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Abstract: Antral follicle Count (AFC) is a non-invasive biomarker used to assess ovarian reserves 1

through transvaginal ultrasound (TVUS) imaging. Antral follicles’ diameter is usually in the range of 2

2-10 mm. The primary aim of ovarian reserve monitoring is to measure the size of ovarian follicles and 3

the number of antral follicles. Manual follicle measurement is inhibited by operator time, expertise 4

and the subjectivity of delineating the two axes of the follicles. This necessitates an automated 5

framework capable of quantifying follicle size and count in a clinical setting. This paper proposes 6

a novel Harmonic Attention-based U-Net network, HaTU-Net, to precisely segment the ovary and 7

follicles in ultrasound images. We replace the standard convolution operation with a harmonic block 8

that convolves the features with a window-based discrete cosine transform (DCT). Additionally, 9

we proposed a harmonic attention mechanism that helps to promote the extraction of rich features. 10

The suggested technique allows for capturing the most relevant features, such as boundaries, shape, 11

and textural patterns, in the presence of various noise sources (i.e., shadows, poor contrast between 12

tissues, and speckle noise). We evaluated the proposed model on our in-house private dataset of 13

197 patients undergoing TransVaginal UltraSound (TVUS) exam. The experimental results on an 14

independent test set confirms that HaTU-Net achieved a Dice coefficient score of 90% for ovaries and 15

81% for antral follicles, an improvement of 2% and 10%, respectively, when compared to a standard 16

U-Net. Further, we accurately measure the follicle size, yielding the recall, and precision rates of 17

91.01% and 76.49%, respectively. 18

Keywords: Follicle Monitoring; Deep Learning; Antral Follicle Count; Harmonic Attention; Ultra- 19

sound Imaging; Pelvic Ultrasound 20

1. Introduction 21

Patients with infertility have shown a correlation between predictors of functional 22

ovarian reserves and ovarian responses to pregnancy outcomes [1]. Antral follicle count 23

(AFC) and size, obtained using TransVaginal UltraSound (TVUS) images, are non-invasive 24

imaging biomarkers used to assess and quantify ovarian reserve [1] [2]. The primary aim 25

of ovarian reserve monitoring is to measure the number and size of ovarian follicles and 26

the number of antral follicles, which are, on average, 2-10 mm in diameter [3]. Follicle size 27

is measured by taking the average of each follicle’s two largest orthogonal diameters [4]. 28

There are limitations to manually estimating the size and count of follicles; the process is 29

time-consuming, inconsistent [3], and highly variable depending upon the actual shape of 30

primarily non-spherical follicles [2]. An accurate, automated method to segment ovaries 31

and follicles and count the follicles could optimize the clinical flow and reduce subjectivity. 32

Developing an automated solution for ovary and follicle segmentation incorporates 33

numerous challenges. Ultrasound imaging artifacts impede the performance of deep 34
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learning-based segmentation methods. Blurred ambiguous boundaries further compound 35

challenges in delineating tissue boundaries and the presence of acoustic shadowing [5]. 36

Many image processing and computer vision-based methods are suggested to overcome 37

these challenges that involve geometric features [6] and watershed [7]. Active contours- 38

based [8] approaches have been used to segment the ovary and follicles. Traditional 39

ovary and follicle monitoring methods have been frequently explored with large and 40

distinctly visible follicles [2], [9]. Boundary ambiguity is noticeable in ovarian and follicular 41

images. The traditional methods have some limitations, such as watershed or thresholding 42

approaches generating discontinuities and variances of intensity in the ovarian ultrasound 43

images. Their slow speed creates challenges to adopt in actual practice clinical settings. 44

Convolutional neural networks (CNNs) have shown substantial performance, and 45

accuracy advancements over conventional methods [10]. With the great success of CNNs, 46

multiple popular segmentation methods have been developed such as FCN [11], U-Net 47

[12], SegNet [13], Attention-UNet [14], DeepLabv3+ [15], ERFNet [16], and BiseNetv2 [17] 48

that segment the objects or anatomies. These methods achieved state-of-the-art results for 49

various semantic segmentation tasks. 50

Recently, many segmentation methods have been developed for segmenting biomed- 51

ical images [18]. Meng et al. [19] proposed an instinctive deep learning-based contour 52

regression model for biomedical image segmentation. The authors aggregated multi-level 53

and multi-stage networks to regress the contour coordinates in an end-to-end manner 54

rather than pixel-wise dense predictions. The authors used this method to segment the 55

fetal head in ultrasound images and the optic disc and optic cup in color fundus images. 56

