Article

HaTU-Net: Harmonic Attention Network for Automated Ovarian
Ultrasound Quantification in Assisted Pregnancy

Vivek Kumar Singh "+, Elham Yousef Kalafi 4, Eugene Cheah ', Shuhang Wang !, Jingchao Wang 3, Arinc Ozturk
1 Qian Li 1 Yonina C. Eldar 2, Anthony E. Samir 1 and Viksit Kumar?!

Citation: Lastname, F.; Lastname, E.;
Lastname, F. Title. Journal Not Specified
2022,1,0. https://doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Submitted to Journal Not Specified
for possible open access publication
under the terms and conditions
of the Creative Commons Attri-
bution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Center for Ultrasound Research & Translation at the Massachusetts General Hospital, Department of
Radiology, Harvard Medical School, Boston, 02114, MA USA; vivekkr.singh90@gmail.com

Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
3 Department of Ultrasound, The Third Hospital of Hebei Medical University,Shijiazhuang 050051, China
*  Correspondence: vkumarl4@mgh harvard.edu

T These authors contributed equally to this work.

Abstract: Antral follicle Count (AFC) is a non-invasive biomarker used to assess ovarian reserves
through transvaginal ultrasound (TVUS) imaging. Antral follicles” diameter is usually in the range of
2-10 mm. The primary aim of ovarian reserve monitoring is to measure the size of ovarian follicles and
the number of antral follicles. Manual follicle measurement is inhibited by operator time, expertise
and the subjectivity of delineating the two axes of the follicles. This necessitates an automated
framework capable of quantifying follicle size and count in a clinical setting. This paper proposes
a novel Harmonic Attention-based U-Net network, HaTU-Net, to precisely segment the ovary and
follicles in ultrasound images. We replace the standard convolution operation with a harmonic block
that convolves the features with a window-based discrete cosine transform (DCT). Additionally,
we proposed a harmonic attention mechanism that helps to promote the extraction of rich features.
The suggested technique allows for capturing the most relevant features, such as boundaries, shape,
and textural patterns, in the presence of various noise sources (i.e., shadows, poor contrast between
tissues, and speckle noise). We evaluated the proposed model on our in-house private dataset of
197 patients undergoing TransVaginal UltraSound (TVUS) exam. The experimental results on an
independent test set confirms that HaTU-Net achieved a Dice coefficient score of 90% for ovaries and
81% for antral follicles, an improvement of 2% and 10%, respectively, when compared to a standard
U-Net. Further, we accurately measure the follicle size, yielding the recall, and precision rates of
91.01% and 76.49%, respectively.

Keywords: Follicle Monitoring; Deep Learning; Antral Follicle Count; Harmonic Attention; Ultra-
sound Imaging; Pelvic Ultrasound

1. Introduction

Patients with infertility have shown a correlation between predictors of functional
ovarian reserves and ovarian responses to pregnancy outcomes [1]. Antral follicle count
(AFC) and size, obtained using TransVaginal UltraSound (TVUS) images, are non-invasive
imaging biomarkers used to assess and quantify ovarian reserve [1] [2]. The primary aim
of ovarian reserve monitoring is to measure the number and size of ovarian follicles and
the number of antral follicles, which are, on average, 2-10 mm in diameter [3]. Follicle size
is measured by taking the average of each follicle’s two largest orthogonal diameters [4].
There are limitations to manually estimating the size and count of follicles; the process is
time-consuming, inconsistent [3], and highly variable depending upon the actual shape of
primarily non-spherical follicles [2]. An accurate, automated method to segment ovaries
and follicles and count the follicles could optimize the clinical flow and reduce subjectivity.

Developing an automated solution for ovary and follicle segmentation incorporates
numerous challenges. Ultrasound imaging artifacts impede the performance of deep
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learning-based segmentation methods. Blurred ambiguous boundaries further compound
challenges in delineating tissue boundaries and the presence of acoustic shadowing [5].
Many image processing and computer vision-based methods are suggested to overcome
these challenges that involve geometric features [6] and watershed [7]. Active contours-
based [8] approaches have been used to segment the ovary and follicles. Traditional
ovary and follicle monitoring methods have been frequently explored with large and
distinctly visible follicles [2], [9]. Boundary ambiguity is noticeable in ovarian and follicular
images. The traditional methods have some limitations, such as watershed or thresholding
approaches generating discontinuities and variances of intensity in the ovarian ultrasound
images. Their slow speed creates challenges to adopt in actual practice clinical settings.

