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Abstract—State estimation of dynamical systems in real-time
is a fundamental task in signal processing. For systems that are
well-represented by a fully known linear Gaussian state space (SS)
model, the celebrated Kalman filter (KF) is a low complexity opti-
mal solution. However, both linearity of the underlying SS model
and accurate knowledge of it are often not encountered in practice.
Here, we present KalmanNet, a real-time state estimator that learns
from data to carry out Kalman filtering under non-linear dynamics
with partial information. By incorporating the structural SS model
with a dedicated recurrent neural network module in the flow
of the KF, we retain data efficiency and interpretability of the
classic algorithm while implicitly learning complex dynamics from
data. We demonstrate numerically that KalmanNet overcomes
non-linearities and model mismatch, outperforming classic filter-
ing methods operating with both mismatched and accurate domain
knowledge.

Index Terms—Kalman filters, deep learning, recurrent neural
networks.

I. INTRODUCTION

E STIMATING the hidden state of a dynamical system from
noisy observations in real-time is one of the most funda-

mental tasks in signal processing and control, with applications
in localization, tracking, and navigation [2]. In a pioneering
work from the early 1960s [3]–[5], based on work by Wiener
from 1949 [6], Rudolf Kalman introduced the KF, a minimum
mean-squared error (MMSE) estimator that is applicable to time-
varying systems in discrete-time, which are characterized by a
linear SS model with additive white Gaussian noise (AWGN).
The low-complexity implementation of the KF, combined with
its sound theoretical basis, resulted in it quickly becoming the
leading workhorse of state estimation in systems that are well
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described by SS models in discrete-time. The KF has been
applied to problems such as radar target tracking [7], trajectory
estimation of ballistic missiles [8], and estimating the position
and velocity of a space vehicle in the Apollo program [9].

While the original KF assumes linear SS models, many prob-
lems encountered in practice are governed by non-linear dynam-
ical equations. Therefore, shortly after the introduction of the
original KF, non-linear variations of it were proposed, such as the
extended Kalman filter (EKF) [7], [8] and the unscented Kalman
filter (UKF) [10]. Methods based on sequential Monte-Carlo
(MC) sampling, such as the family of particle filters (PFs) [11]–
[13], were introduced for state estimation in non-linear, non-
Gaussian SS models. To date, the KF and its non-linear variants
are still widely used for online filtering in numerous real world
applications involving tracking and localization [14].

The common thread among these aforementioned filters is that
they are model-based (MB) algorithms; namely, they rely on ac-
curate knowledge and modeling of the underlying dynamics as a
fully characterized SS model. As such, the performance of these
MB methods critically depends on the validity of the domain
knowledge and model assumptions. MB filtering algorithms
designed to cope with some level of uncertainty in the SS models,
e.g., [15]–[17], are rarely capable of achieving the performance
of MB filtering with full domain knowledge, and rely on some
knowledge of how much their postulated model deviates from
the true one. In many practical use cases the underlying dynamics
of the system is non-linear, complex, and difficult to accurately
characterize as a tractable SS model, in which case degradation
in performance of the MB state estimators is expected.

Recent years have witnessed remarkable empirical success of
deep neural networks (DNNs) in real-life applications. These
data-driven (DD) parametric models were shown to be able to
catch the subtleties of complex processes and replace the need to
explicitly characterize the domain of interest [18], [19]. There-
fore, an alternative strategy to implement state estimation—
without requiring explicit and accurate knowledge of the SS
model—is to learn this task from data using deep learning. DNNs
such as recurrent neural networks (RNNs) i.e., long short-term
memory (LSTM) [20] and gated recurrent units (GRUs) [21] and
attention mechanisms [22] have been shown to perform very well
for time series related tasks mostly in intractable environments,
by training these networks in an end-to-end, model-agnostic
manner from a large quantity of data. Nonetheless, DNNs do not
incorporate domain knowledge such as structured SS models in a
principled manner. Consequently, these DD approaches require

1053-587X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 31,2022 at 08:37:43 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-1549-0298
https://orcid.org/0000-0003-2234-929X
https://orcid.org/0000-0001-6441-8519
https://orcid.org/0000-0003-2845-0495
https://orcid.org/0000-0003-4358-5304
mailto:grevach@ethz.ch
mailto:xiaoni@student.ethz.ch
mailto:alopez@student.ethz.ch
mailto:nirshl@bgu.ac.il
mailto:r.j.g.v.sloun@tue.nl
mailto:yonina.eldar@weizmann.ac.il


REVACH et al.: KALMANNET: NEURAL NETWORK AIDED KALMAN FILTERING FOR PARTIALLY KNOWN DYNAMICS 1533

many trainable parameters and large data sets even for simple
sequences [23] and lack the interpretability of MB methods.
These constraints limit the use of highly parametrized DNNs for
real-time state estimation in applications embedded in hardware-
limited mobile devices such as drones and vehicular systems.

The limitations of MB Kalman filtering and DD state
estimation motivate a hybrid approach that exploits the best of
both worlds; i.e., the soundness and low complexity of the classic
KF, and the model-agnostic nature of DNNs. Therefore, we build
upon the success of our previous work in MB deep learning for
signal processing and digital communication applications [24]–
[27] to propose a hybrid MB/DD online recursive filter,
coined KalmanNet. In particular, we focus on real-time state
estimation for continuous-value SS models for which the KF
and its variants are designed. We assume that the noise statistics
are unknown and the underlying SS model is partially known or
approximated from a physical model of the system dynamics.
To design KalmanNet, we identify the Kalman gain (KG)
computation of the KF as a critical component encapsulating
the dependency on noise statistics and domain knowledge, and
replace it with a compact RNN of limited complexity that is
integrated into the KF flow. The resulting system uses labeled
data to learn to carry out Kalman filtering in a supervised manner.

Our main contributions are summarized as follows:
1) We design KalmanNet, which is an interpretable, low

complexity, and data-efficient DNN-aided real-time state
estimator. KalmanNet builds upon the flow and theoretical
principles of the KF, incorporating partial domain knowl-
edge of the underlying SS model in its operation.

2) By learning the KG, KalmanNet circumvents the depen-
dency of the KF on knowledge of the underlying noise
statistics, thus bypassing numerically problematic matrix
inversions involved in the KF equations and overcoming
the need for tailored solutions for non-linear systems; e.g.,
approximations to handle non-linearities as in the EKF.

3) We show that KalmanNet learns to carry out Kalman filter-
ing from data in a manner that is invariant to the sequence
length. Specifically, we present an efficient supervised
training scheme that enables KalmanNet to operate with
arbitrary long trajectories while only training using short
trajectories.

4) We evaluate KalmanNet in various SS models. The ex-
perimental scenarios include synthetic setups, tracking
the chaotic Lorenz system, and localization using the
Michigan NCLT data set [28]. KalmanNet is shown to
converge much faster compared with purely DD systems,
while outperforming the MB EKF, UKF, and PF, when
facing model mismatch and dominant non-linearities.

The proposed KalmanNet leverages data and partial domain
knowledge to learn the filtering operation, rather than using
data to explicitly estimate the missing SS model parameters.
Although there is a large body of work that combines SS models
with DNNs, e.g., [29]–[35], these approaches are sometimes
used for different SS related tasks (e.g., smoothing, imputation);
with a different focus, e.g., incorporating high-dimensional vi-
sual observations to a KF; or under different assumptions, as we
discuss in detail below.

