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Learning to Estimate Without Bias
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Abstract—The Gauss–Markov theorem states that the weighted
least squares estimator is a linear minimum variance unbiased
estimation (MVUE) in linear models. In this paper, we take a
first step towards extending this result to non-linear settings via
deep learning with bias constraints. The classical approach to
designing non-linear MVUEs is through maximum likelihood es-
timation (MLE) which often involves computationally challenging
optimizations. On the other hand, deep learning methods allow
for non-linear estimators with fixed computational complexity.
Learning based estimators perform optimally on average with
respect to their training set but may suffer from significant bias
in other parameters. To avoid this, we propose to add a simple bias
constraint to the loss function, resulting in an estimator we refer
to as Bias Constrained Estimator (BCE). We prove that this yields
asymptotic MVUEs that behave similarly to the classical MLEs and
asymptotically attain the Cramer Rao bound. We demonstrate the
advantages of our approach in the context of signal to noise ratio
estimation as well as covariance estimation. A second motivation
to BCE is in applications where multiple estimates of the same un-
known are averaged for improved performance. Examples include
distributed sensor networks and data augmentation in test-time.
In such applications, we show that BCE leads to asymptotically
consistent estimators.

Index Terms—Machine learninig, estimation, Cramer Rao
bounds.

I. INTRODUCTION

PARAMETER estimation is a fundamental problem in many
areas of science and engineering. The goal is to recover

an unknown deterministic parameter y given realizations of
random variables x whose distribution depends on y. An esti-
mator ŷ(x) is typically designed by minimizing some distance
between the observed variables and their statistics, e.g., least
squares, maximum likelihood estimation (MLE) or method of
moments [1]. Performance is measured in terms of bias, variance
and mean squared error (MSE), which depends on the unknowns.
For example, MLE is known to be an asymptotic Minimum
Variance Unbiased Estimator (MVUE) for any value of y. In the
last decade, there have been many works suggesting to design es-
timators using deep learning. Learning based estimators directly
minimize the average MSE with respect to a given dataset. Their
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performance may deteriorate with respect to other values of y.
To close this gap, the goal of this article is to introduce a machine
learning framework for Bias Constrained Estimators (BCE).

The starting point to our work are the classical performance
measures in parameter estimation. Statistics define the MSE and
the bias of an estimate ŷ(x) of y as (see for example 2.25 in [2],
Chapter 2 in. [1] or [3]):

MSEŷ(y) = E
[
‖ŷ(x)− y‖2

]
BIASŷ(y) = E [ŷ(x)− y] . (1)

The “M” in the MSE and in all the expectations in (1) are
with respect to to the distribution of x parameterized by y. The
unknowns are not integrated out and the metrics are functions
of y [4]. The goal of parameter estimation is to minimize the
MSE for any value of y. This problem is ill-defined as different
estimators are better for different values of y. Therefore, it is
standard to focus on minimizing the MSE only among unbi-
ased estimators, that have zero bias for any value of y. Fisher
information provides a lower bound on this MSE known as the
Cramer Rao bound (CRB). An unbiased estimator which achives
the CRB is called an MVUE. Remarkably, the popular MLE is
often asymptotically MVUE. See [1] for more details on this
topic.

A competing framework is Bayesian statistics in which y
is modeled as a random vector with a known prior. The goal
of Bayesian estimation is also to minimize the MSE. But the
definition of MSE is slightly different as the expectation is
taken also with respect y (see for example Chapter 10 in [1] or
Chapter 2.4 in [2]). To avoid confusion, we refer to this metric as
BMSE:

BMSEŷ = E [MSEŷ(y)] . (2)

Unlike MSE, BMSE is not a function of y. BMSE has a well
defined minima but it is optimal on average with respect to y
and depends on the chosen prior. In practice, this prior is often
fictitious and does not really represent any prior knowledge on
y. Indeed, it is common to use simple uniform or wide Gaussian
priors. Partial solutions to this issue include non-informative
priors as Jeffrey’s prior which require the Fisher information
(or CRB) [5] and minimax approaches that are often too pes-
simistic [6].

In recent years, there is a growing trend of solving classical
parameter estimation problems using deep learning. In brief,
these methods are approximations to Bayesian methods where
the underlying distribution is represented by a training dataset
and the optimal solutions are implemented via expressive deep
neural networks. This approach is advantageous when it is easy
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to collect or generate data but we do not have access to the
exact probabilistic models. It also leads to networks that have
fixed computational complexity which are often preferable. Ex-
amples include many fields including image reconstruction [7],
[8], [9], phase retrieval [10], magnetic resonance imaging [11],
frequency estimation [12], [13], Direction of arrival [14], [15],
channel estimation [16] and robust regression [17]. Recent
works also consider the use of neural networks for efficiently
computing the theoretical Fisher information and CRBs [18],
[19].