Convolutional neural networks (CNNSs) have shown substantial performance, and
accuracy advancements over conventional methods [10]. With the great success of CNNSs,
multiple popular segmentation methods have been developed such as FCN [11], U-Net
[12], SegNet [13], Attention-UNet [14], DeepLabv3+ [15], ERFNet [16], and BiseNetv2 [17]
that segment the objects or anatomies. These methods achieved state-of-the-art results for
various semantic segmentation tasks.

Recently, many segmentation methods have been developed for segmenting biomed-
ical images [18]. Meng et al. [19] proposed an instinctive deep learning-based contour
regression model for biomedical image segmentation. The authors aggregated multi-level
and multi-stage networks to regress the contour coordinates in an end-to-end manner
rather than pixel-wise dense predictions. The authors used this method to segment the
fetal head in ultrasound images and the optic disc and optic cup in color fundus images.
Valanarasu et al. [20] presented a network architecture called KiU-Net, which projects data
onto higher dimensions and picks finer details when compared to a standard U-Net. The
suggested method addressed the performance failures when segmenting smaller anatomi-
cal structures with blurred, noisy boundaries. The authors performed the brain anatomy
segmentation from 2D ultrasound (US). Singh et al. [21] proposed an automated solution to
segment the breast lesion from the US images. The recommended method used generative
adversarial learning (GAN) networks. The introduced method efficiently extracts spatial
features such as texture, edge, shape, intensity, and global information. The authors used
an attention mechanism that highlights the most relevant features and ignores the back-
ground ones. However, the GAN-based method has limitations due to its computational
complexity and fails to delineate if the lesion shape is not complete. Further, Yang et al.
[22] incorporated the multi-directional recurrent neural network (RNN) with a customized
CNN to extract spatial intensity concurrencies to eliminate boundary ambiguities. The
author employed semantic segmentation methods in prenatal ultrasound volumes that
potentially encourage fetal health monitoring.

Various deep learning-based methods have been used to detect and segment ovary, and
antral follicles [5], [23]. Li, Haoming et al. [5] proposed an ovary and follicle segmentation
model called CR-UNet, consisting of spatially recurrent neural networks incorporated into
a standard U-Net. The recommended network has limitations in correctly delineating and
detecting the follicles that are joined with each other [23]. Gupta et al. [24] developed
a deep learning-based framework for ovarian volume computation that utilizes 3D US
volumes and the axial orientation. The authors evaluated their methods on 20 3D ovarian
US volumes that enhanced the grade of the 3D rendering of the ovary and addressed the
issue of combined follicles in segmentation. Yang et al. [25] introduced ovary and follicles
segmentation using the contrastive rendering (C-Rend) framework. The authors employed
the semi-supervised learning approach with C-Rend leveraging unlabeled 3D ultrasound
for better performance. However, this study has some limitations during inference due to
its hyperparameter default value which might not be the most suitable setting for each 3D
us.

The main aim of this study is to develop an automated method for efficient ovary and
follicles segmentation in ovarian TVUS images to facilitate measuring the size of the follicle.
Figure 1 shows the schematic view of our proposed framework. The framework incor-
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Figure 1. A general framework of ovarian ultrasound quantification. This includes the three stages:
ovary segmentation, follicles segmentation, and follicle count. Note, HA refers to harmonic attention
block.

porates three stages, i.e., ovary segmentation, follicle segmentation, and follicle counting.
We designed a new segmentation method that replaces the standard 2D convolution layer
with a harmonic convolution. In contrast, [26] harmonic convolution combines the learned
kernels with predefined filters for feature learning. This weighted combination reduces
overfitting and computational complexity. The proposed HaTU-Net method effectively
extracts the features that allow precise segmentation of the ovary and follicles from the
US images. Moreover, we developed a new attention block that helps to improve the
segmentation performance by encouraging the feature discriminability between the pixels
and ignoring US imaging artifacts. In summary, our main contributions are in four folds:

*  We propose a segmentation network called HaTU-Net to segment ovaries and follicles
with detailed, refined boundaries from TVUS images.

