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Abstract— In massive multiple-input multiple-output (MIMO)
systems, hybrid analog-digital beamforming is an essential tech-
nique for exploiting the potential array gain without using a
dedicated radio frequency chain for each antenna. However,
due to the large number of antennas, the conventional chan-
nel estimation and hybrid beamforming algorithms generally
require high computational complexity and signaling overhead.
In this work, we propose an end-to-end deep-unfolding neural
network (NN) joint channel estimation and hybrid beamform-
ing (JCEHB) algorithm to maximize the system sum rate in time-
division duplex (TDD) massive MIMO. Specifically, the recursive
least-squares (RLS) algorithm and stochastic successive convex
approximation (SSCA) algorithm are unfolded for channel esti-
mation and hybrid beamforming, respectively. In order to reduce
the signaling overhead, we consider a mixed-timescale hybrid
beamforming scheme, where the analog beamforming matrices
are optimized based on the channel state information (CSI)
statistics offline, while the digital beamforming matrices are
designed at each time slot based on the estimated low-dimensional
equivalent CSI matrices. We jointly train the analog beamformers
together with the trainable parameters of the RLS and SSCA
induced deep-unfolding NNs based on the CSI statistics offline.
During data transmission, we estimate the low-dimensional
equivalent CSI by the RLS induced deep-unfolding NN and
update the digital beamformers. In addition, we propose a mixed-
timescale deep-unfolding NN where the analog beamformers are
optimized online, and extend the framework to frequency-division
duplex (FDD) systems where channel feedback is considered. Sim-
ulation results show that the proposed algorithm can significantly
outperform conventional algorithms with reduced computational
complexity and signaling overhead.

Index Terms— Deep-unfolding, hybrid beamforming, channel
estimation, mixed-timescale scheme, massive MIMO.
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I. INTRODUCTION

THANKS to large-scale spatial multiplexing and
highly directional beamforming, massive multiple-

input multiple-output (MIMO) has been recognized as a
pivotal technology for improving system reliability and
data rate [1]–[5]. However, due to the exorbitant cost and
energy consumption of radio frequency (RF) chains and
analog-to-digital converters, the employment of conventional
fully-digital beamforming is impractical with current
technologies. Thus, hybrid analog-digital beamforming which
requires a smaller number of RF chains has received great
attention [6], [7]. There have been a number of algorithms
proposed for hybrid beamforming and channel estimation in
massive MIMO systems [8]–[19]. These approaches typically
require high complexity and signaling overhead. Moreover,
these two modules are generally designed separately, which
may result in performance loss.

We consider a joint design of channel estimation and hybrid
beamforming with low-complexity and reduced overhead.
A number of previous algorithms have been proposed for
hybrid beamforming in [8]–[14]. In [9], the authors proved
that if the RF chain equipped with the hybrid beamforming
structure is twice the total number of data streams, the
performance approaches that of fully-digital beamforming.
In [10] and [11], a hybrid beamforming framework was
suggested for improving the bit error rate and system sum rate
performance, respectively. Considering hardware constraints,
codebook-based methods for hybrid beamforming were inves-
tigated in [12]–[14]. In particular, a hierarchical codebook
design for hybrid beamforming was proposed by [12] while
a codebook-based RF precoding designed to maximize the
spectral efficiency and energy efficiency simultaneously was
designed in [13]. Channel estimation plays an important role
in hybrid beamforming design [15]–[20]. The authors of [15]
developed an effective algorithm that uses an hidden Markov
model (HMM) for sparse channel estimation. In [16], the
authors proposed a compressive sensing method for channel
estimation by exploiting the spatial sparsity. A recursive least-
squares (RLS) adaptive estimation algorithm was developed
for MIMO interference channels in [19], which provides
low computational complexity and can track the time-varying
channels as the environment changes.

Conventional single-timescale hybrid beamformers are opti-
mized based on the high-dimensional full channel state infor-
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mation (CSI), which leads to large signaling overhead and
transmission delay. To address these issues, several hybrid
beamforming algorithms under the mixed-timescale scheme
have been investigated in [21]–[23]. In this approach, long-
term analog beamformers are optimized based on the channel
statistics while the short-term digital beamformers are updated
based on the reduced-dimensional CSI. However, these algo-
rithms are challenging to implement in practice owing to
the large number of iterations for convergence and high
computational complexity operations, such as matrix inversion
in each iteration.

In recent years, deep learning techniques have been widely
applied in wireless communications such as channel esti-
mation [24], signal detection [25]–[27], and CSI feedback
in MIMO systems [28]. Compared to traditional algorithms,
deep learning-based techniques have much lower computa-
tional complexity and often do not require CSI. In [29]–[32],
the authors designed hybrid beamforming by employing
convolutional neural networks (CNNs) and multi-layer per-
ception (MLP) which are referred to as black-box neural net-
works (NNs). However, these NNs have poor interpretability
and many samples are required for training. Deep-unfolding
NNs have been recently receiving growing interest in various
areas [33]. This approach unfolds iterative algorithms into
layer-wise networks and introduces trainable parameters to
improve system performance. Compared with black-box NNs,
deep-unfolding NNs are more interpretable and require less
training data, and have much lower computational complexity
compared to traditional algorithms with comparable perfor-
mance. Deep-unfolding NNs have been applied in commu-
nications [34], for example, resource allocation [35], [36],
detection [37]–[40], channel estimation [41], [42], and trans-
ceiver design [43]–[46]. In [39], the authors proposed a symbol
detector named ViterbiNet, which integrates black-box NNs
into the Viterbi algorithm.