A main challenge in developing deep learning methods for
parameter estimation is the choice of prior for y. By construc-
tion, the learned networks are not optimal for specific values of
y but only on average with respect to their training set. The goal
of this article is to close this gap by introducing the learned Bias
Constrained Estimator (BCE). It minimizes the BMSE while
promoting unbiasedness for every value of y. We prove that
BCE converges to an MVUE for every value of y independently
of the prior. Specifically, given a rich enough architecture and
a sufficiently large number of samples, BCE is asymptotically
unbiased and achieves the lowest possible MSE for any value of
y.

To gain more intuition into the BCE we consider as a special
case the linear settings. Here, the classical Gauss Markov the-
orem states that the Weighted Least Squares (WLS) estimate is
a linear MVUE for any unknown parameter. On the other hand,
the linear minimal mean square error estimator (LMMSE) is
optimal with respect to a specific Bayesian prior. Both of these
can be interpreted as instances of the linear BCE (LBCE). The
LBCE has a closed form solution which is a regularized LMMSE
with a hyper-parameter λ that reduces the dependency on the
prior. LBCE with λ = 0 reduces to the LMMSE. With a large
λ, LBCE converges to the WLS. Generally, BCE provides a
flexible bridge between these two extremes, and extends them
to non-linear settings.

Numerical experiments support the theory and show that BCE
leads to near-MVUEs for ally. Estimators based on BMSE alone
are better on average but can be worse for specific values of
y. We demonstrate this in two synthetic settings with a known
probabilistic model: signal to noise ratio (SNR) estimation and
structured covariance estimation. Next, we illustrate the advan-
tages of BCE in a real world localization problem where we
only have access to a training set with no model. The results
clearly show that the predictions of BCE are less accurate than
its competitors but are unbiased and centered around the ground
truth as needed in many applications.

The main purpose of BCE is estimation of deterministic
parameters, but we also present an additional use case. Here, the
motivation is in the context of averaging estimators in test time.
In this setting the goal is to learn a single network that will be
applied to multiple inputs and then take their average as the final
output. This is the case, for example, in a sensor network where
multiple independent measurements of the same phenomena are
available. Each sensor applies the network locally and sends
its estimate to a fusion center. The global center then uses the
average of the estimates as the final estimate [20]. Averaging
in test-time has also become standard in image classification
where the same network is applied to multiple crops at inference

time [21]. In such settings, unbiasedness of the local estimates
is a goal on its own, as it is a necessary condition for asymptotic
consistency of the global estimate. BCE enforces this condition
and improves accuracy of the global estimator even over the
BMSE. We demonstrate this advantage over minimizing the
MSE of each of the local estimators in the context of image
classification on CIFAR10 dataset with test-time data augmen-
tation.

For completeness, we note that BCE is closely related to the
topics of “fairness” and “out of distribution (OOD) general-
ization” which have recently attracted considerable attention
in the machine learning literature. The topics are related both
in the terminology and in the solutions. Fair learning tries to
eliminate biases in the training set and considers properties that
need to be protected [22]. OOD works introduce an additional
“environment” variable and the goal is to train a model that
will generalize well on new unseen environments [23], [24].
Among the proposed solutions are distributionally robust opti-
mization [25] which is a type of minmax estimator, as well as
invariant risk minimization [26] and calibration constraints [27],
both of which are reminiscent of BCE. A main difference is that
in our work the protected properties are the labels themselves.
Another core difference is that in parameter estimation we
assume full knowledge of the generative model, whereas the
above works are purely data-driven and discriminative.

The article is organized as follows. In Section II, we formalize
the problem and define the bias constrained estimator. Next, in
Section III, we prove that it asymptotically converges to the
MVUE. In Section IV, we analyze the linear case to get intuition
into the way that BCE works. An additional application of aver-
aging in test time is discussed in Section V. We implement BCE
using deep neural networks and demonstrate its performance on
different settings in Section VI. Finally, we conclude and discuss
some limitations of the work in Section VII.

II. BIASED CONSTRAINED ESTIMATION

A. Classical Parameter Estimation

Consider a random vector x whose probability distribution is
parameterized by an unknown deterministic vector y in some
region S ⊂ RD. We are interested in the case in which y is a
deterministic variable without any prior distribution. We assume
exact knowledge of the dependence of x on y via a likelihood
function p(x;y). Typically, this knowledge is based on well
specified parametric models, e.g. physics based models. Our
goal is to estimate y given x.