*  We propose using harmonic convolution [26] to replace the standard convolutional
filter. The input image is first decomposed using the discrete cosine transform (DCT);
these transformed signals are combined using learned weights.

*  We developed harmonic attention (HA) block to improve feature discriminability
between the target and background pixels in the segmentation stage. The HA block
encourages the features by avoiding the artifacts, and support for the HaTU-Net leads
to improved segmentation results.

¢ Our experimental results confirm HaTU-Net has shown significant improvement com-
pared to the various state-of-the-art segmentation methods (U-Net [12], AttentionU-
Net [14], R2U-Net [27], U-Net++ [28], and DeepLabv3+ [15]).

The remainder of this paper is organized as follows: Section 2 describes the presented
methodology. Section 3 describes our experimental results and highlights the limitations of
the work. Section 4 completes our study and suggests some future lines of research.

2. Methods

This section presents the detailed architecture description of the proposed HaTU-
Net as depicted in Fig 1. The proposed method incorporated two main parts: harmonic
convolution and harmonic attention (HA) blocks.

2.1. HaTU-Net Architecture

Figure 1 illustrates the architecture of the proposed HaTU-Net. It consists of encoder
and decoder networks. Each network consists of five layers with added skip connections.
The encoder network utilized a harmonic convolutional layer with kernel size 3 x 3 instead
of standard 2D convolutional layers. Each layer within the encoder employs batch nor-
malization followed by the ReLU activation function. The first encoder layer combines
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harmonic convolution with a 1-D kernel factorization [16], allowing feature extraction
with low computational costs. The second layer uses a variety of harmonic convolution,
1-D kernel factorization, and harmonic attention (HA) blocks. The attention mechanism
boosts the feature discriminability between the target and background pixels. The last
three encoder layers use a harmonic convolution with an HA block to enable channel
interdependencies, and highlight features specific to the ovaries and follicles. After each
layer, dimensionality reduction is achieved using a max-pooling operation with a kernel
size of 2 x 2. In the decoder, feature upsampling is performed through the conv-transpose2D
operation. Each encoder layer’s features are concatenated with the corresponding features
in the decoding layer (skip connections). A threshold of 0.5 is used to generate the final
predicted mask for ovary and follicles segmentation.

/ Average Pool —» Harmonic ® Element-wise Element-wise \
Convolution Multiplication Addition

Residual connection

Input | Output
1x1xC 1x1xClr 1x1xC  Sigmoid
Y Ct
T > W, > Wi _’. 9—> '

HxWxC HxWxC
Harmonic Attention (HA) Block

Figure 2. Illustration of harmonic attention (HA) block.

2.2. Feature Extraction with Harmonic Convolution

Motivated by [26], we replaced the standard convolution with a harmonic convolution,
i.e., a weighted sum of the responses to a discrete cosine transform (DCT) filter bank to pull
the harmonics from lower-level features to decrease the burden of overfitting. The DCT
is a separable transform that converts a signal from the temporal domain to the spectral
domain. The DCT of a 2D image I of size H x W with a one-pixel discretization step can be

formulated as follows [26]:
”<i+l>u cos [”( 1)
H 2 wl|/t2

where T, , is the coefficient corresponding to a sinusoidal frequency of # and v in the two
orthogonal directions. Here By = 1 and , = 2 are scaling factors used to normalize the
value of the basis function.

The input image features are decomposed using the DCT transform to perform the
convolution operation. A kernel size of f x f and depth of f? in the filter bank is used. Let
Y (u,0) indicate the u, v frequency selective DCT filter with kernel size f x f. The feature
map F;, at depth d is represented as a weighted linear aggregation of DCT coefficients on
all input channels C as follows:

o= T \/% 1) x cos SRS

c-1f-1f-1

de = Z Z Z wz,u,v')’(u,v) * *Ff,:(;)/ )
n=0 u=00v=0

where wz,u,v represented the learned weight for the n'" feature at frequency u, v and *x
denoted as the 2-D convolution operator. The transformation process allows the input
feature to undergo harmonic decomposition, allowing learned weights to be used for
combining the transformed signals.
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2.3. Harmonic Attention Block