The rest of this paper is organized as follows: Section II
reviews the SS model and its associated tasks, and discusses
related works. Section III details the proposed KalmanNet.
Section IV presents the numerical study. Section V provides
concluding remarks and future work.

Throughout the paper, we use boldface lower-case letters
for vectors and boldface upper-case letters for matrices. The
transpose, �2 norm, and stochastic expectation are denoted by
{·}�, ‖ · ‖, andE[·], respectively. The Gaussian distribution with
meanμ and covarianceΣ is denoted byN (μ,Σ). Finally, R and
Z are the sets of real and integer numbers, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. State Space Model

We consider dynamical systems characterized by a SS model
in discrete-time [36]. We focus on (possibly) non-linear, Gaus-
sian, and continuous SS models, which for each t ∈ Z are
represented via

xt = f (xt−1) + et, et ∼ N (0,Q) , xt ∈ Rm, (1a)

yt = h (xt) + vt, vt ∼ N (0,R) , yt ∈ Rn. (1b)

In (1a), xt is the latent state vector of the system at time t,
which evolves from the previous state xt−1, by a (possibly) non-
linear, state-evolution function f(·) and by an AWGN et with
covariance matrix Q. In (1b), yt is the vector of observations
at time t, which is generated from the current latent state vector
by a (possibly) non-linear observation (emission) mapping h(·)
corrupted byAWGN vt with covariance R. For the special case
where the evolution or the observation transformations are linear,
there exist matrices F,H such that

f (xt−1) = F · xt−1, h (xt) = H · xt. (2)

In practice, the state-evolution model (1a) is determined by
the complex dynamics of the underlying system, while the
observation model (1b) is dictated by the type and quality of the
observations. For instance, xt can determine the location, ve-
locity, and acceleration of a vehicle, while yt are measurements
obtained from several sensors. The parameters of these models
may be unknown and often require the introduction of dedicated
mechanisms for their estimation in real-time [37], [38]. In some
scenarios, one is likely to have access to an approximated or
mismatched characterization of the underlying dynamics.

SS models are studied in the context of several different tasks;
these tasks are different in their nature, and can be roughly
classified into two main categories: observation approximation
and hidden state recovery. The first category deals with approx-
imating parts of the observed signal yt. This can correspond,
for example, to the prediction of future observations given past
observations; the generation of missing observations in a given
block via imputation; and the denoising of the observations. The
second category considers the recovery of a hidden state vector
xt. This family of state recovery tasks includes offline recovery,
also referred to as smoothing, where one must recover a block
of hidden state vectors, given a block of observations, e.g., [35].
The focus of this paper is filtering; i.e., online recovery of xt
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from past and current noisy observations {yτ}tτ=1. For a given
x0, filtering involves the design of a mapping from yt to x̂t,
∀t ∈ {1, 2, . . . , T} � T , where T is the time horizon.

B. Data-Aided Filtering Problem Formulation

The filtering problem is at the core of real-time tracking. Here,
one must provide an instantaneous estimate of the state xt based
on each incoming observation yt in an online manner. Our main
focus is on scenarios where one has partial knowledge of the SS
model that describes the underlying dynamics. Namely, we know
(or have an approximation of) the state-evolution (transition)
function f(·) and the state-observation (emission) function h(·).
For real world applications, this knowledge is derived from our
understating of the system dynamics, its physical design, and the
model of the sensors. As opposed to the classical assumptions
in KF, the noise statistics Q and R are not known. More
specifically, we assume:
� Knowledge of the distribution of the noise signals et and
vt is not available.

� The functions f(·) and h(·) may constitute an approxima-
tion of the true underlying dynamics. Such approximations
can correspond, for instance, to the representation of con-
tinuous time dynamics in discrete time, acquisition using
misaligned sensors, and other forms of mismatches.

While we focus on filtering in partially known SS models, we
assume that we have access to a labeled data set containing a
sequence of observations and their corresponding ground truth
states. In various scenarios of interest, one can assume access
to some ground truth measurements in the design stage. For
example, in field experiments it is possible to add extra sensors
both internally or externally to collect the ground truth needed
for training. It is also possible to compute the ground truth data
using offline and more computationally intensive algorithms.
Finally, the inference complexity of the learned filter should be
of the same order (and preferably smaller) as that of MB filters,
such as the EKF.

C. Related Work

A key ingredient in recursive Bayesian filtering is the update
operation; namely, the need to update the prior estimate using
new observed information. For linear Gaussian SS using the KF,
this boils down to computing the KG. While the KF assumes
linear SS models, many problems encountered in practice are
governed by non-linear dynamics, for which one should resort
to approximations. Several extensions of the KF were proposed
to deal with non-linearities. The EKF [7], [8] is a quasi-linear
algorithm based on an analytical linearization of the SS model.
More recent non-linear variations are based on numerical inte-
gration: UKF [10], the Gauss-Hermite Quadrature [39], and the
Cubature KF [40]. For more complex SS models, and when the
noise cannot be modeled as Gaussian, multiple variants of the
PF were proposed that are based on sequential MC [11]–[13],
[41]–[45]. These MC algorithms are considered to be asymptoti-
cally exact but relatively computationally heavy when compared

to Kalman-based algorithms. These MB algorithms require ac-
curate knowledge of the SS model, and their performance is
typically degrades in the presence of model mismatch.

The combination of machine learning and SS models, and
specifically Kalman-based algorithms, is the focus of growing
research attention. To frame the current work in the context of
existing literature, we focus on the approaches that preserve the
general structure of the SS model. The conventional approach to
deal with partially known SS models is to impose a parametric
model and then estimate its parameters. This can be achieved
by jointly learning the parameters and state sequence using
expectation maximization [46]–[48] and Bayesian probabilistic
algorithms [37], [38], or by selecting from a set of a priori known
models [49]. When training data is available, it is commonly
used to tune the missing parameters in advance, in a supervised
or an unsupervised manner, as done in [50]–[52]. The main
drawback of these strategies is that they are restricted to an
imposed parametric model on the underlying dynamics (e.g.,
Gaussian noises).

When one can bound the uncertainty in the SS model in
advance, an alternative approach to learning is to minimize the
worst-case estimation error among all expected SS models. Such
robust variations were proposed for various state estimation al-
gorithms, including Kalman variants [15]–[17], [53] and particle
filters [54], [55]. The fact that these approaches aim to design
the filter to be suitable for multiple different SS models typically
results in degraded performance compared to operating with
known dynamics.

When the underlying system’s dynamics are complex and
only partially known or the emission model is intractable and
cannot be captured in a closed form—e.g., visual observations as
in a computer vision task [56]—one can resort to approximations
and to the use of DNNs. Variational inference [57]–[59] is
commonly used in connection with SS models, as in [29]–[31],
[33], [34], by casting the Bayesian inference task to optimization
of a parameterized posterior and maximizing an objective. Such
approaches cannot typically be applied directly to state recovery
in real-time, as we consider here, and the learning procedure
tends to be complex and prone to approximation errors.