The quality of an estimator ŷ(x) is usually measured by
the MSE (1) which is a function of the unknown parameter
y. Minimizing the MSE for any value of y is an ill defined
problem. A classical approach to bypass this issue is to consider
only unbiased estimators as defined below.

Definition 1: An estimator ŷ(x) is called unbiased if it satis-
fies BIASŷ(y) = 0 for all y ∈ S.

Among the unbiased estimators, the MVUE, as defined below,
is optimal:

Definition 2: An MVUE is an unbiased estimator ỹ(x) that
has a variance lower than or equal to that of any other unbiased
estimator for all values of y ∈ S.
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An MVUE does not always exists but can be guaranteed under
favourable conditions, e.g., simple models in the exponential
family [28, p. 88].

In practice, the most common approach to parameter esti-
mation is MLE which is asymptotically near MVUE. It is the
solution to the following optimization

ŷMLE = argmax
y

p(x;y). (3)

Under favourable conditions, MLE is an MVUE. First, this
holds when the observation vector x = [x1, . . . , xQ]

T consists
of independent and identically distributed (i.i.d.) elements all
conditioned on the same unknown y, and qQ → ∞ along with
additional regularity conditions [1, p. 164]. Second, in specific
signal in noise problems, MLE is an MVUE even for short data
records if the signal to noise ratio (SNR) is high enough. For
more details, see Example 7.6 and Problem 7.15 in [1]. Another
advantage in these settings is that the performance of MLE
attains the CRB: [1]:

Q · covŷMLE
(y)

Q→∞→ F−1(y) (4)

where F (y) is the Fisher Information Matrix (FIM)

F = E

[(
∂logp(x;y)

∂y

)2
]
, (5)

where p(x;y) is the likelihood of a single sample.
A main drawback is that it can be computationally expensive.

In inference time, MLE requires the solution of a possibly
non-convex and non-linear optimization for each observation
vector x. In many problems this optimization is intractable or
impractical to implement.

B. Deep Learning for Estimation

The recent deep learning revolution has led many to apply
machine learning methods for estimation [7], [8], [13], [29],
[30], [31]. Deep learning relies on a computationally intensive
fitting phase which is done offline, and yields a neural network
with fixed complexity that can be easily applied in inference
time. Therefore, it is a promising approach for deriving low
complexity estimators when MLE is intractable. To avoid con-
fusion, we note that the main motivation to machine learning
is usually in data-driven settings, while our main focus is on
model-driven settings where deep learning is used to provide
low complexity approximations to MLEs and MVUEs.

Deep learning relies on a training dataset, and therefore the
first step in using it for parameter estimation is synthetic gener-
ation of a dataset

DN = {yi,xi}Ni=1. (6)

For this purpose, the deterministic y is assumed random with
some fictitious prior pfake(y) such that pfake(y) �= 0 for all y ∈
S. The dataset is then artificially generated according to pfake(y)
and the true p(x;y). Next, a class of possible estimators H is
chosen in order to tradeoff expressive power with computational
complexity in test time. In the context of deep learning, the class
H is usually a fixed differentiable neural network architecture.

Algorithm 1: BCE With Synthetic Data.

• Choose a fictitious prior pfake(y).
• Generate N samples {yi}Ni=1 ∼ pfake(y).
• For each yi, i = 1, . . . , N :

Generate M samples {xj(yi)}Mj=1 ∼ p(x;yi).
• Solve the BCE optimization in (9).

Finally, the learned estimator is defined as the minimizer of the
empirical MSE (EMMSE):

EMMSE : min
ŷ∈H

1

˜
N

N∑
i=1

‖ŷ(xi)− yi‖2 . (7)

Assuming that yi are i.i.d. and N → ∞, the objective of
EMMSE converges to the BMSE in (2), where the expectation
over y is with a respect to the fictitious prior. If H is sufficiently
expressive, EMMSE converges to the Bayesian MMSE estima-
tor which can be expressed as ŷ(x) = E[y|x], [1, p. 346].

The performance of EMMSE estimators is usually promising
but depends on the fictitious prior chosen for y. In some cases,
simple fake priors such as uniform or wide Gaussians are suf-
ficient. But, in some settings, the MSE for specific values of y
can be high and unpredictable. See for example the discussion
on data generation in [13] where a special purpose generation
mechanism was developed to avoid such failures.

