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Abstract—Finite Rate of Innovation (FRI) sampling theory en-
ables reconstruction of classes of continuous non-bandlimited sig-
nals that have a small number of free parameters from their low-
rate discrete samples. This task is often translated into a spectral
estimation problem that is solved using methods involving estimat-
ing signal subspaces, which tend to break down at a certain peak
signal-to-noise ratio (PSNR). To avoid this breakdown, we consider
alternative approaches that make use of information from labelled
data. We propose two model-based learning methods, including
deep unfolding the denoising process in spectral estimation, and
constructing an encoder-decoder deep neural network that models
the acquisition process. Simulation results of both learning algo-
rithms indicate significant improvements of the breakdown PSNR
over classical subspace-based methods. While the deep unfolded
network achieves similar performance as the classical FRI tech-
niques and outperforms the encoder-decoder network in the low
noise regimes, the latter allows to reconstruct the FRI signal even
when the sampling kernel is unknown. We also achieve competitive
results in detecting pulses from in vivo calcium imaging data in
terms of true positive and false positive rate while providing more
precise estimations.

Index Terms—Finite rate of innovation, model-based neural
networks, autoencoders, deep unfolding, signal reconstruction,
deep learning.

I. INTRODUCTION

C LASSICAL sampling theory enables perfect reconstruc-
tion of continuous shift-invariant signals from their dis-

crete samples [1]. In recent years, the emergence of finite rate
of innovation (FRI) sampling theory [2], [3], [4], [5], [6] has
extended sampling results to classes of non-bandlimited signals
that have finite degrees of freedom per unit time. The most basic
FRI signal is a stream of K pulses, which has a 2K rate of
innovation as the signal can be defined by the amplitudes and the
locations ofK pulses. This has led to a wide range of applications
such as calcium imaging [7], functional magnetic resonance
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imaging (fMRI) [8], radar [9], ultrasound imaging [10] and
electrocardiogram (ECG) [11].

The existing FRI signal reconstruction algorithms usually
transform the continuous location estimation problem into an
exponential frequency estimation problem which can be solved
by spectral estimation techniques such as Prony’s method with
Cadzow denoising [12], [13] and matrix pencil [14]. These
methods involve signal subspace estimation by performing the
Singular Value Decomposition (SVD) to estimate signal sub-
spaces. Under noisy conditions, the reconstruction performance
follows the Cramér-Rao bound in the low noise regime [15],
[16]. However, it breaks down when the peak signal-to-noise
ratio (PSNR) drops below a certain threshold. The reason is
conjectured to be the so-called subspace swap event [17] which
refers to the confusion of the orthogonal subspace with the signal
subspace under noisy conditions [18].

In addition to classical FRI techniques, compressed sensing
(CS) also allows to reconstruct the locations of a stream of pulses
on a grid [9]. However, both CS and FRI approaches involve
finding the Fourier coefficients of the sampling kernel at certain
frequencies [5], which means that the sampling kernel has to
be known in order to reconstruct the signal. In many practical
applications such as calcium imaging in neuroscience [7], the in-
formation of the sampling kernel is unknown. While extensions
to CS have enabled off-the-grid reconstruction of continuous-
time streams of pulses using atomic norm [19], [20], or convex
relaxation [21], they still suffer from similar drawbacks as stan-
dard FRI: the pulse shape must be known a priori. Alternatively,
compressive multichannel blind deconvolution [22], [23] allows
to reconstruct FRI signals from the low-rate samples acquired
by multiple kernels without knowing their shapes. Nonetheless,
in this article, we consider the case of having only a single pulse
shape.

Here we aim to overcome these limitations by adopting
data-driven learning-based approaches. Several existing works
utilise deep neural networks to perform spectral estimation on
problems such as estimating the frequencies of multisinusoidal
signals [24], [25], [26], or estimating the direction of arrival
of multiple sound sources [27], [28]. In this article, we focus
on developing interpretable networks [29] that are based on the
existing FRI reconstruction model.

To address the performance breakdown, we begin by propos-
ing deep unfolding the denoising process that is used before
solving the transformed frequency estimation problem in classi-
cal FRI methods. Deep unfolding [30], [31], [32] maps iterative
algorithms into layers of networks with learnable parameters
while keeping the domain knowledge of the data, in our case,
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the spectral sample matrix being Toeplitz and low rank. Here,
we choose to unfold the projected Wirtinger gradient descent
(PWGD) algorithm [33], which is a slight variation of Cadzow
denoising that allows to embed the learnable parameters into the
network. The reconstructed locations of the Diracs are then ob-
tained after coupling the unfolded network with Prony’s method.
We use the zero eigenvalue-based loss function proposed in [34],
which aims to minimise the projection denoised matrix along the
directions of the ground truth annihilating filter, while maximis-
ing the projection along the orthogonal subspace. This reduces
the occurrence of subspace swap events and thus improves the
breakdown PSNR.

Alternatively, as transforming from the continuous location
estimation problem to exponential frequency problem still re-
quires knowledge of the sampling kernel, we propose bypassing
spectral estimation by learning an encoder network gφ(·) that
aims to infer the locations of the Diracs directly from the noisy
samples. We then fine-tune by appending a decoder network
fθ(·) that models the acquisition process for FRI signals to
resynthesise the samples based on the estimated locations and
amplitudes. Together, they form FRI Encoder-Decoder Network
(FRIED-Net). Depending on whether the sampling kernel is
known, we can either fix the parameters of the decoder θ or
make them learnable. This addresses the application to cal-
cium imaging when the sampling kernel is unknown and hence
classical methods fail to reconstruct the FRI signal. The loss
function considers the error on both reconstructed locations
and the corresponding resynthesised discrete samples, as the
latter provides a regularising effect on the output of the encoder
network.

Using a stream of K Diracs as an example, we demonstrate
how the two proposed model-based deep learning approaches
can reconstruct the locations of the Diracs. The contributions of
this article is as follows.
� Deep Unfolded Projected Wirtinger Gradient Descent and

FRIED-Net overcome the breakdown event, regardless of
whether the sampling kernel is known or not. We show this
by comparing the performance of classical FRI methods
and our proposed learning-based techniques for recon-
structing a stream of K Diracs.

� Our proposed FRIED-Net can reconstruct the FRI signal
without knowing the sampling kernel, and is capable of
learning it. While classical FRI methods normally require
knowledge of the sampling kernel, our approach can recon-
struct FRI signals by inferring the FRI parameters directly
from the noisy samples using neural networks. Further-
more, we can learn the kernel, which is represented by
the parameters of the decoder θ, through backpropagation
without affecting significantly the reconstruction perfor-
mance. We show this by applying FRIED-Net to spike
detection in calcium imaging data.

This article is an extension to our previous work presented
in [35].

The rest of the article is organised as follows: In Section II,
we discuss the inherent subspace swap event and breakdown
PSNR in classical FRI methods using the example of recon-
structing a stream of K Diracs. We then present our proposed

Fig. 1. Acquisition process that converts continuous time signal x(t) into
discrete time samples y[n] = 〈x(t), ϕ(t/T − n)〉.

learning-based FRI reconstruction approaches in Section III. In
Section IV, we compare our approaches against the classical
FRI techniques under different settings. In Section V, we apply
FRIED-Net to detect spikes from calcium imaging data. We then
conclude in Section VI.