In prior works, deep-unfolding NNs are employed for a
single module design. In this work, we propose an end-to-
end deep-unfolding framework for joint channel estimation
and hybrid beamforming (JCEHB) design in time-division
duplex (TDD) massive MIMO systems to maximize the system
sum rate. To reduce the signaling overhead, we employ the
mixed-timescale hybrid beamforming scheme where analog
beamformers are optimized offline. In addition, we extend the
framework to other application scenarios.

The main contributions of this work are as follows.

• We propose an end-to-end mixed-timescale deep-
unfolding framework for maximizing the system sum
rate in massive MIMO, which jointly designs channel
estimation and hybrid beamforming.

• We develop a RLS algorithm induced channel esti-
mation deep-unfolding NN (CEDUN) and an SSCA
algorithm induced hybrid beamforming deep-unfolding
NN (HBDUN). For the CEDUN, we design the pilot
training module and unfold the RLS algorithm into a
layer-wise NN with introduced trainable parameters. For
the HBDUN, we propose a stochastic successive convex
approximation (SSCA) algorithm induced deep-unfolding

NN, where the high computational complexity operations
are replaced by trainable parameters.

• Under the mixed-timescale scheme, we develop a
two-stage joint training method for the deep-unfolding
NNs, where the analog beamformers are treated as
trainable parameters and optimized offline based on the
channel statistics. During the data transmission stage,
we fix the analog beamformers and only estimate the
low-dimensional equivalent CSI by the CEDUN to update
the digital beamformers. When channel statistics change,
we employ transfer learning to fine-tune the deep-
unfolding NN.

• We extend our framework for the following different
application scenarios: (i) An online mixed-timescale
scheme where the analog beamformers are optimized in
an online manner; (ii) Frequency-division duplex (FDD)
system that incorporates channel quantization and feed-
back. We propose an end-to-end deep-learning based
framework where deep-unfolding NNs are designed
for channel estimation and hybrid beamforming and
black-box NNs are designed for channel quantization and
feedback, respectively.

• We provide detailed analysis of the performance and
computational complexity of the proposed deep-unfolding
algorithm. Simulation results show that our proposed
deep-unfolding can significantly outperform conventional
RLS and SSCA algorithms with reduced complexity.

The rest of the paper is structured as follows. Section II
introduces the system model and problem formulation.
Section III proposes the mixed-timescale deep-unfolding
framework and presents the joint training method. Section IV
develops the RLS induced deep-unfolding NN for channel
estimation and Section V proposes the SSCA deep-unfolding
NN for hybrid beamforming design. Section VI extends the
deep-unfolding framework for different application scenarios.
Section VII analyzes the computational complexity and per-
formance of the proposed algorithm. Section VIII presents
simulation results and conclusions are drawn in Section IX.

Throughout the paper we use the following notations.
Scalars, vectors and matrices are respectively denoted by lower
case, boldface lower case and boldface upper case letters;
I represents an identity matrix and 0 denotes an all-zero
matrix. For a matrix A, AT , A∗, AH , and ‖A‖ denote
its transpose, conjugate, conjugate transpose and Frobenius
norm, respectively. For a square matrix A, Tr{A} is its trace.
For a vector a, ‖a‖ represents its Euclidean norm, E{·}
denotes the statistical expectation, and �{·} (�{·}) are the
real (imaginary) part of a variable. The operator vec(·) stacks
the elements of a matrix in a column vector, | · | denotes the
absolute value of a complex scalar, and Cm×n (Rm×n) are
the space of m × n complex (real) matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for
downlink massive MIMO and then formulate our problem
mathematically.
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Fig. 1. Downlink massive MIMO system with hybrid beamforming.

A. System Model

1) Signal Model: Consider a downlink massive MIMO
system working in TDD mode as shown in Fig. 1. The base
station (BS) is equipped with Nt transmit antennas and NRF

t

RF chains, sending Ns data streams to each user at the receiver
with K users, where KNs ≤ NRF

t ≤ Nt. Each user is
equipped with Nr receive antennas and NRF

r RF chains,
where Ns ≤ NRF

r ≤ Nr. At the transmitter, the RF chains
are connected with a network of phase shifters that expands
the NRF

t digital outputs to Nt precoded analog signals feeding
the transmit antennas. Similarly, at the receiver, the Nr receive
antennas are followed by a network of phase shifters that feeds
the NRF

r RF chains. The BS sends Ns data streams to user
k ∈ K � {1, . . . , K}, denoted as sk ∈ CNs×1. Through the
beamformers at the BS, the signal uk ∈ CNt×1 for user k can
be written as

uk =
√

PFRF,kFBB,ksk, (1)

where P denotes the transmit power of the BS, FRF,k ∈
CNt×NRF

t is the analog beamformer which is subject to a
unit modulus constraint, i.e., |[FRF ]i,j | = 1√

Nt
, ∀i, j, and

FBB,k � [fBB,k,1, . . . , fBB,k,Ns] ∈ CNRF
t ×Ns is the digital

beamformer. The digital precoder FBB,k is normalized as
‖FRF,kFBB,k‖2

F = Ns to ensure that the power constraint
is satisfied at the BS.