A common strategy when using DNNs is to encode the
observations into some latent space that is assumed to obey a
simple SS model, typically a linear Gaussian one, and track the
state in the latent domain as in [56], [60], [61], or to use DNNs
to estimate the parameters of the SS model as in [62], [63].
Tracking in the latent space can also be extended by applying a
DNN decoder to the estimated state to return to the observations
domain, while training the overall system end-to-end [31], [64].
The latter allows to design trainable systems for recovering
missing observations and predicting future ones by assuming
that the temporal relationship can be captured as an SS model in
the latent space. This form of DNN-aided systems is typically
designed for unknown or highly complex SS models, while we
focus in this work on setups with partial domain knowledge,
as detailed in Subsection II-B. Another approach is to combine
RNNs [65], or variational inference [32], [66] with MC based
sampling. Also related is the work [35], which used learned
models in parallel with MBs algorithms operating with full
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knowledge of the SS model, applying a graph neural network
in parallel to the Kalman smoother to improve its accuracy via
neural augmentation. Estimation was performed by an iterative
message passing over the entire time horizon. This approach is
suitable for the smoothing task and is computationally intensive,
and so may not be suitable for real-time filtering [67].

D. Model-Based Kalman Filtering

Our proposed KalmanNet, detailed in the following section,
is based on the MB KF, which is a linear recursive estimator.
In every time step t, the KF produces a new estimate xt using
only the previous estimate x̂t−1 as a sufficient statistic and the
new observation yt. As a result, the computational complexity
of the KF does not grow in time. We first describe the original
algorithm for linear SS models, as in (2), and then discuss how
it is extended into the EKF for non-linear SS models.

The KF can be described by a two-step procedure: prediction
and update, where in each time step t ∈ T , it computes the first-
and second-order statistical moments.

1) The first step predicts the current a priori statistical
moments based on the previous a posteriori estimates.
Specifically, the moments of x are computed using the
knowledge of the evolution matrix F as

x̂
t
∣∣t−1

= F · x̂
t−1
∣∣t−1

, (3a)

Σ
t
∣∣t−1

= F ·Σ
t−1
∣∣t−1

· F� +Q (3b)

and the moments of the observationsy are computed based
on the knowledge of the observation matrix H as

ŷ
t
∣∣t−1

= H · x̂
t
∣∣t−1

(4a)

S
t
∣∣t−1

= H ·Σ
t
∣∣t−1

·H� +R. (4b)

2) In the update step, the a posteriori state moments are
computed based on the a priori moments as

x̂t|t = x̂t|t−1 +Kt ·Δyt (5a)

Σt|t = Σt|t−1 −Kt · St|t−1 ·K�
t . (5b)

Here, Kt is the KG, and it is given by

Kt = Σ
t
∣∣t−1

·H� · S−1

t
∣∣t−1

. (6)

The term Δyt is the innovation; i.e., the difference be-
tween the predicted observation and the observed value,
and it is the only term that depends on the observed data

Δyt = yt − ŷ
t
∣∣t−1

. (7)

The EKF extends the KF for non-linear f(·) and/or h(·), as
in (1). Here, the first-order statistical moments (3a) and (4a) are
replaced with

x̂
t
∣∣t−1

= f (x̂t−1) , (8a)

ŷ
t
∣∣t−1

= h

(
x̂
t
∣∣t−1

)
, (8b)

Fig. 1. EKF block diagram. Here, Z−1 is the unit delay.

respectively. The second-order moments, though, cannot be
propagated through the non-linearity, and must thus be approx-
imated. The EKF linearizes the differentiable f(·) and h(·) in a
time-dependent manner using their partial derivative matrices,
also known as Jacobians, evaluated at x̂t−1|t−1 and x̂

t
∣∣t−1

.

Namely,

F̂t = Jf

(
x̂
t−1
∣∣t−1

)
(9a)

Ĥt = Jh

(
x̂
t
∣∣t−1

)
, (9b)

where F̂t is plugged into (3b) and Ĥt is used in (4b) and (6).
When the SS model is linear, the EKF coincides with the KF,
which achieves the MMSE for linear Gaussian SS models.

An illustration of the EKF is depicted in Fig. 1. The resulting
filter admits an efficient linear recursive structure. However, it
requires full knowledge of the underlying model and notably
degrades in the presence of model mismatch. When the model
is highly non-linear, the local linearity approximation may not
hold, and the EKF can result in degraded performance. This
motivates the augmentation of the EKF into the deep learning-
aided KalmanNet, detailed next.

III. KALMANNET

Here, we present KalmanNet; a hybrid, interpretable, data
efficient architecture for real-time state estimation in non-linear
dynamical systems with partial domain knowledge. KalmanNet
combines MB Kalman filtering with an RNN to cope with
model mismatch and non-linearities. To introduce KalmanNet,
we begin by explaining its high level operation in Subsection
III-A. Then we present the features processed by its internal
RNN and the specific architectures considered for implementing
and training KalmanNet in Subsections III-B-III-D. Finally, we
provide a discussion in Subsection III-E.

A. High Level Architecture

We formulate KalmanNet by identifying the specific compu-
tations of the EKF that are based on unavailable knowledge. As
detailed in Subsection II-B, the functions f(·) andh(·) are known
(though perhaps inaccurately); yet the covariance matrices Q
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Fig. 2. KalmanNet block diagram.

and R are unavailable. These missing statistical moments are
used in MB Kalman filtering only for computing the KG (see
Fig. 1). Thus, we design KalmanNet to learn the KG from data,
and combine the learned KG in the overall KF flow. This high
level architecture is illustrated in Fig. 2.

In each time instance t ∈ T , similarly to the EKF, KalmanNet
estimates x̂t in two steps; prediction and update.

1) The prediction step is the same as in the MB EKF, except
that only the first-order statistical moments are predicted.
In particular, a prior estimate for the current state x̂

t
∣∣t−1

is computed from the previous posterior x̂t−1 via (8a).
Then, a prior estimate for the current observation ŷ

t
∣∣t−1

is computed from x̂
t
∣∣t−1

via (8b). As opposed to its MB

counterparts, KalmanNet does not rely on the knowledge
of noise distribution and does not maintain an explicit
estimate of the second-order statistical moments.

2) In the update step, KalmanNet uses the new observation
yt to compute the current state posterior x̂t from the
previously computed prior x̂

t
∣∣t−1

in a similar manner to

the MB KF as in (5a), i.e., using the innovation term
Δyt computed via (7) and the KG Kt. As opposed to
the MB EKF, here the computation of the KG is not given
explicitly; rather, it is learned from data using an RNN,
as illustrated in Fig. 2. The inherent memory of RNNs
allows to implicitly track the second-order statistical mo-
ments without requiring knowledge of the underlying
noise statistics.

Designing an RNN to learn how to compute the KG as part
of an overall KF flow requires answers to three key questions:

1) From which input features (signals) will the network learn
the KG?

2) What should be the architecture of the internal RNN?
3) How will this network be trained from data?
In the following sections we address these questions.

B. Input Features

The MB KF and its variants compute the KG from knowledge
of the underlying statistics. To implement such computations in
a learned fashion, one must provide input (features) that capture
the knowledge needed to evaluate the KG to a neural network.
The dependence of Kt on the statistics of the observations

and the state process indicates that in order to track it, in
every time step t ∈ T , the RNN should be provided with input
containing statistical information of the observations yt and the
state-estimate x̂t−1. Therefore, the following quantities that are
related to the unknown statistical relationship of the SS model
can be used as input features to the RNN:

F1 The observation difference Δỹt = yt − yt−1.
F2 The innovation difference Δyt = yt − ŷ

t
∣∣t−1

.

