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ABSTRACT Finite-rate-of-innovation (FRI) signal model is well suited for time-of-flight imaging
applications such as ultrasound, lidar, sonar, radar, and more. Due to their finite degrees of freedom,
the sub-Nyquist sampling framework is used for FRI signals. In this framework, sampling is achieved
by using appropriate sampling kernels. Reconstruction is performed by first computing Fourier samples
of the FRI signal and then applying sparse-recovery algorithms. The choice of the Fourier samples and
reconstruction method plays a crucial role in the reconstruction quality. In this paper, we consider jointly
optimizing the choice of Fourier samples and reconstruction parameters. Our framework combines a greedy
subsampling algorithm and a learning-based sparse recovery method. The combination has three distinct
advantages. First, the network does not require knowledge of the FRI pulse shape, which is not the case
with existing approaches. Second, the network does not suffer from differentiability issues during training
which is common in sampling networks. Further, the proposed algorithm can flexibly handle changes in the
sampling rate. Numerical results show that, for a given number of samples, the proposed joint design leads to
lower reconstruction error for FRI signals than independent data-driven design methods for noisy and clean
samples. We also propose a way to extend the approach for large-scale problems. Our learning-to-sample
approach can be readily applied to other sampling setups, including compressed sensing problems.

INDEX TERMS FRI signal, sub-Nyquist sampling, sum-of-sincs filter, model-based deep learning,
unrolling, greedy algorithm, LISTA, joint sampling and recovery, learn to sample.

I. INTRODUCTION
Sub-Nyquist approaches make use of signal structures
beyond bandlimitedness [1]. A popular structure is that of
finite rate of innovation (FRI), which has been extensively
studied the time of flight imaging applications such as ultra-
sound imaging, radar imaging, and more [2], [3], [4], [5], [6].
A typical FRI signal is a linear combination of delayed
copies of a known pulse, where the information of the signal
lies in the amplitude and time-delays of the pulses. For an
FRI signal consisting of a stream of L pulses there are 2L

The associate editor coordinating the review of this manuscript and
approving it for publication was Manuel Rosa-Zurera.

unknowns. It has been shown that a minimum of 2L Fourier
samples of the FRI signal are sufficient to uniquely identify
the unknowns in the absence of noise [6], [7], [8]. In the
presence of noise, a larger number of Fourier samples are
required.

The desired Fourier samples of the FRI signals can be
computed by using a kernel-based sub-Nyquist sampling
framework. In this framework, the FRI signal is passed
through an appropriate sampling kernel prior to sampling.
Then, the filtered signal is sampled at a rate proportional
to the number of Fourier samples to be determined. The
sampling rate is far below the effective bandwidth of the FRI
signal, which results in sub-Nyquist sampling. The sampling
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kernel, which is a function of the desired Fourier samples,
plays a crucial role in determining Fourier measurements of
the FRI signal from its sub-Nyquist samples. The amplitude
and time-delays of the FRI signal are then determined from
the Fourier samples. For off-grid time delays, high-resolution
spectral estimation methods (HRSE) [9, Ch. 4] are applied.
When the time delays are on a grid, compressive sensing
(CS) methods [10] such as iterative shrinkage/thresholding
algorithms (ISTA) [11], fast-ISTA (FISTA) [12, Ch. 2], [13]
can be used.

In the aforementioned standard sampling and recovery
framework, reconstruction accuracy depends on the param-
eters of the recovery algorithm and the choice of Fourier
samples. Hence, for a given number of Fourier samples,
the parameters and choices could be optimized to improve
reconstruction accuracy. For example, the spectrum of the
FRI pulse plays a crucial role in the reconstruction algorithm
and choice of Fourier coefficients, especially in the presence
of noise. Moreover, in many applications, the sparsity pattern
of the FRI signals is further structured, such as tree sparsity
or block sparsity. In this case, the number of measurements
can be used to reduce below what is required by standard CS
methods [14]. In general, the FRI pulse shape, the sparsity
structure, and noise levels are required to optimize the Fourier
sampling patterns and parameters of the reconstruction.
However, prior knowledge of these quantities may not be
available. For example, the pulse shape could be distorted
during transmission in a radar application, and hence it is not
known accurately at the receiver.

In the absence of such prior knowledge, data-driven
techniques are well suited. In these approaches, a set of
examples that are similar to the signal to be sampled
are available. These examples implicitly carry information
of the sparsity structure, FRI pulse shape, and noise
levels. Even when the information is known explicitly,
there does not exist an optimal data-independent tech-
nique to solve the problem of Fourier sample selection.
Data-driven reconstruction and subsampling methods learn
hidden information by optimizing their parameters by using
examples.

The data-driven or learning approaches can be categorized
as follows: (1) fixed subsampling with learning-based
recovery methods; (2) learning-based subsampling with fixed
reconstruction; and (3) joint subsampling and reconstruction
methods. For example, deep-learning reconstruction tech-
niques have been proposed to reduce the computational
cost compared to standard CS algorithms and improve
reconstruction accuracy in the presence of noise and sparsity
structures [15], [16], [17]. Among these techniques, learned
ISTA (LISTA) [17] is favored due to its interpretable structure
and computational efficiency. In addition, due to its model-
based structure, LISTA requires fewer examples to train
compared to standard deep learning approaches [18]. Unlike
HRSE or standard CS-based methods, LISTA does not
require explicit knowledge of the FRI pulse shape. Recently,

several alternativemodel-based networks have been proposed
for sparse recovery [19], [20], [21].

There are several subsampling mechanisms considered
in the literature [22], [23], [24], [25], [26], [27], [28]
which result in lower reconstruction error compared to non-
adaptive, random subsampling [29], [30]. Adcock et al. [22]
considered a deterministic approach for subsampling Fourier
measurements with an assumption that the signals are
sparse in the wavelet domain. Lustig et al. [23] used a
random variable density subsampling scheme for magnetic
resonance imaging (MRI) where low frequencies are favored.
In [25], [26], [27], and [28], greedy algorithms are used to
design subsampling patterns. In [25] and [26] a Crámer-Rao
lower bound (CRLB)-based cost function, which is inde-
pendent of any recovery method, is used to determine the
subsampling pattern. In [27] and [28], a means-squared error
cost function is used, which is computed assuming a fixed
reconstruction method. A direct application of these methods
or their modifications to the Fourier subsampling problem for
FRI signals requires knowledge of the FRI pulse shape.