Valanarasu et al. [20] presented a network architecture called KiU-Net, which projects data 57

onto higher dimensions and picks finer details when compared to a standard U-Net. The 58

suggested method addressed the performance failures when segmenting smaller anatomi- 59

cal structures with blurred, noisy boundaries. The authors performed the brain anatomy 60

segmentation from 2D ultrasound (US). Singh et al. [21] proposed an automated solution to 61

segment the breast lesion from the US images. The recommended method used generative 62

adversarial learning (GAN) networks. The introduced method efficiently extracts spatial 63

features such as texture, edge, shape, intensity, and global information. The authors used 64

an attention mechanism that highlights the most relevant features and ignores the back- 65

ground ones. However, the GAN-based method has limitations due to its computational 66

complexity and fails to delineate if the lesion shape is not complete. Further, Yang et al. 67

[22] incorporated the multi-directional recurrent neural network (RNN) with a customized 68

CNN to extract spatial intensity concurrencies to eliminate boundary ambiguities. The 69

author employed semantic segmentation methods in prenatal ultrasound volumes that 70

potentially encourage fetal health monitoring. 71

Various deep learning-based methods have been used to detect and segment ovary, and 72

antral follicles [5], [23]. Li, Haoming et al. [5] proposed an ovary and follicle segmentation 73

model called CR-UNet, consisting of spatially recurrent neural networks incorporated into 74

a standard U-Net. The recommended network has limitations in correctly delineating and 75

detecting the follicles that are joined with each other [23]. Gupta et al. [24] developed 76

a deep learning-based framework for ovarian volume computation that utilizes 3D US 77

volumes and the axial orientation. The authors evaluated their methods on 20 3D ovarian 78

US volumes that enhanced the grade of the 3D rendering of the ovary and addressed the 79

issue of combined follicles in segmentation. Yang et al. [25] introduced ovary and follicles 80

segmentation using the contrastive rendering (C-Rend) framework. The authors employed 81

the semi-supervised learning approach with C-Rend leveraging unlabeled 3D ultrasound 82

for better performance. However, this study has some limitations during inference due to 83

its hyperparameter default value which might not be the most suitable setting for each 3D 84

US. 85

The main aim of this study is to develop an automated method for efficient ovary and 86

follicles segmentation in ovarian TVUS images to facilitate measuring the size of the follicle. 87

Figure 1 shows the schematic view of our proposed framework. The framework incor- 88
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Figure 1. A general framework of ovarian ultrasound quantification. This includes the three stages:
ovary segmentation, follicles segmentation, and follicle count. Note, HA refers to harmonic attention
block.

porates three stages, i.e., ovary segmentation, follicle segmentation, and follicle counting. 89

We designed a new segmentation method that replaces the standard 2D convolution layer 90

with a harmonic convolution. In contrast, [26] harmonic convolution combines the learned 91

kernels with predefined filters for feature learning. This weighted combination reduces 92

overfitting and computational complexity. The proposed HaTU-Net method effectively 93

extracts the features that allow precise segmentation of the ovary and follicles from the 94

US images. Moreover, we developed a new attention block that helps to improve the 95

segmentation performance by encouraging the feature discriminability between the pixels 96

and ignoring US imaging artifacts. In summary, our main contributions are in four folds: 97

• We propose a segmentation network called HaTU-Net to segment ovaries and follicles 98

with detailed, refined boundaries from TVUS images. 99

• We propose using harmonic convolution [26] to replace the standard convolutional 100

filter. The input image is first decomposed using the discrete cosine transform (DCT); 101

these transformed signals are combined using learned weights. 102

• We developed harmonic attention (HA) block to improve feature discriminability 103

between the target and background pixels in the segmentation stage. The HA block 104

encourages the features by avoiding the artifacts, and support for the HaTU-Net leads 105

to improved segmentation results. 106

• Our experimental results confirm HaTU-Net has shown significant improvement com- 107

pared to the various state-of-the-art segmentation methods (U-Net [12], AttentionU- 108

