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Abstract

In generalized graph signal processing (GGSP), the signal associated with each vertex in a graph

is an element from a Hilbert space. In this paper, we study GGSP signal reconstruction as a kernel

ridge regression (KRR) problem. By devising an appropriate kernel, we show that this problem has a

solution that can be evaluated in a distributed way. We interpret the problem and solution using both

deterministic and Bayesian perspectives and link them to existing graph signal processing and GGSP

frameworks. We then provide an online implementation via random Fourier features. Under the Bayesian

framework, we investigate the statistical performance under the asymptotic sampling scheme. Finally,

we validate our theory and methods on real-world datasets.

Index Terms

Graph signal processing, generalized graph signal processing, kernel ridge regression, signal

reconstruction.

I. INTRODUCTION

In real-world signal processing, data is often associated with a network. Graph signal processing

(GSP) techniques have been proposed to perform filtering, sampling and reconstruction for this

class of signals by accommodating to the network structure [1], [2]. GSP models and exploits the

relationship between signals and graphs through the definitions of the graph Fourier transform
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(GFT) and frequency. In practice, GSP can be utilized to analyze brain signals [3], [4], denoise

an image [5], [6], and design recommendation systems [7].

Graph signal reconstruction aims to recover the entire graph signal based on observations

from a subset of vertices. The major tasks in graph signal reconstruction are designing optimal

sampling and recovery strategies [8], [9]. When the graph signal is bandlimited, [10] derived

a least squares estimator. Based on this estimator, [11] formulates the sampling problem as an

optimization problem. Assuming wide-sense stationary (WSS) and bandlimited signal and WSS

noise, [12] studied a greedy sampling scheme, and derived a bound for its recovery mean-squared

error (MSE). The paper [13] derived the Wiener filter for graph signal reconstruction under the

assumption of WSS, while [14] studied the reconstruction problem for time-varying graph signals.

By requiring smoothness in the vertex domain of the graph signals’ first-order difference over

time, reconstruction is formulated as an optimization problem. This optimization approach is

generalized and accelerated in [15] through the Sobolev smoothness term. The work [16] studied

the problem of recovering graph signals from nonlinear measurements.

Kernel-based GSP techniques have more flexibility in filtering and reconstruction, since it

introduces nonlinearity and generalizes the existing approaches. In [17], the graph signal is

modeled as a random nonlinear function of an arbitrary input with a specific covariance structure

adapted to the graph, known as a Gaussian process over a graph (GPG). The covariance structure

contains a scalar-valued kernel for differentiating the inputs and contains the graph structure

for regularizing the smoothness of the random graph signal. The papers [18]–[20] formulate a

learning problem with a graph signal target. Besides the standard kernel ridge regression (KRR)

fitness and regularization terms, this framework imposes smoothness on the output of the training

set. The work [21] generalizes the graph-time linear filter [22, eq. (7)] to a nonlinear predictor

via KRR. This model assumes the same nonlinear function on every vertex, hence can be made

adaptive and distributed by random Fourier features (RFFs). In the reconstruction problem, [23],

[24] design the graph kernel by viewing the graph signal as a function on the vertex set. This

approach generalizes the bandlimited graph signal reconstruction method. By implementing the

multi-kernel learning (MKL) strategy, it does not require knowledge of the signal bandwidth.

The aforementioned techniques are developed in terms of the classical GSP framework, where

each vertex signal is a scalar. In practice, the data associated with each vertex can have additional

structure. For example, on each vertex, the observation may be a discrete-time signal of length

T . This scenario is considered in the time-vertex framework [25]–[27], where the spatial-time
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structure is modeled by a Cartesian product graph, and the Fourier transform and filters are

then generalized to this graph. To be specific, the Cartesian product graph is constructed by

the underlying graph and the cyclic graph with T vertices, the latter of which represents time

steps. The data can then be embedded in this product graph as a standard graph signal. This

framework is further extended to the generalized graph signal processing (GGSP) framework

[28]–[30], where each vertex observation is an element from a Hilbert space, which can possibly

be infinite-dimensional. An important example is the case where each vertex is associated with

a continuous function on a bounded interval. This model allows for analyzing asynchronously

sampled signals on each vertex, which is not possible under the time-vertex framework.

In this paper, we explore kernel-based signal reconstruction within the GGSP framework.

Previous works have developed signal reconstruction methods within the traditional GSP or

time-vertex frameworks. However, to the best of our knowledge, no existing reconstruction

frameworks exist for the GGSP framework, which considers signals in a general Hilbert space.

Specifically, when the signal on each vertex is a real-valued function, by utilizing a reasonable

kernel, we will be able to reconstruct the signal well as long as the target signal is in the

corresponding reproducing kernel Hilbert space (RKHS).

To motivate our work, consider the Intel lab temperature dataset1 which consists of temperature

records from 54 sensors in a lab, collected between February and April of 2004. The ground

truth records and incomplete noisy observations on two connected sensors labeled as vertex 1

and 2 are shown in Fig. 1. Our goal is to reconstruct the signal at vertex 1. In the time interval

[0, 40000], there is a lack of observations on vertex 1. As shown in Fig. 1, the isolated KRR

method fails to reconstruct this part. On the other hand, our proposed approach, referred to as

KRR-GGSP, utilizes the graph structure to incorporate the observations from a vertex’s neighbor

to improve reconstruction. This example motivates the need for a new KRR framework under

GGSP, which is the focus of this paper. Unlike the methods under WSS or joint wide-sense

stationary (JWSS) assumptions [13], [27], KRR-GGSP does not require knowledge of the power

spectral density (PSD) of the signal, which can be hard to estimate when there are only noisy

and incomplete samples in the training set. Further numerical experiments in Section V illustrate

the utility of the approach presented in this paper.

Our main contributions are the following:

1http://db.csail.mit.edu/labdata/labdata.html
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Fig. 1. The upper and lower plots represent observations and ground truths from two connected vertices 1 and 2, respectively.

Green curves are ground truth signals, and the cyan dots represent the observations on each vertex. Note that reconstruction

based on the single vertex 1’s observations using KRR is much worse compared to the proposed KRR-GGSP approach.

1) We construct an appropriate kernel and formulate the signal reconstruction in GGSP as a

KRR problem. We interpret it as an extension of existing kernel-based frameworks.

2) We present an online approach for generalized graph signal reconstruction by utilizing RFF.

3) We compute the limit and asymptotic upper bound for conditional MSE of reconstruction

under the Bayesian framework.

4) We present numerical case studies to illustrate the utility of KRR-GGSP in several applica-

tions.

This paper is related to our conference paper [31], whose goal was to learn a map from a

generalized graph signal space to itself in filtering. We made use of the tensor product operator-

valued kernel to formulate this filtering problem. In this paper, we instead study the reconstruction

problem for generalized graph signal and our goal is to learn a function from the set of sample

points to R. Here the sample points are pairs of vertices and instances of the vertex function’s

domain. To achieve this, we consider a real-valued kernel defined on the set of sample points.
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We make use of the tensor product strategy to form a kernel.

The rest of this paper is organized as follows. In Section II, we formulate the signal

reconstruction problem in GGSP. In Section III, we derive the solution to this problem, discuss

its interpretation and compare it with existing methods. We also provide an online version of the

reconstruction problem. In Section IV, we analyze the statistical performance of our reconstruction

approach under the asymptotic case. In Section V, we validate our method on real-world datasets.

We conclude in Section VI.

Notations. We use plain lower cases (e.g., x) to represent scalars and scalar-valued functions.

We use bold lower cases (e.g., x) to represent vectors and vector-valued functions. Note that in

this paper, we consider generalized graph signals as scalar-valued functions. Although they are

vectors in linear spaces, we use the functional view for ease of explanation. Bold upper cases (e.g.,

S) are used to denote operators, including matrices. In particular, we write the N -dimensional

identity operator or matrix as IN . We use calligraphic letters to represent spaces (e.g., X ), except

for standard spaces like R and N, which are the Euclidean space and space of natural numbers,

respectively. For a Hilbert space H, its inner product is ⟨·, ·⟩H and corresponding norm is ∥·∥H.

For two random variables (or elements) x and y, we write x ∈ σ(y) if x is measurable with

respect to (w.r.t.) the σ-algebra generated by y. We use δ(·, ·) to denote the Kronecker delta

function, which equals 1 if its two arguments are the same and 0 otherwise. The tensor product

is denoted by ⊗ and diag(v) is the diagonal matrix with its main diagonal given by the vector

v. The element-wise matrix multiplication is denoted by ⊙, (·)⊺ denotes transpose, (·)∗ denotes

conjugate transpose or the adjoint, and (·)† denotes the pseudo-inverse. We use [m] to represent

the set {1, . . . ,m}.

II. PROBLEM FORMULATION

In this section, we formulate the generalized graph signal reconstruction problem.

Consider a graph G = (V , E), where V = {1, . . . , N} is the vertex set, and E ⊂ V × V

is the edge set. We use Nd(v) to denote the d-hop neighborhood of the vertex v and let

N d(v) = Nd(v) ∪ {v}. We assume that G is a connected undirected graph with no self-loops. In

GSP theory, a typical graph signal is a function mapping from V to R.2 In the GGSP framework

2For simplicity, we consider only R-valued signals instead of C-valued signals.
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[29], the generalized graph signal f is defined as a function from V to a separable Hilbert space

H. The generalized graph signal space can then be identified with RN ⊗H via the map

f 7→
N∑

n=1

en ⊗ f(n),

where {en : n = 1, . . . , N} is the standard basis of RN , i.e., en is the n-th column vector of IN .

One important case in GGSP is where H is a function space. Specifically, consider the domain

of the functions to be a measure space (T ,A, τ) and H = L2(T ). Then, a generalized graph

signal f can be identified with the map

f ′ : V × T → R

(v, t) 7→ f(v)(t).

Thus, the space of generalized graph signals can be also identified with L2(V ×T ). In this paper,

we will mainly use L2(V ×T ) to denote the space of generalized graph signals, while references

to RN ⊗H are used in explanations and proofs. We refer to T colloquially as the time domain.

Readers are referred to Appendix A and [29] for more details on GGSP.