Compared to independent subsampling and reconstruction
optimization methods, joint design results in lower recon-
struction error for a given number of measurements as shown
for MRI [31], [32], [33], [34], [35], [36], [37], [38], and
ultrasound [39]. These methods consider both subsampling
and reconstruction as parametric functions and optimize the
parameters over a given data set such that reconstruction error
is minimized. These joint design methods can be applied
to select Fourier samples and reconstruction parameters
for FRI signals. However, these techniques have several
drawbacks. First, the approaches require exact knowledge
of the measurement matrix, which is a function of the
pulse shape in the FRI context. Second, in the joint design
works, the cost function is not differentiable with respect
to the sampling pattern, so that gradient-based optimization
methods are not applicable. In [32], the sampling patterns
are constrained to be a continuous function of a known
sampling template to address the differentiability issue.
However, the selection of a sampling template is an
additional challenge. In [31], [33], [37], [38], and [39],
categorical random variables or probabilistic policies are
used to reparameterize the discrete sampling locations
to a continuous random variable. This relaxation results
in additional parameters to be learned and increases the
computational cost [33], [40]. In addition, it is difficult to
understand the effect of relaxation on the performance of
joint optimization. In [36], the authors used an alternate
minimization approach where the sampling pattern is first
optimized by fixing the reconstruction approach, and then the
parameters of the reconstruction method are determined with
the optimized sampling pattern in the first step. The sampling
pattern optimization step uses a heuristic approach for subset
selection. In the context of FRI sampling, this approach does
not require knowledge of FRI pulse. However, the algorithm’s
convergence requires careful selection of the initialization
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and learning rates. The flexibility of the networks with
changes in the subsampling rate is another key issue in
these approaches. The networks in [32] and [39] require
retraining from scratch for changes in the sampling rate.
Recently, several alternative learning-based joint sampling
and reconstruction approaches have been proposed for
images and videos [41], [42], [35], [43], [44].

In this paper, we propose a model-based, deep-learning
framework for the sampling and reconstruction of FRI sig-
nals. Specifically, we design a data-driven approach by jointly
optimizing the Fourier subsampling pattern and parameters
of the reconstruction approach. Two main ingredients of our
technique are a greedy algorithm that is used for subsampling
and a LISTA network for FRI parameter estimation. At any
given iteration of the greedy algorithm, a new sample is
selected (or removed) from the remaining (or existing)
samples such that it results in the lowest reconstruction error.
A trained LISTAnetwork is used to estimate the sparse vector,
and then the reconstruction error between the estimate and the
ground truth is computed. In our approach, at each iteration
of the greedy step, reconstruction parameters are optimized
for sampling patterns at that step. In this way, at the end
of the final iteration, a choice of Fourier samples, along
with a matched reconstruction method, is obtained. During
reconstruction, the LISTA network is used, which does not
require the knowledge of the FRI pulse shape. Similarly, the
sampling pattern is optimized to reduce the reconstruction
error, which is pulse-independent. Hence, the overall network
does not require knowledge of the FRI pulse.

The sequential greedy selection approach used in the
network is flexible to change in the sampling rate, and
our network possesses the same flexibility. In particular,
to optimize the network for a higher number of samples,
one can start from the trained network instead of retraining.
Further, the proposed network does not have differentiability
issue that arises in most existing works. Due to the
use of a greedy approach, our joint network does not
have any parameters to optimize for sampling, and hence
differentiability issue does not arise. Once the entire network
is optimized, it results in optimal Fourier sampling locations
and reconstruction method. The Fourier sampling locations
are then used to design a sampling kernel. In this paper, a sum-
of-sincs (SoS) kernel is designed by placing sinc functions
at the selected sampling locations [6], [8]. Application of
the proposed joint subsampling and reconstruction approach
is not limited to FRI signals but can be extended to other
subsampling problems such as MRI, compressive sensing,
and more.

To assess of joint optimization algorithm, we compare
it with the algorithms where sampling and reconstruction
are independently optimized. Specifically, we compare our
algorithm with greedy methods with fixed reconstruc-
tion [25], [26], [27], [28]. Compared to these methods,
our joint approach results in a lower error for different
noise levels. Further, we show that the joint-learning-based
approach can sample below the sub-Nyquist rate of the FRI

FIGURE 1. A schematic of FRI signal sampling and reconstruction: An FRI
signal f (t) is first passed through a filter gc(t) where c is a parameter of
the filter. The signal is uniformly sampled at a sub-Nyquist rate, and the
signal parameters are estimated by applying a reconstruction method rθ .

signal. Specifically, we show that an L-sparse FRI signal can
be reconstructed up to −20 dB normalized mean-squared
error (NMSE) from less than 2L Fourier samples. In addition,
we show that the learning-based approach can learn sparsity
structures in the signal by optimizing the sampling and
reconstruction for a given set of examples.

The paper is organized as follows. The proposed joint
sampling and reconstruction problem for FRI signals is dis-
cussed in Section II. In Section III, we present the proposed
joint-sampling and reconstruction algorithm. Numerical
results are presented in Section IV followed conclusions in
Section V.

II. PROBLEM FORMULATION
A. SIGNAL MODEL
Consider an FRI signal f (t) that consists of a sum of L
amplitude-scaled and time-shifted copies of a pulse h(t):

f (t) =

L∑
ℓ=1

aℓh(t − tℓ). (1)

In the standard FRI framework, h(t) is assumed to be known,
which results in a finite degrees of freedom of the FRI signal
f (t) in terms of the amplitudes {aℓ}

L
ℓ=1 and delays {tℓ}Lℓ=1.

FRI signal sampling and reconstruction deal with estimating
the parameters {aℓ, tℓ}Lℓ=1 from the fewest possible samples
measured at a sub-Nyquist rate.

In radar, ultrasound, and other time-of-flight-based appli-
cations, the pulse h(t) denotes the transmit pulse. Assuming
there are L point targets in the medium, the transmit pulse
gets reflected from the targets and a linear combination of L
reflected pulses are received. The received signal is modeled
as the FRI signal in (1) where the amplitudes {aℓ}

L
ℓ=1 and

{tℓ}Lℓ=1 denote area or size of the targets and location of the
targets, respectively.