II. CLASSICAL FRI RECONSTRUCTION METHODS

In this section, we overview classical FRI reconstruction
methods and explain the breakdown event in noisy conditions
using an example of a stream of Diracs. Fig. 1 illustrates a typical
acquisition process that involves filtering the input continuous-
time signal x(t)with h(t) = ϕ(−t/T ) and sampling at a regular
interval t = nT . Perfect reconstruction of classes of FRI signals
can be achieved by using specific classes of sampling kernels
ϕ(t) (e.g. [2], [3], [5], [6]).

For example, we can consider the reconstruction of a τ -
periodic stream of K Diracs:

x(t) =
∑
l∈Z

K−1∑
k=0

akδ(t− tk − lτ), (1)

where{ak ∈ R}K−1
k=0 , {tk ∈ R}K−1

k=0 are the amplitudes and loca-
tions of the Diracs respectively. One of the sampling kernelsϕ(t)
that allows to reconstruct a stream of Diracs is the exponential
reproducing function which, together with its uniform shifts
weighted by proper coefficients cm,n, can reproduce complex
exponentials [36]:∑

n∈Z
cm,nϕ(t− n) = ejωmt, (2)

with frequencies ωm = ω0 +mλ for m = 0, 1, . . ., P , where
λ ∈ R is the separation between the equispaced ωm. Using (2)
and assuming a sampling period T = τ/N , it is possible to map
the acquired samples

y[n] =

〈
x(t), ϕ

(
t

T
− n

)〉
=

K−1∑
k=0

akϕ

(
tk
T

− n

)
, (3)

into a sum of exponentials:

s[m] =
N−1∑
n=0

cm,ny[n] =
K−1∑
k=0

ak
∑
n∈Z

cm,nϕ

(
tk
T

− n

)

=
K−1∑
k=0

ake
jω0tk/T︸ ︷︷ ︸
bk

⎛
⎝ejλtk/T︸ ︷︷ ︸

uk

⎞
⎠m

=
K−1∑
k=0

bku
m
k . (4)

The amplitudes of the Diracs {ak}K−1
k=0 are mapped to the

amplitudes of the exponentials {bk}K−1
k=0 while the locations

of Diracs {tk}K−1
k=0 are transformed to {uk}K−1

k=0 . This forms
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a spectral estimation problem. In this article, we are particularly
interested in retrieving the locations of the Diracs {tk}K−1

k=0 due
to its non-linear nature in the problem seen in (4). The problem
of retrieving the amplitudes of the Diracs is linear, which means
that given the locations, we can directly estimate the amplitudes.
We also note that information of the sampling kernel ϕ(t) is
implicitly included in the coefficients cm,n.

One of the most common techniques to solve the spectral
estimation problem is Prony’s method [12]. It shows that there
exists a filter h of length K + 1 that annihilates the sequence
s[m], i.e. s[m] ∗ h[m] = 0, and the roots of this annihilating
filter give us {uk}K−1

k=0 . To find the coefficients of h, we rewrite
the convolution into matrix form:

Sh=

⎡
⎢⎢⎢⎢⎣

s[K] s[K − 1] . . . s[0]

s[K + 1] s[K] . . . s[1]
...

...
. . .

...

s[P ] s[P − 1] . . . s[P −K]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1

h[1]
...

h[K]

⎤
⎥⎥⎥⎥⎦=0.

(5)

Since S ∈ C
(P−K+1)×(K+1) is of rank-K and h lies in the

nullspace, we can obtain h by performing a singular value
decomposition (SVD) on S and choosing the right singular
vector corresponding to the zero singular value.

A. Reconstruction Under Noisy Conditions

Often the acquisition process induces noise. The noisy sam-
ples can be written as

ỹ[n] = y[n] + ε[n], (6)

where ε[n] is additive white Gaussian noise with standard devia-
tion σε. Since the matrix S̃ is now noisy and hence full rank, the
nullspace is trivial and we instead estimate the annihilating filter
by finding the right singular vector with the smallest singular
value.

Furthermore, we can make Prony’s method more resilient to
noise by cleaning the observed sum of exponentials. Since the
ideal noiseless matrix S is of rank K and Toeplitz, we aim to
find a denoised matrix Ŝ that is closest to the noisy matrix S̃
while possessing these two properties. This is also known as
structured low rank approximation (SLRA) [37].

SLRA can be solved by using the classical iterative Cadzow
denoising algorithm [13], which performs alternating projec-
tions between the set of rank-K matrices and the set of Toeplitz
matrices, denoted byPRK

(·) andPT (·) respectively. The former
is done by performing SVD and keeping the K largest singular
values (hard thresholding), while the latter is done by averaging
each diagonal of the matrix. As the algorithm performs better
when the Toeplitz matrix is near square, we start with construct-
ing a similar Toeplitz matrix S̃M ∈ C

(P−M+1)×(M+1), where
M = �P/2�, before reshaping the denoised matrix ŜM into
Ŝ ∈ C

(P−K+1)×(K+1) to apply Prony’s method.

Fig. 2. Relationship between breakdown PSNR and the distance between
Diracs in the case of K = 2,N = P + 1 = 21 and λ = 2π

P+1 (after [17]). The
subspace-based methods will break down in the region below the curve.

B. Breakdown PSNR

Despite the fact that Cadzow denoising helps the classical
subspace-based methods achieve optimal reconstruction per-
formance defined by the Cramér-Rao bound, previous works
such as [4] have shown that they break down at a certain PSNR
threshold. It is conjectured that the breakdown in subspace-based
techniques is due to the confusion between noise and signal
subspaces in performing spectral estimation [18]. In [17], a
mathematical relationship was drawn between the breakdown
PSNR and the relative distance Δtk/T between neighbouring
Diracs with Δtk = tk+1 − tk. For instance, when there is a
stream of two Diracs of the same amplitudes (K = 2, a0 =
a1) sampled by an exponential reproducing kernel ϕ(t) of
maximum-order and minimum-support (eMOMS) [5] that can
reproduce P + 1 = N exponentials, a necessary condition for
subspace swap event is

PSNR < 10 log10
8
(
P
2 + 1

)
ln
(
P
2 + 1

)
(

P
2 + 1− sin( λ

2 (
P
2 +1)Δt0/T )

sin( λ
2Δt0/T )

)2 . (7)

This is visualised in Fig. 2, which shows that the smaller the
distance between two nearby Diracs, the higher the breakdown
PSNR will be. Thus, the subspace swap event suggests that
current FRI techniques preclude us from recovering FRI signals
with high resolution under strong noise.

III. LEARNING-BASED FRI RECONSTRUCTION

To address the breakdown, in this section, we introduce
two learning-based FRI reconstruction approaches: Deep Un-
folded Projected Wirtinger Gradient Descent and FRI Encoder-
Decoder Network (FRIED-Net). While the former aims to im-
prove the denoising process of the frequency estimation problem
to reduce the occurrence of subspace swap events in classical
FRI methods, the latter considers the original FRI reconstruction
problem and allows to reconstruct without knowledge of the
pulse shape.