C. BCE

The contribution of this article is a competing BCE approach
that tries to gain the benefits of both worlds, namely learn a
low-complexity deep learning estimator which is near MVUE
and is less sensitive to the fictitious prior. For this purpose, we
minimize the empirical MSE along with an empirical squared
bias regularization. We generate an enhanced dataset

DNM =
{
yi, {xij}Mj=1

}N

i=1
(8)

where the measurements xij are all generated with the same yi.
That is, we first generate N samples {yi}Ni=1 using the fictions
prior and then we generate M samples {xij}Mj=1 for each of yi,
using p(x;yi}. BCE is then defined as the solution to:

BCE : min
ŷ∈H

1

N

N∑
i=1

‖ŷ(xi)− yi‖2

+ λ
1

N

N∑
i=1

∥∥∥∥∥∥
1

M

M∑
j=1

ŷ(xij)− yi

∥∥∥∥∥∥
2

. (9)

where the second term is an empirical squared bias regulariza-
tion and λ ≥ 0 is a hyperparameter. By choosing H to be a
differentiable neural network architecture as described above,
optimizing (9) can be done using standard deep learning tools
such as stochastic gradient descent (SGD) [32] and its variants.
The only difference from EMMSE is the enhanced dataset and
the BCE regularization. The complete method is provided in
Algorithm 1 below.
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III. ASYMPTOTIC MVUE ANALYSIS

In this section, we show that, under asymptotic conditions
and a sufficiently expressive architecture, BCE converges to an
MVUE and behaves like MLE.

Theorem 1: Assume that
1) An MVUE denoted by ỹ exists within H.
2) The fictitious prior is non-singular, i.e., pfake(y) �= 0 for

all y ∈ S.
3) The variance of the MVUE estimate under the fictitious

prior is finite:
∫
VARỹ(y)p

fake(y)dy < ∞.
Then, BCE converges to MVUE for sufficiently large λ, M

and N .
If an MVUE exists in the problem, the first assumption can

be met by choosing a sufficiently expressive class of estimators.
The second and third assumptions are technical and are less
important in practice.

Proof: The main idea of the proof is that because the squared
bias is non negative, it is equal to zero for all y if and only if
its expectation over any non-singular prior is zero. Thus, taking
λ to infinity enforces a solution that is unbiased for any value
of y. Among the unbiased solutions, only the MSE term in the
BCE is left and thus the solution is the MVUE.

For sufficiently largeM andN , the objective of (9) converges
to its population form:

LBCE = E
[
‖ŷ(x)− y‖2

]
+ λE

[
‖E [ŷ(x)− y|y]‖2

]
.

(10)
The MVUE satisfies

E [ỹ(x)− y|y] = 0, ∀ y ∈ S.

Thus

E
[
‖E [ỹ(x)− y|y]‖2

]
= 0.

Now we show that the BCE objective (10) of the MVUE ỹ(x)
is smaller both from any biased solution ŷ1(x) and any unbiased
solution ŷ2(x). First, assume that the BCE ŷ1(x) is biased for
some y ∈ S:

E [ŷ1(x)− y|y] �= 0.

Thus

E
[
‖E [ŷ1(x)− y|y]‖2

]
> 0.

Since E[‖ỹ(x)− y‖2] is finite, this means that for sufficiently
large λ we have a contradiction

LBCE(ỹ) < LBCE(ŷ1).

Secondly, assume that the BCE ŷ2 is an unbiased estimator.
By the definition of MVUE, for all y ∈ S

E
[
‖ỹ(x)− E [ỹ|y]‖2 |y

]
≤ E

[
‖ŷ2(x)− E [ŷ2|y]‖2 |y

]
and

E
[
‖ỹ(x)− y‖2 |y

]
≤ E

[
‖ŷ2(x)− y‖2 |y

]
.

Thus

LBCE(ỹ) = E
[
‖ỹ(x)− y‖2

]
≤ E

[
‖ŷ2(x)− y‖2

]
= LBCE(ŷ2).

Together, the BCE loss of the MVUE is smaller than the BCE
loss of any other estimator whether it is biased or not, completing
the proof. �

To summarize, EMMSE (7) is optimal on average with respect
to the fictitious prior. Otherwise, it can perform badly (see
experiments in Section VI). On the other hand, if an MVUE
for the problem exists, BCE is optimal for any value of y among
the unbiased estimators, and is independent on the choice of
the fictitious prior. In problems where a statistically efficient
estimator exists, BCE achieves the Cramer Rao Bound (CRB),
making its performance both optimal and predictable for any
value of y.

IV. LINEAR BCE

In this section we focus on the linear case in which the BCE
has a closed form. The section is divided into two parts. In the
first part we restrict the estimator to be linear where in the second
part we assume that the likelihood model is also linear.