We make the following assumptions on the signal model.
We assume that the number of targets, L, is known and,
tℓ ∈ (0, tmax], where tmax is the maximum time delay of
the targets. In practice, the pulse h(t) has compact support,
and we assume that h(t) = 0 for t ̸∈ [0,Th]. The support
assumption of h(t) together with the assumption that tℓ ∈

(0, tmax] results in compactly supported f (t) over the interval
[0,Th + tmax].
A schematic of a typical FRI signal sampling and recon-

struction framework is shown in Fig. 1. The sampling process
consists of a sampling kernel gc(t) followed by a sampler
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operating at a rate 1
Ts

samples per second. The output of the
sampler is a sequence of samples y(nTs) from which the FRI
parameters {aℓ, tℓ}Lℓ=1 are computed by the reconstruction
method rθ . The sampling kernel and reconstruction method
are parameterized by c and θ , respectively. Our goal is to
jointly design a sampling kernel and reconstruction method
such that the FRI signal parameters are determined uniquely
from sub-Nyquist samples. Specifically, for a given set of FRI
signals of the form (1), we seek to jointly optimize c and θ

to minimize the reconstruction error while operating at sub-
Nyquist rates. In addition, we assume that the pulse shape
h(t) is not known a priori. Details of the problem formulation,
together with the sampling and reconstruction methods, are
discussed next.

B. FREQUENCY-DOMAIN RECONSTRUCTION
The reconstruction is typically carried out in the fre-
quency domain as it facilitates application of either HRSE
or CS-based methods. To elaborate, consider uniform
Fourier-domain samples of f (t) as

F(kω0) = H (kω0)
L∑

ℓ=1

aℓejkω0tℓ , k ∈ N , (2)

where ω0 ∈ R is the sampling interval and N is a
set of integers. The sampling locations are chosen such
that {H (kω0)}k∈N do not vanish. Since {H (kω0)}k∈N are
computed a priori from the known pulse h(t), from the Fourier
samples the following sequence of samples are derived:

S(kω0) =
F(kω0)
H (kω0)

=

L∑
ℓ=1

aℓejkω0tℓ , k ∈ N . (3)

The spectral samples S(kω0) are a function of the unknown
FRI parameters {aℓ, tℓ}Lℓ=1.
To estimate the FRI parameters through HRSE methods,

such as annihilating filter [45], or matrix-pencil algo-
rithms [46], the set N should consist of consecutive integers
with cardinality |N | ≥ 2L. In other words, there should be
2L spectral samples to determine 2L unknowns. In addition,
for uniquely identifying the time-delays, it is necessary that
the elements in the {ejω0tℓ}Lℓ=1 are distinct. A straightforward
way to ensure this requirement is to set ω0 =

2π
tmax

.

Compared to HRSE methods, CS-based algorithms, such
as orthogonal matching pursuit or iterative thresholding
techniques, are shown to be robust in the presence of
noise. This motivates us to consider CS-based algorithms
for reconstruction in this paper. To apply these methods,
the time-delays are assumed to be on a grid. To elaborate,
let 1 be a grid size and N =

tmax
1

. Then for each tℓ
there exists an integer nℓ ∈ N = {1, 2, · · · ,N } such that
tℓ = nℓ1. By substituting the grid assumption in (2) together

with ω0 =
2π
tmax

, we have

F(kω0) = H (kω0)
N∑
n=1

xnej2πkn/N , k ∈ N , (4)

where {xnℓ
= aℓ}

L
ℓ=1 and xn = 0 for n ̸∈ {nℓ}

L
ℓ=1. Within the

assumed settings, the Fourier samples in (2) can be written in
matrix notation as

f = diag(h)Ax, (5)

where f = [F(ω0),F(2ω0), · · · ,F(Nω0)]T, h =

[H (ω0),H (2ω0), · · · ,H (Nω0)]T, and A is an N × N
discrete Fourier transform (DFT) matrix. The vector x =

[x1, · · · , xN ]T has L non-zero values. The support of x carries
the information of time-delays, and the non-zero values are
equal to the amplitudes. Theoretically, 2L Fourier samples
are sufficient to recover x uniquely. However, more than 2L
samples are required in the presence of noise.

C. KERNEL-BASED SAMPLING
For both on-grid or gridless premises, the frequency-domain-
based reconstruction requires the computation of Fourier
samples {F(kω0)}k∈N . These samples can be determined by
designing a suitable sampling kernel and then sampling the
filtered signal at an appropriate rate. This is achieved through
carefully designing the sampling kernel and the sampling
rate. In the context of FRI sampling, different sampling
kernels are proposed, such as SoS kernels, generalized
kernels, Gaussian, ideal lowpass filters, exponential and
polynomial generating kernels, and more. Among these, the
SoS kernel, the generalized kernels, and the polynomial
generating kernels are suitable for the present discussion.
These kernels can be designed such that the filtered signal y(t)
is a linear combination of Fourier samples of f (t) as required
in the Fourier-domain recovery method. Moving forward,
we consider an SoS kernel due to its simplicity in design and
parametric nature.

An SoS kernel has compact support, and its impulse
response is given by

gc(t) =

∑
k∈N

ckejkω0t , t ∈ [0,Tg], (6)

where Tg > Th+ tmax. The coefficients {ck}k∈N act as design
parameters of the filter and can be optimized to select the
Fourier samples.

It can be shown that the filtered signal y(t) by using the SoS
filter is given as [6] and [8]

y(t) =

∑
k∈N

ckF(kω0)ejkω0t , t ∈ [Th + tmax,Tg]. (7)

Upon uniformly sampling y(t) in the interval [Th + tmax,Tg]
we have the following samples

y(nTs) =

∑
k∈N

ckF(kω0)ejkω0nTs . (8)

To uniquely determine scaled Fourier samples {F(kω0)}k∈N
from the time-samples in (8), there should be at least |N |

time-samples and the set of linear equations in (8) should be
invertible. By choosing Tg ≥ Th + tmax + |N |Ts, it can be
ensured that there are at least |N | time-samples. The linear
equations are invertible provided that Ts =

tmax
|N |

. Note that
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the sampling rate is proportional to the number of Fourier
samples.

In practice, N ≫ L ensures that the on-grid assumption
is close to any off-grid scenario. The condition N ≫ L
results in a large number of time and Fourier samples
beyond the minimal 2L samples. As the sampling rate is
proportional to the number of Fourier samples, N ≫ L leads
to oversampling.

To ensure that the desired number of Fourier samples are
selected while sampling at the lowest possible rate, Fourier-
domain subsampling is required. Specifically, let K ⊂ N
where 2L ≤ |K| < |N | denotes the index of Fourier samples
in f̄ that are considered for reconstruction. One of the simplest
ways to consider these Fourier samples is to set ck = 1, k ∈ K
and the remaining coefficients to be zero. The non-zero values
of ck can be designed to take any value instead of ck = 1.
However, hardware implementation of the filter for arbitrary
choice of cks may give rise to calibration issues. Hence for
the remainder of the discussion, we consider binary valued
cks.