To advance the feature discriminability between the small targeted region and back-
ground pixels, Fig. 2 presents the proposed harmonic attention (HA) block details. The
block makes use of harmonic convolutions to extract feature maps. It is designed to pro-
mote feature discriminability between the target objects and their background, i.e., ovary

and follicles, in our application. In this block, an input feature map T € R©*H*W is aver-
!
age pooled to aggregate C, which is the channel statistics. This generates T’ € R’ Cxxd

which is then passed to the two 1 x 1 harmonic convolution layers to extract non-linear
inter-channel relationships with the help of spectral DCT filters. If W, € RC*F and Wy €

¢ . . . .
RC*7 are weights of two harmonic convolutional layers (where r refers to the reduction
ratio), then the channel attention map can be formulated as:

attn(T') = o(Wy x (ReLUWy + T'))), ©)

where 0(.) is the sigmoid activation function. Finally, the channel attention map can be
generated as follows:
Ci=TxT. (4)

The use of skip connections between the input feature map T and C; helps to narrow the
semantic gap and results in the final output map O:

O=C+T. @)

2.4. Cost Function

We use a weighted sum of the binary cross-entropy (BCE) and focal loss £F which are
defined as:

L (y,9) = —y(1 —9)7-log(9) — (1 —y)§7"-log(1 — 7). 6)
LPE(y, §) =—(y-log(§) + (1 —y)-log(1— 7)), @)

The final loss is expressed as follows:
Loss finat = L2F(y,9) + 1% L (y,9), ®)

where, y is the target binary mask, and 7 is the predicted mask obtained by the segmentation
model. We used 7 equal to 0.6 as an empirical weighting factor.

3. Experimental Design and Results
3.1. Dataset

The Institutional Review Board approved the retrospective study (IRB), and the re-
quirement for informed consent was waived. The radiology reports of adult patients who
underwent transvaginal ultrasound (TVUS) exams between 2005 and 2019 in a single
institution were reviewed, and a total of 197 eligible patients were identified and selected.
The inclusion criteria were: (1) premenopausal female adult patients, (2) underwent TVUS
exams, (3) normal ovary on the pelvic ultrasound, and (4) available B-mode static images
of the ovary. Patients with the following criteria were excluded: (1) low-quality US images
with obscure boundaries of the ovary, (2) abnormal ovary findings on the ultrasound, or (3)
known ovarian pathologies or ovarian surgical history.

All TVUS exams were performed using GE LOGIQ E9 (General Electric Healthcare,
Waukesha, WI, USA) ultrasonic system equipped with a transvaginal IC5-9 transducer. US
exams were reviewed in a picture archiving and communication system (PACS) to extract
the DICOM images of ovaries in sagittal and coronal planes. Using the MicroDicom Viewer
tool (Version 3.2.7, Sofia, Bulgaria), a radiologist who had ten years of experience in pelvic
ultrasound annotated the contours of the ovary and follicles following a specific protocol,
(1) annotated all follicles of 2-28mm [29] in diameter within each ovary, (2) annotate ovary
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and follicles in different colors, and (3) avoid overlaps among annotations within the same
ovary. Another senior radiologist with more than ten of experience reviewed the annotated
images as part of the quality control process. The final dataset consisted of 767 images with
qualified annotations, split into training, validation, and testing sets with 466, 160, and 141
US images.

3.2. Implementation Details

All the methods are implemented in PyTorch [30]. We use an NVIDIA GeForce RTX
2080Ti GPU with 11GB RAM. The images are resized to 384 x 384, and the pixel values are
normalized between 0 and 1. The training dataset is augmented with random 15-degree
rotations and horizontal flips. An ADAM optimizer with 81= 0.5, 8, = 0.999, and an initial
learning rate of 0.0002 is used to optimize the model better. Step decay learning is activated
if the Dice coefficient score for the validation set plateaus for two consecutive epochs. We
used a batch size of four images and trained the model for 50 epochs since the model was
optimized completely.

This study organizes our experiments into three key stages: 1. ovary segmentation,
2. follicle segmentation, and 3. follicle counting. To measure the effectiveness of the
proposed model on segmentation stages, five evaluation metrics are used, i.e., accuracy,
dice similarity coefficient (Dice), intersection over union (IoU), sensitivity, and specificity
[31]. The precision and recall metrics are used to evaluate the follicle counts.