F3 The forward evolution difference Δx̃t = x̂t|t − x̂t−1|t−1.
This quantity represents the difference between two con-
secutive posterior state estimates, where for time instance
t, the available feature is Δx̃t−1.

F4 The forward update difference Δx̂t = x̂t|t − x̂t|t−1, i.e.,
the difference between the posterior state estimate and
the prior state estimate, where again for time instance t
we use Δx̂t−1.

Features F1 and F3 encapsulate information about the state-
evolution process, while features F2 and F4 encapsulate the
uncertainty of our state estimate. The difference operation re-
moves the predictable components, and thus the time series of
differences is mostly affected by the noise statistics that we
wish to learn. The RNN described in Fig. 2 can use all the
features, although extensive empirical evaluation suggests that
the specific choice of combination of features depends on the
problem at hand. Our empirical observations indicate that good
combinations are {F1, F2, F4} and {F1, F3, F4}.

C. Neural Network Architecture

The internal DNN of KalmanNet uses the features discussed
in the previous section to compute the KG. It follows from (6)
that computing the KG Kt involves tracking the second-order
statistical moments Σt. The recursive nature of the KG compu-
tation indicates that its learned module should involve an internal
memory element as an RNN to track it.

We consider two architectures for the KG computing RNN.
The first, illustrated in Fig. 3, aims at using the internal memory
of RNNs to jointly track the underlying second-order statistical
moments required for computing the KG in an implicit manner.
To that aim, we use GRU cells [21] whose hidden state is of
the size of some integer product of m2 + n2, which is the joint
dimensionality of the tracked moments Σ̂t|t−1 in (3b), and Ŝt in
(4b). In particular, we first use a fully connected (FC) input layer
whose output is the input to the GRU. The GRU state vector ht

is mapped into the estimated KG Kt ∈ Rm×n using an output
FC layer with m · n neurons. While the illustration in Fig. 3
uses a single GRU layer, one can also utilize multiple layers to
increase the capacity and abstractness of the network, as we do in
the numerical study reported in Subsection IV-E. The proposed
architecture does not directly design the hidden state of the GRU
to correspond to the unknown second-order statistical moments
that are tracked by the MB KF. As such, it uses a relatively
large number of state variables that are expected to provide the
required tracking capacity. For example, in the numerical study
in Section IV we set the dimensionality of ht to be 10 · (m2 +
n2). This often results in substantial over-parameterization, as
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Fig. 3. KalmanNet RNN block diagram (architecture #1). The architecture
comprises a fully connected input layer, followed by a GRU layer (whose internal
division into gates is illustrated [21]) and an output fully connected layer. Here,
the input features are F2 and F4.

Fig. 4. KalmanNet RNN block diagram (architecture #2). The input features
are used to update three GRUs with dedicated FC layers, and the overall
interconnection between the blocks is based on the flow of the KG computation
in the MB KF.

the number of GRU parameters grows quadratically with the
number of state variables [68].

The second architecture uses separate GRU cells for each
of the tracked second-order statistical moments. The division
of the architecture into separate GRU cells and FC layers and
their interconnection is illustrated in Fig. 4. As shown in the
figure, the network composes three GRU layers, connected in
a cascade with dedicated input and output FC layers. The first
GRU layer tracks the unknown state noise covariance Q, thus
tracking m2 variables. Similarly, the second and third GRUs
track the predicted moments Σ̂t|t−1 (3b) and Ŝt (4b), thus
havingm2 andn2 hidden state variables, respectively. The GRUs

are interconnected such that the learned Q is used to compute
Σ̂t|t−1, which in turn is used to obtain Ŝt, while both Σ̂t|t−1 and

Ŝt are involved in producing Kt (6). This architecture, which is
composed of a non-standard interconnection between GRUs and
FC layers, is more directly tailored towards the formulation of
the SS model and the operation of the MB KF compared with the
simpler first architecture. As such, it provides lesser abstraction;
i.e., it is expected to be more constrained in the family of
mappings it can learn compared with the first architecture, while
as a result also requiring less trainable parameters. For instance,
in the numerical study reported in Subsection IV-D, utilizing
the first architecture requires the order of 5 · 105 trainable pa-
rameters, while the second architecture utilizes merely 2.5 · 104
parameters.

D. Training Algorithm

KalmanNet is trained using the available labeled data set
in a supervised manner. While we use a neural network for
computing the KG rather than for directly producing the estimate
x̂t|t, we train KalmanNet end-to-end. Namely, we compute the
loss function L based on the state estimate x̂t, which is not the
output of the internal RNN. Since this vector takes values in a
continuous set Rm, we use the squared-error loss,

L =
∥∥xt − x̂t|t

∥∥2 (10)

which is also used to evaluate the MB KF. By doing so, we build
upon the ability to backpropagate the loss to the computation of
the KG. One can obtain the loss gradient with respect to the KG
from the output of KalmanNet since

∂L
∂Kt

=
∂ ‖KtΔyt −Δxt‖2

∂Kt

= 2 · (Kt ·Δyt −Δxt) ·Δy�
t , (11)

where Δxt � xt − x̂t|t−1. The gradient computation in (11)
indicates that one can learn the computation of the KG by
training KalmanNet end-to-end using the squared-error loss. In
particular, this allows to train the overall filtering system without
having to externally provide ground truth values of the KG for
training purposes.

The data set used for training comprisesN trajectories that can
be of varying lengths. Namely, by letting Ti be the length of the
ith training trajectory, the data set is given byD = {(Yi,Xi)}N1 ,
where

Yi =
[
y
(i)
1 , . . . ,y

(i)
Ti

]
, Xi =

[
x
(i)
0 ,x

(i)
1 , . . . ,x

(i)
Ti

]
. (12)

By letting Θ denote the trainable parameters of the RNN,
and γ be a regularization coefficient, we then construct an �2
regularized mean-squared error (MSE) loss measure

�i (Θ) =
1

Ti

Ti∑
t=1

∥∥∥x̂t

(
y
(i)
t ;Θ

)
−x

(i)
t

∥∥∥2 + γ · ‖Θ‖2 . (13)

To optimizeΘ, we use a variant of mini-batch stochastic gradient
descent in which for every batch indexed by k, we choose M <
N trajectories indexed by ik1 , . . . , i

k
M , computing the mini-batch
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loss as

Lk (Θ) =
1

M

M∑
j=1

�ikj (Θ) . (14)

Since KalmanNet is a recursive architecture with both an
external recurrence and an internal RNN, we use the back-
propagation through time (BPTT) algorithm [69] to train it.
Specifically, we unfold KalmanNet across time with shared
network parameters, and then compute a forward and backward
gradient estimation pass through the network. We consider three
different variations of applying the BPTT algorithm for training
KalmanNet:

V1 Direct application of BPTT, where for each training itera-
tion the gradients are computed over the entire trajectory.

V2 An application of the truncated BPTT algorithm [70].
Here, given a data set of long trajectories (e.g., T = 3000
time steps), each long trajectory is divided into multiple
short trajectories (e.g., T = 100 time steps), which are
shuffled and used during training.

V3 An alternative application of truncated BPTT, where we
truncate each trajectory to a fixed (and relatively short)
length, and train using these short trajectories.