With subsampling, (8) becomes

y(nTs) =

∑
k∈K

ckF(kω0)ejkω0nTs , n ∈ N , (9)

where the summation is over K instead of N . For recon-
struction, {F(kω0)}k∈K needs to be determined from the time
samples in (9). In the set of linear-equations in (9), the matrix
relating the Fourier and time samples is a Vandermonde
matrix with its (nk)-th component being ejkω0nTs where n ∈

N and k ∈ K. The Vandermonde matrix is left-invertible
provided that its seeds {ekω0Ts}k∈K are distinct. Since K ⊂

N , the choice Ts =
tmax
|N |

ensures uniqueness of recovery.
However, this results in a higher sampling rate.

To ensure that the sampling rate is proportional to the
number of Fourier samples |K|, we set the sampling interval
as

Ts =
tmax

|K| + ϵ
, (10)

where 1 > ϵ > 0. The condition ϵ = 0 should give a
minimum desirable sampling rate. However, this may result
in repetition in the set {ejkω0Ts}k∈K. For example, if k0, k0 +

|K| ∈ K for some integer k0, then the seeds ejk0ω0Ts and
ej(k0+|K|)ω0Ts are indistinguishable for ϵ = 0. The upper
bound, ϵ < 1, ensures that the sampling rate is close to the
desired minimum rate while ensuring distinct seeds.

D. PROBLEM OF JOINT SAMPLING AND RECOVERY
The Fourier samples derived from the filtered signal are given
as

f̄ = diag(c)f = diag(c)diag(h)Ax, (11)

where elements of c ∈ {0, 1}N are the coefficients of the
SoS filter. The non-zero locations of c denote the selected
Fourier samples. Specifically, we have that supp(c) = K.
Let rθ (·) is reconstruction method with tunable parameters

θ ∈ CM . Then the estimate of the sparse signal is given as
x̂ = rθ (diag(c)diag(h)Ax). Our objective is to optimize c and
θ tominimize error in estimation of x. To this end, we follow a
data-driven approach and optimize the parameters for a given
set of examples.

For a given application, consider a data set of Q
representative examples,

D = {fq = diag(h)Axq + ηq, xq}
Q
q=1, (12)

for fixed h. The vector ηq denotes measurement noise in
the q-th example. To optimize c and θ over these examples,
we consider the following optimization problem

min
c∈{0,1}N

θ∈CM

1
Q

Q∑
q=1

{C(xq, rθ
(
diag(c)fq

)
} s. t. ∥c∥0 = K ,

(13)

where K is the sampling budget and the cost function C :

CN
× CN

→ [0, ∞) is a error metric. In addition to being
L-sparse, these representative examples could have structured
sparsity. For example, the non-zero values could be bunched
together or can occur in a specific pattern. These structures
are not known a priori. Any solution to the optimization
problem of the representative examples should be able to
learn these structures and optimize c and θ accordingly.
A sampling kernel and recovery technique are designed from
the solution of the optimization problem in (13). Then the
sampling kernel and reconstruction method can be used to
sample FRI signals whose sparsity structure and pulse shape
are the same as the representative data set. Since the sampling
kernel operates in an analog domain and the reconstruction is
discrete, the above design principle is hybrid in nature. In the
next section, we propose solutions to the problem discussed
here.

III. DATA-DRIVEN JOINT SAMPLING AND
RECONSTRUCTION ALGORITHM
In this section, we propose algorithms to solve the optimiza-
tion problem in (13). The optimization problem concerning
c is combinatorial. To address this issue, we follow a
greedy approach. Specifically, the sampling problem is
solved by a non-parametric, iterative, greedy method. For
reconstruction, we apply the LISTA [17]. To solve the
sampling and reconstruction problem jointly, we combine the
greedy algorithm and LISTA. Before discussing the proposed
joint learning algorithm, we first discuss the standard greedy
algorithm and its variants suitable for our objective and the
LISTA algorithm.

A. SUB-SAMPLING THROUGH GREEDY APPROACH
Consider the optimization problem (13). If we fix the recov-
ery approach, the problem is reduced to designing an optimal
sampling pattern c. To address the combinatorial nature
of the problem, convex relaxation approaches [47], [48],
bit-wise mutation algorithms [49], [50], [51], and greedy
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Algorithm 1 Greedy Algorithm

Initialize: K = ∅

for k = 1 to K do
[S1] i∗ = min

i∈N \K
S(K ∪ {i})

[S2] K = K ∪ {i∗}
end for

methods [26], [52], [53] have been suggested. Among these
two methods, the greedy one is computationally efficient.
In the greedy algorithm, the sampling pattern is computed
in K -steps, and the performance of this method is close to
optimal if the cost function is submodular [54].

In (13), for a fixed reconstruction method rθ , the cost is a
function of the set K = supp(c). Let

S(K) =
1
Q

Q∑
q=1

C(xq, rθ
(
diag(c)fq

)
. (14)

With this cost, the optimization problem,

min
K⊂N

S(K) s. t. |K| = K , (15)

can be solved by a greedy algorithm if the cost is submodular
and monotone. Mathematically, submodularity implies that
∀K1 ⊆ K2 ⊆ N we have that S(K1 ∪ {i}) ≥ S(K2 ∪

{i}), ∀i ∈ N \K2. The cost is said to be monotonic if
∀K1 ⊆ K2 ⊆ N we have that S(K1) ≤ S(K2) [54]. For
submodular and monotone cost functions, performance of
the greedy approach reaches within

(
1 −

1
e

)
of the optimal

solution [52].
Typically, greedy algorithms rely on a bottom-up approach

where the algorithms start from zero samples and add a new
sample at each iteration. The new sample selected from the
remaining samples minimizes the cost at that iteration. The
details are summarized in Algorithm 1.

Among several choices of submodular cost functions, cost
as the log-determinant of the CRLB (log-det CRLB) is shown
empirically to have a small error while estimating sparse
vectors from subsampled Fourier measurements [26], [55].
In the present setup, assuming that {xq}

Q
q=1 are deterministic,

the CRLB in estimation of xq from yq = Bxq+ηq whereB =

diag(c)diag(h)A. Here CRLB or log-det CRLB is a function
of the sampling pattern c or K as well as the pulse h. Let
CRLBq(xq,h, c) denote the CRLB matrix in the estimation
of xq. Specifically, CRLBq(xq,h, c) denotes lower bound on
the error covariance matrix in the estimation of xq from yq,
that is,

Ex̂q

(
(xq − x̂q)(xq − x̂q)T

)
≥ CRLB(xq,h,K), (16)

where x̂q is an unbiased estimate of xq and Ex̂q is expectation
over x̂q. Then the cost function in (14) is given as

S(K) =
1
Q

Q∑
q=1

log-det CRLBq(xq,h, c). (17)

A similar CRLB-based cost function has been considered
in [25] for subsampling using a greedy technique.