After passing through the channel and the beamformers at
the user, the received signal vector for user k is

yk =
√

PWH
BB,kW

H
RF,kHkFRF,kFBB,ksk +

√
PWH

BB,k

×WH
RF,kHk

K∑
m=1,m �=k

FRF,mFBB,msm

+WH
BB,kW

H
RF,kzk, (2)

where Hk ∈ CNr×Nt represents the channel matrix,
W BB,k � [wBB,k,1, . . . ,wBB,k,Ns] ∈ CNRF

r ×Ns and
W RF,k ∈ CNr×NRF

r denote the digital and analog
beamformers for user k, respectively, and zk ∈ CNr×1 ∼ CN
(0, σ2

kI) is the additive white Gaussian noise (AWGN)
with σk denoting the noise power. Similar to FRF ,
the analog combiner satisfies a unit modulus constraint
|[WRF ]i,j | = 1√

Nr
, ∀i, j. Using (2), given perfect knowledge

of the equivalent channel, the signal-to-interference-plus-noise

ratio (SINR) for stream l of user k is given as

Γk,l =
|wH

BB,k,lHeq,kfBB,k,l|2
K∑

i=1

Ns∑
j=1

(i,j �=k,l)

|wH
BB,k,lHeq,kfBB,i,j |2+σ2

k

P ‖wH
BB,k,lW

H
RF,k‖2

,

(3)

where Heq,k = WH
RF,kHkFRF,k ∈ CNRF

r ×NRF
t denotes the

low-dimensional equivalent CSI matrix. The system sum rate

is
K∑

k=1

Ns∑
l=1

log(1 + Γk,l).

2) Channel Estimation: It is essential for the BS to obtain
the CSI for hybrid beamforming. Here we consider estimation
of the low-dimensional equivalent CSI. Thanks to channel
reciprocity in TDD systems, we only need to estimate the
uplink channels. Thus, we consider an uplink pilot training
stage before data transmission. The k-th user first sends
training pilots X̃eq,k ∈ CNRF

t ×L to the BS, where L denotes
the length of pilots. Then, the received signal at the BS
Ỹeq,k ∈ CNRF

r ×L is given by

Ỹeq,k =Heq,kX̃eq,k+WH
RF,kHk

K∑
u=1,u�=k

FRF,uX̃eq,u+Z̃eq,k,

(4)

where Z̃eq,k denotes the AWGN. The transmitted pilot signal
in the l-th pilot slot (the l-th column of X̃eq,k) should meet
the power constraint: ‖x̃eq,k,l‖2 ≤ P . Then, the BS estimates
the channel Ĥeq,k ∈ C

Nr×Nt based on the received signal
Ỹeq,k and the pilot X̃eq,k , which can be expressed as

Ĥeq,k = F(Ỹeq,k, X̃eq,k), (5)

where F(·) denotes a specific channel estimation algorithm.
3) Hybrid Beamforming: After acquiring the channel infor-

mation, the BS designs the hybrid beamformers based on the
channel Hk. The hybrid beamforming design scheme Q(·) at
the transmitter can be denoted as

{FRF,k,WRF,k,FBB,k,WBB,k} = Q(Hk), ∀k. (6)

B. Mixed-Timescale Frame Structure

Generally, the dimension of the channel matrix is high in
massive MIMO systems due to the large number of antennas.
It is therefore impractical to estimate each instantaneous CSI
due to the unacceptable signaling overhead and high compu-
tational complexity. To address this problem, we consider a
practical mixed-timescale frame structure as shown in Fig. 2,
which takes into consideration both the instantaneous CSI and
the channel statistics. We consider a superframe during which
the channel statistics are constant. It consists of Tf frames,
each of which is made of Ts time slots. The instantaneous
CSI remains unchanged during each time slot. We introduce
two different timescales as follows:

• Long-timescale: The channel statistics are unchanged
during each superframe which consists of several time
slots.

• Short-timescale: The instantaneous CSI is constant in
each time slot.
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Fig. 2. Mixed-timescale frame structure.

In general, the dimension of the equivalent CSI matrix
Heq ∈ CNRF

r ×NRF
t is much smaller than the dimension of the

full CSI matrix H ∈ CNr×Nt . Thus, we consider acquiring the
low-dimensional equivalent CSI at each time slot. In this way,
we can optimize the analog and digital beamformers at differ-
ent timescales. We update the long-term analog beamformers
{FRF ,WRF } based on the long-term channel statistics when
channel statistics 1 change, and optimize the short-term digital
beamformers {FBB,WBB} based on the low-dimensional
equivalent CSI at each time slot.