Overall, directly applying BPTT via V1 may be computa-
tionally expensive and unstable. Therefore, a favored approach
is to first use the truncated BPTT as in V2 as a warm-up
phase (train first on short trajectories) in order to stabilize its
learning process, after which KalmanNet is tuned using V1. The
procedure in V3 is most suitable for systems that are known
to be likely to quickly converge to a steady state (e.g., linear
SS models). In our numerical study, reported in Section IV, we
utilize all three approaches.

E. Discussion

KalmanNet is designed to operate in a hybrid DD/MB manner,
combining deep learning with the classical EKF procedure. By
identifying the specific noise-model-dependent computations of
the EKF and replacing them with a dedicated RNN integrated in
the EKF flow, KalmanNet benefits from the individual strengths
of both DD and MB approaches. The augmentation of the
EKF with dedicated deep learning modules results in several
core differences between KalmanNet and its MB counterpart.
Unlike the MB EKF, KalmanNet does not attempt to linearize
the SS model, and does not impose a statistical model on the
noise signals. In addition, KalmanNet filters in a non-linear
manner, as its KG matrix depends on the input yt. Due to these
differences, compared to MB Kalman filtering, KalmanNet is
more robust to model mismatch and can infer more efficiently,
as demonstrated in Section IV. In particular, the MB EKF is
sensitive to inaccuracies in the underlying SS model, e.g., in
f(·) and h(·), while KalmanNet can overcome such uncertainty
by learning an alternative KG that yields accurate estimation.

Furthermore, KalmanNet is derived for SS models when
noise statistics are not specified explicitly. A MB approach to
tackle this without relying on data employs the robust Kalman
filter [15]–[17], which designs the filter to minimize the maximal
MSE within some range of assumed SS models, at the cost of

performance loss, compared to knowing the true model. When
one has access to data, the direct strategy to implement the
EKF in such setups is to use the data to estimate Q and R,
either directly from the data or by backpropagating through the
operation of the EKF as in [51], and utilize these estimates to
compute the KG. As covariance estimation can be a challenging
task when dealing with high-dimensional signals, KalmanNet
bypasses this need by directly learning the KG, and by doing so
approaches the MSE of MB Kalman filtering with full knowl-
edge of the SS model, as demonstrated in Section IV. Finally, the
computation complexity for each time step t ∈ T is also linear
in the RNN dimensions and does not involve matrix inversion.
This implies that KalmanNet is a good candidate to apply for
high dimensional SS models and on computationally limited
devices.

Compared to purely DD state estimation, KalmanNet benefits
from its model awareness and the fact that its operation follows
the flow of MB Kalman filtering rather than being utilized as
a black box. As numerically observed in Section IV, Kalman-
Net achieves improved MSE compared to utilizing RNNs for
end-to-end state estimation, and also approaches the MMSE
performance achieved by the MB KF in linear Gaussian SS
models. Furthermore, the fact that KalmanNet preserves the flow
of the EKF implies that the intermediate features exchanged
between its modules have a specific operation meaning, pro-
viding interpretability that is often scarce in end-to-end, deep
learning systems. Finally, the fact that KalmanNet learns to
compute the KG indicates the possibility of providing not only
estimates of the state xt, but also a measure of confidence
in this estimate, as the KG can be related to the covariance
of the estimate, as initially explored in [71]. These combined
gains of KalmanNet over purely MB and DD approaches were
recently observed in [72], which utilized an early version of
KalmanNet for real-time velocity estimation in an autonomous
racing car. In such a setup, a non-linear, MB mixed KF was
traditionally used, and suffered from performance degradation
due to inherent mismatches in the formulation of the SS model
describing the problem. Nonetheless, previously proposed DD
techniques relying on RNNs for end-to-end state estimation were
not operable in the desired frequencies on the hardware limited
vehicle control unit. It was shown in [72] that the application
of KalmanNet allowed to achieve improved real-time velocity
tracking compared to MB techniques while being deployed on
the control unit of the vehicle.

Our design of KalmanNet gives rise to many interesting future
extensions. Since we focus here on SS models where the map-
pings f(·) andh(·) are known up to some approximation errors, a
natural extension of KalmanNet is to use the data to pre-estimate
them, as demonstrated briefly in the numerical study. Another
alternative to cope with these approximation errors is to utilize
dedicated neural networks to learn these mappings while training
the entire model in an end-to-end fashion. Doing so is expected
to allow KalmanNet to be utilized in scenarios with analytically
intractable SS models, as often arises when tracking based on
unstructured observations, e.g., visual observations as in [56].

While we train KalmanNet in a supervised manner using
labeled data, the fact that it preserves the operation of the
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MB EKF that produces a prediction of the next observation
ŷt|t−1 for each time instance indicates the possibility of using
this intermediate feature for unsupervised training. One can
thus envision KalmanNet being trained offline in a supervised
manner, while tracking variations in the underlying SS model at
run-time by online self supervision, following a similar rationale
to that used in [24], [25] for deep symbol detection in time-
varying communication channels. Finally, we note that while
we focus here on filtering tasks, SS models are used to represent
additional related problems such as smoothing and prediction,
as discussed in Subsection II-A. The fact that KalmanNet does
not explicitly estimate the SS model implies that it cannot simply
substitute these parameters into an alternative algorithm capable
of carrying out tasks other than filtering. Nonetheless, one can
still design DNN-aided algorithms for these tasks operating
with partially known SS models as extensions of KalmanNet,
in the same manner as many MB algorithms build upon the
KF. For instance, as the MB KF constitutes the first part of the
Rauch-Tung-Striebel smoother [73], one can extend KalmanNet
to implement high-performance smoothing in partially known
SS models, as we have recently began investigating in [67].
Nonetheless, we leave the exploration of extensions of Kalman-
Net to alternative tasks associated with SS models for future
work.

IV. EXPERIMENTS AND RESULTS

In this section we present an extensive numerical study of
KalmanNet1, evaluating its performance in multiple setups and
comparing it to various benchmark algorithms:

a) In our first experimental study, we consider multiple linear
SS models, and compare KalmanNet to the MB KF which
is known to minimize the MSE in such a setup. We also
confirm our design and architectural choices by comparing
KalmanNet with alternative RNN based end-to-end state
estimators.

b) We next consider two non-linear SS models, a sinusoidal
model, and the chaotic Lorenz attractor. We compare
KalmanNet with the common non-linear MB benchmarks;
namely, the EKF, UKF, and PF.

c) In our last study we consider a localization use case based
on the Michigan NCLT data set [28]. Here, we compare
KalmanNet with MB KF that assumes a linear Wiener kine-
matic model [36] and with a vanilla RNN based end-to-end
state estimator, and demonstrate the ability of KalmanNet
to track real world dynamics that was not synthetically
generated from an underlying SS model.

