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Interpretable Neural Networks for Video Separation:
Deep Unfolding RPCA With Foreground Masking
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Abstract— We present two deep unfolding neural networks
for the simultaneous tasks of background subtraction and fore-
ground detection in video. Unlike conventional neural networks
based on deep feature extraction, we incorporate domain-
knowledge models by considering a masked variation of the
robust principal component analysis problem (RPCA). With this
approach, we separate video clips into low-rank and sparse
components, respectively corresponding to the backgrounds and
foreground masks indicating the presence of moving objects. Our
models, coined ROMAN-S and ROMAN-R, map the iterations
of two alternating direction of multipliers methods (ADMM)
to trainable convolutional layers, and the proximal operators
are mapped to non-linear activation functions with trainable
thresholds. This approach leads to lightweight networks with
enhanced interpretability that can be trained on limited data.
In ROMAN-S, the correlation in time of successive binary masks
is controlled with side-information based on ℓ1-ℓ1 minimization.
ROMAN-R enhances the foreground detection by learning a
dictionary of atoms to represent the moving foreground in a
high-dimensional feature space and by using reweighted-ℓ1-ℓ1
minimization. Experiments are conducted on both synthetic and
real video datasets, for which we also include an analysis of
the generalization to unseen clips. Comparisons are made with
existing deep unfolding RPCA neural networks, which do not
use a mask formulation for the foreground, and with a 3D U-Net
baseline. Results show that our proposed models outperform
other deep unfolding networks, as well as the untrained opti-
mization algorithms. ROMAN-R, in particular, is competitive
with the U-Net baseline for foreground detection, with the addi-
tional advantage of providing video backgrounds and requiring
substantially fewer training parameters and smaller training sets.

Index Terms— Deep learning, deep unfolding, masked RPCA,
video separation, foreground detection.

I. INTRODUCTION

ROBUST Principal Component Analysis (RPCA) [1] is a
well-known extension of Principal Component Analysis

(PCA) [2]. It operates by decomposing a data matrix D
into a compressible low-rank component L that contains the
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redundant information, and a sparse component S that contains
the innovative information, such that D = L+S. The singular
value decomposition (SVD) is often used to find low-rank
subspaces; thereby, RPCA addresses the sensitivity of the SVD
to the presence of data outliers. Low-rank-plus-sparse (L+S)
models are particularly useful for the task of background
subtraction in video analysis [3], [4], [5], [6]: by constructing
a matrix D whose columns are composed of the vectorized
video frames, a decomposition is sought where the low-rank
part represents the quasi-static background across time and the
sparse outliers model the moving foreground in each frame.

RPCA is usually formulated as an optimization problem
with convex [7] or non-convex objectives [8], [9], [10]. Com-
mon iterative solvers are based on proximal gradient descent
algorithms [11] and may include augmented Lagrangian
forms [12] and minimization with alternating directions [13].
Optimization models can be enhanced to account for specific
features of video data: temporal continuity is enforced using
additional constraints like total variation [14] or n-ℓ1 mini-
mization [6], and online algorithms can be used to process
incoming frames sequentially [5], [6].

Nevertheless, these algorithms may require many itera-
tions to reach convergence, increasing the computational cost
related to the repeated use of SVD with high-dimensional
data. Also, these subspace separation methods cannot eas-
ily perform higher-level semantic tasks such as foreground
detection, since most RPCA variants estimate the foreground
component based on the pixel difference with the low-rank
model, making it difficult to detect objects with intermittent
motion, or true foreground objects from dynamic backgrounds.
The recent Masked-RPCA [15], [16] technique addresses this
last drawback by replacing the sparse foreground with a
sparse mask, which is multiplied point-wise with the low-
rank component instead of simple addition. This non-convex
variant of RPCA can be solved using alternating minimization,
and the pixel foreground membership probabilities provide the
location of foreground objects with higher fidelity than the
simple thresholding of the sparse component. However, this
model still requires many iterations and highly depends on
the initialization of the optimization hyperparameters.

Deep neural networks (DNNs) are machine learning models
that solely rely on the training dataset to solve a task, with
the ability to model almost any physical process by training a
highly parameterized and adaptive architecture; however, this
same characteristic is responsible for their lack of interpretabil-
ity and their design mostly follows empirical approaches. Most
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deep learning methods treat the problem of video separation
as a foreground object detection or segmentation problem,
that is, by labeling the video foregrounds pixel-wise. Suc-
cessful models include fully convolutional neural networks
(CNNs) [17], multi-scale segmentation networks [18], cas-
caded CNNs [19], [20], 3D-CNNs [21], generative adversarial
networks (GANs) [22], and transformer-based networks [23].
We refer to [24] and [25] for comprehensive surveys. The fore-
ground detection paradigm is well suited for these supervised
learning models since most real video datasets use foreground
masks as ground truth data, such as in the CDNet2014 [26] or
BMC2012 [27] datasets. In these cases, performance is mea-
sured in terms of foreground detection accuracy. In the case
of the SBI dataset [28], reference backgrounds are provided,
making it useful for background initialization models.

As an attempt to alleviate the interpretability issues of
DNNs, a specific class of model-based neural networks has
emerged referred to as deep unfolding neural networks [29],
[30], [31], [32]. These models map the iterations of existing
optimization algorithms to layers with learnable parameters,
resulting in lightweight networks with enhanced interpretabil-
ity. They also reach better solutions in fewer iterations (layers)
than the original algorithms, thereby reducing the inference
time at the expense of additional training time. Additionally,
they achieve competitive or superior performance to traditional
deep learning models while involving significantly less param-
eters and training data. Examples include the learned iterative
shrinkage-thresholding algorithm (LISTA) that unfolds the
corresponding sparse coding algorithm [29], and a version of
LISTA with convolution kernels for the convolutional sparse
coding task [33]. The alternating directions of multipliers
method (ADMM) has also been unfolded with the ADMM-
Net network [34]. Deep unfolding models have been proposed
for multi-modal data, such as the LMCSC-Net model which
is based on sparse coding with side-information [35]. Models
for sequential data include SISTA-RNN [36] that solves the
problem of sparse signal reconstruction with correlation in
time, and reweighted-RNN that solves a sequential video
frame reconstruction [37].