While the CRLB-based greedy algorithms work, the
selected sampling pattern is independent of the reconstruc-
tion rθ . In [27] and [28], it is shown that the reconstruction
error can be reduced by taking into account the reconstruction
process while subsampling. For example, the CRLB cost
can be replaced by mean-squared error or peak signal-to-
noise ratio, which is computed after estimating the sparse
vector by a fixed reconstruction rθ . Details of this modified
greedy algorithm that depends on a reconstruction method
are summarized in Algorithm 2. In Algorithm 2, the sample
locations selected at the end of the k-th iteration are denoted
as K(k). At the k-th iteration, to evaluate [S1], we need
to apply a reconstruction algorithm (N − k + 1)-times.
This results in an overall of KN −

K (K−1)
2 recalls of the

reconstruction algorithm.

Algorithm 2Modified Greedy Algorithm
Inputs: Data D, full-sample indices N , and a reconstruc-
tion method rθ
Output: Sampling set K
Initialize: K = ∅

for k = 1 to K do
[S1] For i ∈ N \K, estimate xq,K∪{i} = rθ

(
diag(c)fq

)
where ck = 1 for k ∈ K∪{i} and the rest of the coefficients
are zero

[S2] i∗ = min
i∈N \K

1
Q

Q∑
q=1

C
(
xq, xq,K∪{i}

)
[S3] K = K ∪ {i∗} and K(k)

= K
end for

In Algorithm 2, one starts with zero samples and sequen-
tially adds newer samples. As the algorithm estimates the
sparse signal with fewer measurements/samples, in the first
few iterations, compared with the number of unknowns,
the estimation error could be very high. Especially in the
presence of noise, the method may not choose the right
samples due to this large error and may be less efficient.
An alternative approach is to start with full samples and
sequentially remove one sample at a time until the desired
number of samples is retained. This approach is also known
as the backward greedy approach [56], whereas the standard
approach (Algorithm 1 or 2) is referred to as the forward
greedy approach. The sample removed at each iteration is the
one for which a change in the cost function is the smallest,
as described in Algorithm 3.

This algorithm requires (N−K )(N+K+1)
2 recalls of the recon-

struction method. Algorithm 2 requires fewer computations
compared to that of Algorithm 3 for K < N

2 and vice
versa. The sampling pattern and hence the reconstruction
accuracy of the two algorithms depend on the data used and
noise levels. In addition, the cost functions are not neces-
sarily sub-modular, and optimality of the algorithms is not
guaranteed.
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Algorithm 3Modified Greedy Algorithm - 2
Inputs: Data D, full sample indices N , and a reconstruc-
tion method rθ
Output: Sampling set K ⊆ N with |K| = K
Initialize: K = N
for k = 1 to N − K do

[S1] For i ∈ K, estimate xq,K\{i} = rθ
(
diag(c)fq

)
where ck = 1 for k ∈ K\{i} and the rest of the coefficients
are zero

[S2] i∗ = min
i∈K

1
Q

Q∑
q=1

C
(
xq, xq,K\{i}

)
[S3] K = K\{i∗} and K(k)

= K
end for

FIGURE 2. Flow diagram of ISTA and network architecture for LISTA:
While the set of parameters θ = {λ, W, V} is fixed in ISTA whereas in
LISTA θ is learned for a given set examples.

B. LISTA-BASED RECONSTRUCTION
In our approach, LISTA is applied for recovery, as discussed
next. We consider the following l1-relaxed optimization
problem to estimate x from f̄ = Bx, where B =

diag(c)diag(h)A

min
x∈CN

1
2
∥f̄ − Bx∥22 + λ̄∥x∥1, (18)

where λ̄ > 0 is a regularization parameter. One can apply
ISTA to solve (18) where starting from an initialization x(0),
a sparse solution is updated as

x(i+1)
= T λ̄

µ

{(
IN −

1
µ
BHB

)
x(i) +

1
µ
BH f̄

}
, i = 1, 2, · · · ,

(19)

where µ is a constant parameter that controls the step size of
each iteration and IN is an N × N identity matrix. In (19),
Tα{·} is an elementwise soft-thresholding operator defined as
Tα{x} = sign(x) max{|x|, 0}.

By replacing λ =
λ̄
µ
,W =

(
IN −

1
µ
BHB

)
, andV =

1
µ
BH,

in (19), we have

xi+1
= Tλ

{
Wxi + Vf̄

}
. (20)

The iterations of ISTA are summarized in Fig. 2. In the
above formulation, θ = {λ,W,V} denote reconstruction
parameters which are fixed in standard ISTA. Whereas,
in LISTA, these parameters are learned by unrolling the ISTA
algorithm, as shown in Fig. 2. Specifically, a network is
constructed by stacking a finite number of layers where each
layer is a map of one iteration. The parameters θ are then

Algorithm 4 Joint Subsampling and Recovery Algorithm
Inputs: Data D and full sample indices N
Initialize: K(0)

= ∅

for k = 1 to K do
[S1] for all i ∈ N \K(k−1) do

(a) Fora binary-valuedvector ci
∈{0, 1}|N |, set supp{ci}=K(k−1)

∪ {i}

(b) θ
(k)
i

=argmin
θ

1
Q

∑Q
q=1 ∥xq−rθ

(
diag(ci)fq

)
∥
2
2

where rθ is a LISTA-based reconstruction.

(c) xq,i = r
θ
(k)
i

(
diag(ci)fq

)
for q = 1, · · · ,Q

end for

[S2] i(k)∗ = argmin
i∈N \K(k−1)

1
Q

Q∑
q=1

C
(
xq, xq,i

)
[S3] K(k)

= K(k−1)
∪ {i(k)∗ }

end for
Output: Optimal sampling set KK

⊆ N with |KK
| = K

and corresponding reconstruction parameters θ i(k)∗

learned to minimizing cost
Q∑
q=1

∥xq − x̂q∥22 over a set of

example. Here x̂q is the output of the P-th layer.
The LISTA-based reconstruction algorithm is well suited

for our goal; it leads to a parametric, data-driven recon-
struction and does not require exact knowledge of the
measurement matrix B, which is a function of h.