First we restrict attention to the class of linear estimators
which is easy to fit, store and implement. Note that using non
linear features, this is applicable to any likelihood model and
can be very expressive using random features [33] or deep
features (by replacing the last layer of a DNN, see for example
in [34], [35]). For simplicity, we also assume perfect training
with N,M → ∞ so that the empirical means converge to their
true expectations. The following theorem gives a closed form
solution to the linear BCE (LBCE):

Theorem 2: Consider the the BCE optimization problem (9)
such that the estimator ŷ is restricted to the linear hypotheses
class ŷ = Ax Then the solution is given by:

A = E
[
yxT

]( 1

λ+ 1
E
[
xxT

]
+

λ

λ+ 1
R

)−1

(11)

where

R = E
[
E [x|y] E [

xT |y]] , (12)

and we assume all are invertible. All the expectations over y are
with respect to the fictitious prior.

The proof is straight forward by plugging the linear function
into (9), and taking the derivative to zero. The full derivation is
in Appendix A.

Plugging in λ = 0 in (11) yields the well known LMMSE [1,
p. 380]:

A
λ=0→ E

[
yxT

] (
E
[
xxT

])−1
. (13)

Just like LMMSE, the BCE in (11) holds for arbitrary distribu-
tions. It can account for highly non-linear relations between y
and x by using pre-defined non-linear features of x.

Next, we assume that the statistical relation between x and
y is also linear plus additive zero mean noise. The solution to
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this setting is well known as the Gauss Markov theorem. As
expected, BCE agrees with this special case.

Theorem 3: Consider the linear case where

x = Hy + n

ŷ = Ax (14)

where n is a zero mean random vector with covariance Σn and
y is a parameter vector with a fictions prior with zero mean and
covariance Σy . For N,M → ∞, LBCE reduces to

A =

(
HTΣ−1

n H +
1

λ+ 1
Σ−1

y

)−1

HTΣ−1
n (15)

and we assume all are invertible. All the expectations over y are
with respect to the fictitious prior.

The proof is simple and is based on plugging (14) into (11)
and using the matrix inversion lemma.

Equivalently, (15) become:

A =
(
HTΣ−1

n H +Σ−1
y

)−1
HTΣ−1

n (16)

which is known as Bayesian linear regression [36, p. 153]. On the
other hand, Pluggingλ → ∞ in (15) yields the seminal weighted
least squares (WLS) estimator [1, p. 226]:

A
λ→∞→ (

HTΣ−1
n H

)−1
HTΣ−1

n . (17)

For finite λ > 0, linear BCE provides a flexible bridge between
the LMMSE and WLS estimators. The parameter λ attenuates
the effect of the fictitious prior by dividing the prior covariance
in (15) by (λ+ 1).

V. BCE FOR AVERAGING

The main motivation for BCE is approximating the MVUE
using deep neural networks. In this section, we consider a differ-
ent motivation to BCE where unbiasedness is a goal on its own.
Specifically, BCEs are advantageous in scenarios where multiple
estimators are combined together for improved performance.
Typical examples include sensor networks where each sensor
provides a local estimate of the unknown, or computer vision
applications where the same network is applied on different
crops of a given image to improve accuracy [21], [37].

The underlying assumption in BCE for averaging is that we
have access, both in training and in test times, to multiple xij

associate with the same yi. This assumption holds in learning
with synthetic data (e.g., Algorithm 1), or real world data with
multiple views or augmentations. In any case, the data structure
allows us to learn a single network ŷ(·) which will be applied
to each of them and then output their average as summarized
in Algorithm 2. The following theorem then proves that BCE
results in asymptotic consistency.

Theorem 4: Assume that an unbiased estimator y∗(x) with
finite variance exists within the hypothesis class, and that a BCE
was learned with sufficiently large λ, M and N . Consider the
case in which Mt independent and identically distributed (i.i.d.)
measurements xj of the same y are available in test time. Then,

Algorithm 2: BCE for Averaging.

• Let ŷ(·) be the solution to BCE in (9).
• Define the global estimator as

y(x) =
1

Mt

Mt∑
j=1

ŷ(xj), (18)

where Mt is the number of local estimators at test time.

the average BCE in (18) is asymptotically consistent when Mt

increases.
Proof: Following the proof of theorem 1, BCE with a suffi-

ciently large λ, M and N results in a unbiased estimator, if one
exists within the hypothesis class. The global metrics satisfy:

BIASy(y) =
1

M

M∑
j=1

BIASŷ(y) = BIASŷ(y)

VARy(y) =
1

M2

M∑
j=1

VARŷ(y) =
1

M
VARŷ(y)

M→∞→ 0.

(19)

Thus, the global variance decreases with Mt, whereas the global
bias remains constant, and for an unbiased local estimator it is
equal to zero. �

VI. EXPERIMENTS

In this section, we present numerical experiments results. We
focus on the main ideas and conclusions and leave the details
to the appendix. Reproducible code with all the implementa-
tion details including architectures and hyperparameters will be
provided at https://github.com/tzvid/BCE.