Deep unfolding approaches have been proposed for RPCA
models: CORONA [38] is a convolutional compressive RPCA
model that learns an alternating projection algorithm for the
task of clutter suppression in medical ultrasound imaging.
Our prior work refRPCA-net [39] applies a similar technique
to the task of video separation, by incorporating a side-
information scheme to enforce the connectivity of successive
foregrounds. Most deep unfolding RPCA models still require
fully-supervised training with ground truth background and
foreground frames, the latter being composed of pixel-intensity
differences with the background. However, in real scenarios,
such accurate data is often unavailable since the true back-
ground is typically not known due to noise corruption and
scene-specific factors such as shadows, occlusions, matching
foreground-background colors and dynamic backgrounds. Fur-
thermore, existing deep unfolding models aim at solving the
background-foreground separation problem. They are thus in
essence sub-optimal when it comes to predicting foreground
masks based on the sparse subspace since the underlying

L+S model does not explicitly account for the presence of
foreground binary masks in the training set.

In this paper, we introduce two RObust MAsking Net-
works (ROMAN-S and ROMAN-R), which constitute deep
unfolding RPCA neural networks for the simultaneous task of
video background separation and foreground detection. Unlike
previous deep unfolding RPCA models [38], [39], both our
networks directly estimate foreground masks. This leads to
superior detection performance over previous models when
trained on real video data with binary foreground annotations
only. First, we design ROMAN-S by unfolding the Masked-
RPCA algorithm [15] and incorporating side-information to
promote the correlation of foreground masks in time. This cor-
relation scheme is based on ℓ1-ℓ1 minimization [40], [41] and
inspired by our prior refRPCA-Net [39]. Based on the insights
of ROMAN-S, we build a second network coined ROMAN-
R, which takes the problems of the foreground mask and the
side-information in an auxiliary transform via convolutional
sparse coding; this deviates from the original Masked-RPCA
formulation. By doing so, a learnable weight is assigned to
each feature map via reweighted-ℓ1-ℓ1 minimization [42],
which has been proven effective in reconstructing moving
objects in video RNN models [37], [43]. Thereby, ROMAN-R
provides a significant boost in performance over ROMAN-S,
with an increased representation learning ability. Our models
are fully convolutional, which greatly enhances their speed and
memory footprint, thereby leveraging the spatial invariance
nature of video frames and allowing to work on video clips
of any size. The low sizes of the models allow fast training
on few samples with limited risk of overfitting.

We train and evaluate our models on various categories
of the CDNet2014 dataset [26] and compare with previous
deep unfolding models, as well as a 3D-CNN consisting of
an U-Net [44] encoder-decoder model with inflated kernels.
We show that our models outperform existing deep unfolding
RPCA networks, and ROMAN-R is competitive with the 3D
U-Net, while requiring substantially less training parameters.
Our implementation is publicly available.1

The remainder of the paper is organized as follows:
Section II presents background on convex RPCA applied to
video separation, the mask variant of RPCA for foreground
detection, as well as existing deep unfolding methods includ-
ing CORONA [38] and our prior work refRPCA-Net [39].
Section III motivates and derives the two proposed deep
unfolding models. An experimental study is presented in
Section IV and includes a thorough evaluation of our models
on the CDNet2014 dataset [26] as well as various ablation
studies and an analysis of the generalization to unseen video.
We conclude in Section V.

II. BACKGROUND ON RPCA

A. RPCA as Principal Component Pursuit (PCP)

The original RPCA problem as described in [1], [3], and
[45] decomposes a data matrix D into a low-rank component
L and a sparse component S as formulated in the following

1https://gitlab.com/etrovub/mlsp/roman-robust-pca-masking-network
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relaxed convex optimization problem:

min
L,S

1
2
∥D − L − S∥

2
F + λ1∥L∥∗ + λ2∥S∥1, (1)

where ∥ · ∥F denotes the Frobenius norm, ∥ · ∥∗ is the nuclear
norm (the sum of singular values), ∥ · ∥1 is the ℓ1-norm of its
argument organized in a vector, and λ1 and λ2 are regularizing
parameters. Problem (1), also known as Principal Component
Pursuit (PCP) [1], can be solved iteratively using alternating
proximal gradient updates at iteration k + 1 for Lk+1 and
Sk+1, respectively. Specifically, Lk+1 can be computed via the
singular value thresholding operator [46], and Sk+1 via the
soft thresholding operator [47], since the latter subproblem
effectively corresponds to a step of the iterative shrinkage-
thresholding algorithm (ISTA) [47].

B. Video Separation Using RPCA With Side-Information

A grayscale video can formally be represented as a matrix
D ∈ Rhw×T composed of T successive vectorized video
frames of size h × w. Each frame contains a redundant
background, which RPCA aims to isolate into a low-rank
component L from the remaining foreground contained in
the sparse component S. Let st (t = 1, . . . , T ) represent
the successive foregrounds, or equivalently, the columns of
S. The study in [6] shows that good estimates for st can be
found by leveraging st− j ( j > 0) as prior or side-information,
since foreground objects are effectively correlated in time.
To account for this assumption—which does not exist in the
original RPCA problem—an additional penalization term is
included in the loss function, resulting in an n-ℓ1 minimization
problem. For instance, the refRPCA model [39] considers the
previous signal st−1 as side-information at time step t , which
is incorporated into the model as follows:

min
L,S

1
2
∥D − H1L − H2S∥

2
F + λ1∥L∥∗

+ λ2∥Q ◦ S∥1 + λ3∥Q ◦ (S − SP)∥1, (2)

where SP is defined as SP = [s1, Ps1, · · · , PsT −1], with P
a correlation-promoting transform. Here, H1, H2 are generic
measurement operators that arise from a compressive formu-
lation of RPCA, which enhances the recovery of sparse and
low-rank components from partial or noisy observations of
the true signal [48]. The inclusion of per-element weights
Q = [q, · · · , q], with q ∈ Rhw, allows to use reweighted
minimization, which is known to improve the accuracy of
sparse estimation [7]. The additional ℓ1 term results in a
modification of the soft-thresholding operator of the ISTA
algorithm by adding a second flat activation region around
the reference value SP.