C. PROPOSED JOINT SAMPLING AND RECONSTRUCTION
(JSR) ALGORITHM
Both Algorithm 2 and its variant Algorithm 3 are functions
of the parameter of the reconstruction algorithm θ . While
it is fixed in both of these algorithms, finding an optimal θ

for a given set of examples results in a solution to the
joint optimization problem in (13). To this end, we use
the LISTA-based reconstruction method while the greedy
algorithm determines the sampling set. Details of the
proposed joint sub-sampling and reconstruction approaches
are described in Algorithm 4. As in the forward greedy
approach (Algorithm 2), we start with zero samples and
sequentially add a new sample. Alternatively, one can also
start from full samples and remove one at a time, as in the
backward greedy approach (Algorithm 3).
A flow diagram of the JSR algorithm is shown in Fig. 3

where for simplicity of the discussion the steps [S1]-[S3]
are denoted by an operator S1-3(θ ). At the k-th iteration,
the operator S1-3(θ ) acts on the previous sampling pattern
K(k−1) and outputs K(k), that is, K(k)

= S1-3(θ ){K(k−1)
}.

Note that the parameters of the reconstruction algorithm
vary for each iteration as the number of samples varies
with iteration. Moreover, within each iteration, for different
sampling patterns, different reconstruction parameters are
used, as shown in Fig. 3(b).
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FIGURE 3. A flow diagram of Algorithm 4: (a) Steps [S1]-[S3] are denoted
by S1-3(θ), and the parameter θ of the reconstruction algorithm varies for
each iteration. (b) For k-th iteration, P = N − k ; For each rθ , LISTA
network shown in Fig. 2 is used, and the parameters are learned from the
given data.

In Algorithm 4, LISTA is used to solve the optimization
problem in [S1](b) (cf. Fig. 2). Note that the parameters of
LISTA are learned sequentially for a given sampling pattern
in each layer. Hence, backpropagation is not required from
one iteration to another of [S1]. As a consequence, derivatives
do not exist over sampling optimization. In addition, the
network is flexible, as explained next.

Consider the problem of selecting K samples together
with optimal reconstruction. Then, the proposed unfolding
architecture results in a pair of optimal sampling patterns
and corresponding reconstruction parameters {K(k), θ

(k)
i∗ } for

k = 1, · · · ,K . As a result, one need not retrain the network
for the problem of selecting less than K samples. On the
other hand, if the objective is to choose more than K samples
together with optimal reconstruction parameters, then one
can start from the sampling pattern K(K ) and add additional
samples by using Algorithm 4. In this case, we need not train
the network from scratch.

The formulation in (11) is also similar to the standard CS
problem, where the objective is to recover sparse vectors from
their compressedmeasurements. However, a major difference
is that in a CS problem, themeasurement matrix is assumed to
be known, whereas it need not be the case here. Irrespective of
this, the proposed joint sampling and reconstruction method
can be applied to cases where CS can be applied.

D. TRAINING OF JSR NETWORK
As discussed in the previous section, in the proposed network,
the parameters in each layer (correspond to one iteration of
Algorithm 4) are learned sequentially. Hence, for selecting
a new sampling pattern in each iteration, dedicated LISTA
networks are trained. For example, at k-th iteration, to select
the sampling pattern K(k), individual LISTA networks are
trained for each candidate sampling pattern of size k .
These LISTA networks within a sampling layer are trained
simultaneously with random initializations with the same
seed. To optimize the LISTA parameter for ith sampling

pattern in the k-th sampling layer we use the following loss

function θ
(k)
i = argmin

θ

1
Q

Q∑
q=1

∥xq − rθ
(
diag(ci)fq

)
∥
2
2. Ten

unfolding layers are used for each LISTA network. We use
the Adam solver with a learning rate of 0.001 to optimize the
network.

In terms of computational complexity, the algorithm
requires multiple training of the LISTA network. However,
within each iteration of the greedy algorithm, the LISTA
networks can be trained in parallel to reduce the training
time. In applications such as MRI, where Fourier samples
are typically considered in a two-dimensional plane,N andK
are large. To reduce the computations, instead of adding one
sample at a time as the current approach, one can sequentially
add one sampling pattern from a set of predefined sampling
patterns as in [28]. For example, one can sequentially add
rows of samples from a two-dimensional Fourier plane.

IV. NUMERICAL RESULTS
In this section, the performance of the proposed joint sam-
pling and reconstruction network is assessed in comparison
with the following methods:
Rand+FISTA: This is a non-learning-based approach

where the sampling pattern is randomly chosen, and FISTA
is used for reconstruction.
G-CRLB+FISTA: This method is non-learning and deter-

ministic where Algorithm 3with a CRLB-based cost function
given in (17) is used for subsampling. Then FISTA is used for
recovery. To evaluate cost, we use the expression for CRLB
in the estimation of time-delays and amplitudes derived
in [57].
G-FISTA+FISTA:We use Algorithm 3 with FISTA as the

recovery method in step [S1] to generate the sampling pattern
and used FISTA for recovery. In principle, this algorithm is
similar to that in [27] and [28]. In [S2], we used squared-error
as a cost function:

C
(
xq, xq,K\{i}

)
= ∥xq − xq,K\{i}∥

2
2. (21)

We use the same cost function in the following three
algorithms.
G-FISTA+LISTA We use Algorithm 3 with FISTA as a

recoverymethod in step [S1] to generate the sampling pattern.
Then a LISTA network is optimized for recovery for the given
sampling pattern.
JSR-1:We apply joint-sampling and recovery Algorithm 4

to determine the sampling pattern and recovery parameters.
JSR-2: Algorithm 4 is modified to start from full samples

and sequentially remove one sample per iteration as in
Algorithm 3.

Except JSR-1 and JSR-2 algorithms, all the algorithms
mentioned above require the knowledge of the pulse shape h.
In addition, we pick the L strongest peaks of the estimated
sparse vectors for comparison with the ground-truth sparse
vector.
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We consider two experiments. The first one is to compare
different algorithms, as mentioned above, for a given data
set. The second is to analyze the data-driven approach of the
proposed algorithm. For both experiments, NMSE is used as
the performance metric. For the test data {xi}

QTest
i=1 , NMSE is

computed as

NMSE =

QTest∑
i=1

∥xi − x̂i∥22

QTest∑
i=1

∥xi∥22

, (22)

where x̂i is an estimate of xi. To determine accuracy for
support recovery, we compute the hit rate as

Hit rate =
1

LQTest

QTest∑
i=1

supp(xi) ∩ supp(x̂i), (23)

where the set supp(xi) denotes L non-zero locations of xi.
A hit rate equal to one implies that the support is estimated
exactly over all the examples. To analyze the noisy scenario,
we assume that the clean measurements f̄ are contaminated
by circular, additive white Gaussian noise with zero mean and
variance σ 2. For a given a clean signal f̄, the signal-to-noise
ratio (SNR) is computed as