Given noisy observation samples at a subset S ⊂ V × T of vertices and time instances,

our objective is to recover the generalized graph signal f . To avoid cluttered notations, denote

J = V × T . Suppose the sampling set is S = {(vm, tm) : m = 1, . . . ,M} ⊂ J , and the noisy

observations are

ym = f(vm, tm) + ϵm, m = 1, . . . ,M, (1)

where ϵm are independent and identically distributed (i.i.d.) zero-mean noise with variance σ2.

In the Bayesian framework, f in (1) is further modeled as a Gaussian process. In this case, we

will model f as a random element (cf . Appendix B). The noise terms ϵm are assumed to be

Gaussian and independent of this process.

The GGSP signal reconstruction problem can be summarized in the following form:

min
f̃∈F (J ,R)

M∑
m=1

L(f̃(vm, tm), ym) + P (f̃), (2)

where F (J ,R) is an appropriate space of functions from J to R, L(·) is a loss function

measuring the fitness of f̃ on the observations. Typical choices include the ℓ1 and ℓ2 losses.

The regularization term P (f̃) imposes a smoothness constraint on f̃ over the vertex and time
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domains. To design proper F (J ,R) and P (f̃), we employ the KRR technique, which we briefly

review in Appendix C.

The existing time-vertex methods [14], [15] have already addressed the reconstruction problem

for time series on graphs. However, these methods are based on the assumption that the signals

are evenly sampled with the same sampling rate on all vertices. In contrast, from (2), we observe

that our formulation does not require synchronous samples from each vertex and applies even in

the case where the sampling frequencies differ across vertices, or where the signal is not evenly

sampled. In addition, compared to the time-vertex methods, this formulation is not sensitive to

the sampling rate since it makes use of the true time stamps. We refer the reader to the detailed

discussion in Section III-B.

III. KRR RECONSTRUCTION IN GGSP

In this section, we derive the KRR reconstruction solution for GGSP. We interpret this method

under both deterministic and Bayesian models and connect our method with existing kernel-based

frameworks in GSP and graph signal reconstruction approaches. We also propose an online

approach based on RFF that results in a distributed implementation.

To reconstruct a generalized graph signal f ∈ L2(J ), we use a kernel k : J × J → R that is

the multiplication of two kernels kG : V × V → R and kT : T × T → R:

k : J × J → R

((u, s), (v, t)) 7→ kG(u, v)kT (s, t).
(3)

The RKHS associated with the kernel (3) is Hk = HkG ⊗HkT [32, Theorem 13]. In this paper,

we focus on the case where the matrix KG := (kG(i, j)) ∈ RN×N takes the following form (cf.

[24, (14)]):

KG = Φ diag(r(λ1), . . . , r(λN))Φ
⊺
, (4)

where {λi} are the eigenvalues of the GSO AG, r(·) is a non-negative function such that

r(λ1) ≥ · · · ≥ r(λN),3 and Φ is the matrix formed by the eigenvectors of AG. When T is a

subset of Euclidean space, we can usually choose kT as the radial basis function (RBF) kernel,

e.g., kT (s, t) = exp(−∥s−t∥22/γ) (Gaussian kernel) and kT (s, t) = exp(−∥s−t∥1/γ) (Laplacian

kernel), where γ is a tunable parameter.

3Recall that {λi} are indexed in increasing order of graph frequencies. Also note that [24, (14)] uses r†(Λ) instead of r(Λ)

in the definition (4).
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Following the standard KRR formulation (34), we specify the reconstruction problem (2) as

follows:

f̂ = argmin
f̃∈Hk

M∑
m=1

|f̃(vm, tm)− ym|2 + µ∥f̃∥2Hk
. (5)

Let K(S,S) = (k((vm, tm), (vm′ , tm′)))Mm,m′=1 ∈ RM×M and y(S) = (y1, . . . , yM)⊺. Using the

representer theorem, the optimal solution to (5) is

f̂ =
M∑

m=1

cmk(·, (vm, tm)),

(c1, . . . , cM)
⊺
= (K(S,S) + µIM)−1y(S).

(6)

Henceforth, we refer to the problem (5) and its solution (6) as KRR-GGSP. By construction (4),

KG is a polynomial of AG for some degree L < N , so that kG(u, v) = 0 as long as u /∈ N L(v).

Therefore, the evaluation of f̂(v, t) only requires information from N L(v):

f̂(v, t) =
M∑

m=1

cmk((v, t), (vm, tm))

=
M∑

m=1

cmkG(v, vm)kT (t, tm)

=
∑

vm∈NL(v)

cmkG(v, vm)kT (t, tm). (7)

Note that when T is a singleton (i.e., the vertex signal space is one-dimensional), the KRR-

GGSP framework degenerates to the GSP recovery problem [24]. In addition, when KG = IN ,

it degenerates to separately solving KRR problems on each vertex using the kernel kT . To see

this, we relabel S and {ym} such that S =
⋃
v∈V

{(v, t(v)i ) : i = 1, . . . ,Mv}, {ym} =
⋃
v∈V

{y(u)i :

i = 1, . . . ,Mu}. We also relabel the coefficients as c(v)i , so that (6) can be rewritten as

f̂(u, t) =
N∑
v=1

δ(u, v)
Mu∑
i=1

c
(v)
i kT (t, t

(v)
i )

for each u ∈ V and t ∈ T . Note that f̂(u, t) =
Mu∑
i=1

c
(u)
i kT (t, t

(u)
i ) and

∥f̂∥2Hk
=

N∑
u=1

Mu∑
i,j=1

c
(u)
i kT (t

(u)
i , t

(u)
j )c

(u)
j =

N∑
u=1

∥f̂(u, ·)∥2HkT
.

Then problem (5) becomes

f̂ = argmin
f̃∈Hk

N∑
u=1

Mu∑
i=1

|f̃(u, t(u)i )− y
(u)
i |2 + µ

N∑
u=1

∥f̃(u, ·)∥2HkT
, (8)

and each f̂(u, ·) can be solved separately using the samples on the vertex u.
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A. Deterministic Interpretation

In this subsection, we consider the case where f in (1) is deterministic. We make the following

assumption.

Assumption 1. For the measure space (T ,A, τ), T is a compact metric space, A is the Borel

σ-algebra, and τ is a strictly positive finite Borel measure. The kernel kT is a continuous

symmetric positive definite kernel and KG is a positive definite matrix.

By Mercer’s theorem [33], there exists an orthonormal sequence {ξi : i ≥ 1} in L2(T ) such

that: ∫
T
kT (s, t)ξi(s) dτ(s) = γiξi(t),∫
T
ξi(s)ξj(s) dτ(s) = δ(i, j),

kT (s, t) =
∞∑
i=1

γiξi(s)ξi(t),

where the sum converges absolutely and uniformly on T and γi, i ≥ 1, are non-negative

eigenvalues. Since kG is given by (4), it can be decomposed in the same way:

kG(u, v) =
N∑

n=1

r(λn)ϕn(u)ϕn(v).

By definition of k in (3), we then have

k((u, s), (v, t)) =
N∑

n=1

∞∑
i=1

r(λn)γi · ϕn(u)ξi(s) · ϕn(v)ξi(t).

Note that {ϕn(·)ξi(·) : n = 1, . . . , N, i ≥ 1} is a orthonormal sequence in L2(J ). Following the

same argument as [34], Hk is a subset of L2(J ) where the functions f̃ satisfy the following

condition:

f̃(v, t) =
N∑

n=1

∞∑
i=1

cn,i · ϕn(v)ξi(t)

s. t. ∥f̃∥2Hk
=

N∑
n=1

∞∑
i=1

c2n,i
r(λn)γi

<∞.

(9)

By the definition of joint Fourier transform (JFT) (cf. (26)), it can be shown that cn,i = Fn,i(f̃).

Therefore, penalizing on ∥f̃∥Hk
is the same as penalizing on the energy of Fn,i(f̃) with weights

1

r(λn)γi
. Note that r(·) is non-increasing so that the Fourier coefficients associated with larger

graph frequencies are more heavily penalized.
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It is worth noting that if we construct kT as

kT (s, t) =
B∑
i=1

γiξi(s)ξi(t) (10)

for some B < ∞, then problem (5) is equivalent to the bandlimited signal reconstruction

in [29, Section VI.A] with an additional ridge penalty. To see this, we first note that Hk =

span{ϕn(·)ξi(·) : n = 1, . . . , N, i = 1, . . . , B}, i.e., the signal space used for reconstruction is a

bandlimited space. Then we substitute (10) into (9) to obtain the optimization problem

f̂(v, t) = argmin
f̃∈Hk

M∑
m=1

|f̃(vm, tm)− ym|2 + µ

N∑
n=1

B∑
i=1

c2n,i
r(λn)γi

,

which coincides with the bandlimited signal reconstruction problem formulated in [29] but with

an additional penalty term. This indicates that if kT is not a combination of finite functions,

then dim(Hk) = ∞. This implies that the algorithm is able to capture more features than that of

bandlimited signals. An example is the Gaussian kernel [35, Section 4.3.1].

Finally, we discuss the universality of the kernel k in the following theorem.

Theorem 1. If kT is a universal kernel on T , then k is universal on J .

Proof. Consider an arbitrary compact set ZJ ⊂ V × T , and define Zv such that {v} × Zv =

ZJ ∩ ({v}×T ). By using the finite-cover definition of a compact set, we note that Zv is compact

in T . Consider an arbitrary h ∈ C(ZJ). Let hv := h|{v}×Zv . Due to the universality of kT , for

any ϵ > 0, there exists h′v ∈ span{kT (·, t) : t ∈ Zv} such that ∥h′v − hv(v, ·)∥C(Zv) < ϵ. Let

h′ :=
∑N

v=1 δ(v, ·)h′v. Then, we have ∥h′ − h∥C(ZJ ) < ϵ. On the other hand, since KG is positive

definite, KG is invertible. Therefore, there exists {av,n} such that δ(v, ·) =
∑N

n=1 av,nkG(n, ·),

i.e., δ(v, ·) ∈ span{kG(n, ·) : n = 1, . . . , N}. By combining the above results, we conclude that

h′ ∈ K(ZJ) and the universality of k follows.