A. Deep Unfolded Projected Wirtinger Gradient Descent

We first propose to perform deep unfolding on the denoising
process prior to Prony’s method. Algorithm unfolding is a tech-
nique that aims to convert iterative algorithms into interpretable
deep neural networks [31]. By making the parameters used in
the algorithm learnable via backpropagation using training data,
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Algorithm 1: Projected Wirtinger Gradient Descent [33]

the unfolded deep network effectively performs as a parameter-
optimised algorithm.

As mentioned in Section II-A, the most common iterative
denoising algorithm is Cadzow denoising which alternately
projects between the set of rank-K matrices and the set of
Toeplitz matrices. A generalised version of Cadzow denoising,
projected Wirtinger gradient descent (PWGD) [33], is intro-
duced in Algorithm 1.

Similar to Cadzow, PWGD alternately projects between the
set of rank-K matrices and the set of Toeplitz matrices. How-
ever, there exists constants δ1, δ2 ∈ (0, 1] that weight averages
between the matrices, which can be transformed into learn-
able parameters. Note that Cadzow denoising can be effec-
tively viewed as a special case of PWGD when δ1 = δ2 =
1. To perform the unfolding, we replace each of the con-
stants {(1− δ1), δ1, δ2, (1− δ2)} with learnable weight matri-
ces {W1,W2,W3,W4} ∈ C

(P−M+1)×(P−M+1).
To add further freedom into the network, we replace the

rank-K constraint with its convex surrogate [38], that is the
nuclear norm ‖ŜM‖∗. Essentially, we are soft thresholding
the singular values of ŜM instead of hard thresholding. While
this choice of the threshold can often be problematic [39], with
the aid of unfolding, we can make the threshold learnable via
backpropagation. We denote this proximal mapping correspond-
ing to the nuclear norm as SμσK+1

(X), which refers to soft
thresholding the singular values of X with threshold μσK+1.
This operation can also be expressed in terms of rectified linear
unit (ReLU) as ReLU(σ − μσK+1). Here, σK+1 represents the
(K + 1)-th largest singular value of X, while μ is a trainable
parameter that controls the strength of the thresholding, with
its value being constrained between 0 and 1 using a sigmoid
activation function. This means that we would keep the singular
vectors corresponding to the K largest singular values, while
we learn how much information to discard through updating μ
using backpropagation. An interesting observation was made
in our simulation that the learned μ(l) generally increases as l
increases, which means that the algorithm may be looking to
avoid discarding the information at once. Instead, it imposes a
gradually stricter model order selection as the data travel down
the network.

By cascading the iterations, we form a deep unfolded neural
network that effectively denoise the sum of exponentials before
using Prony’s method to reconstruct FRI signals. The detailed
algorithm and the corresponding block diagram are shown in
Algorithm 2 and Fig. 3, respectively. Practically, each iteration
layer has its own set of parameters. We initialise the weight

Algorithm 2: Deep Unfolded PWGD

Fig. 3. Deep Unfolded Projected Wirtinger Gradient Descent algorithm
and its network architecture. Since in our setting each layer has its own
set of learnable parameters, the parameters of the l-th layer are denoted by

{W(l)
1 ,W

(l)
2 ,W

(l)
3 ,W

(l)
4 , μ(l)} and highlighted in red in the block diagram.

matrices across all layers in a way such that it performs exactly
as the normal PWGD. For all the simulations in this article, we
adopted a common choice of the constants δ1 = δ2 = 0.9999,
initialised μ as 0.25, and used L = 5 unfolded layers.

1) Loss Function: For the loss function, we wish to find a
denoised matrix Ŝ that best annihilates the ground truth annihi-
lating filter h which contains the information of the ground truth
locations, i.e. minimising ‖Ŝh‖22.

However, similar to Prony’s method, we also need to elimi-
nate the trivial solution Ŝ = 0. This was addressed in the zero
eigenvalue-based loss proposed in [34], where they added a
regularisation term to maximise the projection of Ŝ onto the
orthogonal complement of h, given by the Frobenius norm of

Ŝ = Ŝ(I− hhH). The norm is then put in the exponent so
that the regularisation term is bounded by [0,1] for numerical
stability. The overall loss function can be expressed by

L(Ŝ) =
∥∥∥Ŝh∥∥∥2

2
+ αe

−β
∥
∥
∥Ŝ

∥
∥
∥

2

F , (8)

where α and β are two constants that controls the strength of
regularisation, which are respectively set to be 10 and 0.005 in
the simulation. The learning rate of the unfolded network is
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Fig. 4. Encoder network maps the input noisy samples {ỹ[n]}N−1
n=0 to the

estimated locations of the Diracs {t̂k}K−1
k=0

. Depending on the information we

have, the amplitudes {âk}K−1
k=0

can either be the ground truth amplitudes or

be directly estimated using least squares method fitting {ϕ̂(t̂k/T − n)}N−1
n=0

to {ỹ[n]}N−1
n=0 . Given the estimated locations and amplitudes, the decoder,

which can either be fixed using knowledge of the sampling kernel ϕ(t) or
learned using backpropagation, resynthesises the noiseless samples as ŷ[n] =∑K−1

k=0
âkϕ̂(

t̂k
T − n).

set to 2× 10−4 and each network is trained for 500 epochs.
Backpropagation with Adam optimiser [40] is used for learning
the model.

B. FRI Encoder-Decoder Network (FRIED-Net)

While the deep unfolding approach provides a concrete con-
nection between the iterative denoising algorithm and deep
neural networks, it has to be followed by applying the subspace-
based Prony’s method. Hence, we explore an alternative pos-
sibility of bypassing the use of subspace estimation by in-
corporating knowledge of the FRI acquisition process directly
into our network architecture. Since FRI signals are defined by
a small number of parameters, we build an autoencoder-like
model, named FRI encoder-decoder network (FRIED-Net), by
treating the free parameters {tk}K−1

k=0 as the latent variables. Fig.
4 outlines our proposed model, with the encoder inferring the
estimated locations of the Diracs from the input noisy samples
while the decoder resynthesises the noiseless samples from the
estimated locations and amplitudes. Depending on the informa-
tion we have about the sampling kernel ϕ(t), we can opt to
fix the decoder or to learn it using backpropagation. We start
by describing each of their design and rationale, before delving
into the network architecture and learning strategies.

1) Encoder Network Design and Architecture: The encoder
network gφ(·) : RN → R

K infers the locations of the Diracs t̂k
directly from the noisy samples ỹ[n], i.e. t̂k = gφ(ỹ[n]). Here,
the encoder network infers only the locations since the problem
of solving the locations is non-linear while estimating the am-
plitudes is linear, as explained in Section II. Given the locations,
the amplitudes of the Diracs can be directly estimated using a
least squares method fitting {ϕ̂(t̂k/T − n)}N−1

n=0 to {ỹ[n]}N−1
n=0 .

As shown in Fig. 5, our architecture consists of 3 convolu-
tional layers followed by 3 fully connected (FC) layers of sizes
100, 100,K respectively. Each of the convolutional layers has
100 filters of size 3. Rectified linear unit (ReLU) is used as the

Fig. 5. Encoder network architecture to perform inference from the observed
noisy samples {ỹ[n]}N−1

n=0 to the locations of Diracs {t̂k}K−1
k=0

.

activation function between each two layers. This follows our
previous work in [41] as it empirically provided the best results.