C. Problem Formulation

We aim at jointly designing the mixed-timescale hybrid
beamforming and channel estimation to maximize the system
sum rate. The optimization problem within each frame can be
formulated as

max
X ,Y

K∑
k=1

Ns∑
l=1

log(1 + Γk,l), (7a)

s.t. ‖ [FRF,k]ij ‖2=
1√
Nt

, ∀k, i, j, (7b)

‖ [WRF,k]ij ‖2=
1√
Nr

, ∀k, i, j, (7c)

‖ FRF,kFi
BB,k ‖2

F = Ns, ∀k, (7d)

‖x̃eq,k,l‖2 ≤ P, ∀k, l, (7e)

Ĥi
eq,k = Feq(Ỹeq,k, X̃eq,k), ∀k, (7f)

{FRF,k,WRF,k} = Qfu(Hk), ∀k, (7g)

{Fi
BB,k,Wi

BB,k} = Qeq(Ĥi
eq,k), ∀k, (7h)

where X � {FRF,k,WRF,k,Fi
BB,k,Wi

BB,k} and Y �
{X̃eq,k}. In particular, Hk denotes long-term channel sta-
tistics, Ĥi

eq,k denotes the estimated equivalent CSI, and
{Fi

BB,k,Wi
BB,k} represent the digital beamformers at the i-th

time slot. In addition, Feq(·) denotes the estimation scheme for
low-dimensional equivalent CSI, and Qfu(·) and Qeq(·) repre-
sent the analog and digital beamforming schemes, respectively.
Constraints (7b) and (7c) reflect the unit modulus constraints
for analog beamformers, and (7d) and (7e) represent the
transmit power constraints. As we can see, the mixed-timescale
problem is challenging to solve. In the following, a deep-
unfolding framework is proposed for tackling this problem.

1In this work, channel statistics refer to the moments or distribution of the
channel fading realizations. In the mixed-timescale scheme, we need to obtain
several (potentially outdated) channel samples at each superframe, and the
analog beamformers are optimized based on the observed channel samples.

III. PROPOSED MIXED-TIMESCALE DEEP-UNFOLDING

FRAMEWORK

In this section, we propose a mixed-timescale deep-
unfolding framework, the structure of which is shown in
Fig. 3. We first present how to jointly train the proposed
deep-unfolding NNs offline and then show the whole process
of the training and data transmission under the mixed-
timescale scheme.

A. The Two-Stage Joint Training

During data transmission, the analog beamformers are fixed
and only digital beamformers are updated based on the
estimated equivalent channel at each time slot. To model
the transmission process, we divide the training process for
the deep-unfolding NN into two stages where the analog
beamformers are optimized in the first stage and then fixed
in the second stage.

1) The First Training Stage: Fig. 3(a) denotes the
deep-unfolding NN for the first training stage, which presents
the architecture of the HBDUN that consists of the analog
NN and digital NN for designing the analog and digital
beamforming, respectively. The input of the analog NN is
the full CSI sample matrix H (possibly outdated) and the
outputs are analog beamformers {WRF ,FRF }. The input of
the digital NN is the real-time low-dimensional equivalent
CSI matrix Heq and the outputs are digital beamformers
{WBB,FBB}.

a) Forward propagation: We obtain channel samples
offline based on the long-term channel statistics as the input
of the analog NN and the outputs are analog beamformers
{WRF ,FRF }. Then we obtain the low-dimensional equiva-
lent CSI matrices Heq which pass through the digital NN that
outputs the digital beamformers {FBB,WBB}. We introduce
the detailed structure of the HBDUN in Section V-B. The
forward propagation for the first stage P1(·) is expressed as

{WRF ,FRF ,WBB,FBB} = P1(ΥB ;H), (8)

where ΥB represents the trainable parameters of the HBDUN.
Note that ΥB consists of Ψ and Ω, which represent the train-
able parameters of the analog NN and digital NN, respectively.

b) Loss function: The loss function of the first stage is
denoted as L1(ΥB ;H), which is the system sum rate:

L1(ΥB ;H) = −
K∑

k=1

Ns∑
l=1

log(1 + Γk,l). (9)

c) Back propagation: All the trainable parameters of
the HBDUN are updated based on the stochastic gradient
descent (SGD) algorithm. Specifically, in the i-th round of
the training process, we update the trainable parameters as
follows:

Υi+1
B = Υi

B − η
∂L1(ΥB;H)

∂ΥB
, (10)

where η is the learning rate.
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Fig. 3. Structure of the proposed deep-unfolding framework: (a) Deep-unfolding NN for the first training stage; (b) deep-unfolding NN for the second
training stage.

2) The Second Training Stage: Fig. 3(b) shows the
deep-unfolding NN for the second training stage which con-
sists of the modules of channel estimation for low-dimensional
equivalent CSI and digital beamforming. Note that the
CEDUN represents the NN for equivalent CSI estimation,
which consists of the pilot training NN and the RLS induced
deep-unfolding NN. The analog and digital NN are employed
to obtain analog and digital beamformers, respectively. The
input of the CEDUN is the low-dimensional equivalent
CSI matrix Heq and the output is the estimated channel
matrix Ĥeq .

a) Forward propagation: First, we fix the trained analog
NN to obtain analog beamformers {WRF ,FRF } and the

low-dimensional equivalent CSI matrix Heq . Then Heq passes
through the pilot training NN and the RLS deep-unfolding
NN which outputs the estimated equivalent CSI matrix Ĥeq .
Finally, Ĥeq passes through the digital NN that outputs the
digital beamformers {FBB,WBB}. We introduce the detailed
structure of the CEDUN in Section IV-B. The forward prop-
agation for the second stage P2(·) is expressed as

{WRF ,FRF ,WBB,FBB} = P2({ΥC ,ΥB};H), (11)

where ΥC consists of X̃eq and Ξ, which represent the
trainable parameters of the pilot training NN and the RLS
induced deep-unfolding NN, respectively.
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Fig. 4. Training stage and data transmission of the offline mixed-timescale
scheme.

b) Loss function: The loss function of the second stage is
denoted as L2({ΥC ,ΥB};H), which is the system sum rate.