A. Experimental Setting

Throughout the numerical study and unless stated otherwise,
in the experiments involving synthetic data, the SS model is

1The source code used in our numerical study along with the complete set
of hyperparameters used in each numerical evaluation can be found online at
https://github.com/KalmanNet/KalmanNet_TSP.

generated using diagonal noise covariance matrices; i.e.,

Q = q2 · I, R = r2 · I, ν � q2

r2
. (15)

By (15), setting ν to be 0 dB implies that both the state noise and
the observation noise have the same variance. For consistency,
we use the term full information for cases where the SS model
available to KalmanNet and its MB counterparts accurately rep-
resents the underlying dynamics. More specifically, KalmanNet
operates with full knowledge of f(·) andh(·), and without access
to the noise covariance matrices, while its MB counterparts
operate with an accurate knowledge of Q and R. The term
partial information refers to the case where KalmanNet and its
MB counterparts operate with some level of model mismatch,
where the SS model design parameters do not represent the
underlying dynamics accurately (i.e., are not equal to the SS
parameters from which the data was generated). Unless stated
otherwise, the metric used to evaluate the performance is the
MSE on a [dB] scale. In the figures we depict the MSE in [dB]
versus the inverse observation noise level, i.e., 1

r2 , also on a [dB]
scale. In some of our experiments, we evaluate both the MSE
and its standard deviation, where we denote these measures by
μ̂ and σ̂, respectively.

1) KalmanNet Setting: In Section III we present several ar-
chitectures and training mechanisms that can be used when im-
plementing KalmanNet. In our experimental study we consider
three different configurations of KalmanNet:

C1 KalmanNet architecture #1 with input features {F2, F4}
and with training algorithm V3.

C2 KalmanNet architecture #1 with input features {F2, F4}
and with training algorithm V1.

C3 KalmanNet architecture #1 with input features {F1, F3,
F4} and with training algorithm V2.

C4 KalmanNet architecture #2 with all input features and
with training algorithm V1.

In all our experiments KalmanNet was trained using the Adam
optimizer [74].

2) Model-Based Filters: In the following experimental study
we compare KalmanNet with several MB filters. For the UKF
we used the software package [75], while the PF is imple-
mented based on [76] using 100 particles and without paral-
lelization. During our numerical study, when model uncertainty
was introduced, we optimized the performance of the MB al-
gorithms by carefully tuning the covariance matrices, usually
via a grid search. For long trajectories (e.g., T > 1500) it was
sometimes necessary to tune these matrices, even in the case
of full information, to compensate for inaccurate uncertainty
propagation due to non-linear approximations and to avoid
divergence.

B. Linear State Space Model

Our first experimental study compares KalmanNet to the MB
KF for different forms of synthetically generated linear system
dynamics. Unless stated otherwise, hereF takes the controllable
canonical form.
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Fig. 5. Linear SS model with full information.

1) Full Information: We start by comparing KalmanNet of
setting C1 to the MB KF for the case of full information, where
the latter is known to minimize the MSE. Here, we set H to
take the inverse canonical form, and ν = 0 [dB]. To demonstrate
the applicability of KalmanNet to various linear systems, we
experimented with systems of different dimensions; namely,
m× n ∈ {2× 2, 5× 5, 10× 1}, and with trajectories of dif-
ferent lengths; namely, T ∈ {50, 100, 150, 200}. In Fig. 5(a) we
can clearly observe that KalmanNet achieves the MMSE of the
MB KF. Moreover, to further evaluate the gains of the hybrid
architecture of KalmanNet, we check that its learning is transfer-
able. Namely, in some of the experiments, we test KalmanNet on
longer trajectories then those it was trained on, and with different
initial conditions. The fact that KalmanNet achieves the MMSE
lower bound also for these cases indicates that it indeed learns to
implement Kalman filtering, and it is not tailored to the trajecto-
ries presented during training, with dependency only on the SS
model.

2) Neural Model Selection: Next, we evaluate and confirm
our design and architectural choices by considering a 2× 2 setup
(similar to the previous one), and by comparing KalmanNet with
setting C1 to two RNN based architectures of similar capacity
applied for end-to-end state estimation:
� Vanilla RNN directly maps the observed yt to an estimate

of the state x̂t.
� MB RNN imitates the Kalman filtering operation by first

recovering x̂
t
∣∣t−1

using domain knowledge, i.e., via (3a),

and then uses the RNN to estimate an increment Δx̂t from
the prior to posterior.

All RNNs utilize the same architecture as in KalmanNet with
a single GRU layer and the same learning hyperparameters.
In this experiment we test the trained models on trajectories
with the same length as they were trained on, namely T = 20.
We can clearly observe how each of the key design consid-
erations of KalmanNet affect the learning curves depicted in
Fig. 5(b):
� The incorporation of the known SS model allows the MB

RNN to outperform the vanilla RNN, although both con-
verge slowly and fail to achieve the MMSE.

� Using the sequences of differences as input notably im-
proves the convergence rate of the MB RNN, indicating the

TABLE I
TEST MSE IN [dB] WHEN TRAINED USING T = 20

benefits of using the differences as features, as discussed
in Subsection III-B.

� Learning is further improved by using the RNN for recov-
ering the KG as part of the KF flow, as done by KalmanNet,
rather than for directly estimating xt.

To further evaluate the gains of KalmanNet over end-to-end
RNNs, we compare the pre-trained models using trajectories
with different initial conditions and a longer time horizon (T =
200) than the one on which they were trained (T = 20). The
results, summarized in Table I, show that KalmanNet maintains
achieving the MMSE, as already observed in Fig. 5(a). The
MB RNN and vanilla RNN are more than 50 [dB] from the
MMSE, implying that their learning is not transferable and
that they do not learn to implement Kalman filtering. However,
when provided with the difference features as we proposed in
Subsection III-B, the DD systems are shown to be applicable
in longer trajectories, with KalmanNet achieving MSE within a
minor gap of that achieved by the MB KF. The results of this
study validate the considerations used in designing KalmanNet
for the DD filtering problem discussed in Subsection II-B.

3) Partial Information: To conclude our study on linear mod-
els, we next evaluate the robustness of KalmanNet to model
mismatch as a result of partial model information. We simulate
a 2× 2 SS model with mismatches in either the state-evolution
model (F) or in the state-observation model (H).

State-Evolution Mismatch: Here, we set T = 20 and ν =
0 [dB] and use a rotated evolution matrix Fα◦ , α ∈ {10◦, 20◦}
for data generation. The state-evolution matrix available to the
filters, denoted F0, is again set to take the controllable canonical
form. The mismatched design matrix F0 is related to true Fα◦

via

Fα◦ = Rxy
α◦ · F0, Rxy

α◦ =

(
cosα − sinα

sinα cosα

)
. (16)
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Fig. 6. Linear SS model, partial information.

Such scenarios represent a setup in which the analytical approx-
imation of the SS model differs from the true generative model.
The resulting MSE curves depicted in Fig. 6(a) demonstrate that
KalmanNet (with setting C2) achieves a 3 [dB] gain over the MB
KF. In particular, despite the fact that KalmanNet implements
the KF with an inaccurate state-evolution model, it learns to
apply an alternative KG, resulting in MSE within a minor gap
from the MMSE; i.e., from the KF with the true Fα◦ plugged in.

State-Observation Mismatch: Next, we simulate a setup with
state-observation mismatch while setting T = 100 and ν =
−20 [dB]. The model mismatch is achieved by using a rotated
observation matrix Hα=10◦ for data generation, while using
H = I as the observation design matrix. Such scenarios rep-
resent a setup in which a slight misalignment (≈5%) of the
sensors exists. The resulting achieved MSE depicted in Fig. 6(b)
demonstrates that KalmanNet (with setting C2) converges to
within a minor gap from the MMSE. Here, we performed an
additional experiment, first estimating the observation matrix
from data, and then KalmanNet used the estimate matrix denoted
Ĥα. In this case it is observed in Fig. 6(b) that KalmanNet
achieves the MMSE lower bound. These results imply that
KalmanNet converges also in distribution to the KF.