C. Deep Unfolding Methods

Deep unfolding methods outperform convex optimization
methods and typically require less layers than otherwise
required for optimization-based solvers [29], [49]. They are
also competitive with DNNs while requiring orders of magni-
tude less trainable parameters and can be trained on reasonably

Fig. 1. The soft-thresholding operator used in CORONA [38] (a) vs
refRPCA-Net [39] (b). λ2, λ3 and c are learned globally. Note that (b) is
drawn for given q and SP. The weight q allows for a different proximal
operator for each entry of x due to the varying length of the multiple-threshold
intervals. The reference SP defines the position of the non-zero plateau each
time the operator is evaluated.

sized datasets, whereas DNNs suffer from the risk of overfit-
ting and poor generalization in the case of small training data.
In this line of research, [38] proposed a deep unfolding con-
volutional RPCA (CORONA) network to solve the following
compressive RPCA model:

min
L,S

1
2
∥D − H1L − H2S∥

2
F + λ1∥L∥∗ + λ2∥S∥1,2. (3)

Problem (3) was solved in [38] via iteratively updating Lk+1

and Sk+1 at iteration k + 1 with

Lk+1
= Γλ1

c

((
I −

1
c

H⊤

1 H1

)
Lk

− H⊤

1 H2Sk
+ H⊤

1 D
)

, (4a)

Sk+1
= Φλ2

c

((
I −

1
c

H⊤

2 H2

)
Sk

− H⊤

2 H1Lk
+ H⊤

2 D
)

, (4b)

where ∥ · ∥1,2 is the mixed ℓ1,2 norm, Γλ1
c

(·) and Φλ2
c

(·) are
the singular value thresholding and mixed ℓ1,2 soft threshold-
ing [47] operators, respectively, and c is a Lipschitz constant.
The sensing operators H1 and H2 in Eq. (4a) and (4b)
are mapped to learnable weights in the corresponding deep
unfolding architecture: specifically, CORONA uses convolu-
tional kernels Wk

1, · · · , Wk
6 at each layer k, as shown in (5a)

and (5b). These parameters are all learned through backprop-
agation.

Lk+1
= Γλk

1

{
Wk

1 ∗ D + Wk
3 ∗ Sk

+ Wk
5 ∗ Lk

}
, (5a)

Sk+1
= Φλk

2

{
Wk

2 ∗ D + Wk
4 ∗ Sk

+ Wk
6 ∗ Lk

}
. (5b)

This approach was extended in [39] with the refRPCA-Net
model, which solves the problem of RPCA with side-
information based on (2) for the task of video separation.
According to the principles of reweighted-ℓ1 minimization [7],
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Fig. 2. One layer of the refRPCA-Net architecture [39], equivalent
to the CORONA model [38] with the bottom activation replaced by
soft-thresholding.

[41], reweighted-ℓ1-ℓ1 minimization with side-information [6]
and its deep unfolding counterpart [37], the refRPCA-Net
model shown in Fig. 2 uses the same update equations as
CORONA, except for the soft-thresholding activation for the
update of the sparse component. In comparison to the soft-
thresholding operator in Fig. 1(a), the activation function of
refRPCA-Net in Fig. 1(b) features an additional flat region
promoting the correlation with side-information SP.

D. Masked RPCA

The Masked-RPCA (MRPCA) method [15], [16] changes
the problem of foreground separation to a foreground detection
problem, where a sparse foreground mask M ∈ {0, 1}

hw×T is
predicted instead of the typical foreground S of RPCA. In fact,
using a simple threshold on S to identify foreground pixels
may be insufficient when the pixel difference with the back-
ground is low, or in video with high disturbances. MRPCA
directly estimates the binary mask M through optimization
without explicit computation of the true foreground. This is
achieved by restricting the data fidelity constraint to pixels
located outside of the foreground mask only:

min
L,M

∥L∥∗ + λ∥M∥1

s.t. (1 − M) ◦ (D − L) = 0
M ∈ [0, 1]wh×T . (6)

In (6), the binary constraint on the mask is relaxed to the
continuous interval [0, 1], the masking operation is realized
with the Hadamard or element-wise product denoted by ◦,
and λ is a regularization coefficient. An algorithm to solve (6)
was proposed in [15] and is based on the alternating direc-
tion method of multipliers (ADMM). The method formulates
the augmented Lagrangian of (6) and iterates between the
following updates, where U is the dual variable, ρ is a
penalization coefficient and 1[0,1] is the indicator function of
the interval [0, 1]:

Lk+1
= arg min

L
∥L∥∗

+
ρ

2
∥(1 − Mk) ◦ (D − L) +

Uk

ρ
∥

2
F︸ ︷︷ ︸

≡ f (L)

, (7)

Mk+1
= arg min

M
λ∥M∥1 + 1[0,1](M)

+
ρ

2
∥(1 − M) ◦ (D − Lk+1) +

Uk

ρ
∥

2
F︸ ︷︷ ︸

≡g(M)

, (8)

Uk+1
= Uk

+ ρ(1 − Mk+1) ◦ (D − Lk+1). (9)

The updates (7) and (8) are respectively obtained via proximal
gradient descent steps:

Lk+1
= 0 τL

ρ

(
Lk

− τL∇ f (L)
)

, (10)

Mk+1
= 5

(
8λτM

ρ

(
Mk

− τM∇g(M)
))

, (11)

where τL and τM are proximal parameters, and 0, 8,5

correspond to the singular value thresholding, shrinkage-
thresholding and [0, 1]-clamping operators, respectively. The
gradients of the smooth parts ∇ f and ∇g are:

∇ f (L) = (1 − Mk) ◦

(
(L − D) ◦ (1 − Mk) +

Uk

ρ

)
, (12)

∇g(M) = (Lk+1
− D) ◦

(
(Lk+1

− D) ◦ (1 − M) +
Uk

ρ

)
.

(13)

In the following section, the foreground masking approach
of [15] will be used as a basis for the design of our proposed
deep unfolding video separation networks.

III. PROPOSED DEEP UNFOLDING NETWORKS
FOR VIDEO SEPARATION

In this section, we propose two deep unfolding neu-
ral networks that solve the joint problem of background
subtraction and foreground object detection in video based
on low-rank plus sparse priors. Unlike the previous deep
unfolding RPCA methods described in Section II-C, our
models are trained to retrieve foreground masks instead of
inferring the true foreground, which facilitates the training
process on real video datasets. The networks are obtained
by unfolding two ADMM algorithms, and compared to
Masked-RPCA [15], our unfolded networks have drasti-
cally less runtime complexities than the plain optimization
approach during inference, as well as superior detection
performance. In the first model (ROMAN-S), the side-
information scheme of our prior refRPCA-Net model is
incorporated to promote the consistency of foreground masks
in time. The second model (ROMAN-R) solves the mask
subproblem in a transform domain via a learnable dictio-
nary of atoms, which deviates from the original masked
RPCA formulation that directly optimizes the sparsity of
the foreground mask in the pixel domain. Furthermore, the
subsequent deep unfolding model has additional learnable
kernels compared to the first one, thereby increasing its repre-
sentation learning ability and its overall foreground detection
performance.
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A. ROMAN-S: Robust Foreground Masking Network With
Side-Information