B. Bayesian Interpretation

We now turn to the Bayesian interpretation where f ∼ GP(0, k) and ϵm
i.i.d.∼ N (0, σ2) in (1).

Let (Ω,F ,P) be the underlying probability space. We regard J = V × T as a measure space

whose measure is the product measure of counting measure on V and the measure τ on T .

We denote this product measure as ζ. To be specific, f is a stochastic process {f((v, t), ω) :

(v, t) ∈ J , ω ∈ Ω}. We make the following assumptions:

August 15, 2023 DRAFT
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Assumption 2.

i) f((v, t), ω) is jointly measurable w.r.t. the product measure ζ × P.

ii) f(·, ω) ∈ L2(J ) for all ω ∈ Ω.

Under Assumption 2, f is a Gaussian random element (cf. Theorem 4). Henceforth, we

abbreviate f((v, t), ω) as f(v, t) for simplicity and consistent notations. First, we note that

under the time-vertex framework, the Gaussian process (GP) prior GP(0, k) is a JWSS graph

random process (GRP). Consider the case where T = {1, . . . , T}, and KT := (kT (i, j)) ∈ RT×T

is a symmetric positive-definite circulant matrix. Then the covariance operator of GP(0, k) is

Cf = KG ⊗KT . Let AH be the shift operator

AH(g)(t) = g((t+ 1)modT ),

which models the case where the vertex observation is a discrete-time signal with T time steps.

Since KT is a circulant matrix, it commutes with AH. On the other hand, by the construction of

the kernel kG in (4), we know that KG commutes with AG. Therefore, Cf commutes with S,

hence GP(0, k) is a JWSS prior.

Example 1. The GP prior generalizes the GPG framework [17], which defined a GPG as a

vector-valued GP whose covariance matrix takes the form

cov(s, t) = kT (s, t)B(a),

B(a) = (IN + aL)−2 := (B(a)ij),

where a > 0 is a parameter. We see that this covariance structure corresponds to a GP prior in

L2(J ) with kG(i, j) = B(a)ij . The GPG also assumes that each observation is (t,x), where x

is a complete graph signal, while in (5) we allow the observed graph signals to be incomplete.

Therefore, this generalization allows us to reconstruct the generalized graph signal when the

observations come from different subsets of vertices at different instances.

We next consider the posterior. The observations {(vm, tm, ym)} are denoted as Dtrain. Ac-

cording to Appendix C, the maximum a posteriori (MAP) estimator is given by (6) with µ = σ2.
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Since f is a GP, (6) is also the posterior expectation given Dtrain, i.e., f̂(v, t) = E[f(v, t) | Dtrain].

The posterior variance can be calculated by

var(f(v, t) | Dtrain)

= k((v, t), (v, t))− k
⊺
(K(S,S) + σ2IM)−1k, (11)

where k := (k((v, t), (v1, t1)), . . . , k((v, t), (vm, tm)))
⊺. This observation indicates that the time-

vertex signal reconstruction approach is a special case of the KRR-GGSP approach.

Example 2. In the time-vertex signal reconstruction problem, the observed signal Xo ∈ RN×T

is an incomplete and noisy observation of the original signal Xr ∈ RN×T . The mask matrix

is ΠS ∈ {0, 1}N×T . The paper [15] formulated the graph signal reconstruction via Sobolev

smoothness (GTRSS) problem as follows:

X̂r = argmin
X∈RN×T

∥ΠS ⊙X−Xo∥2F

+ µTV tr((XDh)
⊺
(L+ αI)βXDh)

= argmin
X∈RN×T

∥ΠS ⊙X−Xo∥2F

+ µTV vec(X)
⊺
(DhD

⊺
h)⊗ (L+ αI)β vec(X), (12)

where Dh is the first order difference operator

Dh =



−1

1 −1

1
. . .
. . . −1

1


∈ RT×(T−1).

For ease of further analysis, we slightly modify (12) to be

X̂r = argmin
X∈RN×T

∥ΠS ⊙X−Xo∥2F

+ µTV vec(X)
⊺
(DhD

⊺
h + δoI)⊗ (L+ αI)β vec(X), (13)

where δo > 0. We also assume that diag(vec(ΠS)) + (DhD
⊺
h)⊗ (L+ αI)β is full-rank. It can

be shown that the solution to (13) can approximate that of (12) arbitrarily well as long as δo is

small enough.
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We consider problem (13) under a Bayesian setting. Let the prior of vec(Xr) be a Gaussian

random vector with zero mean and covariance ((D⊺
hDh + δoI)⊗ (L+αI)β)−1. In other words, if

we let kT (s, t) = (DhD
⊺
h + δoI)

−1
st , and KG = (L+ αI)−β, then Xr = (Xr(v, t)) is a GP with

covariance cov(Xr(u, s), Xr(v, t)) = kT (s, t)kG(u, v). Suppose the noise is i.i.d. with variance

µTV, then the objective function in (13) is the log-likelihood of the posterior p(Xr|Xo) (up to a

constant):

log(p(Xr|Xo)) = log(p(Xr,Xo))− log(p(Xo))

= log(p(Xo|Xr)) + log(p(Xr))− log(p(Xo))

=
1

µTV

∥ΠS ⊙Xr −Xo∥2F

+ vec(Xr)
⊺
(DhD

⊺
h + δoI)⊗ (L+ αI)β vec(Xr)

+ const,

where const is a constant independent of Xr. Therefore, the solution to this problem is the

MAP of Xr given Xo. According to the Bayesian interpretation in Appendix C, this MAP

estimator X̂r = (X̂r(v, t)) is the solution (6) of KRR-GGSP where kT (s, t) = (DhD
⊺
h + δoI)

−1
st ,

KG = (L+ αI)−β , and µ = µTV.

From Example 2, we see that the GTRSS problem can be understood as using a specific kernel

in the time domain. We note that this kernel depends on the number of discrete time steps, so we

denote this kernel as kT (s, t;T ) = (DhD
⊺
h + δoI)

−1
st , where s, t ∈ [T ]. This leads to the problem

that the prior distribution assigned to the signal relies on the sampling frequency. For example,

consider a signal f on [a, b]. Suppose f is evenly sampled with interval length 1
T−1

, and we try to

recover it using the kernel kT (s, t;T ). According to the Bayesian interpretation (cf. Appendix C),

by using this kernel, we have assumed a prior distribution on f . We now examine the cross-

correlation of the prior between f(a) and f(b), i.e., corr(f(a), f(b);T ) := kT (1,T ;T )√
kT (1,1;T )kT (T,T ;T )

.

By calculating this quantity with different values of T , we find that it is highly related to the

sampling frequency (see Fig. 2). Specifically, when the sampling frequency is large enough, the

prior correlation between f(a) and f(b) tends to zero. Instead, if we use other kernels such as

RBF kernel, the prior cross-correlation kT (a,b)√
kT (a,a)kT (b,b)

does not depend on T . This accounts for

the failure of GTRSS on datasets with high sampling frequency, while KRR-GGSP with RBF

kernel works well (see Section V-B). Therefore, by using more flexible kernels, we can expect
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Fig. 2. The prior correlation coefficients corr(f(0), f(1);T ) as a function of T with δo = 10−5.

better reconstruction results.

C. Online and Distributed Implementation

We now consider the online learning problem where the data stream {(vm, tm, ym)} arrives

sequentially. Upon each arrival of (vm, tm), the learner is supposed to provide a distributed

prediction of f(vm, tm). After that, ym is observed and the error is measured by comparing

the prediction with ym. The estimator of f(vm, tm) cannot depend on ym, and the error is

used to update the learner for the next prediction. Problem (5) can be adapted to this setting

via RFFs when kT is a RBF kernel. Denote the columns of K
1
2
G by [p1, . . . ,pN ], and write

pv = (p1,v, . . . , pN,v)
⊺. For the kernel k, the RFF can be constructed as

η(v, t) = pv ⊗ z(t),

where z(t) ∈ RF is the RFF of the kernel kT , i.e., E[z(s)⊺z(t)] = kT (s, t). By the construction

of η(v, t), we have E[η(u, s)⊺η(v, t)] = k((u, s), (v, t)). The reconstructed signal is then

f̂RFF(v, t) = c⊺η(v, t). Problem (5) is therefore converted to the linear regression problem [36,

(7)]:

min
c∈RNF

q(c) =
M∑

m=1

(c
⊺
η(vm, tm)− ym)

2 + µ∥c∥22. (14)

Alternatively, if we define qm(c) := (c⊺η(vm, tm)− ym)
2 + µ

M
∥c∥22, then (14) turns out to be

min
c∈RNF

q(c) =
M∑

m=1

qm(c). (15)

The evaluation of f̂RFF(v, t) = c⊺η(v, t) can be distributed. To illustrate this, write c =

(c⊺1, . . . , c
⊺
N)

⊺ where cn ∈ RF , n = 1, . . . , N . Since kG takes the form (4), K
1
2
G can be represented
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as a polynomial of AG of degree L0, so that pu,v = 0 for all u /∈ NL0(v). Then for any input

(v, t), η(v, t) = (p1,vz(t)
⊺, . . . , pN,vz(t)

⊺)⊺, f̂RFF is evaluated by

f̂RFF(v, t) =
∑

u∈NL0
(v)

c
⊺
upu,vz(t),

which only requires information from NL0(v).

Problem (14) can be solved in an online and distributed way by stochastic gradient descent

(SGD). To be specific, suppose the datastream is {(vm, tm, ym) : m = 1, 2, . . .}. At the m-th

step, we approximate ∇q with the instantaneous sample (vm, tm, ym):

∇qm = 2(c
⊺
η(vm, tm)− ym)η(vm, tm) + 2

µ

M
c.

Note that ym − c⊺η(vm, tm) = ym − f̂RFF(vm, tm) := êm is the approximation error at the current

sample point (vm, tm). We can update c at the m-th iteration via

c(m) = c(m−1) − θ∇qm = θ1c
(m−1) + θ2êmη(vm, tm), (16)

where θ, θ1, θ2 > 0. According to [37, Theorem 6.11], the convergence rate of SGD is linear

when µ > 0. Since pvm only has non-zero entries in NL0(vm), and êm can be evaluated in a

distributed way, we see that (16) is an online and distributed update. This is always achievable

when kT is a RBF kernel.