L2({ΥC ,ΥB};H) = −
K∑

k=1

Ns∑
l=1

log(1 + Γk,l). (12)

c) Back propagation: The trainable parameters of the
CEDUN and digital NN are updated based on the SGD
algorithm. Note that the parameters of the analog NN are not
updated in the second training stage. Thus, in the i-th round
of the training process, we update the trainable parameters as
follows:

Υi+1
C = Υi

C − η
∂L2({ΥC ,ΥB};H)

∂ΥC
, (13)

Ωi+1 = Ωi − η
∂L2({ΥC ,ΥB};H)

∂Ω
. (14)

3) The Advantages of Joint Training: Compared with
conventional separate designs, the proposed joint design
framework has potential performance gains. Conventional
algorithms optimize the channel estimation and hybrid beam-
forming modules separately under different objective func-
tions, i.e., the minimization of MSE for channel estimation
and maximization of sum rate for hybrid beamforming, respec-
tively. In comparison, the proposed joint design NN ties
the two modules tightly and jointly trains them. It provides
an end-to-end deep-unfolding framework without explicitly
estimating the CSI and both of the channel estimation and
hybrid beamforming are designed to maximize the sum rate,
which leads to better sum rate performance and is more
efficient in terms of the signaling overhead.

B. The Training and the Data Transmission Stage

Training and data transmission for the mixed-timescale
is shown in Fig. 4. We first obtain channel samples based
on the long-term channel statistics offline and jointly train
the deep-unfolding NN as mentioned above. Then in the
data transmission stage, we fix the analog beamformers
during the channel statistics coherence time and estimate
the low-dimensional equivalent real-time CSI by CEDUN
to update the digital beamformers. The analog beamformers
obtained by offline training can well adapt to CSI statistics
when it does not change [21]. When it changes, we obtain
channel samples and employ transfer learning [47] to fine
tune the parameters of the deep-unfolding NN, where the
analog beamformers are updated to better fit the change of
CSI statistics [48].

Algorithm 1 The RLS Algorithm for Channel Estimation

1: Input: Pilot X̃eq,k and received signal Ỹeq,k;
2: Initialize the estimated matrix W−1

k = 0 and intermediate
variable P−1

k = δ−1I;
3: for n = 1, 2, . . . , L do
4: Update {gn

k} based on gn
k = Pn−1

k x̃n−1
eq,k ;

5: Update {vn
k} based on vn

k = gn
k

βk+(gn
k )H x̃n

eq,k
;

6: Update {Pn
k} based on Pn

k = β−1
k (Pn−1

k − vn
k (gn

k )H);
7: Calculate residual en

k = ỹn
k − (Wn−1

k )H x̃n
eq,k;

8: Update the estimated matrix Wn
k = Wn−1

k +vn
k (en

k )H ;
9: n = n + 1;

10: end for

IV. DEEP-UNFOLDING NETWORK FOR

CHANNEL ESTIMATION

In this section, we first introduce a RLS based algorithm for
estimating the low-dimensional equivalent CSI matrices and
then describe the deep-unfolding NN by introducing trainable
parameters.

A. The RLS Channel Estimation Algorithm

We focus on the expression (4), which represents the
received pilot signal for user k. We aim to obtain the estimated
low-dimensional equivalent channel matrix Ĥeq,k by mini-
mizing the mean square estimation error which is defined as
E{‖Ĥeq,k − Heq,k‖2}. The solution of the least squares (LS)
approach for solving this problem is given by

Ĥeq,k = Ỹeq,kX̃H
eq,k(X̃eq,kX̃H

eq,k)−1. (15)

In the RLS algorithm, the matrix inversion in (15) is replaced
by an iterative process. The procedure of the RLS channel
estimation algorithm is presented in Algorithm 1, where x̃n

eq,k

and ỹn
eq,k are the n-th column of X̃eq,k and Ỹeq,k, respec-

tively. Note that gn
k ,vn

k , and Pn
k are intermediate variables,

βk ∈ (0, 1) is the forgetting factor and δ denotes a small
positive number, Wn

k denotes the weight matrix and the
estimated channel Ĥeq,k = (Wn

k )H . Moreover, the estimation
error en

k descends with the update of Wn
k . The number of

iterations is the length of pilots L. In addition, the inputs of
the algorithm are the pilots and received signal, and the output
is the estimated channel matrix.