A. SNR Estimation

Our first experiment addresses a non-convex estimation prob-
lem of a single unknown. The unknown is scalar and therefore
we can easily compute the MLE and visualize its performance.
Specifically, we consider non-data-aided SNR estimation [38].
The received signal is

xl = alh+ wl (20)

where al = ±1 are equi-probable binary symbols, h is an un-
known signal and wl is a white Gaussian noise with unknown
variance denoted by σ2 and l = 1, . . . , Q. The goal is to es-
timate the SNR defined as y = h2

σ2 . Different estimators were
proposed for this problem, including MLE [39] and method of
moments [40]. For our purposes, we compare the MLE with two
identical networks trained on synthetic data using EMMSE and
BCE loss functions.

Fig. 1 shows the MSE and the bias of the different estimators
as a function of the SNR. It is evident that BCE is a better
approximation of MLE than EMMSE. EMMSE is very biased
towards a narrow regime of the SNR. This is because the MSE
scales as the square of the SNR and the average MSE loss is dom-
inated by the large MSE examples. For completeness, we also
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Fig. 1. Bias of SNR, MSE of SNR and MSE of inverse SNR.

plot the MSE in terms of inverse SNR defined as E[( 1ŷ − 1
y )

2].
Functional invariance is a well known and attractive property
of MLE. The figure shows that both MLE and BCE are robust
to the inverse transformation, whereas EMMSE is unstable and
performs poorly in low SNR.

B. Structured Covariance Estimation

Our second experiment considers a more interesting multi-
variate structured covariance estimation. Specifically, we con-
sider the estimation of a sparse covariance matrix [41]. The
measurement model is

p(x;Σ) ∼ N (0,Σ)

where y = [y(1), . . . , y(9)]T and

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + y(1) 0 0 1
2y

(6) 0

0 1 + y(2) 0 1
2y

(7) 0

0 0 1 + y(3) 0 1
2y

(8)

1
2y

(6) 1
2y

(7) 0 1 + y(4) 1
2y

(9)

0 0 1
2y

(8) 1
2y

(9) 1 + y(5)

⎞
⎟⎟⎟⎟⎟⎟⎠

(21)
and 0 ≤ y(k) ≤ 1 are unknown parameters. We train a neural
network using pfake(y(k)) ∼ U(0, 1) using both EMMSE and
BCE. Computing the MLE is non-trivial in these settings and we
compare the performance to the theoretical asymptotic variance
defined by the CRB [1]. The CRB depends on the specific values
of y. Therefore we take random realizations and provide scatter
plots ordered according to the CRB value. Finally, as another
baseline, we also report the result of an additional model named
NORM. Following [42], NORM is trained with MSE normalized
by the CRB. The idea is that the loss of each sample will be
normalized by its “difficulty”, and the performance will not be
govern by the difficult examples.

Fig. 2 presents the results of two simulations. In the first, we
generate data according to the training distribution y ∼ U(0, 1).
As expected, EMMSE which was optimized for this distribu-
tion provides the best MSEs. In the second, we generate test
data according to a different distribution y ∼ U(0, 0.1). Here
the performance of EMMSE significantly deteriorates. NORM
performs better in this out of distribution setting but is still far
from the CRB. In contrast, in both settings BCE is near MVUE

Fig. 2. Scatter plot of MSEs ordered by CRB values. In (a) the tested y’s are
generated from the training distribution. In (b) the test distribution is different.
BCE is near-MVUE and close to the CRB for both distributions, whereas
EMMSE is better in (a) and weaker in (b).

and provides MSEs close to the CRB while ignoring the prior
distribution used in training.

Note that BCE outperforms the NORM baseline and is also
significantly easier to implement. NORM requires exact knowl-
edge of the underlying model and the corresponding CRB. The
main advantage of BCE is that it can be easily computed in a
data-driven manner without access to the underlying model. The
next example illustrates such real world settings.
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TABLE I
MSE AND BIAS OF EMSSE AND BCE FOR RSSI LOCALIZATION

Fig. 3. RSSI localization: Different estimates of EMMSE and BCE for the
same location, for 4 different locations. While the estimations of EMMSE has
smaller variance, the center of BCE estimations is closer to the true location.