2) Decoder Network Design and Architecture: The decoder
network fθ(·) : RK → R

N aims to transform the estimated
locations t̂k back to the denoised samples ŷ[n] using fully con-
nected networks and ReLU, i.e. ŷ[n] = fθ(t̂k) = fθ(gφ(ỹ[n])).
This resynthesis problem can be described by

ŷ[n] =

K−1∑
k=0

âkϕ̂

(
t̂k
T

− n

)
, (9)

where âk are the estimated amplitudes. Here ϕ̂(t) can be the
ground truth sampling kernel ϕ(t) when it is known, or the
learned sampling kernel otherwise.

While parameters such as âk, T , n can be easily modelled
as the weights and biases in a fully connected neural network,
expressing the sampling kernel using a network and possibly
learning it requires a specific design. Works such as [42], [43],
[44] have suggested the capability of ReLU networks as univer-
sal approximator of any arbitrary function of compact support.
Hence, the decoder can follow the same framework and be used
as an approximator of the sampling kernel. Theoretically, the
approximation framework in [42], [43] allows to approximate
any kernel with an arbitrary and non-uniform resolution with
ReLU networks. In this article, we focus on piecewise linear
estimation with a uniform step Δ. The approximated sampling
kernel by the ReLU decoder network ϕ̂Δ(t) can be expressed as

ϕ̂Δ(t) =
I−1∑
i=0

diReLU(t− iΔ), (10)

with the subscript Δ indicating the piecewise linearity. By
utilising I ReLU units, we are effectively dividing the sampling
kernel into I linear segments. Therefore, the total number of
linear segments is given by I = L/Δ, where L is the support
of the kernel. The coefficients di are effectively deciding the
shape of the estimated kernel ϕ̂Δ(t). Depending on whether
the ground truth sampling kernel is known, they can be either
fixed or learned using backpropagation. For the former case, the
coefficients di are fixed using the following relationship:

di =
ϕ ((i+ 1)Δ)− ϕ(iΔ)

Δ
− di−1 and d0 = 0. (11)

Fig. 6 shows an example of an arbitrary kernel approximated
using our decoder with its coefficients di fixed according to (11).
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Fig. 6. Comparison of an arbitrary sampling kernelϕ(t) and its corresponding
piecewise linear approximation ϕ̂Δ(t)using ReLU networks with a uniform step
size of Δ = 1/2.

TABLE I
DYNAMICS AND OUTPUTS AT EACH LAYER OF THE DECODER

We observe that when the step becomes infinitely small Δ → 0,
ϕ̂Δ(t) will ultimately converge to the original sampling kernel
ϕ(t).

Given the ability to express ϕ̂Δ(·) in terms of a ReLU network,
we now substitute (10) into (9) and express the estimated samples
{ŷ[n]}N−1

n=0 as

ŷ[n] =

K−1∑
k=0

âkϕ̂Δ

(
t̂k
T

− n

)
(12)

=
K−1∑
k=0

âk

I−1∑
i=0

diReLU

(
t̂k
T

− n− iΔ

)
. (13)

To implement this framework, the decoder consists of 3 fully
connected hidden layers of sizesKN,KNI and N respectively.
The detailed parameters are listed in Table I. The decoder per-
forms the transformation from the estimated locations produced
by the encoder {t̂k}K−1

k=0 to the estimated samples {ŷ[n]}N−1
n=0 .

An example decoder for N = 2,K = 1, I = 3 is also shown in
Fig. 7. Note that in evaluation stage, we would only need the
encoder to infer the locations of Diracs from the noisy samples.
In this article, we opt for a high resolution ofΔ = 1/64, meaning
that for every sampling period T , we approximate the sampling
kernel by 64 linear pieces.

3) Loss Function: Since we would like the recovered sam-
ples to be denoised, the loss function is the squared error between
the output estimated samples {ŷ[n]}N−1

n=0 and the noiseless sam-
ples {y[n]}N−1

n=0 . Furthermore, we impose a constraint on the
bottleneck by including the squared error between the estimated
locations {t̂k}K−1

k=0 and the ground truth locations {tk}K−1
k=0 . This

is necessary because there exists an ambiguity: when the kernel
shifts by an arbitrary amount ε, the same set of samples can be

Fig. 7. Example of decoder architecture for acquiring N = 2 samples from
sampling a stream of K = 1 Diracs using an approximated sampling kernel
ϕ̂Δ(t) with I = 3 linear segments.

obtained when we add a bias −Tε to the locations tk. Using (9),
it can be shown mathematically as follows:

ŷ[n] =

K−1∑
k=0

âkϕ̂

(
t̂k
T

− n

)
=

K−1∑
k=0

âkϕ̂

(
t̂k − Tε

T
− n+ ε

)

=

K−1∑
k=0

âkϕ̂
′
(
t̂′k
T

− n

)
, (14)

where ϕ̂′(t) = ϕ̂(t+ ε) and t̂′k = t̂k − Tε.
Together, the resultant loss function can be written as

L(ŷ, t̂) =
N−1∑
n=0

(ŷ[n]− y[n])2 + γ
K−1∑
k=0

(
t̂k − tk

)2
, (15)

whereγ is a constant which controls the strength of the constraint
on the bottleneck. Backpropagation with Adam optimiser [40]
is used for learning the model. The learning rate of the encoder
and the decoder are set to be 10−4, 10−5 respectively. The value
γ is set to 1 for Section IV-A and 100 for Sections IV-B and V-B.

4) Training Strategies: Since FRIED-Net can be used either
when the sampling kernel ϕ(t) is known or when it is unknown,
we deploy two different training strategies according to the
situation.

a) Known sampling kernel ϕ(t): As classical FRI algo-
rithms require knowledge of the sampling kernel ϕ(t), we first
consider that scenario for our proposed FRIED-Net. We also
further assume that we have the information of the noiseless sam-
ples {y[n]}N−1

n=0 and thus the amplitudes of the pulses {ak}K−1
k=0

in the training data. Given this information, we then fix the
parameters of the decoder network using the relationship in
(11). Note that during testing, since only the encoder is used
to estimate the locations from the noisy samples, the ground
truth amplitudes of the test data are not required.
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For training, we adopt a warm start approach, which means
that the encoder is first initialised using the trained direct infer-
ence encoder network. This provides an initial estimation of the
reconstructed FRI parameters. We then incorporate the decoder
and the encoder network is trained for 150 further epochs, during
which the weights and the biases of the decoder are frozen as
the decoder is modelled from approximating the true sampling
kernelϕ(t). This fixed decoder provides an implicit and accurate
regularisation on the estimated pulse locations of the encoder
network and therefore, fine-tunes the learning of the encoder
network.

b) Unknown sampling kernel ϕ(t): On the other hand,
we would like to overcome the constraint of the classical FRI
algorithms and reconstruct an FRI signal without knowledge of
sampling kernel. Hence, we propose to learn the coefficients
d of the decoder through backpropagation, which effectively
translates to estimating the sampling kernel ϕ̂Δ(t). Contrary to
previous assumptions that the ground truth samples {y[n]}N−1

n=0

and the amplitudes of the pulses {ak}K−1
k=0 are known, they are

now replaced by the noisy samples {ỹ[n]}N−1
n=0 and the ampli-

tudes estimated by least squares fitting {ϕ̂Δ(t̂k/T − n)}N−1
n=0 to

{ỹ[n]}N−1
n=0 .