IV. CONDITIONAL MSE OF KRR-GGSP IN THE BAYESIAN FRAMEWORK

In this section, we consider f ∼ GP(0, k), i.e., the Bayesian framework considered in

Section III-B. We derive the MSE of the estimate given by KRR-GGSP at a particular node

v0 ∈ V and time t0 ∈ T , conditioned on an observation set {(vm, tm, ym) : m = 1, . . . ,M}. To

be specific, we analyze

var(f(v0, t0) | {(vm, tm, ym)})

= E
[
(f̂(v0, t0)− f(v0, t0))

2
∣∣∣ {(vm, tm, ym)}] (17)

under the scenario when the noise energy is unknown, and the MSE is hard to compute when

M → ∞ as it involves taking the inverse of the kernel matrix of the observations. We study the

dependence of the MSE on the graph structure when a subset of vertices have dense observation

samples (M → ∞). The asymptotic MSE and its upper bound can be used as a criterion to

choose an optimal sampling vertex set.
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We consider the case where an infinite number of samples are observed to infer f(v0, t0).

Note that if we allow uniform sampling on every vertex with an ever-growing sample size, then

it is known that the posterior variance will uniformly converge to 0 [38]. In order to examine the

effect of leveraging information from other vertices in KRR-GGSP, we consider the case where

there are no available sample points on {v0} × T , and the value of f(v0, t) is to be estimated.

Mathematically, let S(v;M0) be a set of M0 samples i.i.d. from Unif ({v} × T ), where

v ∈ {v0}c. The sample set S(M0) is then obtained by S(M0) =
⋃

v∈{v0}c
S(v;M0). This sampling

scheme is illustrated in Fig. 3, and we call it uniform exclusive sampling. In practice, this scheme

mimics the scene where only limited knowledge can be obtained from a certain vertex, and an

inference for that is desired.

Fig. 3. The uniform exclusive sampling scheme with M0 = 5. The blue circles denote S(M0), and the red triangle is (v0, t0).

For ease of notation, we define JS := {v0}c×T . We write y(M0) to represent the observations

y(S(M0)) from the sampling set S(M0), and z to represent the restriction of f on JS . We

analyze var(f(v0, t0) |y(M0)) from two aspects: first, in Theorem 2 we analyze the integration

of var(f(v0, t) |y(M0)) over t; then in Theorem 3 we provide an asymptotic upper bound for

var(f(v0, t0) |y(M0)).

Let T0 be a subset of T . We consider the following integration∫
T0
var(f(v0, t) |y(M0)) dτ(t), (18)

which represents the conditional MSE of the KRR-GGSP estimator over T0. Let x0 be the

restriction of f on {v0} × T0, and Cx0|y := cov(x0 |y(M0)). Note that (18) can be equally
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written as tr(Cx0|y) (cf . (30)). Based on this observation, we analyze the asymptotic behavior

of Cx0|y.

We compute the covariance operators Czz and Czx0 for later use:

Czz : L
2(JS) → L2(JS)

g(·) 7→
∫
JS

k(·, ξ)g(ξ) dζ(ξ)

=

∫
T

∑
u∈{v0}c

kG(v, u)kT (t, s)g(u, s) dτ(s),

Czx0 : L
2(T0) → L2(JS)

g(·) 7→
∫
T0
kG(v0, v)kT (t, s)g(v0, s) dτ(s).

(19)

Define the integral operators

H : L2(T ) → L2(T )

g(·) 7→
∫
T
kT (t, s)g(s) dτ(s),

H0 : L
2(T0) → L2(T )

g(·) 7→
∫
T0
kT (t, s)g(s) dτ(s).

Then we have

Czz = KG,∗∗ ⊗H,

Czx0 = kG,0∗ ⊗H0.
(20)

Intuitively, when M0 tends to infinity, the situation can be interpreted as f on JS is known

and can be utilized for inference. We formally address this in the following theorem:

Theorem 2. Under Assumption 1, the limit posterior covariance of f(v0, t) over T0 satisfies

lim
M0→∞

Cx0|y = Cx0|z

in trace norm. In other words, the conditional variance

tr(Cx0|y) = E
[
∥x0 − E[x0 |y(M0)]∥2

∣∣y(M0)
]

=

∫
T0
var(f(v0, t) |y(M0)) dτ(t)
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converges:

lim
M0→∞

tr(Cx0|y) = tr(Cx0|z)

= tr(Cx0)− tr(Cx0zC
†
zzC

∗
x0z

)

=

∫
T0
var(f(v0, t) | z) dτ(t).

(21)

Proof. See Appendix D.

From Theorem 2 we know the limiting posterior variance given an infinite number of sample

points. This result can also be applied when only a subset of vertices have dense samples. In that

case, the right-hand side (R.H.S.) of (21) becomes an asymptotic upper bound by letting z be the

restriction of f on the vertices with dense samples. Moreover, we can get a rough idea of the

behavior of var(f(v0, t0) |y(M0)) if we consider the following sequence of continuous functions

ρM0(α) :=


1
α

∫
B(t0,α)

var(f(v0, t) |y(M0)) dτ(t), α > 0

var(f(v0, t0) |y(M0)), α = 0

where B(t0, α) is the open ball centered at t0 with measure α. Specifically, by [38, Theorem 3]

we note that ρM0(α) is a monotonic sequence, i.e., ρM0(α) ≤ ρM ′
0
(α) if M0 > M ′

0. According to

Theorem 2, the limit function of ρM0(α) is

ρ(α) = lim
M0→∞

ρM0(α) =
1

α

∫
B(t0,α)

var(f(v0, t) | z) dτ(t)

when α > 0, and

ρ(0) = lim
M0→∞

var(f(v0, t0) |y(M0)).

Therefore, if we assume that the limit function of ρM0(α) is continuous w.r.t. α and var(f(v0, t) | z)

is continuous w.r.t. t, then ρ(0) = lim
α→0

ρ(α) = var(f(v0, t0) | z), i.e.,

lim
M0→∞

var(f(v0, t0) |y(M0)) = var(f(v0, t0) | z). (22)

From (22) we know that, although var(f(v0, t0) |y(M0)) is random due to the randomness of

S(M0), its limit var(f(v0, t0) | z) is a deterministic quantity when M0 → ∞. In addition, it can

be shown by Lemma 3 that

var(f(v0, t0) | f(Q))

= var(f(v0, t0) | z) + var(E[f(v0, t0) | z] | f(Q))

≥ var(f(v0, t0) | z),
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for arbitrary finite set Q ⊂ JS . Therefore, according to (22), var(f(v0, t0) | f(Q)) can always

serve as an upper bound for var(f(v0, t0) |y(M0)) when M0 is large enough. Since Q is finite,

var(f(v0, t0) | f(Q)) may be numerically computed. In contrast, We note that the quantities in

(21) involve the pseudo-inverse of a possibly infinite-rank operator, which may be difficult to

numerically compute. Consider the case when Q = Nd(v0) × {t0}. Let Nd := |Nd(v0)|. For

simplicity, we introduce the following notations:

kG(v0,Nd) := (kG(v0, v))v∈V\{v0} ∈ RNd

KG(Nd,Nd) := (kG(u, v))u,v∈V\{v0} ∈ RNd×Nd

l(v0, d) := kG(v0, v0)

− kG(v0,Nd)
⊺
KG(Nd,Nd)

−1kG(v0,Nd),

so that

var(f(v0, t0) | f(Q)) = kT (t0, t0)l(v0, d).

To provide an explicit upper bound for (17), we derive an asymptotic bound with a convergence

rate for the posterior variance which is locally computable.

Theorem 3. Suppose T is a compact subset of RD whose boundary set has measure zero, and

t0 is an interior point of T . Suppose kT is Lipschitz continuous on T . Let c0 be an arbitrary

number in (0, 1), d ∈ N+, then we have

var(f(v0, t0) |y(M0)) ≤ kT (t0, t0)l(v0, d)

+ (C1c
−1
0 + C2c

2
0)M

− 1
3D+1

0

+ C3c0M
− 2

3D+1

0

with probability at least (
1− 1

2

1

(1− c0)2CDM
1

3D+1

0

)Nd

.

Proof. The proof of Theorem 3 is included in Section F in the supplementary.

We note that when kT is RBF kernel, kT (t0, t0)l(v0, d) only depends on the graph structure.

In other words, if we are allowed to select a subset of vertices V ′ ⊂ V to recover the signal on

v0, then it is preferred that the subgraph with vertex set V ′⋃{v0} has a small l(v0, d).
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V. NUMERICAL EXPERIMENTS

In this section, we conduct experiments to illustrate the theory and methods of the KRR-GGSP

approach. In the experiments, T is an interval, and the target signal is a function on V × T .

In the datasets, the target signal is downsampled on every vertex. We aim to reconstruct the

target signal from the randomly selected samples with additive noise. We compare the following

algorithms in the experiments:

1) KRR-GGSP. We reconstruct the signal using (5) with the tensor product kernel (3). We set

KG = a(L− λNI)
2 + bI such that

a(λ1 − λN)
2 + b = 1, (23)

and 0 ≤ b ≤ 1 is a tunable parameter. This parameter setting ensures that 1 = r(λ1) ≥

· · · ≥ r(λN) = b (cf . (4)). We set kT to be the RBF kernel kT (s, t) = exp(−|s− t|2/γ),

where γ is a tunable parameter.

2) Isolated KRR. We recover the signal on each vertex separately using KRR (cf . (34) and

(8)). In Section III, we have shown that this method is equivalent to using KG = I in

KRR-GGSP, i.e., fixing b = 1 in (23).

3) GTRSS. We recover the signal using (12), where µTV, α and β are tunable parameters.

4) Graph recurrent imputation network (GRIN). We implement this method using the Spa-

tiotemporal library [39].

