand, an optimum PFSK receiver is impractical, as it requires a massive number of matched filters (hundreds to thousands). We have been working on practical, suboptimal solutions of reduced complexity but with a marginal performance penalty.

REFERENCES

DIANA CRISTINA GONZÁLEZ received the B.S. degree in electronics engineering from Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia, in 2007, and the M.Sc. and Ph.D. degrees in electrical engineering from the State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil, in 2011 and 2015, respectively. She is currently a Postdoctoral Fellow with the Wireless Technology Laboratory (WissTek), Faculty of Electrical and Computer Engineering, UNICAMP, and Instituto Elec- tronico y de Comunicaciones de Campinas, Campinas, Sao Paulo, Brazil. Her research interests include fading channel modeling, analysis, and simulation, with a focus on cooperative communication techniques.

CLAUDIO FERREIRA DIAS received a degree in electrical engineering from the Federal University of Uberlândia, Brazil, in 2009, and the M.Sc. and Ph.D. degrees from the State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil, in 2012 and 2016, respectively. From 2018 to 2023, he worked as a Postdoctoral Fellow at the University of Campinas. His research interests include Open RAN, Machine Learning, and massive MIMO.
EDUARDO RODRIGUES DE LIMA received the degree in electrical engineering from Pontificia Universidade Catolica do Rio de Janeiro, Brazil, in 1997, and the M.Sc. and Ph.D. degrees from Universidad Politecnica de Valencia, Spain, in 2006 and 2016, respectively. He is currently a Project Manager with Instituto Eldorado, Brazil. His research interests include DVB-S2, IEEE 802.15.4g, circuit design, and wireless communications, in general.

YONINA C. ELDA (Fellow, IEEE) received the B.Sc. degree in physics and the B.Sc. degree in electrical engineering from Tel-Aviv University, Tel-Aviv, Israel, in 1995 and 1996, respectively, and the Ph.D. degree in electrical engineering and computer science from the Massachusetts Institute of Technology (MIT), Cambridge, MA, USA, in 2002. She was a Professor with the Department of Electrical Engineering, Technion—Israel Institute of Technology, where she held the Edwards Chair in engineering. She was also a Visiting Professor with Stanford University. She is currently a Professor with the Department of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. She is also a Visiting Professor with MIT, a Visiting Scientist with the Broad Institute, and an Adjunct Professor with Duke University. She is the author of the book titled Sampling Theory: Beyond Bandlimited Systems and the coauthor of four other books published by Cambridge University Press. Her research interests include statistical signal processing, sampling theory and compressed sensing, learning and optimization methods, and their applications to biology, medical imaging, and optics. She was a member of the Young Israel Academy of Science and Humanities and the Israel Committee for Higher Education. She was a Horev Fellow of the Leaders in Science and Technology Program with the Technion—Israel Institute of Technology and an Alon Fellow. She was elected as a member of the Israel Academy of Sciences and Humanities, in 2017, and a fellow of EURASIP. She was a member of the IEEE Signal Processing Theory and Methods Technical Committee and the Bio Imaging and Signal Processing Technical Committee. She is a member of the IEEE Sensor Array and Multichannel Technical Committee and serves on several other IEEE committees. She received many awards for excellence in research and teaching, including the IEEE Signal Processing Society Technical Achievement Award, in 2013, the IEEE/ACSSC Fred Nathanson Memorial Radar Award, in 2014, the IEEE Kiyo Tomiyasu Award, in 2016, the Michael Bruno Memorial Award from the Rothschild Foundation, the Weizmann Prize for Exact Sciences, the Wolf Foundation Krill Prize for Excellence in Scientific Research, the Henry Taub Prize for Excellence in Research (twice), the Hershel Rich Innovation Award (three times), the Award for Women with Distinguished Contributions, the Andre and Bella Meyer Lectureship, the Career Development Chair with the Technion—Israel Institute of Technology, the Muriel and David Jacknow Award for Excellence in Teaching, and the Technion Award for Excellence in Teaching (two times). She also received several best paper awards and best demo awards together with her research students and colleagues, including the SIAM Outstanding Paper Prize, the UFFC Outstanding Paper Award, the Signal Processing Society Best Paper Award, and the IET Circuits, Devices and Systems Premium Award. She was selected as one of the 50 most influential women in Israel and Asia. She was the co-chair and the technical co-chair of several international conferences and workshops. She served as an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL PROCESSING, EURASIP JOURNAL OF SIGNAL PROCESSING, SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, and SIAM JOURNAL ON IMAGING SCIENCES. She is the Editor-in-Chief of FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING. She was a Distinguished Lecturer of the Signal Processing Society. She is also a highly cited researcher.

MURIEL MÉDARD (Fellow, IEEE) received the Doctorate (Honoris Causa) degree from the Technical University of Munich. She worked as a Faculty Member in residence for undergraduates with the Massachusetts Institute of Technology (MIT) for seven years. She has co-founded Code On and Steinwurf to commercialize network coding. She is currently a Cecil H. Green Professor with the Department of Electrical Engineering and Computer Science (EECS), MIT, where she also leads the Network Coding and Reliable Communications Group, Research Laboratory for Electronics. She is a member of the U.S. National Academy of Inventors, the U.S. National Academy of Engineering, and the American Academy of Arts and Sciences. She was the President of the IEEE Information Theory Society, in 2012, and serves on its Board of Governors. She has served as an Editor or a Steering Committee Member for many publications of the Institute of Electrical and Electronics Engineers (IEEE). She received the 2002 IEEE Leon K. Kirchmayer Prize Paper Award, the 2018 ACM SIGCOMM Test of Time Paper Award, the 2009 IEEE Communication Society and Information Theory Society Joint Paper Award, the 2013 EECS Graduate Student Association Mentor Award, the 2009 William R. Bennett Prize in the field of communications networking, the 2019 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING Best Paper Award, and several conference paper awards. She also received the 2016 IEEE Vehicular Technology James Evans Avant Garde Award, the 2017 Aaron Wyner Distinguished Service Award from the IEEE Information Theory Society, the 2017 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2022 IEEE Koji Kobayashi Computers and Communications Award. She was a Co-Winner of the MIT 2004 Harold E. Edgerton Faculty Achievement Award. In 2007, she was named as a Gilbreth Lecturer by the U.S. National Academy of Engineering. She serves and has served as a technical program committee co-chair for many of the major conferences in information theory, communications, and networking. She was the Editor-in-Chief of IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. She serves as the Editor-in-Chief for IEEE TRANSACTIONS ON INFORMATION THEORY.

MICHEL DAOU D YACOUB (Member, IEEE) received the Ph.D. degree from the University of Essex, England, in 1988. He joined the School of Electrical and Computer Engineering, State University of Campinas (UNICAMP), Brazil, in 1989, where he is currently a Full Professor. Prior to joining the academy, he worked in industries. His research interest includes wireless communications.

D. C. González et al.: Interception Probability Versus Capacity in Wideband Systems