3.3. Ovary Segmentation

Table 1. Ovary segmentation results in five state-of-the-art segmentation methods. The best significant
results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity | Specificity
U-Net [12] 96.89 +0.02 | 87.89+0.08 | 77.544+0.12 | 90.51 +0.09 | 98.27 +0.01
Attention U-net [14] | 96.414+0.02 | 86.02+0.09 | 74.89 £0.13 | 87.96+0.11 | 98.16 & 0.02
R2U-Net [27] 95.734+0.03 | 83.31 +0.12 | 71.494+0.15 | 86.31 +0.13 | 97.53 +0.02
U-Net++ [28] 97.144+0.02 | 87.78+0.10 | 77.724+0.13 | 89.424+0.13 | 98.19 +0.01
DeepLabv3+ [15] 96.99 £0.02 | 86.66+0.11 | 76.21 £0.14 | 87.35+0.15 | 98.25+0.01
Baseline 97.26 0.01 | 88.37+0.09 | 78.51+0.13 | 90.46 +0.12 | 98.18 +-0.01
HaTU-Net 97.55 £0.01 | 90.0140.07 | 80.72+£0.11 | 90.86 - 0.10 | 98.57 + 0.01

Table 1, demonstrates the quantitative result of proposed HaTU-Net (i.e., Baseline (BL)
plus harmonic attention block) compared to five state-of-the-art segmentation methods
including U-Net [12], Attention U-Net [14], R2U-Net [27], U-Net++ [28], and DeepLabv3+
[15]. We also demonstrate the result of the Baseline (BL) method consisting of a standard U-
Net network with harmonic convolution without an attention block. Experimental results
confirm that the HaTU-Net performed significantly better than the second-highest U-Net
method in DSC, and IoU metrics with 2%, and 3%, respectively. We observed that the DCT-
based spectral kernel aids in learning shape, boundary, and texture mapping from noisy
ultrasound images. These noisy images include poor contrast, shadows, speckle variation,
and poor signal-to-noise ratio. To reach the optimal version of the proposed method,
we performed an ablation study to determine and quantify the perceptiveness of each
employed block to segmentation results. We define our baseline model as a U-Net where
it replaces the standard 2D convolutions layers with harmonic convolutions. Since the
ovary occupies a large part of an ultrasound image, we enforce fine boundary segmentation
while retaining shape information through an HA block (BL+ HA). Therefore, adding the
harmonic attention block to BL leads to better segmentation results. Finally, HaTU-Net
improves the DSC and IoU scores by approximately 1.5% in both metrics compared to
our BL model. The characteristics of the attention mechanism allow highlighting the most
relevant feature of the hypoechoic ovary region and ignoring the background or acoustic
shadows in the US images.
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Figure 3. Boxplots of Dice and IoU scores on ovarian images. Different color boxes indicate the score
range of different methods; the black line inside each box represents the median value, box limits
include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower whiskers
are computed as 1.5 times the distance of upper and lower limits of the box. All values outside the
whiskers are considered outliers.
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Figure 4. Illustration of three qualitative example results generated by HaTU-Net against five state-
of-the-art methods for ovary segmentation. Colors maps represent the following description: Orange
(true positive), Green (false positive) and Red (false negative).

Figure. 3 shows the box-plot analysis of Dice and IoU scores on the ovarian dataset.
The HaTU-Net has generated fewer outliers compared to other segmentation methods. For
instance, we can see that the proposed method has a lower standard deviation than other
methods, showcasing its robustness.

Further, qualitative analysis plays a crucial role in visually determining segmentation
results. Figure. 4 exhibits the three qualitative examples results generated by state-of-
the-art segmentation methods compared to the HaTU-Net. We provide the color maps
that help to identify the true positive (orange), false positive (green), false negative (red),
and true negative, including the background. Visual inspection confirms that HaTU-Net
precisely segments the ovary boundaries, whereas other methods have produced many
false positives.