A. ECoG Dataset

We test the reconstruction performance of KRR-GGSP on an ECoG multivariate time series

dataset.4 This dataset contains measurements from 76 electrodes on an epilepsy patient during

both ictal and pre-ictal periods [40]. We make use of the data from 2 ictal periods. Each period

lasts 10 seconds with a sampling rate of 400 Hz. Therefore, the dataset we use is a 76× 8000

matrix. We use the last 320 time steps for testing and the 160 time steps before the test set

for training. We add additive white Gaussian noise (AWGN) to the dataset and randomly mask

the data so that both training and test sets are incomplete and noisy. We set the noise energy

of AWGN to be 1% of the signal energy. We test the recovery performances of KRR-GGSP,

GTRSS, isolated KRR and GRIN on this dataset.

4https://math.bu.edu/people/kolaczyk/datasets.html

August 15, 2023 DRAFT

https://math.bu.edu/people/kolaczyk/datasets.html


21

Except for the isolated KRR method, all other methods rely on a graph structure. To construct

the graph, we first use the isolated KRR to roughly reconstruct the unknown signal values on 160

time steps in the training set, and then calculate the correlation coefficients of these recovered

data. We regard two electrodes as connected if the correlation coefficients between them are larger

than 0.5. We set the edge weights to be the correlation coefficients. For GRIN, the training set is

used for model training and validation. Besides the small training set with 160 time steps, we also

show its performance trained on all available training data from the dataset, i.e., 7680 time steps.

For other methods, the training set is used for tuning parameters. The recovery performance is

measured by the relative error

E
[
(f(v, t)− f̂(v, t))2

]
E[f(v, t)2]

. (24)

The recovery results are shown in Fig. 4. We observe that KRR-GGSP shows good recovery
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Fig. 4. Reconstruction performances on ECoG dataset. Each point in the figure is obtained by 20 repetitions.

results and outperforms other methods. Since KRR-GGSP has a tunable kernel in the time domain,

it shows better performance than GTRSS. This effect can be better observed in Section V-B.

The isolated KRR method has a tunable kernel, but it is not able to take advantage of the graph

structure, hence is outperformed by KRR-GGSP. Here, we show the performance of GRIN trained

with 7680 time steps. We remark that the deep learning method GRIN requires a sufficiently

large training set to obtain reasonable results. When the training set is as small as 160 time steps,

GRIN does not yield reasonable reconstruction results.

August 15, 2023 DRAFT



22

B. Intel-lab Temperature Data

We test the reconstruction performance of KRR-GGSP on the Intel lab temperature dataset

illustrated in Fig. 1. In this experiment, we use the data from the first and second days. Since

there are 86400 seconds in a day, the entire dataset we use is a 54× 172800 matrix. Here we

remark that since the sampling rate of each sensor is much smaller than 1 Hz and not uniform,

only 1.93% of the entries are non-null. Therefore, this dataset is very sparse. We identify the

temperature records outside the upper 99.92% quantile and lower 0.001% quantile as outliers and

discard them. We subtract the mean value of all observed temperature records from the dataset.

We treat each sensor as a vertex and construct a 5-NN graph using their locations. We use half

of the first day’s records for training and the second day’s for testing. As in Section V-A, we add

AWGN to the data and assign a random mask. In this experiment, the noise energy is set to be

5% of the signal energy. We compare the methods as described in Section V-A with performance

measurement (24).

From the result in Fig. 5, we observe that KRR-GGSP outperforms the isolated KRR. On this

dataset, GRIN and GTRSS fail to yield reasonable results. For example, when the observation

ratio is 0.15, GTRSS has relative MSE around 0.8, and GRIN has relative MSE around 1.0. For

GRIN, this is mainly due to the sparsity of the available data in the dataset. For GTRSS, this is

due to the improper prior assumption on the dataset.
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Fig. 5. Reconstruction error under different proportions of samples to be used for reconstruction. Each point in the figure is

obtained by 10 repetitions.
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C. COVID-19 Case Prediction

We use the online reconstruction method in Section III-C to predict COVID-19 cases using

only historical data. We use the data from The New York Times, based on reports from state and

local health agencies5. From this dataset, we retrieve the records from California’s 58 counties,

starting from the first day when all counties have cases reported so that there are 886 days in

total. We treat each county as a vertex and connect them if they are adjacent geographically. We

set the datastream and prediction rule as follows: on each date t, we randomly choose a subset of

vertices VS = {v1, . . . , vQ} ⊂ V such that the learner is assumed to have access to y(VS × {t}).

Besides, for each date t, the sample points {(vi, t, y(vi, t))} are observed sequentially, one datum

at a time.

We compare the online KRR-GGSP with several existing online and distributed reconstruction

methods. The implementation details are the following:

1) Online KRR-GGSP. For each (vi, t) ∈ VS × {t}, we first calculate the prediction f̂RFF(vi, t).

Then we compute the error êi = y(vi, t) − f̂RFF(vi, t), and update the predictor by (16).

Then for each (vj, t) ∈ Vc
S × {t}, we also make predictions and compute the error, but

will not update the predictor since the learner is not supposed to have access to the

observations on them. We set KG = g(L)2, where g is a polynomial of degree one such

that g(λ1) = 1, g(λN) = 0.4. We let kT (s, t) = exp(−(s− t)2/γ), where γ is an adjustable

parameter. We set the dimension of z(t) to be 60.

2) Online isolated KRR. This is implemented by letting KG = I in the online KRR-GGSP

method.

3) Online GTRSS. This method is a generalization of [14, (35)], by replacing L with (L+αI)β .

Let f̂ lt ∈ RN be the estimation of ft = (y(1, t), . . . , y(N, t))⊺ after observing l samples on

date t. The samples are denoted by yl
t ∈ RN such that the unobserved entries are zero. We

write ml
t to denote the mask after observing l samples on date t. Let f̂t−1 be the estimation

of ft−1 after observing all available samples on date t − 1. Then the update rule goes as

follows:

f̂ lt = f̂ l−1
t − µ(ml

t ⊙ f̂ l−1
t − yl

t)

− µλ(L+ αI)β(f̂ l−1
t − f̂t−1). (25)

5https://github.com/TorchSpatiotemporal/tsl
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When the l+1-th sample arrives, we evaluate the error êl+1 = y(vl+1, t)− f̂(vl+1, t), where

f̂(vl+1, t) is the vl+1-th entry of f̂ lt . λ, µ, α and β are adjustable parameters in this method.

We show the best performance of the methods with different parameters in Fig. 6. The error

measurement is (24). We observe that the online KRR-GGSP method outperforms other online

and distributed methods. We also tested the ARMA method on each vertex, but due to the missing

values, it usually fails to converge and yields unstable results. For example, when the proportion

of observed vertices is 80%, the ARMA(2, 0, 2) model fails to converge on about 29% vertices,

and the prediction error on each vertex varies from 0.004 to 665× 104.
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Fig. 6. Prediction error under different proportions of vertices to be sampled for learning. Each point in the figure is obtained by

10 repetitions.

VI. CONCLUSION

In this paper, we devised a signal reconstruction approach for GGSP, yielding a predictor that

can be computed in a distributed fashion. We interpreted this approach in both deterministic

and Bayesian aspects and cast it as an extension of existing frameworks. In the former case

where the signal is a deterministic function, we showed that the approach imposes smoothness

on the reconstructed signal. In the latter case, the signal is regarded as a GP, and we analyzed

its moments. By utilizing RFF, the reconstruction approach can be implemented online, and the

evaluation is still distributed.

We provided statistical analysis on the predictor. Under the uniform exclusive sampling scheme,

we derived the limit of the posterior variance and provided a numerically computable upper bound
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for it. We verified the KRR-GGSP approach by numerical experiments. By testing KRR-GGSP

against existing methods on real datasets, we validated that introducing the graph structure and

the product kernel improves reconstruction performance.

APPENDIX A

PRELIMINARIES: GGSP

In GSP theory, typical choices of the graph shift operator (GSO) are the adjacency matrix,

Laplacian matrix L, and their normalized versions. We assume a normal GSO denoted as AG.

Let AG = ΦΛΦ
⊺ be the eigendecomposition of AG, where Φ = [ϕ1, . . . ,ϕN ] consists of

orthonormal eigenvectors and Λ = diag(λ1, . . . , λN). Without loss of generality, we assume that

{λi} is indexed in increasing order of the graph frequencies, i.e., ϕN is the eigenvector with the

highest frequency. The GFT is then defined as the Euclidean inner product with the orthonormal

basis Φ, i.e., the operator Φ⊺. In GGSP, due to the additional structure in H, we further assume

a shift operator (compact linear transformation) AH on H. The shift operator S on RN ⊗H is

then defined as S := AG ⊗AH. In L2(J ), S operates as follows:

S : L2(J ) → L2(J )

f(v, t) 7→ S(f)(v, t) =
N∑

n=1

AG(v, n)AH(f(n, ·))(t),

Suppose we are given a complete orthonormal basis {ψi : i ≥ 1} ⊂ L2(T ). On the space

L2(J ), the JFT is defined as follows: for n = 1, . . . , N and i ≥ 1,

Fn,i : L
2(J ) → R

f 7→
N∑

n′=1

∫
T
f(n′, t)ϕn(n

′)ψi(t) dτ(t),
(26)

where ϕn(n
′) is the n′-th element of ϕn. Using the JFT, the signal is decomposed in the joint

frequency domain indexed by {(n, i) : n = 1 . . . , N, i ≥ 1}.

APPENDIX B

PRELIMINARIES: RANDOM ELEMENTS

In order to analyze the case where f is a stochastic process indexed by (v, t), we model f as

a random element [30], [41], [42]. Consider a probability space (Ω,F , µ), and a real separable
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Hilbert space H with its norm-induced Borel σ-algebra B. A random element is defined as a

measurable map w : Ω 7→ H, which induces a probability measure P on (H,B) given by

P(B) = µ(w−1(B)), ∀B ∈ B.

Assume that E[∥w∥] <∞. The mean of w is defined as the element mw ∈ H such that

⟨mw,h⟩ = E[⟨w,h⟩],∀h ∈ H.

Assume that E[∥w∥2] <∞. The covariance of w is defined as the operator Cww on H such that

⟨Cwwh,h
′⟩ = E[⟨w −mw,h⟩⟨w −mw,h

′⟩],∀h,h′ ∈ H.