Net [14], R2U-Net [27], U-Net++ [28], and DeepLabv3+ [15]). 109

The remainder of this paper is organized as follows: Section 2 describes the presented 110

methodology. Section 3 describes our experimental results and highlights the limitations of 111

the work. Section 4 completes our study and suggests some future lines of research. 112

2. Methods 113

This section presents the detailed architecture description of the proposed HaTU- 114

Net as depicted in Fig 1. The proposed method incorporated two main parts: harmonic 115

convolution and harmonic attention (HA) blocks. 116

2.1. HaTU-Net Architecture 117

Figure 1 illustrates the architecture of the proposed HaTU-Net. It consists of encoder 118

and decoder networks. Each network consists of five layers with added skip connections. 119

The encoder network utilized a harmonic convolutional layer with kernel size 3 × 3 instead 120

of standard 2D convolutional layers. Each layer within the encoder employs batch nor- 121

malization followed by the ReLU activation function. The first encoder layer combines 122
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harmonic convolution with a 1-D kernel factorization [16], allowing feature extraction 123

with low computational costs. The second layer uses a variety of harmonic convolution, 124

1-D kernel factorization, and harmonic attention (HA) blocks. The attention mechanism 125

boosts the feature discriminability between the target and background pixels. The last 126

three encoder layers use a harmonic convolution with an HA block to enable channel 127

interdependencies, and highlight features specific to the ovaries and follicles. After each 128

layer, dimensionality reduction is achieved using a max-pooling operation with a kernel 129

size of 2 × 2. In the decoder, feature upsampling is performed through the conv-transpose2D 130

operation. Each encoder layer’s features are concatenated with the corresponding features 131

in the decoding layer (skip connections). A threshold of 0.5 is used to generate the final 132

predicted mask for ovary and follicles segmentation.

T' W1
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Figure 2. Illustration of harmonic attention (HA) block.
133

2.2. Feature Extraction with Harmonic Convolution 134

Motivated by [26], we replaced the standard convolution with a harmonic convolution, 135

i.e., a weighted sum of the responses to a discrete cosine transform (DCT) filter bank to pull 136

the harmonics from lower-level features to decrease the burden of overfitting. The DCT 137

is a separable transform that converts a signal from the temporal domain to the spectral 138

domain. The DCT of a 2D image I of size H ×W with a one-pixel discretization step can be 139

formulated as follows [26]: 140

Tu,v = ∑H−1
i=0 ∑W−1

j=0

√
βu
H

√
βv
W I(i,j) × cos

[
π
H

(
i + 1

2

)
u

]
cos

[
π
W

(
j + 1

2

)
v

]
, (1)

where Tu,v is the coefficient corresponding to a sinusoidal frequency of u and v in the two 141

orthogonal directions. Here β0 = 1 and βu = 2 are scaling factors used to normalize the 142

value of the basis function. 143

The input image features are decomposed using the DCT transform to perform the
convolution operation. A kernel size of f × f and depth of f 2 in the filter bank is used. Let
γ(u,v) indicate the u, v frequency selective DCT filter with kernel size f × f . The feature
map Fm at depth d is represented as a weighted linear aggregation of DCT coefficients on
all input channels C as follows:

Fd
m =

C−1

∑
n=0

f−1

∑
u=0

f−1

∑
v=0

wd
n,u,vγ(u,v) ∗ ∗Fd−1

m(n), (2)

where wd
n,u,v represented the learned weight for the nth feature at frequency u, v and ∗∗ 144

denoted as the 2-D convolution operator. The transformation process allows the input 145

feature to undergo harmonic decomposition, allowing learned weights to be used for 146

combining the transformed signals. 147



Version October 25, 2022 submitted to Journal Not Specified 5 of 12

2.3. Harmonic Attention Block 148

To advance the feature discriminability between the small targeted region and back-
ground pixels, Fig. 2 presents the proposed harmonic attention (HA) block details. The
block makes use of harmonic convolutions to extract feature maps. It is designed to pro-
mote feature discriminability between the target objects and their background, i.e., ovary
and follicles, in our application. In this block, an input feature map T ∈ RC×H×W is aver-
age pooled to aggregate C, which is the channel statistics. This generates T′ ∈ R′C′×1×1

which is then passed to the two 1 × 1 harmonic convolution layers to extract non-linear
inter-channel relationships with the help of spectral DCT filters. If W0 ∈ RC× C

r and W1 ∈
RC× C

r are weights of two harmonic convolutional layers (where r refers to the reduction
ratio), then the channel attention map can be formulated as:

attn(T
′
) = σ(W1 ∗ (ReLU(W0 ∗ T

′
))), (3)

where σ(.) is the sigmoid activation function. Finally, the channel attention map can be
generated as follows:

Ct = T ∗ T
′
. (4)

The use of skip connections between the input feature map T and Ct helps to narrow the
semantic gap and results in the final output map O:

O = Ct + T. (5)

2.4. Cost Function 149

We use a weighted sum of the binary cross-entropy (BCE) and focal loss LF which are
defined as:

LF(y, ŷ) = −y(1 − ŷ)γ·log(ŷ)− (1 − y)ŷγ·log(1 − ŷ). (6)

LBCE(y, ŷ) =−(y·log(ŷ) + (1 − y)·log(1 − ŷ)), (7)

The final loss is expressed as follows:

Loss f inal = LBCE(y, ŷ) + η ∗ LF(y, ŷ), (8)

where, y is the target binary mask, and ŷ is the predicted mask obtained by the segmentation 150

model. We used η equal to 0.6 as an empirical weighting factor. 151

3. Experimental Design and Results 152

3.1. Dataset 153

The Institutional Review Board approved the retrospective study (IRB), and the re- 154

quirement for informed consent was waived. The radiology reports of adult patients who 155

underwent transvaginal ultrasound (TVUS) exams between 2005 and 2019 in a single 156

institution were reviewed, and a total of 197 eligible patients were identified and selected. 157

The inclusion criteria were: (1) premenopausal female adult patients, (2) underwent TVUS 158

exams, (3) normal ovary on the pelvic ultrasound, and (4) available B-mode static images 159

of the ovary. Patients with the following criteria were excluded: (1) low-quality US images 160

with obscure boundaries of the ovary, (2) abnormal ovary findings on the ultrasound, or (3) 161

known ovarian pathologies or ovarian surgical history. 162

All TVUS exams were performed using GE LOGIQ E9 (General Electric Healthcare, 163

Waukesha, WI, USA) ultrasonic system equipped with a transvaginal IC5-9 transducer. US 164

exams were reviewed in a picture archiving and communication system (PACS) to extract 165

the DICOM images of ovaries in sagittal and coronal planes. Using the MicroDicom Viewer 166

tool (Version 3.2.7, Sofia, Bulgaria), a radiologist who had ten years of experience in pelvic 167

ultrasound annotated the contours of the ovary and follicles following a specific protocol, 168

(1) annotated all follicles of 2-28mm [29] in diameter within each ovary, (2) annotate ovary 169
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and follicles in different colors, and (3) avoid overlaps among annotations within the same 170

ovary. Another senior radiologist with more than ten of experience reviewed the annotated 171

images as part of the quality control process. The final dataset consisted of 767 images with 172

qualified annotations, split into training, validation, and testing sets with 466, 160, and 141 173

US images. 174

3.2. Implementation Details 175

All the methods are implemented in PyTorch [30]. We use an NVIDIA GeForce RTX 176

2080Ti GPU with 11GB RAM. The images are resized to 384 × 384, and the pixel values are 177

normalized between 0 and 1. The training dataset is augmented with random 15-degree 178

rotations and horizontal flips. An ADAM optimizer with β1= 0.5, β2 = 0.999, and an initial 179

learning rate of 0.0002 is used to optimize the model better. Step decay learning is activated 180

if the Dice coefficient score for the validation set plateaus for two consecutive epochs. We 181

used a batch size of four images and trained the model for 50 epochs since the model was 182

optimized completely. 183

This study organizes our experiments into three key stages: 1. ovary segmentation, 184

2. follicle segmentation, and 3. follicle counting. To measure the effectiveness of the 185

proposed model on segmentation stages, five evaluation metrics are used, i.e., accuracy, 186

dice similarity coefficient (Dice), intersection over union (IoU), sensitivity, and specificity 187

[31]. The precision and recall metrics are used to evaluate the follicle counts. 188