3.4. Follicle Segmentation

Table 2 exhibits the follicle segmentation results. The proposed HaTU-Net improved
follicle segmentation results with 10% DSC and IoU scores compared to U-Net. Our BL
methods demonstrated more remarkable results than other state-of-the-art segmentation
methods. We observed that incorporating the HA block leads to better segmentation
results. Especially, HA block can capture many small follicles’ shape features and provide
separation between them. This allows delineating of the follicle boundaries efficiently.
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Table 2. Follicles segmentation results in five state-of-the-art segmentation methods. The best
significant results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity | Specificity
U-Net [12] 99.20+0.01 | 71.774+0.22 | 5418 +0.23 | 74.55+£0.25 | 99.51 £0.01
Attention U-net [14] | 99.28+0.01 | 73.23+0.22 | 5556 £0.22 | 73.92£0.24 | 99.624+0.01
R2U-Net [27] 98.99£0.01 | 73284+0.2 | 56.07 021 | 84.91+0.19 | 99.17 £0.01
U-Net++ [28] 99.35+0.01 | 75.484+0.20 | 57.61+0.22 | 75.58 £0.23 | 99.68 £0.01
DeepLabv3+ [15] 99.35+£0.01 | 69.37+0.26 | 52.36 =0.26 | 66.43 +0.28 | 99.77 £ 0.01
Baseline 99.45+0.01 | 79.80+0.19 | 62.51 £0.21 | 81.64 +0.20 | 99.70 £ 0.01
HaTU-Net 99.51+0.01 | 81.40 +0.18 | 64.11 £0.20 | 82.24 +0.19 | 99.78 +0.01

Furthermore, Fig. 5 displays the boxplot analysis of Dice and IoU scores. The results =2z
confirm that HaTU-Net achieves significantly high mean segmentation results with a lower 22
standard deviation. Besides, it is seen that it produces fewer outliers than other methods. 230
Note that all values outside the whiskers are considered outliers. 231

1.0

i

°

®
°
@

o
@

Dice coefficient score (%)
)
2

Intersection over union (%)

o
o

0.2 0

.
0.0 ] [ o o {} 5 t

b
°

'
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Figure 5. Boxplots of Dice and IoU scores on follicle dataset. Different color boxes indicate the score
range of different methods; the black line inside each box represents the median value, box limits
include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower whiskers
are computed as 1.5 times the distance of upper and lower limits of the box. All values outside the
whiskers are considered outliers.

HaTU-Net Baseline AttU-net DeepLabv3+ U-Net++ R2U-Net U-Net

Figure 6. Illustration of three qualitative example results generated by HaTU-Net against five state-of-
the-art methods for follicle segmentation. Colors maps represent the following description: Orange
(true positive), Green (false positive), and Red (false negative).

Figure 6 represents the three examples for qualitative assessment of follicle segmenta- 232
tion. The harmonic attention block helps in refining the boundaries between follicles, as 233
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Table 3. Ablation study of the loss function. The highest significant results are highlighted in bold.

Dataset | Loss Function | Accuracy Dice IoU Sensitivity | Specificity
BCE 97.67 £0.01 | 89.28 £0.10 | 80.06 £0.13 | 88.94 £0.14 | 98.86 1 0.01

Ovary Dice Loss 9746 £0.02 | 89.4540.08 | 79.974+0.12 | 89.69 £0.12 | 98.7 = 0.01
BCE + Dice 9744 £0.0 | 89.13+0.09 | 79.644+0.13 | 90.76 £0.12 | 98.45 £ 0.01
BCE + Focal 97.554+0.01 | 90.0140.07 | 80.72 +0.11 | 90.86 = 0.10 | 98.57 £0.01
BCE 99.11£0.00 | 68.1+£0.22 | 55.6+£0.23 | 62.95+0.26 | 99.76 £ 0.01

Follicle Dice Loss 99.144+0.01 | 72.724+0.19 | 60.26 £0.21 | 72.02£0.20 | 99.71 £0.01
BCE + Dice 99.18 £0.01 | 74.56+0.18 | 62.4£0.20 | 77.44£0.19 | 99.64 £ 0.0
BCE + Focal 99.51+0.01 | 81.40 =0.18 | 64.11 £ 0.20 | 82.24 +0.19 | 99.76 & 0.01

shown by the performance of HaTU-Net in separating follicles for automating the follicle 234
count process. 235