In this paper we alternatively write mw and Cww as E[w] and cov(w). It can be shown that

cov(w) is always compact, self-adjoint, positive semi-definite and trace-class. For a pair of random

elements (w1,w2) : Ω → H1 ×H2 which satisfies E[∥(w1,w2)∥2] <∞, their cross-covariance

operator is defined as the operator Cw1w2 : H2 → H1 such that

⟨Cw1w2h2,h1⟩ = E[⟨w1 − E[w1],h1⟩⟨w2 − E[w2],h2⟩],

for all h1 ∈ H1, h2 ∈ H2. We alternatively write Cw1w2 as cov(w1,w2). The mean element,

covariance operator and cross-covariance operator can be alternatively defined by Bochner integral

[42].

Let h1 ∈ H1 and h2 ∈ H2. We define h1 ⊛ h2 as the following linear operator

h1 ⊛ h2 : H2 → H1

h 7→ ⟨h,h2⟩h1.

Note that h1⊛h2 is in the space of Hilbert-Schmidt operators from H2 to H1, which is a Hilbert

space [42, Theorem 4.4.5]. Then Cw1w2 can be equivalently defined as E[(w1 − E[w1])⊛ (w2 − E[w2])].

The conditional expectation and covariance of a random element are defined as follows [41,

Section II.4.1], [43]:

Definition 1. Suppose the random element w takes values in a separable Hilbert space H,

E[∥w∥] <∞, and F ′ is a sub σ-algebra of F . The conditional expectation of w w.r.t. F ′ is the

random element wcond ∈ F ′ such that E[∥wcond∥] <∞ and

E[wcondIA] = E[wIA], ∀A ∈ F ′, (27)
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where IA is the indicator function on the set A. We denote wcond by E[w | F ′]. According to [41,

Proposition 4.1], E[w | F ′] always exists.

The conditional covariance is defined as

cov(w1,w2 | F ′)

= E[(w1 − E[w1 | F ′])⊛ (w2 − E[w2 | F ′]) | F ′]

We write cov(w,w | F ′) as cov(w | F ′) for simplicity.

By the defining property (27) of conditional expectation it can be shown that

⟨E[w | F ′],h⟩ = E[⟨w,h⟩ | F ′],

⟨E[w1 ⊛w2 | F ′](h2),h1⟩ = E[⟨w1,h1⟩⟨w2,h2⟩ | F ′],
(28)

for all h ∈ H, h1 ∈ H1, h2 ∈ H2. From (28) we know that E[w | F ′] is uniquely defined. Let F ′′

be a sub σ-algebra of F ′. Like random variables, the random elements also satisfy the property

[41, Section II.4.1]:

E[E[w | F ′] | F ′′] = E[w | F ′′].

Let (I,FI , µI) be a σ-finite measure space. The stochastic process {f(ω, ξ) : ω ∈ Ω, ξ ∈ I}

can be modeled as a random element if it satisfies regularity conditions:

Theorem 4. [44, Theorem 2] Suppose

1) f is a µ× µI-measurable stochastic process.

2) the paths of f are in L2(I).

Then the map

Ω → L2(I)

ω 7→ f(ω, ·)
(29)

is a random element with mean element E[f(ξ)] ∈ L2(I). Its covariance operator Cf is the

integral operator with kernel cov(f(ξ1), f(ξ2)). Specifically, if f is GP, then (29) is a Gaussian

random element, i.e., composing any linear functional with it will yield a Gaussian random

variable.
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If we further assume that I is a compact metric space and µI is a strictly positive Borel

measure, and the function cov(f(ξ1), f(ξ2)) is continuous on I × I, then it can be shown by

Mercer’s theorem [33] that

tr(Cf ) =

∫
I
cov(f(ξ1), f(ξ2)) dµI . (30)

In this paper we will make use of the following theorem which is more general than Theorem 4.

The proof of it is included in Section E in the supplementary for completeness.

Theorem 5. Suppose a stochastic process f satisfies condition 1 and condition 2 in Theorem 4. F ′

is a sub σ-algebra of the underlying probability space. Suppose f and E[f(ξ) | F ′] ∈ L2(Ω×I).

Then

E[f | F ′] = E[f(ξ) | F ′], (31)

cov(f | F ′) : L2(I) → L2(I),

g(·) 7→
∫
I
cov(f(ξ1), f(ξ2) | F ′)g(s) dµI(ξ2). (32)

If we further assume that I is a compact metric space, and cov(f(ξ1), f(ξ2) | F ′) is continuous

w.r.t. (ξ1, ξ2), then we have

tr(cov(f | F ′)) = E
[
∥f − E[f | F ′]∥2

∣∣F ′]
=

∫
I
var(f(ξ) | F ′) dµI(ξ). (33)

In the above formulas, the left-hand side (L.H.S.) are defined by moments of f as a random

element. The moments in R.H.S. are defined pointwise, as functions on I or I × I.

In this paper, the index set I can be V × T or a subset of V × T . We always assume that the

conditions in Theorem 4 are met for the stochastic processes in concern. In this case, we call the

stochastic process f as GRP [30]. In statistical GSP, a random graph signal is said to be WSS if

its covariance commutes with AG [45], [46]. Analogously, in the GGSP framework, a GRP f is

said to be JWSS if its covariance operator Cf commutes with S [30].

APPENDIX C

PRELIMINARIES: KRR RECONSTRUCTION AND INTERPRETATION

KRR is a supervised learning approach that aims to learn a map from X to Y where Y ⊂ R.

Given a set of training inputs and outputs, it searches for the best fitting function in a RKHS.
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Given a symmetric positive semi-definite kernel

k : X × X → Y

(x,x′) 7→ k(x,x′),

the associated RKHS Hk is defined as the Hilbert space satisfying [32, Definition 1]:

1) k(·,x) ∈ Hk for all x ∈ X .

2) ⟨g, k(·,x)⟩Hk
= g(x) for all x ∈ X and g ∈ Hk.

According to the Moore-Aronszajn theorem [32, Theorem 3], there exists a unique Hilbert

space Hk satisfying these conditions. When X is a subset of Euclidean space, typical choices

for k include the polynomial kernel (k(x,x′) = (ax⊺x′ + 1)b with parameters a ∈ R, b ∈ N),

linear kernel (polynomial kernel with a = 1, b = 1), and RBF kernel (k(x,x′) is a function of

∥x− x′∥X ).

Given a training set {(xm, ym) : xm ∈ X , ym ∈ Y ,m = 1, . . . ,M}, KRR searches for an

optimal function in Hk to fit the data by solving for

f̂ = argmin
f̃∈Hk

M∑
m=1

|f̃(xm)− ym|2 + µJ(∥f̃∥Hk
), (34)

where J(·) is an increasing function, and µ is a penalty weight. The representer theorem [47,

Theorem 4.2] states that the optimal solution to (34) takes the form

f̂ =
M∑

m=1

cmk(·,xm), (35)

where cm, m = 1, . . . ,M , are coefficients to be determined. By substituting (35) into (34), the

problem (34) becomes an optimization over {cm}Mm=1. Specifically, when J(·) = (·)2, problem

(34) is quadratic and its solution is given by

(c1, . . . , cM)
⊺
= (K+ µIM)−1y, (36)

where K = (k(xi,xj))
M
i,j=1 ∈ RM×M and y = (y1, . . . , yM)⊺. In the sequel, we assume J(·) = (·)2

unless otherwise stated. When k is chosen as the linear kernel, (34) is equivalent to learning a

linear function from X to Y , i.e., linear regression.

It is natural to consider whether we can recover any continuous function pointwise to within

arbitrary fidelity with a sufficiently large number of samples by KRR. This is achievable by

employing a universal kernel k [48]. Let X be a Hausdorff topological space and Z ⊂ X be a

compact subset. Let C(Z) be the space of continuous functions on Z with the supremum norm.
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Define K(Z) := span{k(·,x) : x ∈ Z}, where the closure is taken w.r.t. the norm in C(Z).

The kernel k is said to be universal if K(Z) = C(Z) for any compact Z ⊂ X . In other words,

span{k(·,x) : x ∈ Z} is dense in C(Z).

Problem (34) has a Bayesian interpretation. Consider a GP w with mean function zero

and covariance function k(x,x′), denoted as w ∼ GP(0, k). Given the noisy observations

ym = w(xm) + ϵm, ϵm
i.i.d.∼ N (0, µ), the MAP estimator of w(x) is f̂(x) as defined in (35) and

(36) for any x ∈ X .

The readers are referred to [32], [49] for more detailed discussions on RKHS and KRR.

APPENDIX D

PROOF OF THEOREM 2

In order to prove Theorem 2, we make use of the following lemmas. Their proofs are included

in the supplementary for completeness.

Lemma 1. Suppose a sequence of operators {Cn} on a separable Hilbert space H, all of which

are compact, self-adjoint, positive semi-definite and trace-class. Suppose J is a bounded linear

operator from H to G, where G is also a separable Hilbert space. If lim
n→∞

tr(Cn) = 0, then

lim
n→∞

tr(JCnJ
∗) = 0.

Lemma 2. Suppose w1 is a random element in H1, and w2 is a random element in H2. H1

and H2 are separable Hilbert spaces. F ′ is a sub σ-algebra of the underlying probability space.

Suppose w2 ∈ F ′, then we have

E[w1 ⊛w2 | F ′] = E[w1 | F ′]⊛w2,

E[w2 ⊛w1 | F ′] = w2 ⊛ E[w1 | F ′].

Using Lemma 2 we can simplify the definition of conditional covariance operator as

cov(w1,w2 | F ′) = E[w1 ⊛w2 | F ′]− E[w1 | F ′]⊛ E[w2 | F ′].

Lemma 3. Cx0|y = E[cov(x0 | z) |y(M0)] + cov(E[x0 | z] |y(M0)).

Lemma 4. Let Cz|y be the conditional covariance operator of z given y(M0). Then lim
M0→∞

tr(Cz|y) =

0 almost surely.
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Lemma 5. The conditional expectation and covariance of x0 given z are as follows:

E[x0 | z] = (C†
zzCx0z)

∗z,

cov(x0 | z) = Cx0 −Cx0zC
†
zzC

∗
x0z
,

(37)

where the operator C†
zzCx0z is bounded.