3.3. Ovary Segmentation 189

Table 1. Ovary segmentation results in five state-of-the-art segmentation methods. The best significant
results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity Specificity
U-Net [12] 96.89 ± 0.02 87.89 ± 0.08 77.54 ± 0.12 90.51 ± 0.09 98.27 ± 0.01
Attention U-net [14] 96.41 ± 0.02 86.02 ± 0.09 74.89 ± 0.13 87.96 ± 0.11 98.16 ± 0.02
R2U-Net [27] 95.73 ± 0.03 83.31 ± 0.12 71.49 ± 0.15 86.31 ± 0.13 97.53 ± 0.02
U-Net++ [28] 97.14 ± 0.02 87.78 ± 0.10 77.72 ± 0.13 89.42 ± 0.13 98.19 ± 0.01
DeepLabv3+ [15] 96.99 ± 0.02 86.66 ± 0.11 76.21 ± 0.14 87.35 ± 0.15 98.25 ± 0.01
Baseline 97.26 ± 0.01 88.37 ± 0.09 78.51 ± 0.13 90.46 ± 0.12 98.18 ± 0.01
HaTU-Net 97.55 ± 0.01 90.01 ± 0.07 80.72 ± 0.11 90.86 ± 0.10 98.57 ± 0.01

Table 1, demonstrates the quantitative result of proposed HaTU-Net (i.e., Baseline (BL) 190

plus harmonic attention block) compared to five state-of-the-art segmentation methods 191

including U-Net [12], Attention U-Net [14], R2U-Net [27], U-Net++ [28], and DeepLabv3+ 192

[15]. We also demonstrate the result of the Baseline (BL) method consisting of a standard U- 193

Net network with harmonic convolution without an attention block. Experimental results 194

confirm that the HaTU-Net performed significantly better than the second-highest U-Net 195

method in DSC, and IoU metrics with 2%, and 3%, respectively. We observed that the DCT- 196

based spectral kernel aids in learning shape, boundary, and texture mapping from noisy 197

ultrasound images. These noisy images include poor contrast, shadows, speckle variation, 198

and poor signal-to-noise ratio. To reach the optimal version of the proposed method, 199

we performed an ablation study to determine and quantify the perceptiveness of each 200

employed block to segmentation results. We define our baseline model as a U-Net where 201

it replaces the standard 2D convolutions layers with harmonic convolutions. Since the 202

ovary occupies a large part of an ultrasound image, we enforce fine boundary segmentation 203

while retaining shape information through an HA block (BL+ HA). Therefore, adding the 204

harmonic attention block to BL leads to better segmentation results. Finally, HaTU-Net 205

improves the DSC and IoU scores by approximately 1.5% in both metrics compared to 206

our BL model. The characteristics of the attention mechanism allow highlighting the most 207

relevant feature of the hypoechoic ovary region and ignoring the background or acoustic 208

shadows in the US images. 209
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Figure 3. Boxplots of Dice and IoU scores on ovarian images. Different color boxes indicate the score
range of different methods; the black line inside each box represents the median value, box limits
include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower whiskers
are computed as 1.5 times the distance of upper and lower limits of the box. All values outside the
whiskers are considered outliers.

Figure 4. Illustration of three qualitative example results generated by HaTU-Net against five state-
of-the-art methods for ovary segmentation. Colors maps represent the following description: Orange
(true positive), Green (false positive) and Red (false negative).

Figure. 3 shows the box-plot analysis of Dice and IoU scores on the ovarian dataset. 210

The HaTU-Net has generated fewer outliers compared to other segmentation methods. For 211

instance, we can see that the proposed method has a lower standard deviation than other 212

methods, showcasing its robustness. 213

Further, qualitative analysis plays a crucial role in visually determining segmentation 214

results. Figure. 4 exhibits the three qualitative examples results generated by state-of- 215

the-art segmentation methods compared to the HaTU-Net. We provide the color maps 216

that help to identify the true positive (orange), false positive (green), false negative (red), 217

and true negative, including the background. Visual inspection confirms that HaTU-Net 218

precisely segments the ovary boundaries, whereas other methods have produced many 219

false positives. 220

3.4. Follicle Segmentation 221

Table 2 exhibits the follicle segmentation results. The proposed HaTU-Net improved 222

follicle segmentation results with 10% DSC and IoU scores compared to U-Net. Our BL 223

methods demonstrated more remarkable results than other state-of-the-art segmentation 224

methods. We observed that incorporating the HA block leads to better segmentation 225

results. Especially, HA block can capture many small follicles’ shape features and provide 226

separation between them. This allows delineating of the follicle boundaries efficiently. 227
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Table 2. Follicles segmentation results in five state-of-the-art segmentation methods. The best
significant results are highlighted in bold.