Another change regards the decoder coefficients d, caused
by the lack of knowledge of the ground truth sampling kernel.
In the previous simulation, as the ground truth sampling kernel
is known, we fixed them using the relationship in (11). In this
scenario, we initialised the coefficients to d ∼ U(−0.01, 0.01)
to ensure that the initial estimated kernel would be a non-zero
signal, and made them learnable via backpropagation.

However, now there exists ambiguity. From (3), we observe
that the samples are the sum of the products of shifted versions
of the sampling kernel and the amplitudes of the pulses. When
the sampling kernel is unknown, assuming the true amplitudes
and kernel are {ak}K−1

k=0 and ϕ(t) respectively, then {ζak}K−1
k=0

and ϕ(t)/ζ for any real factor ζ are also valid choices of the am-
plitudes and sampling kernel that synthesise identical samples
{y[n]}N−1

n=0 . To avoid this ambiguity in the kernel while training
FRIED-Net, we fix the peak value of the estimated kernel ϕ̂Δ(t)
to be 1 by normalising the coefficients d after each epoch. This
is done by

dnorm =

{
d

maxt(ϕ̂Δ) if |maxt(ϕ̂Δ)| ≥ |mint(ϕ̂Δ)|
d

mint(ϕ̂Δ) otherwise.
(16)

We also modify slightly the way in which we train the network
since we now have to learn also the decoder. Previously, we
initialised the encoder network with our trained model using
a direct inference method, incorporated the fixed decoder and
trained the encoder for 150 epochs. Here, we keep the warm
start approach but then train the decoder for 150 epochs with
the parameters of the encoder frozen, before training the entire
network jointly for another 150 epochs. Effectively, the initial-
isation from direct inference provides a coarse estimate of the
locations such that the decoder can reference and hence learn
a rough estimate of the sampling kernel. Eventually, we train
the entire network in order to refine the estimations of both the
locations and the sampling kernel.

IV. SIMULATION

In this section, we present simulation results of our proposed
algorithms in different scenarios of reconstructing a periodic
stream of K Diracs with tk ∈ [−0.5, 0.5) and ak ∈ R

+ under
noisy conditions.

To evaluate the performance, the samples {y[n]}N−1
n=0 are

corrupted with additive white Gaussian noise at different PSNR
∈ [−5, 70] dB with a step of 5 dB. Here, PSNR is defined by the
ratio between the maximum amplitude of each signal and the
standard deviation of Gaussian noise, which is expressed as:

PSNR = 20 log10

(
maxk ak

σε

)
. (17)

The metric we use is the standard deviation of the retrieved
location of Diracs, defined as:

SDk =

√√√√∑J−1
j=0

(
t̂
(j)
k − tk

)2

J
, (18)

where t̂
(j)
k and J are the j-th estimation and the number of

realisations respectively.
In all the simulations, the number of samples and signal period

are set toN = 21 and τ = 1 respectively. An individual network
is trained for each PSNR using PyTorch [45].1 The number of
training data for Deep Unfolded PWGD and FRIED-Net is 106.
We set tk ∼ U(−0.5, 0.5) and ak ∼ U(0.5, 10) for k = 0, 1,
where U(a, b) denotes uniform distribution between a and b,
and generate both the training data and test data using the same
sampling kernel ϕ(t).

A. Reconstruction With Known Sampling Kernel ϕ(t)

We start by applying our proposed learning-based approaches
and classical FRI techniques when the sampling kernel is known,
such that we can compare the performance in terms of the
breakdown PSNR [17]. We choose the sampling kernel ϕ(t)
to be an exponential reproducing kernel of maximum order and
minimum-support (eMOMS) [5] that can reproduceP + 1 = N
exponentials with ω0 = −Pπ

P+1 and λ = 2π
P+1 .

1) K = 2: We first focus on a simple case of having N = 21
samples, synthesised from a stream of K = 2 Diracs with equal
amplitudes a0 = a1 ∼ U(0.5, 10) in the evaluation stage. This
allows to compare our results with the breakdown PSNR shown
in Fig. 2. We fix the first Dirac at t0 = 0.1 and change Δt0 ∈
[10−0.5, 10−3] evenly on a logarithmic scale with a step size of
10−0.25. Monte Carlo simulations with 10000 realisations are
performed for each PSNR-Δt0 pair.

We first compare the reconstruction performance of our pre-
vious work in direct inference method (equivalent to training
only the encoder of FRIED-Net) [41], our proposed FRIED-Net
and Deep Unfolded PWGD against the classical subspace-based
Prony’s method with Cadzow denoising [12], [13] using mean
standard deviation. Fig. 8 shows the respective results, with the
breakdown PSNR plotted in Fig. 2 overlaid as the red dashed
line to aid visualisation. As discussed in Section II-B, we see

1For reproducibility, our source code is available at https://github.com/
vchleung/LearningBasedFRI.
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Fig. 8. Mean standard deviation of the retrieved locations of a stream of Diracs sampled by eMOMS (P + 1 = N = 21,K = 2) over 10000 realisations at each
PSNR-Δt0 pair using different methods. The red dashed line refers to the breakdown PSNR calculated using (7) [17]. The reconstruction performance is better
when the colour of the grid is darker, indicating a low mean standard deviation, and vice versa.

that the performance of Prony’s method with Cadzow denoising
suffers from an abrupt deterioration below the red dashed line.
This demonstrates the breakdown in performance due to the
inherent subspace swap event in subspace-based approaches.
On the other hand, all of our proposed learning-based algo-
rithms maintain consistent performance across different Δt0.
For instance, when Δt0 = 10−2, Deep Unfolded PWGD and
FRIED-Net break down at around PSNR = 15 dB whereas
Prony’s method with Cadzow denoising breaks down at PSNR
= 40 dB. It shows that solving the original FRI reconstruction
problem through learning-based approaches enables to recover
FRI signals with a higher resolution under strong noise. We also
observe that FRIED-Net performs the best amongst the proposed
algorithms in the breakdown region, as indicated by the spread
of low standard deviation region below the breakdown PSNR
curve at around 15 dB in Fig. 8(d). This shows that the decoder
plays an important role in regularisation and in fine-tuning the
estimations.

We next look into the low noise regimes. We observe that
Deep Unfolded PWGD maintains very similar reconstruction
performance to the classical technique. Nonetheless, FRIED-
Net comes with a slight compromise in the top right regions
of Fig. 8, which can usually be eased using gradient descent
that is based on the squared error

∑N−1
n=0 (ỹ[n]− ŷ[n])2 between

the noisy samples and the samples resynthesised from the re-
trieved locations of the trained model and the least squares
fitted amplitudes. On the other hand, since the exact calcula-
tion of the gradient requires a closed-form expression of the
derivative of the sampling kernel, we can instead make use of
our FRIED-Net architecture and perform fine-tuning through

backpropagation of the sample error per test datum. Fig. 8(e)
shows that FRIED-Net is able to achieve satisfactory results
compared to classical FRI methods in the low noise regimes after
fine-tuning.