Proof of Theorem 2. We can rewrite Cx0|y as follows:

Cx0|y = E[cov(x0 | z) |y(M0)] + cov(E[x0 | z] |y(M0))

= cov(x0 | z) + cov
(
Cx0zC

†
zzz
∣∣y(M0)

)
= cov(x0 | z) +C†

zzCx0zCz|y(C
†
zzCx0z)

∗. (38)

The first equality holds by Lemma 3. The second equality holds by the fact that cov(x0 | z) is

deterministic. By taking trace and limit on (38) we have

lim
M0→∞

tr(Cx0|y − cov(x0 | z))

= lim
M0→∞

tr(C†
zzCx0zCz|y(C

†
zzCx0z)

∗).

From Lemma 1 and Lemma 4 we know that the R.H.S. tends to zero. By writing cov(x0 | z) as

(37) and using (33) we conclude the proof.

APPENDIX E

PROOF OF THEOREM 5

Proof. We first prove (31) and (32). According to (28), it suffices to prove that for any A ∈ F ′,

E[⟨E[f(ξ) | F ′], h(ξ)⟩1A] = E[⟨f, h⟩1A], (39)

E[⟨f(ξ)− E[f(ξ) | F ′], h1(ξ)⟩⟨f(ξ)− E[f(ξ) | F ′], h2(ξ)⟩1A]

= E[⟨f − E[f | F ′], h1⟩⟨f − E[f | F ′], h2⟩1A]. (40)
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We first prove (39) as follows:

E[⟨E[f(ξ) | F ′], h(ξ)⟩1A] =
∫
A

∫
I
E[f(ξ) | F ′]h(ξ) dµI(ξ) dP

=

∫
I

∫
A

E[f(ξ) | F ′]h(ξ) dP dµI(ξ)

=

∫
I
E[E[f(ξ) | F ′]1A]h(ξ) dµI(ξ)

=

∫
I

∫
A

f(ξ)h(ξ) dP dµI(ξ)

=

∫
A

∫
I
f(ξ)h(ξ) dµI(ξ) dP

= E[⟨f, h⟩1A].

The integrals are exchangeable by Fubini’s theorem. Similarly we prove (40) as follows:

E[⟨f(ξ)− E[f(ξ) | F ′], h1(ξ)⟩⟨f(ξ)− E[f(ξ) | F ′], h2(ξ)⟩1A]

=

∫
A

∫
I

∫
I
(f(ξ1)− E[f(ξ1) | F ′])h1(ξ1)(f(ξ2)− E[f(ξ2) | F ′])h2(ξ2) dµI(ξ1) dµI(ξ2) dP

=

∫
I

∫
I
E[(f(ξ1)− E[f(ξ1) | F ′])(f(ξ2)− E[f(ξ2) | F ′])1A]h1(ξ1)h2(ξ2) dµI(ξ1) dµI(ξ2)

=

∫
A

∫
I

∫
I
(f(ξ1)− E[f(ξ1) | F ′])(f(ξ2)− E[f(ξ2) | F ′])h1(ξ1)h2(ξ2) dµI(ξ1) dµI(ξ2)

= E[⟨f − E[f | F ′], h1⟩⟨f − E[f | F ′], h2⟩1A].

To prove (33), we first note that

E
[
∥f − E[f | F ′]∥21A

]
=

∫
A

∞∑
i=1

⟨f − E[f | F ′], ei⟩2 dP

=
∞∑
i=1

E
[
⟨f − E[f | F ′], ei⟩21A

]
=

∞∑
i=1

E[⟨cov(f | F ′)ei, ei⟩1A]

= E[tr(cov(f | F ′))1A].

Thus, E[∥f − E[f | F ′]∥2 | F ′] = E[tr(cov(f | F ′)) | F ′] = tr(cov(f | F ′)).
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On the other hand, by Mercer’s theorem [33], cov(f(ξ1), f(ξ2) | F ′) and cov(f | F ′) can be

decomposed as

cov(f(ξ1), f(ξ2) | F ′) =
∞∑
i=1

ϱiψi(ξ1)ψi(ξ2),

cov(f | F ′)(h) =
∞∑
i=1

ϱi⟨ψi, h⟩ψi,∀h ∈ L2(I),

where the convergence is uniform and absolute. ϱi ≥ 0. Besides, {ψi} forms an orthonormal

system in L2(I). Therefore,

tr(cov(f | F ′)) =
∞∑
i=1

⟨cov(f | F ′)ψi, ψi⟩

=
∞∑
i=1

ϱi,

and ∫
I
var(f(ξ) | F ′) =

∫
I

∞∑
i=1

ϱiψi(ξ1)ψi(ξ2)µI(ξ)

=
∞∑
i=1

ϱi

∫
I
ψi(ξ)ψi(ξ)µI(ξ)

=
∞∑
i=1

ϱi,

which concludes the proof of (33).

APPENDIX F

PROOF OF LEMMAS FOR THEOREM 2

In this section, we prove the lemmas for the proof of Theorem 2.

proof of Lemma 1. Let {h(n)
i : i = 1, 2, . . .} be the orthonormal basis of Cn. Let {λi(Cn) :

i = 1, 2, . . .} be the corresponding eigenvalues. By definition of trace we have

tr(JCnJ
∗) =

∞∑
i=1

⟨JCnJ
∗h

(n)
i ,h

(n)
i ⟩ =

∞∑
i=1

⟨CnJ
∗h

(n)
i ,J∗h

(n)
i ⟩. (41)

We now compute each term in (41). Assume that

J∗h
(n)
i =

∞∑
j=1

α
(n)
ij h

(n)
j .
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then we have

⟨CnJ
∗h

(n)
i ,J∗h

(n)
i ⟩ = ⟨

∞∑
j=1

α
(n)
ij λj(Cn)h

(n)
j ,

∞∑
j=1

α
(n)
ij h

(n)
j ⟩

=
∞∑
j=1

(α
(n)
ij )2λj(Cn).

Substituting this result into (41) we have

tr(JCnJ
∗) =

∞∑
i=1

∞∑
j=1

(α
(n)
ij )2λj(Cn) =

∞∑
j=1

λj(Cn)
∞∑
i=1

(α
(n)
ij )2.

Notice that Jh(n)
j =

∞∑
i=1

α
(n)
ij h

(n)
i , and ∥Jh(n)

j ∥2 =
∞∑
i=1

(α
(n)
ij )2 ≤ ∥J∥2. Therefore,

tr(JCnJ
∗) ≤ ∥J∥2

∞∑
j=1

λj(Cn) = ∥J∥2 tr(Cn) → 0.

proof of Lemma 2. For any h1 ∈ H1 and h2 ∈ H2 we have

⟨E[w1 ⊛w2 | F ′](h2),h1⟩ = E[⟨w2,h2⟩⟨w1,h1⟩ | F ′]

= ⟨w2,h2⟩E[⟨w1,h1⟩ | F ′]

= ⟨w2,h2⟩⟨E[w1 | F ′],h1⟩.

The first and third equality are obtained by (28). The second equality is due to the fact that

w2 ∈ F ′. On the other hand, by definition we have

⟨E[w1 | F ′]⊛w2(h2),h1⟩ = ⟨w2,h2⟩⟨E[w1 | F ′],h1⟩,

which concludes the proof of the first equation. The second equation can be proved by a similar

argument.

proof of Lemma 3. To prove this equality, we mainly make use of the fact that y(M0) ∈

σ(z, {ϵm},S(M0)). We write σ(z, {ϵm},S(M0)) as F0 for simplicity. Notice that cov(x0 | z) =

cov(x0 | F0) and E[x0 | z] = E[x0 | F0] since both {ϵm} and S(M0) are jointly independent of

the GP f . The first term in the R.H.S. of Lemma 3 can be computed as follows:
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E[cov(x0 | F0) |y(M0)] = E[E[(x0 − E[x0 | F0])⊛ (x0 − E[x0 | F0]) | F0] |y(M0)]

= E[(x0 − E[x0 | F0])⊛ (x0 − E[x0 | F0]) |y(M0)]

= E[x0 ⊛ x0 |y(M0)]− E[x0 ⊛ E[x0 | F0] |y(M0)]

− E[E[x0 | F0]⊛ x0 |y(M0)] + E[E[x0 | F0]⊛ E[x0 | F0] |y(M0)]. (42)

The second equality is derived by the fact that y(M0) ∈ F0. We further use this fact and

Lemma 2 to calculate the second and third term in (42):

E[x0 ⊛ E[x0 | F0] |y(M0)] = E[E[x0 ⊛ E[x0 | F0]] | F0]y(M0)]

= E[E[x0 | F0]⊛ E[x0 | F0] |y(M0)],

E[E[x0 | F0]⊛ x0 |y(M0)] = E[E[E[x0 | F0]⊛ x0] | F0]y(M0)]

= E[E[x0 | F0]⊛ E[x0 | F0] |y(M0)].

Substituting this result into (42), we obtain

E[cov(x0 | F0) | F0)y(M0)] = E[x0 ⊛ x0 |y(M0)]− E[E[x0 | F0]⊛ E[x0 | F0] |y(M0)]. (43)

Using a similar argument as above, we have

cov(E[x0 | F0] |y(M0)) = E[E[x0 | F0]⊛ E[x0 | F0] |y(M0)]− E[x0 |y(M0)]⊛ E[x0 |y(M0)].

(44)

By combining (43) and (44), we obtain the conclusion in Lemma 3.

proof of Lemma 4. According to [38, Theorem 3],

sup
(v,t)∈JS

var(f(v, t) |y(M0)) → 0

almost surely monotonically, hence

tr(Cz|y) =

∫
JS

var(f(v, t) |y(M0)) dζ(v, t) → 0, a. s. .
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proof of Lemma 5. We first prove that (x0, z) meets the compatible condition in [43, Section

4.2], i.e., im(Czx0) ⊂ im(Czz). From (20) and the fact that KG is full-rank we know that

im(Czx0) = span {kG,0∗} ⊗ im(H0) and im(Czz) = RT−1 ⊗ im(H). Hence it suffices to prove

that im(H0) ∈ im(H), which can be shown by definition of H and H0.