Methods Accuracy Dice IoU Sensitivity Specificity
U-Net [12] 99.20 ± 0.01 71.77 ± 0.22 54.18 ± 0.23 74.55 ± 0.25 99.51 ± 0.01
Attention U-net [14] 99.28 ± 0.01 73.23 ± 0.22 55.56 ± 0.22 73.92 ± 0.24 99.62 ± 0.01
R2U-Net [27] 98.99 ± 0.01 73.28 ± 0.2 56.07 ± 0.21 84.91 ± 0.19 99.17 ± 0.01
U-Net++ [28] 99.35 ± 0.01 75.48 ± 0.20 57.61 ± 0.22 75.58 ± 0.23 99.68 ± 0.01
DeepLabv3+ [15] 99.35 ± 0.01 69.37 ± 0.26 52.36 ± 0.26 66.43 ± 0.28 99.77 ± 0.01
Baseline 99.45 ± 0.01 79.80 ± 0.19 62.51 ± 0.21 81.64 ± 0.20 99.70 ± 0.01
HaTU-Net 99.51 ± 0.01 81.40 ± 0.18 64.11 ± 0.20 82.24 ± 0.19 99.78 ± 0.01

Furthermore, Fig. 5 displays the boxplot analysis of Dice and IoU scores. The results 228

confirm that HaTU-Net achieves significantly high mean segmentation results with a lower 229

standard deviation. Besides, it is seen that it produces fewer outliers than other methods. 230

Note that all values outside the whiskers are considered outliers. 231
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Figure 5. Boxplots of Dice and IoU scores on follicle dataset. Different color boxes indicate the score
range of different methods; the black line inside each box represents the median value, box limits
include interquartile ranges Q2 and Q3 (from 25% to 75% of samples), upper and lower whiskers
are computed as 1.5 times the distance of upper and lower limits of the box. All values outside the
whiskers are considered outliers.

Figure 6. Illustration of three qualitative example results generated by HaTU-Net against five state-of-
the-art methods for follicle segmentation. Colors maps represent the following description: Orange
(true positive), Green (false positive), and Red (false negative).

Figure 6 represents the three examples for qualitative assessment of follicle segmenta- 232

tion. The harmonic attention block helps in refining the boundaries between follicles, as 233
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Table 3. Ablation study of the loss function. The highest significant results are highlighted in bold.

Dataset Loss Function Accuracy Dice IoU Sensitivity Specificity

Ovary

BCE 97.67 ± 0.01 89.28 ± 0.10 80.06 ± 0.13 88.94 ± 0.14 98.86 ± 0.01
Dice Loss 97.46 ± 0.02 89.45 ± 0.08 79.97 ± 0.12 89.69 ± 0.12 98.7 ± 0.01
BCE + Dice 97.44 ± 0.0 89.13 ± 0.09 79.64 ± 0.13 90.76 ± 0.12 98.45 ± 0.01
BCE + Focal 97.55 ± 0.01 90.01 ± 0.07 80.72 ± 0.11 90.86 ± 0.10 98.57 ± 0.01

Follicle

BCE 99.11 ± 0.00 68.1 ± 0.22 55.6 ± 0.23 62.95 ± 0.26 99.76 ± 0.01
Dice Loss 99.14 ± 0.01 72.72 ± 0.19 60.26 ± 0.21 72.02 ± 0.20 99.71 ± 0.01
BCE + Dice 99.18 ± 0.01 74.56 ± 0.18 62.4 ± 0.20 77.44 ± 0.19 99.64 ± 0.0
BCE + Focal 99.51 ± 0.01 81.40 ± 0.18 64.11 ± 0.20 82.24 ± 0.19 99.76 ± 0.01

shown by the performance of HaTU-Net in separating follicles for automating the follicle 234

count process. 235

3.5. Ablation Study 236

Table 3 demonstrates an ablation study to estimate the effect of loss function employing 237

the proposed HaTU-Net method. Our experiments use various combinations of loss 238

functions such as BCE, Dice loss, BCE+Dice, and BCE+Focal loss. BCE+Focal loss leads to 239