In addition, we compare our results against DeepFreq [25],
a learning-based spectral estimation algorithm which outputs
a learned spectral representation of the multisinusoidal signal
with local maxima at the position of the estimated frequencies.
We again use the same training dataset that contains 106 streams
of K = 2 Diracs with tk ∼ U(−0.5, 0.5) and ak ∼ U(0.5, 10).
On the other hand, as DeepFreq considers the noise level to be
unknown, we instead add new noise realisations at each epoch
during training. For each new noise realisation, the noise level
is determined by sampling the PSNR from ∼ U(0, 70) dB.

Fig. 8(f) shows the reconstruction performance of DeepFreq.
We can observe that DeepFreq provides only a slight improve-
ment in the regions of interest under the red dashed curve,
where classical FRI methods break down, and is outperformed
by both our proposed Deep Unfolded PWGD and FRIED-Net.
On the other hand, in the low noise regimes, despite a slightly
better performance than the untuned FRIED-Net, DeepFreq is
unable to match that of classical methods, of our proposed
Deep Unfolded PWGD and of fine-tuned FRIED-Net. This is
because the frequency estimates are obtained by finding the
peaks from the output spectral representation of the DeepFreq
network. Therefore, unlike our proposed methods, the locations
tk reconstructed by DeepFreq effectively lies on a grid, with its
precision limited by the output size of the network.

We are then also interested in whether our proposed methods
can cope with different noise levels using a single model like
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Fig. 9. Comparison of the mean standard deviation of the retrieved locations of
a stream of Diracs sampled by eMOMS (P + 1 = N = 21,K = 2) using Deep
Unfolded PWGD between a single-model and a slightly relaxed multi-model
setup.

DeepFreq. Hence, we follow the training framework of Deep-
Freq that adds new noise realisations at each epoch, with the
PSNR sampled from ∼ U(0, 70) dB, and retrain our proposed
networks. Fig. 8(g) and (h) shows the single-model performance
of the direct inference method and the fine-tuned FRIED-Net.
Both of our proposed algorithms are able to maintain a similar
behaviour over all PSNR-Δt0 pairs and overcome breakdown
events, despite a slight drop in overall performance.

Nonetheless, Deep Unfolded PWGD suffers from a notable
drop in terms of reconstruction performance within the break-
down region, albeit still performing better than Cadzow denois-
ing, as seen in Fig. 9(a) below the red dashed line. Therefore,
we try to relax this training framework slightly by training each
model for a closer range of PSNRs and utilising multiple models.
Fig. 9 shows the performance where we train a model for every
PSNR interval of 20 dB, which is effectively an intermediate
case between Fig. 8(b) (where we train an individual model
for each PSNR) and Fig. 9(a) (where a single model is used
for all noise levels). We can see that this intermediate training
framework allows Deep Unfolded PWGD to closely match the
performance shown in Fig. 8(b), especially in the regions of
interest where the classical FRI methods break down.

2) K = 10: We then move onto the case of reconstructing
more pulses. We consider the case of critical sampling, where
we are reconstructing K = 10 Diracs from N = 21 samples. In
evaluation, we assume a case of Diracs with equal amplitudes
ak ∼ U(0.5, 10). For the locations, they are distributed uni-
formly across the entire timescale, i.e. tk ∼ U(−0.5, 0.5). For
each PSNR, Monte Carlo simulations with 10000 realisations
are performed.

Fig. 10 shows the reconstruction performance using different
approaches. We use both the mean and median standard devia-
tion across all Diracs, since any missed or falsely detected Diracs
may now have a huge impact on the mean standard deviation
due to the problem of aligning the order of the reconstructed
Diracs and the ground truth. Both plots show that our proposed
techniques outperform the classical subspace-based methods.
While the encoder of FRIED-Net provides better mean standard
deviation, the full FRIED-Net performs better in terms of median
standard deviation in high noise levels. This can be further
analysed using a representative example at PSNR = 20 dB in

Fig. 10. Mean and median standard deviation of the retrieved locations of a
stream of Diracs sampled by eMOMS (P + 1 = N = 21,K = 10) over 10000
realisations at different PSNR using different methods.

Fig. 11. Example of recovered locations of a stream of Diracs sampled
by eMOMS (P + 1 = N = 21,K = 10) at PSNR = 20 dB using different
methods.

Fig. 11. We observe that Prony’s method with Cadzow denoising
is missing two Diracs in its estimation, despite reconstructing the
remaining Diracs fairly precisely. This leads to a misalignment
of Diracs and hence a huge penalty especially on the mean stan-
dard deviation. Comparatively, Deep Unfolded PWGD is able to
improve the precision of the estimation and potentially recover
the missing Diracs in the classical approach. In contrast, the
acquisition model-inspired FRIED-Net behaves differently as it
bypasses the subspace estimation. We can see that the encoder
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of FRIED-Net provides just a rough estimate of the locations,
yielding a lower mean standard deviation. The incorporation of
the decoder allows the network to estimate much more precisely,
resulting in lower median standard deviation.

B. Reconstruction With Unknown Sampling Kernel ϕ(t)

Previously, we have shown that both of our proposed learning-
based systems can overcome the breakdown PSNR when the
sampling kernel is known. In this section, we would like to relax
the constraint and reconstruct the signal under the assumptions
that neither the sampling kernel nor the noiseless samples are
known. The former is motivated by the fact that the sampling
kernel ϕ(t) has to be known to find the coefficients cm,n in
(2) in classical FRI techniques, while the latter is due to the
limited information we usually possess in real-world reconstruc-
tion problems. Here, we show that our proposed FRIED-Net is
capable of reconstructing FRI signals while only possessing the
information of the ground truth locations of the training data
{tk}K−1

k=0 and the noisy discrete samples {ỹ[n]}N−1
n=0 . This is

also something that happens in certain neuroscience settings as
we will show in Section V. We also show that although the
sampling kernel ϕ(t) is unknown, we are still able to estimate
it via learning using the fact that the training data are generated
using the same ϕ(t).

1) K = 2, eMOMS: Here we repeat the simulation of Sec-
tion IV-A to compare the performance when the sampling kernel
is known or not. Therefore, the sampling kernel ϕ(t) we use
to generate both training and test data is again chosen to be
an eMOMS. We focus on a simple case of having two Diracs
with equal amplitudes a0 = a1 ∼ U(0.5, 10). Similarly, we fix
the first Dirac at t0 = 0.1 and change Δt0 ∈ [10−0.5, 10−3]
evenly on a logarithmic scale with a step of 10−0.25. Monte
Carlo simulations with 10000 realisations are performed for each
PSNR-Δt0 pair.

We begin with visualising the estimated sampling kernels
ϕ̂Δ(t) in Fig. 12. We observe that the network is capable of
learning it. The estimated ϕ̂Δ(t) matches the original sampling
kernel for PSNR up to 10 dB. Nonetheless, when PSNR = 0 dB,
the network is only able to capture the main peak. This shows that
theoretically, removing the information of the sampling kernel
has a limited impact on the performance of FRIED-Net, apart
from extremely noisy conditions.