3.5. Ablation Study 236

Table 3 demonstrates an ablation study to estimate the effect of loss function employing  2s
the proposed HaTU-Net method. Our experiments use various combinations of loss 2:s
functions such as BCE, Dice loss, BCE+Dice, and BCE+Focal loss. BCE+Focal loss leads to 230
1% refinement over Dice loss in segmentation results. This combination of loss functions 240
focuses on boundaries. Separately, employing the Dice loss gains better results versus 2
BCE+Dice loss. On the follicle dataset, we also see that BCE+ Focal loss yields a 7% and 2% 242
increment in DSC and IoU scores, respectively, compared to BCE+Dice loss. This suggested 243
loss function help detach follicles that appear joined together, thus improving clinical 24
outcome. However, employing only BCE leads to poor segmentation results achieving a 245
68.10% Dice score. 240

3.6. Follicle Counting 247

In the third stage, segmented follicles are used to measure the follicle size. Figure 2as
7 shows an ovarian US image with oval-shaped follicles and its corresponding follicle 249
segmentation mask generated by stage 2. The main steps of follicle counting are explained s

as follows: 251

Input: Single ground truth follicle segmentation mask and predicted follicle segmen- 252
tation mask. 253
*  Load ground truth mask and predicted mask images. 284
*  Measure follicle diameters on both images in pixels. 255
¢  Convert pixel diameters to physical measurements. 256

*  Exclude follicles sized outside the recruitable range of 2-10 mm in diameter by con- 2s7
verting pixels black, as counting antral follicles <2 mm in diameter might heighten 2se
the chances of counting small anechoic structures like vessels or artifacts; whereas zso

counting dominant follicles >10 mm lack the evidence of clinical practicality [2]. 260
¢ Compute the dice similarity coefficient (DSC) between the ground truth mask and e
predicted mask images. 262
¢ Calculate the number of correctly detected follicles from the predicted mask (follicles 263
with >0.5 Dice coefficient score are considered). 264
*  Calculate the number of detected follicles from the predicted mask. 265
¢ Calculate the number of actual follicles from the ground truth mask. 266
e  Evaluate the precision and recall of our predicted follicle counting with the formula 267
from [32] 268

Table 4 confirms the results for follicle counting. Experimental results prove that zes
HaTU-Net attained a very high rate of follicle counting (i.e., precision) against other state- 270
of-the-art models. In addition, we observed that the 76.79% of HaTU-Net gained a 1.5% =n
recall rate compared to R2U-Net. The HaTU-Net helps lower the false positive rate from =27
segmentation artifacts, leading to higher follicle counting. 273
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Figure 7. (a) shows an ovarian US image with two oval-shaped follicles; (b) shows the corresponding
follicle segmentation mask. The follicle delineations are white with green dots denoting individual
follicles” centroids. These act as the starting point for calculating the major and minor axis lengths
shown in red lines. The diameter is then calculated by multiplying the axis lengths by the pixel size
in mm to obtain physical measurements. The follicle count is labeled in blue.

Table 4. Follicles counting results in five state-of-the-art segmentation methods. Follicle counts are
measured by precision and recall. The best significant results are highlighted in bold.

Methods U-Net | Attention U-Net | R2U-Net | U-Net++ | DeepLabv3+ | HaTU-Net
Total No. of Images 141

No. of Real Follicles 378

No. of Detected Follicles 447 438 482 453 488 448
No. of Correctly Detected Follicles | 315 303 350 339 328 344
Precision (%) 70.47 69.18 72.61 74.83 67.21 76.69
Recall (%) 83.33 80.16 90.59 89.68 86.77 91.01

4. Conclusion

In this paper, we proposed an automated solution for ovarian ultrasound quantifi-
cation. We have developed a novel method named HaT-UNet that provides accurate
segmentation of ovaries and follicles from TVUS images. The proposed HaTU-Net em-
ployed harmonic convolution with discrete cosine transform (DCT) and enhanced feature
discriminability through HA block to handle ambiguous boundaries. Experimental results
proved that the HaTU-Net tackles the presence of imaging artifacts by achieving DSC score
improvement of 2% and 10% for the ovary and follicles, respectively, compared to U-Net.
Further, the proposed model verified its effectiveness in follicle counting and attained a
recall of 91% and a precision of 76.69%. Conclusively, the experimental output demon-
strated HaTU-Net’s outstanding ability and provided efficient segmentation results by
outperforming other state-of-the-art algorithms. In the future, we will extend the potential
of the proposed model to 3D segmentation tasks. We would explore investigating the
proposed model’s ability on additional biomedical datasets.
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