SNR =
∥f̄∥22
Nσ 2 . (24)

A. PERFORMANCE COMPARISON OF DIFFERENT
METHODS
In this experiment, we consider the problem of sampling
and reconstructing FRI signals with L = 5 and tmax = 1.
We generated Q = 400, 000 examples for training and
Q test = 5, 000 samples to test as in (12) for N =

30. For generating sparse vector xq, first, its support is
chosen uniformly at random over the set {1, 2, · · · ,N }. Then
amplitudes are generated as i.i.d. Gaussian random variables
with a mean value of 10 and variance 3. A reason for choosing
a large data set is that there should be sufficient examples for
each sparsity pattern. For anN -length, L-sparse vector x there
are

(N
L

)
possible sparsity patterns. For N = 30 and L = 5,

there would be 142, 506 possible sparsity patterns. Hence,
we choose Q = 400, 000 examples to train and expect that
the networks all possible sparse vectors while training.

We consider an FRI pulse h(t) such that its n-th sample of
h ∈ CN is given as 0.01 + e−0.04(n−3N/4)2

+ e−0.04(n−N/8)2 .
By generating the Fourier samples of h(t) as a sum of
Gaussian pulses, we ensure that they are non-zero as desired
and have varying spectra. With varying spectral values, SNRs
vary for each Fourier sample. Specifically, large values of
h may result in higher SNR, which may play a role in the
selection of the corresponding sample.

With the experimental setup, we learned sampling pattern
and reconstruction parameters for K = 8, · · · , 15. Note that
for L = 5, theoretically, a minimum of 2L = 10 samples are

FIGURE 4. Comparison of different approaches in the absence of noise
for L = 5, N = 30, K = 8.

required for perfect reconstruction. In choosing K < 2L, our
objective is to verify if the joint learning-based approaches
break the theoretical barrier. In Fig. 4, we show one recovery
of a sparse vector for K = 8. We observe that all the
learning-based methods were able to determine the support of
the sparse filter perfectly, as shown in Fig 4(b), whereas there
is an error in the estimation of the amplitudes. Compared to
the learning-based methods, the non-learning-based methods
fail to estimate the sparse vectors perfectly (see Fig 4(a)).
Since support recovery is sufficient in applications such as
radar, we computed hit rates (averaged over all test examples)
for different methods and plotted them in Fig. 5 as a
function of the sampling rate. As in the previous observation,
we note that the learning-based methods are able to estimate
the support perfectly, even below the theoretical minimum
sampling rate. Hence, one can go below the sub-Nyquist rate
by using the proposed learning-based approaches.

In Fig. 6, we show an example of recovery of the sparse
vector for SNR = 30 dB and K = 2L = 10. We observe
that while all the methods were able to estimate the support
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FIGURE 5. A comparison of hit rates for different methods as a function
of number of samples in the absence of noise. The learning-based
approaches are able to determine the support perfectly for the sampling
rate below the sub-Nyquist rate (K < 2L = 10).

FIGURE 6. Comparison of different approaches in the presence of noise
for L = 5, N = 30, K = 8, and SNR= 30 dB.

or the time-delays of the FRI signals perfectly, amplitude
estimates are closer to the true values in the learning-based
methods (Fig. 6(b)) compared to non-learning-basedmethods

FIGURE 7. A comparison different methods as a function of number of
samples in the absence of noise. The proposed JSR-2 algorithm results in
lowest NMSE among different methods.

(Fig. 6(a)). For this particular example, among the learning-
based methods, G-FISTA+LISTA is able to estimate the
amplitudes more accurately compared to JSR methods.
However, on average, the proposed JSR-2 algorithm has
the lowest NMSE for different values of K and SNRs,
as discussed next.

In Fig. 7, we compared the algorithms for different
values of K in the absence of noise. In comparison to
JSR-1, JSR-2 method has 8 dB lower NMSE for K =

10, and the gap between NMSEs reduces as K increases.
JSR-1 algorithm has 5 − 15 lower NMSE compared with
G-FISTA+LISTA and has a gain of more than 15 dB com-
pared to non-learning-based methods. Below the theoretical
barrier on the sampling rate, that is, for K = 8, 9 JSR-2
has the lowest error compared with the other methods. From
Fig. 7, we notice that for the Rand+FISTA scheme, the
performance of 13 samples is worse than that of 12 samples.
This is because, for the Rand+FISTA scheme, the sampling
pattern is randomly generated, which further illustrates the
importance of sampling strategy.

To compare the performance of themethods in the presence
of noise, in Fig. 8, we show NMSE as a function of the
number of samples for 30 dB SNR. The learning-based
methods result in lower NMSE compared to non-learning-
based algorithms. However, unlike the results in the absence
of noise, the JSR-1 method has higher NMSE compared
to that of G-FISTA+LISTA. Moreover, the gap between
NMSEs of JSR-1 and JSR-2 is larger. This behavior is a
consequence of the fact that the latter approach starts with full
measurements compared to zero measurements in the former
approach. As a result, at any given iteration of the algorithm,
the JSR-2method has a larger number of samples to estimate
the sparse vectors compared to that in JSR-1 and hence, it is
able to perform better.

In Fig. 9, we compare NMSEs of different methods for
SNRs varying from 20 to 40 dBwithK = 15.We observe that
the learning-based methods outperform non-learning-based
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FIGURE 8. A comparison of performances different methods as a
function of number of samples with 30 dB SNR. The proposed JSR-2
algorithm results in lowest NMSE among different methods.

FIGURE 9. A Comparison of NMSE vs SNR for different methods for
K = 15: learning-based methods have lower NMSE compared to
non-learning-based algorithms JSR-2 algorithm results in lowest NMSE
among different methods.

methods with more than 5 dB improvement in NMSE, the
gain in NMSE of JSR-1 compared to NMSE of either JSR-2
orG-FISTA+LISTA is only 1−3 dB. In the noisy scenario,
G-FISTA+LISTA algorithm is preferable over JSR-2 as one
LISTA network has to be trained.

Next, we study the sampling patterns resulted from each
method with respect to the frequency response of the pulse
as shown in Fig. 10 for K = 10 and SNR = 30 dB.
We observe that the sampling pattern of G-CRLB+FISTA
and G-FISTA+FISTA are localized around the peak of h
compared to the learning-based methods. Both JSR and
G-FISTA+LISTA depend on the recovery method, and we
believe that a wider spread or less localization of the samples
results in lower coherence in the resulting measurement
matrix, which in turn leads to better estimation. Moreover,
the sampling patterns show that it is not always necessary

FIGURE 10. A comparison of sampling patterns estimated from various
methods with a non-flat h (in blue). The sampling pattern of the
learning-based methods are well spread compared to the non-learning
algorithms.

to consider samples from high-SNR regions, as shown in
Fig. 10(b).