B. Deep-Unfolding NN for Channel Estimation

Based on the RLS algorithm, we propose the CEDUN
which contains the pilot training NN and RLS induced deep-
unfolding NN. In the proposed offline mixed-timescale frame-
work, we only need to estimate the low-dimensional equivalent
CSI at each time slot. To estimate the equivalent channel
Heq,k, the k-th user sends the training pilot matrix X̃eq,k , and
at the BS the received pilot signal matrix Ỹeq,k is denoted
as (4). Then X̃eq,k and Ỹeq,k are input to the RLS induced
deep-unfolding NN to obtain the estimated equivalent channel
Ĥeq,k. The structure of the CEDUN for user k is shown in
Fig. 3(b).
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1) Pilot Training NN: Different from the conventional
Gaussian pilots and discrete fourier transform (DFT) pilots,
in the proposed deep-unfolding NN, we set the pilots as
trainable parameters that can adapt to the CSI statistics to
further improve the performance. As shown in Fig. 3(b),
to model the process of pilot training for estimating the
low-dimensional equivalent CSI matrix Heq,k, the input and
output of the NN are Heq,k and Ỹeq,k , respectively, and we
set X̃eq as the trainable parameter. Note that X̃eq needs to be
scaled to satisfy the power constraint (7e).

2) RLS Induced Deep-Unfolding NN: We unfold the RLS
into a network with significantly less layers. The inputs of the
n-th layer of the NN are {x̃n

eq,k, ỹn
eq,k,Pn−1

k ,Wn−1
k } and the

outputs are {Pn
k ,Wn

k}.
To increase the degrees of freedom, we introduce the

structure

Yn
out = Tn

yXn
in + qn

y , (16)

where Xn
in and Yn

out represent the input and output of the n-
th layer, respectively, Tn

y and qn
y are the introduced multiplier

and offset trainable parameter of the n-th layer, respectively.
Note that �n

C � {Tn
g,k,qn

g,k}∪{Tn
v,k,qn

v,k}∪{Tn
p,k,qn

p,k}∪
{Tn

w,k,qn
w,k} are the multiplier and offset trainable parameters

to update the variables gn
k , vn

k , Pn
k , and Wn

k in the n-th layer,
respectively. As shown in Fig. 3(b), based on Algorithm 1, Gn

k ,
Vn

k , Un
k , Wn

k represent the sub-layers of the n-th layer of the
deep-unfolding NN, i.e., (17a)-(17d).

gn
k = Tn

g,k(Pn−1
k x̃n

eq,k) + qn
g,k, (17a)

vn
k = Tn

v,k(
gn

k

γn
k + (gn

k )H x̃n
eq,k

) + qn
v,k, (17b)

Pn
k = Tn

p,k(γn
k )−1(Pn−1

k − vn
k (gn

k )H)+qn
p,k, (17c)

Wn
k = Tn

w,k(Wn−1
k + vn

k (en
k )H) + qn

w,k. (17d)

Thus, the trainable parameters of the deep-unfolding NN
are Ξ �

⋃Lc

n=1 �n
C ∪ γn

k , where Lc is the number of layers.
All the trainable parameters of the CEDUN are denoted as
ΥC � X̃eq ∪Ξ.

V. DEEP-UNFOLDING NETWORK FOR HYBRID

BEAMFORMING

We next turn to design an SSCA algorithm for hybrid
beamforming and then introduce the proposed HBDUN which
unfolds the SSCA algorithm.

A. The SSCA-Based Hybrid Beamforming Algorithm

For the hybrid beamforming design, we first introduce the
mixed-timescale SSCA framework [21]. Let us express the
element of analog beamformers in terms of ejφ as

FRF = ejφF , φF ∈ C
Nt×NRF

t , (18a)

WRF = ejφW , φW ∈ C
Nr×NRF

r , (18b)

where φ � {φF , φW } denotes the angle of phase shifter.
Here, the objective function can be expressed as r0(φ,M;H),
where M � {FBB,WBB}.

Algorithm 2 The SCA Algorithm for Digital Beamforming
1: Input: The equivalent channel Heq .
2: Initialize tk,l = 0 and digital precoder FBB satisfying the

power constraint condition and set the maximum iteration
number Imax;

3: for i = 1, 2, 3, . . . do
4: Update digital combiner Wi

BB,k based on (24);

5: Update dual variable λi
k,l = α

ti
k,l

log α ;
6: Update digital precoder

f i
BB,k,l = λi

k,l

(
(K,Ns)∑
(m,n)

λi
m,nHH

eq,mwi
BB,m,n

× (wi
BB,m,n)HHeq,m + τkI

)−1

HH
eq,kw

i
BB,k,l;

7: Calculate MSE εi
k,l based on (23);

8: Update ti+1
k,l = ti

k,l + 1
log α (1 − εi

k,lα
ti

k,l);
9: Until desired level of convergence or i > Imax.