1) Minimization Model: Given a collection of T successive
video frames of size h × w, vectorized and stacked in the
matrix D = [d1, . . . , dT ], we seek to find a low-rank approxi-
mation L ∈ Rhw×T of D that models its static background
and a sparse binary mask M ∈ Rhw×T that indicates the
presence of moving objects. We formulate a minimization
problem in (14) that estimates L and M respectively with
low-rank and sparse penalties, while the reconstruction term
ensures that the known background pixels located outside
of the foreground mask match the original video content in
D. Similar to [39], we construct a sequence of reference
masks M̃ = [m1, Pm1, · · · , PmT −1] in order to promote
the time correlation of successive binary masks by enforcing
∥M − M̃∥1 to be small, with a yet-to-be-learned linear trans-
form P:

min
L,M

∥L∥∗ + λ1∥M∥1 + λ2∥M − M̃∥1

s.t. (1 − H1M) ◦ (D − H2L) = 0

M ∈ [0, 1]wh×T . (14)

Here, the low-rank constraint of L is relaxed to nuclear
norm minimization. The sparsity of M and the correlation in
time with M̃ is formulated as a ℓ1-ℓ1-minimization penalty
term, λ1, λ2 are regularization parameters and ◦ denotes
the Hadamard product. Problem (14) differs from Masked-
RPCA [16] since our model uses a side-information branch
and measurement operators H1 and H2, which create learnable
weights in the deep unfolding steps [38], [39]. We then follow
a similar approach to [15] by reformulating the non-convex
problem (14) in the augmented Lagrangian form in (15) with
a dual variable U:

L(M, L, U) = ∥L∥∗ + λ1∥M∥1 + λ2∥M − M̃∥1 + 1[0,1](M)

+ ⟨U, (1 − H1M) ◦ (D − H2L)⟩

+
ρ

2
∥(1 − H1M) ◦ (D − H2L)∥2

F . (15)

We solve (15) using the ADMM procedure to alternately
update L, M and U according to the two following convex
sub-problems:

Lk+1
= arg min

L
∥L∥∗

+
ρ

2
∥(1 − H1Mk) ◦ (D − H2L) +

Uk

ρ
∥

2
F (16)

Mk+1
= arg min

M
λ1∥M∥1 + λ2∥M − M̃∥1 + 1[0,1](M)

+
ρ

2
∥(1 − H1M) ◦ (D − H2Lk+1) +

Uk

ρ
∥

2
F (17)

Uk+1
= Uk

+ ρ(1 − H1Mk+1) ◦ (D − H2Lk+1). (18)

Following (10) and (11), the solutions of subproblems (16)
and (17) are obtained via proximal gradient updates. The
explicit solutions are given below in (19) and (20), accounting
for the fact that the ℓ1-ℓ1 cost in the M subproblems is solved

Algorithm 1 Forward Pass of ROMAN-S

by choosing 8 to be the shrinkage-thresholding with side-
information of Fig. 1(b) with coefficients q set to 1 (cf. [39]):

Lk+1
= 0 τL

ρ

[
Lk

− τLH⊤

2
(
(1 − H1Mk)◦2

◦ (H2Lk
− D)

− (1 − H1Mk) ◦
Uk

ρ

)]
, (19)

Mk+1
= 5

[
8 τM λ1

ρ
,
τM λ2

ρ

[
Mk

+ τM H⊤

1
(
(D − H2Lk)◦2

◦ (1−H1Mk)−(D − H2Lk) ◦
Uk

ρ

)]]
. (20)

2) Deep Unfolding Model: In order to build the deep
unfolding network and apply it on entire images instead of
patches, the large measurement matrices H1, H2 are replaced
by convolutional kernels H1, H2 ∈ Rp1×p2 acting on the
individual frames across time. Thereby, we leverage the spa-
tial invariance of images and drastically reduce the number
of trainable parameters. Likewise, we cast the correlation
matrix P to a 2D convolution kernel P . The convolutional
formulation is strictly equivalent to a linear one with corre-
sponding Toeplitz matrices; hence, the iterative model defined
by (18), (19) and (20) is still applicable, and transposed matrix
multiplications can be mapped to transposed 2D-convolutions.

We now build the ROMAN-S network with K layers by
taking a number of iterations of the ADMM-based algorithm
and unrolling them into a learnable network. The model
equations and stages are detailed in Algorithm 1. During the
forward pass, L, M, U are 3D tensors of size T × w × h and
{Hk

1, . . . ,H
k
11} are individual kernels corresponding either

to forward or transposed convolutions in the convolutional
version of the algorithm. For practical purposes, these are
implemented in the form of 3D convolutional layers with unit
depth in the time axis.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on December 10,2023 at 19:36:56 UTC from IEEE Xplore.  Restrictions apply. 



JOUKOVSKY et al.: INTERPRETABLE NEURAL NETWORKS FOR VIDEO SEPARATION 113

Fig. 3. Detail of the branches of the deep unfolding model ROMAN-S, and the soft-thresholding activation function with side-information 8
λk

1,λk
2

.

Note that all weights are decoupled across layers, as well
as within a single iteration in comparison to the original
optimization model. The non-linear operations include the
singular-value thresholding operator 0γ k with learnable thresh-
old γ k , the low-rank component (that is, L reshaped as a
2D matrix), the shrinkage-thresholding operator 8λk

1,λ
k
2

with
learnable thresholds λk

1, λ
k
2 and side-information M̃, as well

as a reparameterized sigmoid function σαk (x) ≡ sigmoid(αk

(x −0.5)) for the mask branch. This is similar to the Gumbel-
Softmax activation [50] with scaling factor αk and is used as a
differentiable approximation of the clamping operator, forcing
the mask distribution to follow a binary distribution better.
In summary, the set of trainable parameters for K layers is:

2 = {Hk
1, . . . ,H

k
11, P

k, λk
1, λ

k
2, γ

k, αk, τ k
L , τ k

M , ρk
}k=1,...,K .

(21)

The overall network structure is illustrated in Fig. 3 by
following the steps in Algorithm 1. Each layer contains three
interacting branches to update L, M and the multiplier U ,
respectively. In comparison, our prior refRPCA-Net of Fig. 2
only contains two branches due to its different underlying min-
imization algorithm. The Hadamard products are implemented
as point-wise multiplications, which can be seen as adaptive
masking operations during the forward pass.