Next, we compare the performance of the learning-based
approach with known kernel (fixed decoder) and unknown kernel
(learned decoder). Fig. 13 shows that our proposed FRIED-Net
overcomes the breakdown PSNR, as highlighted by the red
dashed line, in both circumstances, indicated by the spread of
the low standard deviation (blue) region across the red line. On
the other hand, we also see the slight overall performance drop
compared with the previous simulation when shape of the kernel
is known, despite the network learning the sampling kernel well
and close to the ground truth. This performance drop is very
likely due to the fact that we have also removed the information
of the noiseless samples and hence the ground truth information
of the amplitudes during training.

Fig. 12. Estimated kernel ϕ̂Δ(t) obtained from the learned coefficients d of
FRIED-Net compared with the ground truth eMOMS ϕ(t).

Fig. 13. Comparison of the mean standard deviation of the retrieved locations
of a stream of Diracs sampled by eMOMS (P + 1 = N = 21,K = 2) using
FRIED-Net when the sampling kernel is known or unknown. The red dashed
line refers to the breakdown PSNR calculated using (7) [17].

2) K = 2, E-Spline: To further show that this network struc-
ture is capable of learning any arbitrary kernels other than
eMOMS, we repeat the simulation in Section IV-B1 using
a different sampling kernel. To allow comparison with clas-
sical FRI techniques, we choose the sampling kernel to be
another exponential reproducing function, that is an E-Spline
that can reproduce P + 1 = 7 exponentials with ω0 = −Pπ

P+1 and
λ = 2π

3.5(P+1) as the sampling kernel. Same as the previous
simulation, we focus on a simple case of having two Diracs
with equal amplitudes a0 = a1 ∼ U(0.5, 10) and evaluate the
performance by changing the distance between neighbouring
Diracs evenly on a logarithmic scale.

Fig. 14 shows the estimated sampling kernel obtained from
the learned coefficients d. Similar to the case of eMOMS,
the network is able to learn the sampling kernel up to PSNR
= 10 dB, while only capturing the main peak together with
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Fig. 14. Estimated kernel ϕ̂Δ(t) obtained from the learned coefficients d
compared with the ground truth E-Spline ϕ(t).

Fig. 15. Mean standard deviation of the retrieved locations of a stream of
Diracs sampled by E-Spline (P = 6,N = 21,K = 2) over 10000 realisations
at each PSNR-Δt0 pair using different methods.

some oscillations caused by the noise at PSNR = 0 dB. The
reconstruction performance is shown in Fig. 15.

We observe that despite a similar trend, the overall perfor-
mance is worse than that of eMOMS, regardless of classical
or learning-based FRI algorithms. This is as expected because
eMOMS is a more effective kernel for FRI recovery than E-
Splines [5]. Second, we also see that FRIED-Net alleviates the
breakdown inherent to classical subspace-based FRI methods.
However, it once again exhibits a compromise in the situation
where the noise level is low and the Diracs are sufficiently far
apart. This shows that FRIED-Net can reconstruct from discrete
samples acquired from kernels other than eMOMS.

C. Summary

In this section, we summarise and compare our approaches
with classical FRI techniques in terms of required informa-
tion, complexity and reconstruction performance, as well as
discussing why learning-based approaches are able to overcome
the breakdown events. Table II highlights the key findings from
the simulation for K = 2, which also generalises to cases where
we reconstruct more pulses. In terms of sampling kernel ϕ(t),
as both classical FRI and Deep Unfolded PWGD involves
Prony’s method, they require this information to be known to
translate FRI reconstruction problem into spectral estimation.
For FRIED-Net, while the encoder can be trained on its own
without the knowledge of ϕ(t), the decoder of FRIED-Net can
be either fixed or learned depending on whether it is known.
Here ϕ(t) is not required in the evaluation stage as we only need
the encoder to reconstruct the locations. Hence, FRIED-Net is
more suitable in applications such as calcium imaging when the
pulse is unknown, as we will later show in Section V.

In terms of complexity, FRIED-Net involves more than 100
times the number of free parameters used in Deep Unfolded
PWGD. However, this is counteracted by the fact that both
classical FRI and Deep Unfolded PWGD performs one SVD
per iteration, which requires high complexity.

We can then discuss the reconstruction performance by divid-
ing it into two cases: before and after the classical FRI techniques
break down. When the PSNR is high and the locations are far
apart, both Prony’s method with Cadzow and Deep Unfolded
PWGD closely follows the Cramér-Rao bound, while the per-
formance of FRIED-Net plateaus despite the decoder refining
the estimates. For the breakdown region, all of our proposed
learning-based algorithms are able to overcome the breakdown
PSNR. This is because in general, our learning-based approaches
utilises the ground truth labels in the training data effectively as
a prior knowledge in the system. In this particular FRI recon-
struction problem, classical FRI methods are most vulnerable
to pulses that are close together, causing the breakdown events.
We conjecture that by feeding the network with training data that
contains Diracs with variable distances, including when they are
really close together, our proposed learning-based approaches
are able to learn from this prior knowledge, and hence the clas-
sical performance bound, that is the breakdown PSNR, no longer
applies. Amongst our proposed algorithms, the full FRIED-Net
provides the best result as it refines the estimation from direct
inference and is less erratic than Deep Unfolded PWGD.

V. APPLICATION TO NEUROSCIENCE - CALCIUM IMAGING

In this section, we show how our proposed FRIED-net can
be applied to a real life scenario in spike detection from cal-
cium imaging data. Monitoring neural activity has been a key
problem to understanding how neural circuits work in animals
or humans. As neural activity changes the intracellular calcium
concentration [46], fluorescent calcium sensors offer a way to
monitor a large number of cells at the same time. Previous
work [7] considered that calcium transients model a stream of
decaying exponentials and reconstructed the stream using FRI
theory. Here, we demonstrate a similar usage of FRIED-Net, yet
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TABLE II
COMPARISON BETWEEN CLASSICAL FRI TECHNIQUES AND OUR APPROACHES IN RECONSTRUCTING K = 2 DIRACS FROM N = 21 SAMPLES

Fig. 16. Simultaneous imaging (top) and spikes (bottom) of a GCaMP6f
expressing neuron from cai-1 dataset [47], [48]. Data segmentation is performed
by a sliding window with a step of 1 sample.

without explicitly specifying the sampling kernel as a decaying
exponential, similar to the simulation in Section IV-B.

A. Method

1) Calcium Imaging Dataset: We use the cai-1 dataset [47],
[48], which contains simultaneous imaging with loose-seal cell-
attached recording in GCaMP6f expressing neurons. Here, the
calcium imaging data is equivalent to the noisy samples ỹ[n],
while the simultaneous cell-attached recording provides the
ground truth spikes tk for the training data. Each of the images
lasts 240 seconds and is sampled at 60 Hz and the temporal
resolution of the spikes is 100 ms. We further choose a subset of
9 recordings from the same cell, where 8 of them would be the
training data and the remaining one is the test data. An example
is shown in Fig. 16.