10: end for

1) Long-Term Analog Beamformers: We optimize the ana-
log beamformers based on the full CSI samples H. First,
we fix the digital beamformers MJ , which means that the
digital beamformers are obtained by running the algorithm that
optimizes the short-term variables for J iterations. Then we
employ a convex surrogate function to replace the objective
function to optimize the analog beamformers. The surrogate
function in the t-th iteration is [21]

f̄ t(φ) = f t + (f t
φ)T (φ − φt) + τ ‖ φ − φt ‖2, (19)

where

f t
φ = (1 − ρt)f t−1

φ + ρt �φ r0(φt,MJ ;H) (20)

with f−1
φ = 0. Here �φr0(φt,MJ ;H) is the partial derivative

of r0(φt,MJ ;H), and the constant f t is calculated as

f t = (1 − ρt)f t−1 + ρtr0(φt,MJ ;H) (21)

with f−1 = 0. We take the derivative with formula (19) to
update the long-term variable φ as

φ̄ = φ − ηf t
φ, (22)

where η denotes the step size.
2) Short-Term Digital Beamformers: By fixing the analog

beamformers, we optimize the digital beamformers based on
the low-dimensional equivalent CSI matrix Heq . We adopt the
successive convex approximation (SCA) algorithm to optimize
the short-term digital beamformers [49]. For the data stream
l of user k, the MSE expression is given as

εk,l = |1 − wH
BB,k,lHeq,kfBB,k,l|2

+
K,Ns∑

m,n(m �=k,n �=l)

|wH
BB,k,lHeq,kfBB,m,n|2

+ σ2
k ‖wBB,k,l‖2 . (23)
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The optimal digital beamformer is given by

WBB,k = (
K∑

v=1

Heq,kFBB,vFH
BB,vH

H
eq,k + σ2

kI)
−1

×Heq,kFBB,k. (24)

We equivalently transform the optimization objective function
into the problem that minimizes the MSE [49]:

min
FBB

K∑
k=1

Ns∑
l=1

log(εk,l). (25)

Then we design the digital precoder FBB . By introducing a
monotonic log-concave function g(tk,l), the target optimiza-
tion function becomes [49]

min
FBB ,tk,l

K∑
k=1

Ns∑
l=1

log(g(tk,l)−1), (26a)

s.t. εk,l ≤ g(tk,l)−1. (26b)

We then use the first-order Taylor approximation

ḡ(tk,l, t0
k,l) = g(t0

k,l) + (tk,l − t0
k,l)

∂

∂tk,l
g(t0

k,l). (27)

Problem (26) can be formulated as

min
FBB ,tk,l

K∑
k=1

Ns∑
l=1

log(ḡ(tk,l, t
(i)
k,l)), (28a)

s.t. εk,l ≤ [ḡ(tk,l, t
(i)
k,l)]. (28b)

To simplify the problem, we consider a log-linear function
g(x) = αx, where α > 1. We present the SCA algorithm in
Algorithm 2, where τk denotes the Lagrange multiplier.

B. The SSCA Algorithm Induced Deep-Unfolding NN

We next unfold the SSCA algorithm leading to HBDUN.
The structure of HBDUN is shown in Fig. 3(a), where the
first network and the second network are referred to as the
analog and digital NNs, respectively.

The input of the analog NN is the full channel sam-
ples H and the outputs are the analog beamforming matrix
{FRF,k,WRF,k}. We set the angle of the phase shifters for
analog beamformers as trainable parameters Ψ � {ΨF ,ΨW }
of the analog NN and employ the operation ej(·) to satisfy the
unit modulus constraint.

The input of the digital NN is the low-dimensional real-time
equivalent CSI matrix Heq,k and the outputs are the digital
beamforming matrix {FBB,k,WBB,k}. We next introduce
the detailed structure of the digital NN, which unfolds the
SCA algorithm into a layer-wise structure. Two non-linear
operations are defined for approximating matrix inversion:
(i) We take the inverse of the diagonal entries of matrix A
and set the other elements in A as zero, and denote the result
as A+. For example,

A =

⎡
⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎦ , A+ =

⎡
⎢⎣

a−1
11 0 0
0 a−1

22 0
0 0 a−1

33

⎤
⎥⎦ ;

(29)

(ii) we set the imaginary part of the diagonal elements of D
to zero, expressed as D−:

D =

⎡
⎢⎣

dr,11 + jdi,11 dr,12 + jdi,12 dr,13 + jdi,13

dr,21 + jdi,21 dr,22 + jdi,22 dr,23 + jdi,23

dr,31 + jdi,31 dr,32 + jdi,32 dr,33 + jdi,33

⎤
⎥⎦ ,

D− =

⎡
⎢⎣

dr,11 dr,12 + jdi,12 dr,13 + jdi,13

dr,21 + jdi,21 dr,22 dr,23 + jdi,23

dr,31 + jdi,31 dr,32 + jdi,32 dr,33

⎤
⎥⎦ .

(30)

Based on this, we employ the following structure to approxi-
mate the matrix inversion.

• First, we use A+B with non-linear operation A+ and
trainable parameter B, where B is introduced to improve
performance. It can be seen that A−1 = A+ if matrix
A is diagonal. We observe that the diagonal elements of
the matrix are much larger than the other elements in the
SCA algorithm.

• Secondly, we introduce the offset trainable matrix D to
better approximate the inverse matrix. We find that the
imaginary part of the diagonal elements of the inverse
matrix are close to zero. Thus, we employ D− as the
offset.