B. ROMAN-R: Robust Masking Network With Reweighted
Minimization and Sparse Coding

1) Minimization Model: Our second approach takes the
mask estimation problem into the transform domain by taking
inspiration from the learned convolutional sparse coding tech-
nique [33]. For each video frame t , we compute a set of n
feature maps Mt

i using a learnable convolutional dictionary
of atoms 9 i , i = 1, . . . , n, such that each 2D mask at
every frame is given by Mt =

∑n
i 9 i ∗ Mt

i . In what
follows, we define Mi as the 3D-tensor composed of the
feature maps [M1

i , . . . ,M
T
i ], and 9 i ∗ Mi is a convolution

distributed across time. In this case, the reference signal M̃i
is constructed as [M1

i , Pi ∗M1
i , . . . ,Pi ∗MT −1

i ]. It can be
observed that a different correlation operator Pi corresponds
to each feature map. Also, we may reweight the contribution

of each feature map in the cost function by using a positive
coefficient gi , enabling the use of reweighted minimization,
which is known to improve the accuracy of sparse signal
reconstruction. We also penalize the difference of successive
representations by another ℓ1 cost. As a result, (22) becomes:

min
L,M

∥L∥∗ + λ1
∑

i

gi∥Mi∥1 + λ2
∑

i

gi∥Mi − M̃i∥1

s.t. (1 − M) ◦ (D − L) = 0

M = reshape

(∑
i

9 i ∗ Mi

)
M ∈ [0, 1]wh×T . (22)

In order to simplify the derivations, we use the notation
9M as a replacement for M =

∑
i 9 i ∗ Mi , where 9 ∈

Rhw×hwn is the equivalent Toeplitz matrix and M ∈ Rhwn×T

a vectorized version of the feature maps. We use the Moore-
Penrose pseudoinverse 9† to transform M into the feature
space, with the actual transformation being learned via specific
convolution kernels during the deep unfolding steps. Next,
we reformulate (22) in the augmented Lagrangian form:

L(L, M, U) = ∥L∥∗ + λ1∥G ◦ M∥1+λ2∥G ◦ (M−M̃)∥1

+ 1[0,1](9M) + ⟨U, (1 − 9M) ◦ (D − L)⟩

+
ρ

2
∥(1 − 9M) ◦ (D − L)∥2

F , (23)

where U is a dual variable, G is a matrix formed by the
corresponding weights gi , and 1[0,1] is the indicator function.

A fundamental difference with CORONA, refRPCA-Net
and the previous model (14) is the absence of measurement
operators H1 and H2; from the perspective of deep unfolding,
the introduction of 9 will automatically result in learnable
convolution kernels, thus rendering the use of additional
operators unnecessary. Similar to the previous derivations in
Section III-A, we may write the following update equations
for L, M and U:

Lk+1
=0 τL

ρ

[
Lk+1

−τL(1 − 9Mk)◦2
◦ (Lk+1

− D)

− τL(1 − 9Mk) ◦
Uk

ρ

]
, (24)
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Fig. 4. Detail of the branches of the deep unfolding ROMAN-R model. The learnable activation function is the reweighted soft-thresholding operator with
side-information. Each channel has a different threshold scaling factor gi .

Mk+1
= 9†5

[
98 τM λ1

ρ
,
τM λ2

ρ
,g

[
Mk

+τM9⊤
(
(D − Lk+1)◦2

◦ (1 − 9Mk) − (D − Lk+1) ◦
Uk

ρ

)]]
, (25)

Uk+1
= Uk

+ ρ(1 − 9Mk+1) ◦ (D − Lk+1). (26)

Here, 0 still refers to the SVT operator, while 8 is the
soft-thresholding operator with side-information and condi-
tioned on weights G, which can be derived from reweighted-
ℓ1-ℓ1 minimization, and 5 is the clamping operator.

2) Deep Unfolding Model: The approach to building the
ROMAN-R network results from unfolding of the itera-
tions (24), (25) and (26). As opposed to ROMAN-S, the
trainable convolutional kernels Hk

i arise from 9, 9⊤ and
9†. Also, in the mask branch, most operations are performed
in the transform domain, including the processing of side-
information, after which the mask is transformed back into
the image domain for the remaining non-linearity. For a
K -layer network, the set of trainable parameters is:

2={Hk
1, . . . ,H

k
6, P

k, gk, λk
1, λ

k
2, γ

k, αk, τ k
L , τ k

M , ρk
}k=1,...,K.

(27)

The forward pass of this second deep unfolding network
is detailed in Algorithm 2 and the corresponding flowchart is
given in Fig. 4. In this model, a feature map Mk is computed
at each layer k with the multi-channel convolution kernel Hk

1,
which is then given as input to the L and M branches. It is
only at the output of the M branch that the foreground mask
is converted back to the image domain, before entering the U
branch.

IV. EXPERIMENTS

A. Foreground Detection and Background Modeling on
Synthetic Data

We first assess the performance of our models in the task of
video background separation and foreground detection on the
synthetic moving MNIST dataset [51]. We work on 20 frames
long sequences of size 32×32 pixels. Out of the 10,000 video
sequences of moving digits, we create validation and test sets
of 1,000 samples each. The synthetic low-rank background

Algorithm 2 Forward Pass ROMAN-R

is generated as in [6], which is, by setting L .
= UV⊤, with

U ∈ Rn×r and V ∈ Rm×r sampled from a standard Gaussian
distribution and the rank set to r = 5. The ground truth for
the foreground mask is generated by applying a threshold of
0.2 to the original digits in the video.

1) Training: Since the video background is perfectly known
in this case, we consider a fully-supervised loss function Lfs
in (28) that optimizes the reconstruction of the background
using the mean squared error (MSE) as well as the estima-
tion of the foreground mask using the binary cross-entropy
loss (BCE):

Lfs(M, L, M̂, L̂)

= α BCE(M, M̂) + MSE(L, L̂)

= α
∑
x,y,t

−Mx,y,t log(M̂x,y,t ) +
1
2
∥L − L̂∥

2
F . (28)
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TABLE I
MOVING-MNIST WITH SUPERVISED Lfs LOSS

The relative weight of the two loss components can be con-
trolled via a parameter α, which is set to 1 in our experiments.
We use the ADAM optimizer with an initial learning rate
of 0.005 by decreasing it every 25 epochs by a factor of
0.3, for a total of 75 epochs. The batch size is set to 64.
We set the number of channels in the transform domain to
8 for ROMAN-R, which is the number of filters used in
the corresponding 3D convolutional layers. The convolution
kernels Hk

i of our models are initialized with a uniform
distribution. Pk

i are initially set to Gaussian kernels with small
variance, promoting local correlations. gk are initialized to
the all-ones. ρk , τ k

M and τ k
L were all initialized to 1.0 and

the sigmoid scaling parameters αk to 5.0. The initial values
of the thresholds are set to λk

1 = 0.05, λk
2 = 0.001 and

γ k
= 0.1.