1% refinement over Dice loss in segmentation results. This combination of loss functions 240

focuses on boundaries. Separately, employing the Dice loss gains better results versus 241

BCE+Dice loss. On the follicle dataset, we also see that BCE+ Focal loss yields a 7% and 2% 242

increment in DSC and IoU scores, respectively, compared to BCE+Dice loss. This suggested 243

loss function help detach follicles that appear joined together, thus improving clinical 244

outcome. However, employing only BCE leads to poor segmentation results achieving a 245

68.10% Dice score. 246

3.6. Follicle Counting 247

In the third stage, segmented follicles are used to measure the follicle size. Figure 248

7 shows an ovarian US image with oval-shaped follicles and its corresponding follicle 249

segmentation mask generated by stage 2. The main steps of follicle counting are explained 250

as follows: 251

Input: Single ground truth follicle segmentation mask and predicted follicle segmen- 252

tation mask. 253

• Load ground truth mask and predicted mask images. 254

• Measure follicle diameters on both images in pixels. 255

• Convert pixel diameters to physical measurements. 256

• Exclude follicles sized outside the recruitable range of 2-10 mm in diameter by con- 257

verting pixels black, as counting antral follicles <2 mm in diameter might heighten 258

the chances of counting small anechoic structures like vessels or artifacts; whereas 259

counting dominant follicles >10 mm lack the evidence of clinical practicality [2]. 260

• Compute the dice similarity coefficient (DSC) between the ground truth mask and 261

predicted mask images. 262

• Calculate the number of correctly detected follicles from the predicted mask (follicles 263

with >0.5 Dice coefficient score are considered). 264

• Calculate the number of detected follicles from the predicted mask. 265

• Calculate the number of actual follicles from the ground truth mask. 266

• Evaluate the precision and recall of our predicted follicle counting with the formula 267

from [32]. 268

Table 4 confirms the results for follicle counting. Experimental results prove that 269

HaTU-Net attained a very high rate of follicle counting (i.e., precision) against other state- 270

of-the-art models. In addition, we observed that the 76.79% of HaTU-Net gained a 1.5% 271

recall rate compared to R2U-Net. The HaTU-Net helps lower the false positive rate from 272

segmentation artifacts, leading to higher follicle counting. 273
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Figure 7. (a) shows an ovarian US image with two oval-shaped follicles; (b) shows the corresponding
follicle segmentation mask. The follicle delineations are white with green dots denoting individual
follicles’ centroids. These act as the starting point for calculating the major and minor axis lengths
shown in red lines. The diameter is then calculated by multiplying the axis lengths by the pixel size
in mm to obtain physical measurements. The follicle count is labeled in blue.

Table 4. Follicles counting results in five state-of-the-art segmentation methods. Follicle counts are
measured by precision and recall. The best significant results are highlighted in bold.

Methods U-Net Attention U-Net R2U-Net U-Net++ DeepLabv3+ HaTU-Net
Total No. of Images 141
No. of Real Follicles 378
No. of Detected Follicles 447 438 482 453 488 448
No. of Correctly Detected Follicles 315 303 350 339 328 344
Precision (%) 70.47 69.18 72.61 74.83 67.21 76.69
Recall (%) 83.33 80.16 90.59 89.68 86.77 91.01

4. Conclusion 274

In this paper, we proposed an automated solution for ovarian ultrasound quantifi- 275

cation. We have developed a novel method named HaT-UNet that provides accurate 276

segmentation of ovaries and follicles from TVUS images. The proposed HaTU-Net em- 277

ployed harmonic convolution with discrete cosine transform (DCT) and enhanced feature 278

discriminability through HA block to handle ambiguous boundaries. Experimental results 279

proved that the HaTU-Net tackles the presence of imaging artifacts by achieving DSC score 280

improvement of 2% and 10% for the ovary and follicles, respectively, compared to U-Net. 281

Further, the proposed model verified its effectiveness in follicle counting and attained a 282

recall of 91% and a precision of 76.69%. Conclusively, the experimental output demon- 283

strated HaTU-Net’s outstanding ability and provided efficient segmentation results by 284

outperforming other state-of-the-art algorithms. In the future, we will extend the potential 285

of the proposed model to 3D segmentation tasks. We would explore investigating the 286

proposed model’s ability on additional biomedical datasets. 287
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