C. Synthetic Non-Linear Model

Next, we consider a non-linear SS model, where the state-
evolution model takes a sinusoidal form, while the state-
observation model is a second order polynomial. The resulting
SS model is given by

f (x) = α · sin (β · x+ φ) + δ, x ∈ R2, (17a)

h (x) = a · (b · x+ c)2 , y ∈ R2. (17b)

In the following we generate trajectories of T = 100 time
steps from the noisy SS model in (1), with ν = −20 [dB], while
using f(·) and h(·) as in (17) computed in a component-wise
manner, with parameters as in Table II. KalmanNet is used with
setting C4.

The MSE values for different levels of observation noise
achieved by KalmanNet compared with the MB EKF are de-
picted in Fig. 7 for both full and partial model information.
The full evaluation with the MB EKF, UKF, and PF is given in
Table III for the case of full information, and in Table IV for
the case of partial information. We first observe that the EKF

TABLE II
NON-LINEAR TOY PROBLEM PARAMETERS

Fig. 7. Non-linear SS model. KalmanNet outperforms EKF.

TABLE III
MSE [dB] - SYNTHETIC NON-LINEAR SS MODEL; FULL INFORMATION

achieves the lowest MSE values among the MB filters, therefore
serving as our main MB benchmark in our experimental studies.
For full information and in the low noise regime, EKF achieves
the lowest MSE values due to its ability to approach the MMSE
in such setups, and KalmanNet achieves similar performance.
For higher noise levels; i.e., for 1

r2 = −12.04 [dB], the MB
EKF suffers from degraded performance due to a non-linear
effect. Nonetheless, by learning to compute the KG from data,
KalmanNet manages to overcome this and achieves superior
MSE.

In the presence of partial model information, the state-
evolution parameters used by the filters differs slightly from the
true model, resulting in a notable degradation in the performance

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 31,2022 at 08:37:43 UTC from IEEE Xplore.  Restrictions apply. 



1542 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

TABLE IV
MSE [dB] - SYNTHETIC NON-LINEAR SS MODEL; PARTIAL INFORMATION

of the MB filters due to the model mismatch. In all experiments,
KalmanNet overcomes such mismatches, and its performance is
within a small gap of that achieved when using full information
for such setups. We thus conclude that in the presence of harsh
non-linearities as well as model uncertainty due to inaccurate
approximation of the underlying dynamics, where MB varia-
tions of the KF fail, KalmanNet learns to approach the MMSE
while maintaining the real-time operation and low complexity
of the KF.

D. Lorenz Attractor

The Lorenz attractor is a three-dimensional chaotic solu-
tion to the Lorenz system of ordinary differential equations in
continuous-time. This synthetically generated system demon-
strates the task of online tracking a highly non-linear trajectory
and a real world practical challenge of handling mismatches due
to sampling a continuous-time signal into discrete-time [77].

In particular, the noiseless state-evolution of the continuous-
time process xτ with τ ∈ R+ is given by

∂

∂τ
xτ =A (xτ ) · xτ , A (xτ )=

⎛
⎜⎝−10 10 0

28 −1 −x1,τ

0 x1,τ − 8
3

⎞
⎟⎠ .

(18)
To get a discrete-time, state-evolution model, we repeat the steps
used in [35]. First, we sample the noiseless process with sam-
pling interval Δτ and assume that A(xτ ) can be kept constant
in a small neighborhood of xτ ; i.e.,

A (xτ ) ≈ A (xτ+Δτ ) .

Then, the continuous-time solution of the differential system
(18), which is valid in the neighborhood of xτ for a short time
interval Δτ , is

xτ+Δτ = exp (A (xτ ) ·Δτ) · xτ . (19)

Finally, we take the Taylor series expansion of (19) and a finite
series approximation (with J coefficients), which results in

F (xτ ) � exp (A (xτ ) ·Δτ) ≈ I+

J∑
j=1

(A (xτ ) ·Δτ)j

j!
.

(20)
The resulting discrete-time evolution process is given by

xt+1 = f (xt) = F (xt) · xt. (21)

The discrete-time state-evolution model in (21), with additional
process noise, is used for generating the simulated Lorenz

TABLE V
MSE [dB] - LORENZ ATTRACTOR WITH NOISY STATE OBSERVATIONS

TABLE VI
MSE [dB] - LORENZ ATTRACTOR WITH NON-LINEAR OBSERVATIONS

attractor data. Unless stated otherwise the data was generated
with J = 5 Taylor order and Δτ = 0.02 sampling interval. In
the following experiments, KalmanNet is consistently invariant
of the distribution of the noise signals, with the models it uses for
f(·) and h(·) varying between the different studies, as discussed
in the sequel.

1) Full Information: We first compare KalmanNet to the MB
filter when using the state-evolution matrix F computed via (20)
with J = 5.

Noisy state observations: Here, we set h(·) to be the identity
transformation, such that the observations are noisy versions of
the true state. Further, we set ν = −20 [dB] and T = 2000. As
observed in Fig. 8(a), despite being trained on short trajectories
T = 100, KalmanNet (with setting C3) achieves excellent MSE
performance—namely, comparable to EKF—and outperforms
the UKF and PF. The full details of the experiment are given
in Table V. All the MB algorithms were optimized for per-
formance; e.g., applying the EKF with full model information
achieves an unstable state tracking performance, with MSE val-
ues surpassing 30 [dB]. To stabilize the EKF, we had to perform
a grid search using the available data set to optimize the process
noise Q used by the filter.

Noisy non-linear observations: Next, we consider the case
where the observations are given by a non-linear function of
the current state, setting h to take the form of a transformation
from a cartesian coordinate system to spherical coordinates. We
further set T = 20 and ν = 0 [dB]. From the results depicted in
Fig. 8(b) and reported in Table VI we observe that in such non-
linear setups, the sub-optimal MB approaches operating with
full information of the SS model are substantially outperformed
by KalmanNet (with setting C4).

2) Partial Information: W proceed to evaluate KalmanNet
and compare it to its MB counterparts under partial model infor-
mation. We consider three possible sources of model mismatch
arising in the Lorenz attractor setup:
� State-evolution mismatch due to use of a Taylor series

approximation of insufficient order.
� State-observation mismatch as a result of misalignment due

to rotation.
� State-observation mismatch as a result of sampling from

continuous-time to discrete-time.
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Fig. 8. Lorenz attractor, full information.

Fig. 9. Lorenz attractor, partial information.
TABLE VII

MSE [dB] - LORENZ ATTRACTOR WITH STATE-EVOLUTION MISMATCH J = 2

Since the EKF produced the best results in the full information
case among all non-linear MB filtering algorithms, we use it as
a baseline for the MSE lower bound.

State-evolution mismatch: In this study, both KalmanNet
and the MB algorithms operate with a crude approximation
of the evolution dynamics obtained by computing (20) with
J = 2, while the data is generated with an order J = 5 Taylor
series expansion. We again set h to be the identity mapping,
T = 2000, and ν = −20 [dB]. The results, depicted in Fig. 9(a)
and reported in Table VII, demonstrate that KalmanNet (with
setting C4) learns to partially overcome this model mismatch,
outperforming its MB counterparts operating with the same level
of partial information.