2) Evaluation: The test performance is evaluated using the
MSE loss on the background component. We also compute
the F1 score defined by

F1 = 2
precison × recall
precision + recall

, (29)

precision =
TP

TP + FP
, (30)

recall =
TP

TP + FN
, (31)

which is a measure typically used to assess the quality of the
foreground mask in such applications [24], [26]. This score is
computed per sequence and then averaged over the number of
test samples.

3) Experimental Results: We compare ROMAN-S and
ROMAN-R against CORONA [38] and our prior refRPCA-
Net [39]. These existing deep unfolding RPCA networks
directly estimate the foreground component as the pixel
difference with the low-rank background model. Therefore,
to calculate the F1 score for these models, we add a 3 × 3
convolutional layer with softmax activation to predict a prob-
abilistic foreground mask. Table I reports the MSE and the
F1 scores obtained on the test set for different number of
hidden layers. We observe a systematic improvement on
the estimation of the foreground mask with our proposed
models, thereby corroborating the efficacy of the sparse mask
formulation. Overall, the F1 score increases with the number
of layers with a peak performance at 4 layers for ROMAN-S
and ROMAN-R, and 5 layers for CORONA and refRPCA-Net.

B. Results on Real Video Sequences

1) Dataset: We train and evaluate our models on various
videos from the CDNet2014 dataset [26]. This dataset contains
11 video categories, corresponding to different challenges

in background subtraction, with 4 to 6 videos per category.
Compared to other real video datasets, CDNet2014 provides
ground truth pixel-wise foreground masks for every frame,
with integer labels corresponding to the background, fore-
ground, unknown, hard-shadow and outside-of-ROI classes.
However, no reference backgrounds are available. We rule
out 2 categories from the dataset, which are the Intermittent
Object Motion (IOM) and Pan-Tilt-Zoom (PTZ) categories
since the former mostly contains sequences with very small
ROIs—thus, leaving only few labeled objects to train on—
and the latter contains continuous camera motion, which is
outside of the scope of our model. Also, we intentionally
remove the “port” sequence from the Low-Framerate (LFR)
category due to its very small ROI, as well as the “fountain01”
sequence from the Dynamic Background (DB) category. When
fed to the neural network, the video sequences are first
converted to the gray color scale, split into 50 frame long
segments and resized to a maximum width of 128 pixels using
bilinear interpolation. Likewise, the ground truth masks used
for supervised training are downscaled using nearest neighbor
interpolation, and pixels corresponding to hard-shadow regions
are relabeled as background. The “unknown motion” pixels
are treated stochastically by converting them to background or
foreground regions for each video segment with a probability
of 0.5, which acts as some kind of data augmentation and
results in slightly more robust performance.

We choose to evaluate our deep unfolding models in a
scene-specific setting, where 40% of the available video
frames are selected for training and hyperparameter selection,
and the remaining 60% unseen frames are used for testing.
In this setting, the test performance may fluctuate depending
on the presence of challenging video segments or the absence
of motion within the test set; hence, we always report metrics
averaged over 5 runs on different dataset splits. Per-video
training is especially suitable for deep unfolding models
since they are able to generalize well with only few training
examples and because optimal sparsity and SVT thresholds are
largely dependent on the video content. Later, in Section IV-C,
we also study the generalization performance of the ROMAN
networks and a 3D U-Net baseline on unseen video of different
scenes, with similar and dissimilar properties.

2) Training: Since we do not have access to true video
background in the real video setting, we opt for a semi-
supervised composite loss Lss defined as,

Lss(M, D, M̂, L̂)

= α1 BCE(M, M̂) + α2 Tversky(M, M̂)

+ MSE((1 − M) ◦ D, (1 − M) ◦ L̂), (32)
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where the foreground mask is optimized using a combina-
tion of the BCE and Tversky losses, and the background is
optimized with the MSE loss w.r.t the background of the
original video located outside of the ground truth mask, that is,
by masking D with (1−M). Semi-supervision occurs since the
missing pixels are estimated via the low-rank parametrization
of the background in the ROMAN models. However, as a
potential side-effect, background pixels that are never visible
during the chosen time span may be wrongly inferred.

The Tversky loss [52], which is formulated in Eq. (33)
below, allows for a better control of the precision and recall in
segmentation applications in the case of unbalanced classes,

Tversky(M, M̂)

= 1 −

∑
i Mi M̂i∑

i Mi M̂i + η1
∑

i Mi (1 − M̂i ) + η2
∑

i (1 − Mi )M̂i
.

(33)

We empirically set η1 and η2 to 0.5, which is effectively
equivalent to the binary Dice loss [53]. For the ROMAN
models, we find that using the combination of losses in
Eq. (32), with α1 = α2 = 0.5, yields better results than
optimizing the Tversky or BCE losses alone, and the trained
models achieve optimal F1 scores at a fixed threshold of 0.5 on
the foreground probability masks. However, this is not the
case for refRPCA-Net and CORONA, where training with
the Tversky loss would prevent learning convergence. Hence,
it is best to train these models using the BCE loss only and
optimize the decision threshold after training.

The models are trained using the ADAM optimizer for
90 epochs with an initial learning rate of 0.003, which is
decreased by a factor of 0.3 every 30 epochs. We use 3-layers
models and the number of channels in the transform domain
is set to 32 for ROMAN-R. We use the same initialization
as in Section IV-A1, except for the thresholds. Specifically,
for every scene, λk

1 = 0.01 was found to be a good initial
value, while γ k and λk

2 are respectively initialized within the
ranges [0.25, 0.8] and [0.001, 0.01] using grid search and by
partially training the model to ensure stable outputs and early
convergence on the training set.

Finally, we also train a conventional deep 3D-CNN follow-
ing the U-Net architecture [44] and inflating the convolution
kernels to three-dimensional ones to capture temporal features.
Training and evaluation are performed per sequence using
the same 5 dataset folds for fair comparison. U-Nets have
been extensively used in semantic segmentation tasks, both
on two-dimensional and three-dimensional data. Consequently,
we only train the 3D U-Net to predict the foreground mask
by optimizing a combination of the Tversky and the cross-
entropy losses, contrary to the RPCA-based models that also
estimate the sequence background.