2) Data Preprocessing and Spike Detection: Before apply-
ing the data to FRIED-Net, we have to pre-process the data
to ensure they behave like FRI signals and suitable to be used
in DNNs. First, we perform neuropil correction by subtracting
a surrounding neuropil signal from the signal in the region
of interest. This avoids the data getting contaminated by the
surroundings and makes sure that calcium transients are solely

caused by the recorded spikes, hence making it like an FRI
signal.

Second, data segmentation is necessary since it is difficult
for a neural network to handle such a long and variable-length
data stream with a large amount of spikes to be recovered.
Hence, we use a sliding window with a moving step of 1
sample to divide the entire data stream into segments. In this
way we also effectively increase the amount of training data we
have, as each sample is now present in multiple data segments
collected by the overlapping windows. After collecting the data
segments, we remove the bias in each segment by subtract-
ing the entire window with the smallest sample and rescale
the ground truth spikes to tk ∈ [−0.5, 0.5) for the usage of
FRIED-Net.

Together with data segmentation, we also employ the double
consistency approach in [7]. Specifically, we run the algorithm
with two different strategies: we detect a single spike (Kshort =
1) in a sufficiently short window (Nshort) and we detect multiple
spikes (Klong) in a sufficiently long window (Nlong). While
the short window is able to provide a precise estimate of a
single spike in a small time frame, the long window is able
to capture a rough estimate of multiple spikes. When a recon-
structed spike corresponds to an actual spike (true positive), its
estimated location will be consistent across different windows.
Contrarily, as the algorithm treats each window independently,
if a spike is found due to noise (false positive), its location
estimation will likely be unstable across windows. Therefore,
we can collate the outputs from both strategies and construct
an aggregated histogram, where the peaks of the histogram give
us the candidates of estimated spikes and the magnitude of the
peaks (between 0 and 1) provides us the probability of that corre-
sponding to an actual spike. We then threshold the probability to
select the probable candidates as our final estimation. The lower
this threshold is, the likelier the algorithm achieves a higher
detection rate, yet a higher false positive rate at the same time,
effectively creating a trade-off between true positive rate and
false positive rate. An estimated spike t̂k is treated as a true

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on July 23,2023 at 10:14:05 UTC from IEEE Xplore.  Restrictions apply. 



2576 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Fig. 17. Spike detection performance of our proposed FRIED-Net (Nshort = {32, 16},Nlong = {128, 64, 32},Klong = 7, Ta = 2T = 0.033 s) on test
data from cai-1 dataset [47], [48].

positive when it is within the acceptance threshold Ta of an
actual spike, i.e. t̂k ∈ [tk − Ta, tk + Ta], and vice versa.

However, since the ground truth locations have to be labelled
in order to learn FRIED-Net, some further tweaks to the data
are still necessary. First, in the training data, we only include the
windows where spikes exist, since we focus on the accuracy and
precision of finding the true positives and the double consistency
approach would ideally eliminate any spikes caused by noise in
testing. As the data segments likely contain streams of variable
number of pulses, the model orders (Kshort andKlong) only now
specify the maximum number of pulses. In the case where K is
less than the number of ground truth spikes, we simply choose
the first K spikes from the ground truth. In the case of having a
sufficiently long window to detect multiple spikes, there exists a
possibility that K is larger than the number of actual spikes.
Previously in [7], SVD was used to estimate the number of
spikes prior to using the FRI algorithms. However, since neural
networks are not usually capable of output of variable size, we
instead label the “non-existent” spikes as arbitrary spikes that
are outside of the window. In our case, as the window ranges
from -0.5 to 0.5, we set the locations of the arbitrary spikes
to be 1. When constructing the histogram, any reconstructed
spikes outside the window will be disregarded. Together with
the double consistency approach, these tweaks allow us to deal
with data containing a variable number of pulses.

3) Training FRIED-Net: Given the preprocessed data, we
simply take the samples from each window as {ỹ[n]}N−1

n=0 , feed
them into FRIED-Net and estimate the locations of the K spikes
{t̂k}K−1

k=0 . We can then learn an individual FRIED-Net for each
window length configuration. However, as explained in Section
IV-A2, the full FRIED-Net is better at locating a small number of
spikes precisely, while the direct inference network (using only
the encoder of FRIED-Net) is good at making rough estimates
of a high number of spikes. Hence, for the short window, we
train the full FRIED-Net and employ the strategy mentioned in
Section III-B4 when the kernel is unknown. The loss function is
the combination of squared error on the reconstructed samples
and the estimated locations, as stated in Section III-B3. For the
long window, we simply train the encoder of FRIED-Net as
the direct inference network, with the loss function being the
squared error on the locations of the spikes only.

B. Simulation Results

In this section, we present the simulation results of our pro-
posed algorithm on real-life calcium imaging data. As we exper-
imentally found out that better performance is achieved when we
run multiple window lengths for each strategy, we set the window
lengths for short and long windows to be Nshort = {32, 16}
and Nlong = {128, 64, 32} respectively. For the case of long
windows, we are recovering Klong = 7 spikes. A network is
trained for each window length and the recovered spikes from
each network is collated into a histogram as aforementioned.
Fig. 17(a) shows an example of the reconstructed spikes using
FRIED-Net when the probability threshold is 0.1, overlaid with
the ground truth spikes. We observe that our algorithm success-
fully captures most of the spikes, even when the spikes are close
together.

To quantitatively compare our approach against the broadly
used probabilistic fast deconvolution algorithm [49], we present
the receiver operating characteristic (ROC) curves of the re-
spective techniques in Fig. 17(b). It is plotted by changing
the threshold of the probability histogram between 0 and 1 to
illustrate the trade-off between the spike detection rate and the
false positive rate. Here, the acceptance interval Ta is chosen to
be double the sampling period, that is 0.033 s. We observe that
FRIED-Net performs competitively over the fast deconvolution
algorithm, as it achieves a true positive rate of 80%. We further
compare the precision of the true positives. Again, we use the
standard deviation described in (18) as the evaluation metric.
Fig. 17(c) presents the distribution of standard deviation of the
detected locations with respect to the ground truth locations
with changing probability threshold, where outliers are indicated
by the red crosses. We see that the overall standard deviation
of FRIED-Net is lower than that of the fast deconvolution
algorithm. This shows that our approach provides more precise
estimations.

VI. CONCLUSION

This article addresses limitations of existing FRI techniques in
that the reconstruction performance breaks down in the presence
of noise caused by the so-called subspace swap event. We
proposed two learning-based FRI reconstruction algorithms that
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are inspired by the classical FRI reconstruction models. Deep
Unfolded PWGD provides an interpretable deep neural network
based on existing iterative denoising algorithm for subspace-
based methods, while FRIED-Net aims to bypass subspace-
based algorithms and instead models the acquisition process
of FRI signals. The latter is particularly useful in neuroscience
applications where the sampling kernelϕ(t) is unknown, since it
can be learned using backpropagation. Simulation results show
that despite a slight compromise at high PSNR, our proposed
approaches reconstruct FRI signals in the low PSNR region
where existing FRI algorithms break down, even when the
original sampling kernel is unknown. We then demonstrated that
our proposed approach provides more precise spike detection
than existing algorithms on real-life calcium imaging data, while
maintaining a similar performance in terms of true positive and
false positive rate.
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