Second, since f is a GP, according to Theorem 4, (x0, z) is a Gaussian random element on

(L2(JS ∪ ({v0} × T0)),B). Then we obtain (37) by using [43, Theorem 4.8] and [43, Section

6].

APPENDIX G

PROOF OF THEOREM 3

Proof. We prove this theorem in two steps: first, we prove that with large probability there are

enough sample points in a small neighborhood of Q. Then, we prove that since the neighborhood

is small, we can asymptotically upper bound var(f(v0, t0) |y(M0)) by var(f(v0, t0) | f(Q)).

Consider the neighborhood of t0: B(t0, δ) ⊂ T . Let CD =
τ(B(t0, 1))

τ(T )
, then τ(B(t0, δ)) =

δDτ(T )CD. Let S(v,M0, δ) = S(v;M0)
⋂
({v} ×B(t0, δ)) be the sample points that falls into

B(t0, δ) on vertex v. Then on each vertex v, |S(v,M0, δ)| is a Binomial random variable

n0
i.i.d.∼ Binom(M0, CDδ

D). By Chebyshev’s inequality we have

P
(
|n0 −M0CDδ

D| ≥M0CDδ
D(1− c0)

)
≤ 1− CDδ

D

(1− c0)2M0CDδD
.

Besides, due to the symmetry of the binomial distribution, we have

P
(
n0 ≤ c0M0CDδ

D
)
= P

(
n0 −M0CDδ

D ≤ −M0CDδ
D(1− c0)

)
=

1

2
P
(
|n0 −M0CDδ

D| ≥M0CDδ
D(1− c0)

)
.

Therefore, the number of samples in B(t0, δ) can be lower bounded by

P
(
n0 > c0M0CDδ

D
)
≥ 1− 1

2

1− CDδ
D

(1− c0)2M0CDδD
.

For ease of notation, we use m0 to denote c0M0CDδ
D in the proof. Since the samples are

obtained independently on each vertex, the probability that every vertex v in Nd has more than

m0 sampled instances in B(t0, δ) can be lower bounded by

P(|S(v,M0, δ)| > m0,∀ v ∈ Nd) = (P(n0 > m0))
Nd ≥

(
1− 1

2

1− CDδ
D

(1− c0)2M0CDδD

)Nd

. (45)
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In the sequel, we will work on this event. We will prove that with more than m0 samples in B(t0, δ)

on each v ∈ Nd, we are able to upper bound var(f(v0, t0) |y(M0)) by var(f(v0, t0) | f(Q)). Let

S(v,M0, δ,m0) ⊂ S(v,M0, δ) be any subset with cardinality m0. Let S(v,M0, δ,m0) = {v} ×

t(v), where t(v) = {t(v)1 , . . . , t
(v)
m0}. We write Y(M0, δ) := (y(v, t

(v)
j ))v∈Nd(v0),j∈[m0] ∈ RNd×m0 .

According to [38, Lemma 9], the posterior variance can be bounded by

var(f(v0, t0) |y(M0)) ≤ var(f(v0, t0) |Y(M0, δ))

= kT (t0, t0)kG(v0, v0)− k
⊺
B−1k, (46)

where k and B are calculated as in (11):

kT (t0, t
(v)) = (kT (t0, t

(v)
1 ), . . . , kT (t0, t

(v)
m0

))
⊺ ∈ Rm0 ,

KT (t
(u), t(v)) = (kT (t

(u)
i , t

(v)
j ))i,j∈[m0] ∈ Rm0×m0 ,

k = (kG(v0, v)kT (t0, t
(v))

⊺
)
⊺
v∈Nd(v0)

∈ RNdm0 ,

B = (kG(u, v)KT (t
(u), t(v)))u,v∈Nd(v0) + σ2INdm0 ∈ RNdm0×Ndm0 .

Intuitively, when δ is small enough, the points in t(v) will be close to t0, thus all t(v)i in k and

B can be replaced by t0. Following this idea, we define

κ = kT (t0, t0)kG(v0,Nd)⊗ 1m0

B′ = kT (t0, t0)KG(Nd,Nd)⊗ 1m01
⊺
m0

+ σ2INdm0 .

We aim to approximate (46) by replacing k with κ and B with B′.

|var(f(v0, t0) |Y(M0, δ))− kT (t0, t0)l1|

= |kT (t0, t0)kG(v0,Nd)
⊺
KG(Nd,Nd)

−1kG(v0,Nd)− k
⊺
B−1k|

≤ |kT (t0, t0)kG(v0,Nd)
⊺
KG(Nd,Nd)

−1kG(v0,Nd)− κ⊺
B′−1κ|

+ |κ⊺
B′−1κ− k

⊺
B−1k| (47)

we are going to treat the two terms in (47) respectively. We denote the first term as (i) and the

second term as (ii). To this end, we first need to calculate B′−1. By respectively calculating

the eigenvalues and eigenvectors of B′ on RNd ⊗ span{1m0} and RNd ⊗ span{1m0}⊥, it can be

shown that

B′−1 = (kT (t0, t0)m0KG(Nd,Nd) + σ2INd
)−1 ⊗ 1

m0

1m01
⊺
m0

+
1

σ2
INd

⊗ (Im0 −
1

m0

1m01
⊺
m0

).
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To simplify the notation, we define the matrix

QG = (kT (t0, t0)m0KG(Nd,Nd) + σ2INd
)−1,

so that

κ
⊺
B′−1κ = kT (t0, t0)

2m0kG(v0,Nd)
⊺
QGkG(v0,Nd).

(i) = |kG(v0,Nd)
⊺
(kT (t0, t0)KG(Nd,Nd)

−1 − kT (t0, t0)
2m0QG)kG(v0,Nd)|

≤ |kT (t0, t0)|∥kG(v0,Nd)∥22∥KG(Nd,Nd)
−1 − kT (t0, t0)m0QG∥2. (48)

Notice that KG(Nd,Nd) and QG has the same set of eigenvectors. Specifically, if ψ is KG(Nd,Nd)’s

eigenvector associated with eigenvalue α, then it is QG’s eigenvector associated with eigenvalue

(kT (t0, t0)m0α + σ2)−1. Let σmin > 0 be the minimum eigenvalue of KG(Nd,Nd). Using this

relationship we can derive a bound for the norm of the matrix difference

∥KG(Nd,Nd)
−1 − kT (t0, t0)m0QG∥2 =

1

σmin

− 1

σmin + σ2/(kT (t0, t0)m0)

<
1

σ2
min

σ2

kT (t0, t0)m0

.

By substituting this result into (48), and noticing that the kT (t0, t0) and kG(v0,Nd) do not

depend on m0, we have

(i) <
C1

m0

, (49)

where C1 is a constant which only depends on d.

We find the upper bound for (ii) by triangle inequality:

(ii) ≤ |κ⊺
B′−1κ− κ⊺

B−1κ|+ |κ⊺
B−1κ− k

⊺
B−1κ|+ |k⊺B−1κ− k

⊺
B−1k|

≤ ∥κ∥22∥B′−1 −B−1∥2 + ∥κ− k∥2∥B−1∥2∥κ∥2 + ∥κ− k∥2∥B−1∥2∥k∥2. (50)

Then it suffices to find bounds for the norms of vectors and matrices in (50). By definition, we

have

∥κ∥2 = kT (t0, t0)∥kG(v0,Nd)∥2m
1
2
0 .
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Since kT is continuous and T is compact, kT can achieve its maximum, denoted as M(kT ) :=

max
(s,t)

{kT (s, t)}. Besides, kT is Lipschitz continuous with Lipschitz constant L(kT ). Then we

have

∥k∥2 ≤M(kT )∥kG(v0,Nd)∥2m
1
2
0 ,

∥κ− k∥2 ≤ ∥kG(v0,Nd)∥2L(kT )δm
1
2
0

∥B−B′∥2 ≤ ∥B−B′∥∞ ≤
√
2∥kG(v0,Nd)∥1L(kT )δm0.

By definition we know that B ⪰ σ2IN1
dm0

, so B−1 ⪯ 1
σ2 IN1

dm0
, ∥B−1∥2 ≤ 1

σ2 . Using the same

argument we have ∥B′−1∥ ≤ 1
σ2 .

∥B′−1 −B−1∥2 = ∥B−1(B−B′)B′−1∥2

= ∥B−1∥2∥B−B′∥2∥B′−1∥2

≤
√
2σ−4∥kG(v0,Nd)∥1L(kT )δm0.

Combining all the bounds on vectors and matrices’ norms with (50) we obtain that

(ii) ≤ C2δm
2
0 + C3δm0, (51)

where C2 and C3 are constants only depend on d. By combining (49), (51) with (47) we obtain

that

|var(f(v0, t0) |Y(M0, δ))− kT (t0, t0)l1| ≤
C1

m0

+ C2δm
2
0 + C3δm0.

Now we are to examine the asymptotic case when M0 → ∞. Recall that m0 = c0M0CDδ
D. If

we let δ =M−β
0 where β > 0, we have

|var(f(v0, t0) |Y(M0, δ))− kT (t0, t0)l1| ≤ C1c
−1
0 MβD−1

0 + C2c
2
0M

2−(2D+1)β
0 + C3c0M

1−(D+1)β
0 ,

(52)

where the constant CD is absorbed by C1, C2 and C3. By requiring the powers of M0 to be

negative, β should be in the range ( 2
2D+1

, 1
D
). By adjusting β in this range, the best rate is

achieved when β̂ = 3
3D+1

. By substituting this into (52), we obtain

|var(f(v0, t0) |Y(M0, δ))− kT (t0, t0)l1| ≤ (C1c
−1
0 + C2c

2
0)M

− 1
3D+1

0 + C3c0M
− 2

3D+1

0 . (53)
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On the other hand, by substituting δ =M−β̂
0 into (45), we have

P(|S(v,M0, δ)| > m0,∀ v ∈ Nd(v0)) ≥
(
1− 1

2

1− CDδ
D

(1− c0)2M0CDδD

)Nd

≥

(
1− 1

2

1

(1− c0)2CDM
1

3D+1

0

)Nd

. (54)

Finally, by combining (46), (53) and (54), we conclude the proof.
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