3) Experimental Results: We compute the per-sequence
precision, recall and F1 score metrics, averaged over the 5 test
set splits. The “unknown motion” and outside-of-ROI pixels
are ignored during the count, following the CDNet2014 eval-
uation protocol. Since we average over 5 runs, we deliberately
ignore models that lead to an F1 score lower than 0.5, which
can happen in exceptional occasions due to a bad selection

of training or testing samples within the split. All results
are reported in Table II. As for the deep unfolding models,
we notice that ROMAN-R outperforms the other alternatives
in almost all cases, followed by ROMAN-S, refRPCA-Net
and CORONA in order of decreasing performance. Results
indicate that using the proposed mask formulation is better
suited than the traditional deep unfolding RPCA models for the
task of foreground detection, especially when training samples
consist of binary masks. Moreover, the higher representation
learning power of ROMAN-R along with its reweighting
scheme leads to superior performance compared to ROMAN-
S. 3D U-Net offers comparable performance to ROMAN-R
for the foreground detection task, although this network is not
trained to reconstruct the video background.

In Fig. 5, we provide a series of test samples over different
categories and for each model, which are comprised of the
estimated background and the raw non-thresholded foreground
probability map (except 3D U-Net that is only trained to
segment the foreground). In complement, we provide receiver
operating characteristics (ROC) for two example scenes in
Fig. 6. From both figures, we observe that ROMAN-R and
ROMAN-S are more robust than the other deep unfolding
models that classify objects based on foreground pixel inten-
sity, since the foreground membership probabilities in the
ROMAN networks are less dependent on the foreground pixel
values and object textures than refRPCA-net and CORONA.
This is more apparent for difficult scenes (e.g.: dynamic
backgrounds and camera jitter) where these models struggle
to provide accurate masks and clear backgrounds. An increase
in AUC is also observed for the ROMAN models when using
the side-information scheme, compared to their counterparts
without side-information, demonstrating the effectiveness of
the foreground-correlation scheme.

A demonstration of the learning convergence of the
ROMAN models is given in Fig. 7 and shows the progress
of the training and test metrics after each epoch. For each
layer k, we also report the norm of the gap between the
side-information kernels Pk with their initial values (that is,
∥Pk

init−Pk
e ∥F at training epoch e), as well as the norm of their

update after every epoch (that is, ∥Pk
e−1 − Pk

e ∥F ). Likewise,
we also report similar metrics for the other convolution kernels
Hk

i of both models, which are averaged over all kernels.
We observe that ROMAN-R and ROMAN-S are able to reach
good levels of performance in few epochs when trained with
ADAM.

4) Study of the Side-Information: We study the effective-
ness of the side-information scheme based on ℓ1-ℓ1 mini-
mization for ROMAN-S and reweighted-ℓ1-ℓ1 minimization
for ROMAN-R. To do so, we train model alternatives by
removing the side-information branches; this can be done
by changing the non-linear activations to the simple soft-
thresholding activations presented in Figs. 3 and 4 (and by
keeping the weights gi for ROMAN-R). This effectively
cancels the side-information branches. Table III reports the
gains in precision, recall and F1 scores obtained respectively
for both models when using the proposed side-information
scheme. These gains are averaged for each video category and
the same subsets of video sequences are taken from the base
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Fig. 5. Real video samples with raw output masks. Pixels in black, dark grey, light gray and white in the ground truth masks correspond to background,
unknown motion, shadow and foreground pixels, respectively.

TABLE II
PRECISION, RECALL AND F1 SCORES AVERAGED OVER THE TEST FRAMES OF THE 5 SPLITS FOR EACH SEQUENCE FROM THE CDNET2014 DATASET.

BOLD INDICATES HIGHEST F1 SCORES
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Fig. 6. ROC curve and AUC (in legend) for the thermal/corridor and
cameraJitter/boulevard sequences. “no SI” stands for no side-information.
Axis have been zoomed to the [0, 0.5] × [0.5, 1.0] range for clarity (on the
left graph, the curve for U-Net is superimposed to ROMAN-R).

Fig. 7. Convergence of ROMAN-R and ROMAN-S. Left: training and test
losses and F1 scores. Middle: Frobenius norm of the difference between Pk

init
and Pk after every epoch, for every layer k = 1, 2, 3, and also for the
convolution kernels Hk

i (each curve reports the average across all kernels).
Right: Frobenius norm of the difference between the previous value and the
update of Pk after every epoch, and also for the convolution kernels Hk

i .

simulations to train the models in a 5-fold cross-validation
setting. We observe an overall gain in performance in most
categories, with a higher overall gap for ROMAN-R as a result
of the more efficient side-information scheme, when going
to a higher-dimensional representation domain along with the
feature reweighting coefficients gi .

As a practical example, we provide a sample frame from the
“traffic” sequence from the Camera Jitter category in Fig. 8
(top). There, the side-information branch shows to be useful
to better discriminate between the actual object in motion and
the background scene affected by the chaotic motion of the
camera, which can be seen from the uncertain foreground
probability maps in locations around the fence when no
side-information is incorporated. Still, an exception is made

TABLE III
AVERAGE GAIN PER-CATEGORY IN PRECISION, RECALL AND F1 SCORES

OVER ROMAN-S AND ROMAN-R WITHOUT
SIDE-INFORMATION BRANCHES

Fig. 8. Comparison of the outputs (raw mask outputs) with and
without using side-information (SI) on the cameraJitter/traffic and lowFram-
erate/turnpike_0_5fps sequences.

for the low-framerate sequences, where the time-correlation
between foreground objects is less relevant and renders the
side-information branches useless; such an example is given
in Fig. 8 (bottom) for the “turnpike” sequence that is acquired
at 0.5 fps. In this case, the outputs are similar with and without
side-information.

5) Hyperparameter Study: To show the influence of model
hyperparameters on performance, we select some of the traffic-
related videos and train ROMAN-R with varying number of
layers. The depth of the convolutional dictionary is set to 8.
The averaged F1 scores for the 5 dataset splits are reported in
Table IV. These results show that multi-layer models reach
better performance, although simpler video scenes do not
require a high layer count to reach peak accuracy. A second
experiment is performed by using 3-layer models and changing
the depth of the convolutional dictionary from single-channel,
8 and 32 channels. This directly impacts the reweighting and
side-information schemes, since the number of feature maps
Mi directly relates to the number of weights gi . Table V
shows a systematic drop in performance when using the single-
channel architecture over the multiple-channels ones.