State-observation rotation mismatch: Here, the presence
of mismatch in the observations model is simulated by using
data generated by an identity matrix rotated by merely θ = 1◦.
This rotation is equivalent to sensor misalignment of ≈ 0.55%.
The results depicted in Fig. 9(b) and reported in Table VIII
clearly demonstrate that this seemingly minor rotation can cause

TABLE VIII
MSE [dB] - LORENZ ATTRACTOR WITH OBSERVATION ROTATION

a severe performance degradation for the MB filters, while
KalmanNet (with setting C3) is able to learn from data to
overcome such mismatches and to notably outperform its MB
counterparts, which are sensitive to model uncertainty. Here,
we trained KalmanNet on short trajectories with T = 100 time
steps, tested it on longer trajectories with T = 1000 time steps,
and set ν = −20 [dB]. This again demonstrates that the learning
of KalmanNet is transferable.

State-observations sampling mismatch: We conclude our
experimental study of the Lorenz attractor setup with an eval-
uation of KalmanNet in the presence of sampling mismatch.
Here, we generate data from the Lorenz attractor SS model
with an approximate continuous-time evolution process using
a dense sampling rate, set to Δτ = 10−5. We then sub-sample
the noiseless observations from the evolution process by a ratio
of 1

2000 and get a decimated process with Δτd = 0.02. This
procedure results in an inherent mismatch in the SS model due to
representing an (approximately) continuous-time process using
a discrete-time sequence. In this experiment, no process noise
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Fig. 10. Lorenz attractor with sampling mismatch (decimation), T = 3000.

TABLE IX
LORENZ ATTRACTOR WITH SAMPLING MISMATCH

Fig. 11. NCLT data set: ground truth vs. integrated velocity, trajectory from
session with date 2012-01-22 sampled at 1 Hz.

was applied, and the observations are again obtained with h set
to identity and T = 3000.

The resulting MSE values for 1
r2 = 0 [dB] of KalmanNet with

configuration C4 compared with the MB filters and with the
end-to-end neural network termed MB-RNN (see Subsection
IV-B) are reported in Table IX. The results demonstrate that
KalmanNet overcomes the mismatch induced by representing a
continuous-time SS model in discrete-time, achieving a substan-
tial processing gain over the MB alternatives due to its learning
capabilities. The results also demonstrate that KalmanNet sig-
nificantly outperforms a straightforward combination of domain
knowledge; i.e. a state-transition function f(·), with end-to-end
RNNs. A fully model-agnostic RNN was shown to diverge when
trained for this task. In Fig. 10 we visualize how this gain is
translated into clearly improved tracking of a single trajectory.
To show that these gains of KalmanNet do not come at the
cost of computationally slow inference, we detail the average
inference time for all filters (without parallelism). The stopwatch
timings were measured on the same platform – Google Colab
with CPU: Intel(R) Xeon(R) CPU @ 2.20 GHz, GPU: Tesla
P100-PCIE-16 GB. We see that KalmanNet infers faster than the
classical methods, thanks to the highly efficient neural network
computations and the fact that, unlike the MB filters, it does not
involve linearization and matrix inversions for each time step.

E. Real World Dynamics: Michigan NCLT Data Set

In our final experiment we evaluate KalmanNet on the Michi-
gan NCLT data set [28]. This data set comprises different labeled
trajectories, with each one containing noisy sensor readings
(e.g., GPS and odometer) and the ground truth locations of a
moving Segway robot. Given these noisy readings, the goal of
the tracking algorithm is to localize the Segway from the raw
measurements at any given time.

To tackle this problem we model the Segway kinematics (in
each axis separately) using the linear Wiener velocity model,
where the acceleration is modeled as a white Gaussian noise
process wτ with variance q2 [36]:

xτ = (p, v)� ∈ R2,
∂

∂τ
xτ =

(
0 1

0 0

)
· xτ +

(
0

wτ

)
.

(22)
Here, p and v are the position and velocity, respectively. The
discrete-time state-evolution with sampling interval Δτ is ap-
proximated as a linear SS model in which the evolution matrix
F and noise covariance Q are given by

F =

(
1 Δτ

0 1

)
, Q = q2 ·

(
1
3 · (Δτ)3 1

2 · (Δτ)2

1
2 · (Δτ)2 Δτ

)
.

(23)
Since KalmanNet does not rely on knowledge of the noise
covariance matrices, Q is given here for the use of the MB KF
and for completeness.

The goal is to track the underlying state vector in both axes
solely using odometry data; i.e., the observations are given by
noisy velocity readings. In this case the observations obey a
noisy linear model:

y ∈ R, H = (0, 1). (24)

Such settings where one does not have access to direct mea-
surements for positioning are very challenging yet practical and
typical for many applications where positioning technologies
are not available indoors, and one must rely on noisy odometer
readings for self-localization. Odometry-based estimated posi-
tions typically start drifting away at some point.

In the assumed model, the x-axis (in cartesian coordinates)
are decoupled from the y-axis, and the linear SS model used for
Kalman filtering is given by

F̃ =

(
F 0

0 F

)
∈ R4×4, Q̃ =

(
Q 0

0 Q

)
∈ R4×4, (25a)

H̃ =

(
H 0

0 H

)
∈ R2×4, R̃ =

(
r2 0

0 r2

)
∈ R2×2. (25b)

This model is equivalent to applying two independent KFs in
parallel. Unlike the MB KF, KalmanNet does not rely on noise
modeling, and can thus accommodate dependency in its learned
KG.

We arbitrarily use the session with date 2012-01-22 that
consists of a single trajectory. Sampling at 1[Hz] results in 5,850
time steps. We removed unstable readings and were left with
5,556 time steps. The trajectory was split into three sections:

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on March 31,2022 at 08:37:43 UTC from IEEE Xplore.  Restrictions apply. 



REVACH et al.: KALMANNET: NEURAL NETWORK AIDED KALMAN FILTERING FOR PARTIALLY KNOWN DYNAMICS 1545

TABLE X
NUMERICAL MSE [dB] FOR THE NCLT EXPERIMENT

85% for training (23 sequences of length T = 200), 10% for
validation (2 sequences, T = 200), and 5% for testing (1 se-
quence, T = 277). We compare KalmanNet with setting C1 to
end-to-end vanilla RNN and the MB KF, where for the latter the
matrices Q and R were optimized through a grid search.

Fig. 11 and Table X demonstrate the superiority of KalmanNet
for such scenarios. KF blindly follows the odometer trajectory
and is incapable of accounting for the drift, producing a very
similar or even worse estimation than the integrated velocity.
The vanilla RNN, which is agnostic of the motion model, fails
to localize. KalmanNet overcomes the errors induced by the
noisy odometer observations, and provides the most accurate
real-time locations, demonstrating the gains of combining MB
KF-based inference with integrated DD modules for real world
applications.

V. CONCLUSION

In this work we presented KalmanNet, a hybrid combination
of deep learning with the classic MB EKF. Our design iden-
tifies the SS-model-dependent computations of the MB EKF,
replacing them with a dedicated RNN operating on specific
features encapsulating the information needed for its operation.
Our numerical study shows that doing so enables KalmanNet to
carry out real-time state estimation in the same manner as MB
Kalman filtering, while learning to overcome model mismatches
and non-linearities. KalmanNet uses a relatively compact RNN
that can be trained with a relatively small data set and infers a
reduced complexity, making it applicable for high dimensional
SS models and computationally limited devices.
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