C. RSII Localization

Our third experiment considers BCE of unbiased localiza-
tion using RSSI on real data. Specifically, we used the BLE
RSSI Dataset for Indoor localization and Navigation Data Set
from [43]. The dataset contains 1420 labeled examples of RSSI
readings of an array of 13 beacons as input and the xy location
as outputs. We used two thirds of the data for training and a
third for test. We evaluate the MSE and the average squared bias
of EMMSE and BCE. To estimate the average squared bias,
we use examples with the same true location. We only evaluate
locations with at least 8 different examples. Table I summarizes
the results, showing that while EMMSE is better in terms of
MSE, BCE results in a smaller bias. To gain more intuition, Fig 3
illustrates this difference on a few selected examples. For each
example, we draw the ground truth location (GT) and the model
predictions using the different inputs. We also plot uncertainty
ellipses that correspond to two standard deviations. It is easy to
see that while the EMMSE has smaller variance, the center of
BCE estimations is closer to the true location.

D. Image Classification With Soft Labels

Our fourth experiment considers BCE for averaging in
the context of image classification. We consider the popular

Fig. 4. BCE for averaging: accuracy as a function of the number of test-time
augmentation crops.

CIFAR10 dataset. BCE is designed for regression rather than
classification. Therefore we consider soft labels as proposed in
the knowledge distillation technique [44]. The soft labels are
obtained using a strong “teacher” network from [45]. To exploit
the benefits of averaging we rely on data augmentation in the
training and test phases [21]. For augmentation, we use random
cropping and flipping. We train two small “student” convolution
networks with identical architectures using the EMMSE loss and
the BCE loss. More precisely, following other distillation works,
we also add a hard valued cross entropy term to the losses.

Fig. 4 compares the accuracy of EMMSE vs BCE as a function
of the number of test-time data augmentation crops. It can be
seen that while on a single crop EMMSE achieves a slightly
better accuracy, BCE achieves better results when averaged over
many crops in the test phase.

VII. SUMMARY

In recent years, deep neural networks are replacing classical
algorithms for estimation in many fields. While deep neural
networks give remarkable improvement in performance “on
average”, in some situations one would prefer to use classical
frequentist algorithms that have guarantees on their performance
on any value of the unknown parameters. In this work we show
that when a statistically efficient estimator exists, deep neural
networks can be used to learn it using a bias constrained loss,
provided that the architecture is expressive enough. BCE asymp-
totically converges to an MVUE but there are a few important
caveats worth mentioning. First, in general problems, an MVUE
does not always exist and the results only hold asymptotically.
Just like MLE, BCE only attains the CRB when the number of
samples is large and the errors are small. Otherwise, bias acts
as a regularization mechanism which is typically preferable.
Second, in many problems choosing a uniform or sufficiently
wide prior leads to near MVUEs. BCE is mostly needed when
the MSE changes significantly with the unknown parameters. In
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particular, two of our experiments involved variance estimation
where the MSE scales quadratically with the unknown variance.

APPENDIX A
PROOFS OF THEOREMS 2–3

A. Proof of Theorem 2

We insert ŷ = Ax in (9). Taking M,N → ∞ gives the true
expectations and thus:

BCE = MSE + λBIAS2

= E
[
‖Ax− y‖2

]
+ λE

[
‖E [Ax− y|y]‖2

]
. (22)

Now the MSE term is equal to:

MSE = E
[
‖Ax− y‖2

]
= E

[
xTATAx− xTATy − yTAx+ yTy

]
= Tr

(
AE

[
xxT

]
AT − 2AE

[
xyT

]
+ E

[
yyT

])
,

(23)

and the BIAS term is:

BIAS = E
[
‖E [Ax− y|y]‖2

]
= E

[
E
[
xTAT |y]E [Ax|y]− E

[
xTAT |y]y]

− E
[
yTE [Ax|y] + yTy

]
= Tr

(
ARAT − 2AE

[
E [x|y]yT

])
= Tr

(
ARAT − 2AE

[
xyT

])
. (24)

Thus:

BCE = Tr
(
A

(
E
[
xxT

]
+ λR

)
AT

)
− 2 (λ+ 1)Tr

(
AE

[
xyT

])
+ E

[
yTy

]
. (25)

Taking the derivative with respect to A and equating to zero:

∂BCE

∂A
= 2

(
E
[
xxT

]
+ λR

)
AT − 2 (λ+ 1)E

[
xyT

]
.

(26)

Finally,

A = E
[
yxT

]( 1

λ+ 1
E
[
xxT

]
+

λ

λ+ 1
R

)−1

. (27)

B. Proof of Theorem 3

Using x = Hy + n, we obtain:

E
[
yxT

]
= E

[
yyTHT + ynT

]
= ΣyH

T

E
[
xxT

]
= E

[
HyyTHT + nyHT +HynT + nnT

]
= HΣyH

T +Σn, (28)

and

R = E
[
E [Hy + n|y] E [Hy + n|y]T

]
= HΣyH

T . (29)

Plugging (28) and (29) in (11) gives:

A = ΣyH
T

(
HΣyH

T +
1

λ+ 1
Σn

)−1

=

(
HTΣ−1

n H +
1

λ+ 1
Σ−1

y

)−1

HTΣ−1
n , (30)

where the last step obtained using the matrix inversion lemma,
completing the proof.