B. DATA-ADAPTABILITY OF JSR ALGORITHM
In this experiment, we study the data-adaptive nature of the
proposed JSR algorithm to any additional structure within
the data. We consider two different data sets for training
and testing. For both the data sets, we have N = 30 and
h remains the same as in the previous experiment. The goal
is to determine the sampling patterns and LISTA parameters
{K1, θ1} and {K2, θ2} and then study the effect of mismatch
between sampling pattern and recovery. For both the data sets,
we assume L = 5, but they differ in terms of their sparsity
patterns. Specifically, for the first data set, the first two
nonzero elements are chosen uniformly at random over the set
{1, · · · , 10} and the remaining three from {21, · · · , 30}. The
nonzero values for the second data set are chosen uniformly at
ransom over the set {11, · · · , 20}. For both the data sets, the
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TABLE 1. A comparison of NMSE while learning structured sparsity.

FIGURE 11. Large scale problem: A comparison of NMSE vs SNR for
N = 128 and K = 30.

amplitude of the sparse vectors is chosen as in the previous
experiment. We consider 40,000 samples for training and
2000 for testing with |K1| = |K2| = K . In Table 1,
we show NMSE incurred by JSR-2 algorithm for different
combinations of sampling patterns and recovery parameters.
We note that the error in the reconstruction is negligible
when matched sampling and reconstructions are used, that
is, for the combination {K1, θ1} and {K2, θ2}. However, the
NMSE is high when we used cross-combinations {Kn, θm},
n,m ∈ {1, 2} and n ̸= m. We believe that the large
NMSE for the cross-combinations is due to non-overlapping
support of the sparse vectors. The observations lead to the
conclusion that JSR approaches can better adapt to the sparse
vectors’ local structures. In addition, the learned sampling
and reconstruction methods are not global and are highly data
dependent.

C. EXTENSION TO A LARGE SCALE PROBLEM
For choosing K samples from total N measurements, the
FISTA network to be trainedKN−

K (K−1)
2 and (N−K )(N+K+1)

2
times for the proposed JSR-1 and JSR-2 algorithms,
respectively. Hence, for large N greedy algorithms may not
be suitable even though one can apply parallel training to
speed up the training or use a collection of samples as in MRI
instead of individual ones. Several alternatives of the greedy
algorithm have been suggested to improve the computational
cost, such as distributed greedy approaches [58], [59] and
accelerated greedy algorithm [60]. In the distributed greedy
method, the data or the samples are distributed among several
machines and solve smaller greedy problems in parallel.
Then the solutions are placed on a single machine, and the

standard greedy algorithm is used once more to select the
final solution. The accelerated greedy approach [60] is very
similar in principle to the standard greedy approach except
for the fact that each sample is given a weight based on
their contribution to the recovery process. In the conventional
greedy approach, at each iteration, the cost functions for all
the remaining samples are evaluated, and then the sample
with minimum error is retained. The accelerated greedy
algorithms start from the samples with higher weights and
stop as soon as a sample with low error is chosen (cf. [60]
more details). In this way, one need not perform too many
evaluations of the cost function, which requires as many
pieces of training of the FISTA network.

In this simulation, we modified JSR-2 algorithm based on
the accelerated greedy algorithm. We consider a problem of
choosing K = 30 samples from N = 128 samples. All
the remaining settings are the same as in the simulations of
Section IV-A. In this case, JSR-2 approach is required to
be trained 7791 times, which is not feasible. In comparison,
its accelerated version required only 264 instances of FISTA
training. This shows that we need approximately 3.4% of the
computational power. We compared the performance of the
accelerated version with a random selection strategy for dif-
ferent SNRs, and the results are shown in Fig. 11. We observe
that compared to random selection, the accelerated-greedy-
based JSR approach has 10 − 30 dB lower MSE in the
estimation of sparse vectors.

In addition to these two approaches, we also compared
results when the amplitudes of the sparse vectors are
re-estimated by using the least-squares (LS). Specifically,
we first estimate the support and then apply LS restricted
to the estimated support. As we observed in the previous
simulations, the learning-basedmethods were able to produce
accurate estimates of the supports. Hence, one can use
least-squares to improve the amplitude estimation by using
the estimated supports. In Fig. 11, we show estimates for the
standard approach and the LS approach. We observe a gain of
2− 10 dB by using least-squares. However, the least-squares
approach requires an exact knowledge of the measurement
matrix that is a function of the FRI pulse shape, limiting the
least-square approach’s applicability.

Training for all the networks was done for Q =

400, 000 examples which could be very high for many
applications. As this is the initial study of a combination
of greedy approaches together with a model-based deep
learning-based strategy for joint sampling and recovery, our
focus is on the proof of concept and showing its potential
performance gain. Therefore, we consider a relatively large
data set. Since the accuracy of the trained model is highly
related to the size of training sets, we consider a smaller,Q =

40, 000, examples for training with the accelerated greedy
approach for N = 128 and K = 30. The MSEs are shown
in Fig. 12. As expected, we can see that the performance of
the proposed algorithm with a small training set is a little bit
worse than that with a large training set, but it is still better
than the randomly selected approach. In addition, we would
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FIGURE 12. A comparison of NMSE vs SNR under different sizes of
training data sets, with N = 128 and K = 30. The larger data set consists
of 400,000 examples, and the smaller data set had 40,000 examples.

like to highlight that one of the advantages of our proposed
joint sampling and recovery scheme is that our proposed
scheme does not require the exact knowledge of FRI pulse
shape, while this information is required by conventional
approaches such as FISTA, making our proposed approach
much more attractive in practical applications.

V. CONCLUSION
We propose a learning-based solution for a joint subsampling
and reconstruction problem. The proposed algorithm is
data-adaptive, circumvents the differentiability issue, and is
flexible to change in the sampling rate. We show that the
proposed algorithm can be utilized to design sampling kernels
for FRI signals. Apart from sampling and reconstruction of
FRI signals, our framework can be used for selecting k-
space sampling in MRI, sinograms in computed tomography,
and similar applications. Our methods have lower NMSE
compared to independent design approaches. In addition, the
sampling rate can be reduced below the sub-Nyquist rate
which results in low-cost receivers.
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