C. Generalization to Unseen Videos

We study the ability of the proposed models to generalize
on unseen video, across various scenes. We follow a similar
methodology as in [17] by creating training sets with dif-
ferent sizes and properties that affect the natural sparsity of
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TABLE IV
F1 SCORES ON TEST CLIPS FOR ROMAN-R WITH VARYING KERNEL

DEPTHS (LAYERS=3)

TABLE V
F1 SCORES ON TEST CLIPS FOR ROMAN-R WITH VARYING KERNEL

DEPTHS (LAYERS=3)

foregrounds and spectral norms of backgrounds. The videos
in Table VI are selected for their common characteristic
of having few to no intermittent objects in motion, unlike
other clips of the CDNet2014 dataset. These are grouped into
three categories according to the following image properties:
Basic (B) clips, which are exempt of background noise and
camera motion, Noisy (N) clips that feature dynamic and
noisy backgrounds outside of the ground truth masks, and
Jitter (J) video with constant camera vibrations. Additionally,
we combine these three categories into a joined training set
(B+N+J) containing a larger number of training samples and
all kinds of perturbations. For training, we use identical hyper-
parameters, optimizers and loss functions as in Section IV-B,
except that entire videos are used for training and testing is
performed on unseen clips both from within and outside the
category considered for training. Model initialization differs
only with the thresholds: γ k is initialized to 0.5 and λk

1 to
0.01, and as a rule of thumb, λk

2 are initialized to 0.01 in the
absence of noisy and jittering videos, and to 0.001 otherwise.

Generalization results are shown in Fig. 9, where each point
corresponds to a video from the combined B+N+J test set and
is placed vertically according to the model’s F1 performance
on the unseen video, while the horizontal coordinate corre-
sponds to the F1 generalization score reported in Section IV-B
in the intra-scene setting. Therefore, a point located close to
the diagonal line reflects a good generalization performance.
As a first observation, it appears that no model can outperform
its counterpart trained in the intra-video setting, leading to an
overall degradation of the testing performance. Still, ROMAN-
R achieves the overall best generalization to unseen video, with
an average degradation of 18% for testing video belonging
to the chosen training set variation, compared to 37% and
46% for ROMAN-S and 3D U-Net, respectively. Second,
ROMAN-R achieves similar generalization regardless of the
training set variation and size, since the 3D U-Net does not
generalize well if trained on clips from the Noisy or Jitter
sets alone, which is also the case for ROMAN-S to a lesser
extent. This also reflects how traditional deep models usually
generalize better with larger and more diverse training datasets,

TABLE VI
TRAINING AND TESTING VIDEOS FOR THE STUDY OF GENERALIZATION

TO UNSEEN VIDEOS

Fig. 9. Intra-scene (i.e., trained on video) v.s. cross-scene (i.e., unseen video)
generalization performance of ROMAN-R, ROMAN-S and the 3D U-Net
baseline and for each of the training set categories (B, N, J and B+N+J).
Each marker type represents a video from corresponding testing categories.

Fig. 10. Example of predictions for shadow/peopleInShade: intra-scene (i.e.,
trained on partial video) v.s. cross-scene generalization (i.e., training on the
Basic subset and testing on unseen video).

whereas the model-driven structures of deep unfolding net-
works are beneficial for smaller datasets with low-complexity
priors. A visual example is provided in Fig. 10, showing
the difference between the predictions of seen versus unseen
clips, which also illustrate the transferability of the learned
parameters of the proposed models to a different scene.

D. Comparison With Untrained Optimization

One advantage of deep unfolding neural networks is their
ability to reach peak performance with fewer layers than
the number of iterations required with the original untrained
optimization algorithm. As a comparison, we evaluate the
untrained version of ROMAN-S by removing the learnable
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Fig. 11. Foreground detection F1 score on test scenes of the CDNet2014
dataset: our deep unfolding models (each k corresponds to a number of layers)
vs untrained ROMAN-S and MRPCA2 algorithm [16] (k corresponds to the
number of iterations).

convolution kernels (corresponding to setting all measurement
operators H1, H2 to I), and by performing a grid search
on λ1, λ2, ρ, α, τL and τM of algorithm 1 to select the
best configuration on the training set. These parameters are
kept constant for every iteration. Fig. 11 reports the F1 score
obtained with the deep unfolding models versus the untrained
optimization model for various number of layers or iterations,
on 4 different video sequences. ROMAN-S and ROMAN-R
reach higher performance in very few iterations, while the
untrained optimization method requires at least 10 iterations
to settle with lower scores on the test sets. Fig. 11 also
reports the F1 score for the Masked-RPCA algorithm of [16]
(referred to as MRPCA2), which consists of a Douglas-
Rachford (DR) splitting algorithm to solve the non-convex
version of Problem. (6) and without side-information. For
a fair comparison with our methods, we evaluate MRPCA2
on whole video by splitting the test clips into sequences
of 50 contiguous frames, which differs from the original
implementation of [16]. Its performance follows a similar trend
to the untrained ROMAN-S, although the untrained version of
our algorithm is able to perform better on some scenes.

E. Complexity Analysis

In our experimental configurations, ROMAN-S and
ROMAN-R have 391 and 6,408 trainable parameters per
layer, respectively, including the trainable thresholds for the
activation functions. These numbers increase linearly with the
number of layers. The higher parameter count for the second
model is due to the dictionary size in the transform domain,
which translates to convolutional kernels with 32 channels
in the proposed configuration. In contrast, CORONA and
refRPCA-Net have approximately 290 trainable parameters
each, and the U-Net baseline has substantially more trainable
parameters (87.5 million), which is typical of deep models that

perform feature extraction. The main computational bottleneck
of the ROMAN models resides in the SVD computation;
however, compared to the untrained RPCA optimization meth-
ods (which also require an SVD), the computational load is
reduced at inference time due to the small number of layers
than the number of optimization steps required to reach peak
accuracy, as seen in Fig. 11.

V. CONCLUSION

Supervised learning of background separation models often
relies on the estimation of foreground masks in the case of
real data. For this aim, we proposed a family of deep unfold-
ing neural networks that learns the iterations of alternating
minimization algorithms for a masked RPCA model with
side-information. The proposed unfolded networks require less
layers than traditional optimization models, and our second
model achieves competitive performance with semantic net-
works like the 3D U-Net, while requiring few parameters,
small amount of data for training (a few labeled clips for each
sequence), and is able to estimate the video background thanks
to the low-rank model. Furthermore, the side-information
scheme based on reweighted-ℓ1-ℓ1 minimization proves to be
effective to promote the temporal correlation of foreground
masks.
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