APPENDIX B
IMPLEMENTATION DETAILS

A. Implementation Details for Section VI-A

We train a simple fully connected model with one hidden
layer. First the data is normalized by the second moment and
then the input is augmented by hand crafted features: the fourth
and sixth moments and different functions of them. We train
the network using Q = 50 synthetic data in which the mean
is sampled uniformly in [1, 10] and then SNR is sampled
uniformly in [2, 50] (which corresponds to [3 dB, 16 dB]).
The data is generated independently in each batch. We trained
the model using the standard MSE loss, and using BCE with
λ = 1000. We use ADAM solver with a multistep learning
scheduler. We use batch sizes of N = 10 and M = 100 as
defined (9).

B. Implementation Details for Section VI-B

We train a neural network for estimation the covariance matrix
with the following architecture: First the sample covariance C0

is calculated from the input x as it is the sufficient statistic for
the covariance in Gaussian distribution. Also a vector αk=0 is
initialized to αk=0 = 1

219 and a vector vk=0 is initialized to
zero. Next, a one hidden layer fully connected network with con-
catenated input of C0 and vk=0 is used to predict a modification
Δα and Δv for the vectors αk and vk respectively, such that
αk+1 = αk + 0.1Δα and similarly for vk+1. Then an updated
covarianceCk+1 is calculated usingαk+1 and (21). The process
is repeated (with the updated Ck and vk as an input to the fully
connected network) for 50 iterations. The final covariance is
the output of the network. The network in is tranied on synthetic
data in which the covariance the paramaters of the covariance are
generated uniformly in their valid region and then M different
X’s are generated from a normal distribution with a zero mean
and the generated covariance. We use an ADAM solver with
a “ReduceLROnPlateau” scheduler with the desired loss (BCE
loss of BCE and MSE loss for EMMSE) on a synthetic validation
set. We trained the model using the standard MSE loss, and using
BCE with λ = 1000. We use batch sizes of N = 1 and M = 20
as defined in (9).

For the training of NORM, we use the loss:

∑
i,j

(ŷ(xij)− yi)
TF (yi) (ŷ(xij)− yi) (31)
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C. Implementation Details for Section VI-C

We use a fully connected neural network with a single hidden
layer of size 20. The data (both the inputs and outputs) was nor-
malized to have zero mean and unit variance at each dimension.
For the bias term of the BCE loss, at each batch we uniformly
sample a location and take the average of the output of the model
for all the examples of the same location.

D. Implementation details for Section VI-D

We generate soft labels using a “teacher” network. Specif-
ically, we work on the CIFAR10 dataset, and use a DLA ar-
chitecture [45] which achieves 0.95 accuracy as a teacher. Our
student network is a very small convolutional neural network
(CNN) with two convolutions layers with 16 and 32 channels
respectively and a single fully connected layer. We now use the
following notations: The original dataset is a set of N triplets
of images xi, a one-hot vector of hard labels yh

i and a vector of
soft labels ys

i {xi,y
h
i ,y

s
i}. In the augmented data, M different

images xij are generated randomly from each original image xi

using random cropping and flipping. The output of the network
for the class l is denoted by zlij and the vector of “probabilities”
qij(T ) is defined by:

qlij(T ) =
exp(qlij/T )∑
l exp(z

l
ij/T )

(32)

where T is a “temperature” that controls the softness of the
probabilities. We define the following loss functions:

Lhard =
MN∑
ij

CE(qij(T = 1),yh
i )

LMSE =
MN∑
ij

∥∥qij(T = 20)− ys
i

∥∥2

Lbias =

N∑
i

∥∥∥∥∥∥
M∑
j

qij(T = 20)− ys
i

∥∥∥∥∥∥
2

(33)

where CE is the cross-entropy loss. The regular network and
the BCE are trained with the following losses:

LEMMSE = Lhard + LMSE

LBCE = Lhard + Lbias, (34)

using stochastic gradient decent (SGD). In training, we use 20
different random crops and flips. We test the trained network
in five different checkpoints during training and calculate the
average and the standard deviation. In test-time we use the same
data augmentation as in the training, the scores of the different
crops are averaged to get the final score as in Algorithm 2. Fig. 4
shows the average and the standard deviation of the accuracy as
a function of the number of crops in the training set.
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