Thus, the matrix inversion A−1 is approximated by A+B +
D−. The computational complexity of matrix inversion is
O(n3) while that of the approximation is O(n2.37). Note that
we introduce trainable parameters {Bi

f,k,Di
f,k} to approx-

imate the inversion of variable f i
BB,k,l in the i-th layer,

which reduces the computational complexity. To increase the
degrees of freedom for the parameters, the multiplier and offset
trainable parameters �i

B � {Ti
w,k,Qi

w,k} ∪ {Ti
λ,k,qi

λ,k} ∪
{Ti

f,k,qi
f,k} ∪ {Ti

t,k,qi
t,k} are introduced in updating the

variables Wi
BB,k, λi

k,l, f i
BB,k,l, and ti

k,l in the i-th layer,
respectively. As shown in Fig. 3(a), based on Algorithm 2,
Wi

k, Di
k, Ci

k, and T i
k represent the sub-layers of the i-

th layer of the deep-unfolding NN, i.e., (31a)-(31d), where

Ci
k �

(K,Ns)∑
(m,n)

λi
m,nHH

eq,mwi
BB,m,n(wi

BB,m,n)HHeq,m + vi
kI.

In addition, the constant 1
log α is set as trainable parameter μi

k

to speed up convergence.

Wi
BB,k = Ti

w,k

(
(

K∑
v=1

Heq,kFi−1
BB,vF

i−1H
BB,v HH

eq,k + σ2
kI)

−1

×Heq,kFi−1
BB,k

)
+ Qi

w,k, (31a)

λi
k,l = Ti

λ,k(μi
kαti

k,l) + qi
λ,k, (31b)

f i
BB,k,l = Ti

f,k

(
λi

k,l((C
i
k)+Bi

f,k + (Di
f,k)−)HH

eq,kw
i
BB,k,l

)
+qi

f,k, (31c)

ti
k,l = Ti

t,k(ti−1
k,l + μi

k(1 − εk,lα
ti−1

k,l )) + qi
t,k. (31d)

Thus, the trainable parameters of the digital NN are Ω �⋃Lh

i=1{Bi
f,k,Di

f,k} ∪ �i
B ∪ μi

k, where Lh is the number of
layers of the digital NN. All the trainable parameters of the
HBDUN are denoted as ΥB � Ψ ∪ Ω. In addition, to avoid
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Fig. 5. Frame structure of the online mixed-timescale scheme.

gradient explosion and satisfy the power constraint, we nor-
malize Fi

BB,k by Ns at each layer to
√

Ns

‖FRF,kFi
BB,k‖F

Fi
BB,k.

It is interesting to investigate the relationship of the ana-
log beamformers in the proposed deep-unfolding algorithm
and the conventional SSCA-based algorithm. In SSCA, φ is

updated based on the gradient
∂r0((φ, M);H)

∂φ
|φ=φi while

Ψ is updated in the HBDUN based on the gradient

∂L1(ΥB;H)
∂Ψ

|Ψ=Ψi =
∂r0((Ψ,P1({Ψ,Ω};H));H)

∂Ψ
|Ψ=Ψi

=
∂r0((Ψ,P1({Ψi,Ω};H));H)

∂Ψ
|Ψ=Ψi

+ (
∂r0

∂P1
)
T ∂P1({Ψi,Ω};H)

∂Ψ
|Ψ=Ψi .

(32)

The gradient of the SSCA algorithm is the same as the first
term in (32) except that the hybrid beamformers are acquired
by the HBDUN. The second term is the gradient of the NN
which only exists in the deep-unfolding NN but not in the
SSCA algorithm. This term further ties the analog and digital
beamformers.

VI. EXTENSIONS OF THE MIXED-TIMESCALE

DEEP-UNFOLDING FRAMEWORK

In this section, we extend the framework proposed in
Section III for other scenarios. In particular, we propose a
mixed-timescale deep-unfolding framework where the analog
beamformers are optimized online. Besides, we propose an
end-to-end deep-learning based framework and employ it in
the FDD system, where channel quantization and feedback are
considered in the design.

A. Online Mixed-Timescale Deep-Unfolding Framework

1) Scenarios for Offline and Online Optimization: It is
appropriate for optimizing analog beamformers offline in
scenarios where CSI characteristics are known and a number
of channel samples can be collected before data transmission
stage. Besides, when channel statistics change, we need to
collect channel samples to fine-tune the deep-unfolding NN.
During the time it takes to collect channel samples, the analog
beamformers are not optimized. Thus, if it is difficult to collect
channel samples, the offline optimization is not appropriate.
If we do not know the CSI statistics or it is difficult to collect
a large number of channel samples, the analog beamformers

need to be updated online. In this way, we collect channel
samples and optimize analog beamformers at the same time
during data transmission. The performance gradually improves
as the number of collected samples increases and eventually
converges when there are enough channel samples.

2) Online Mixed-Timescale Scheme: In the online mixed-
timescale scheme, we optimize long-term analog beamformers
and short-term digital beamformers at different timescales.
The frame structure is shown in Fig. 5. In particular, at the
end of each frame, we obtain full CSI samples and optimize
analog beamformers using the long-term deep-unfolding NN
while at each time slot, we obtain equivalent CSI matrices
to optimize the digital beamformers using the short-term
deep-unfolding NN.

3) Structure of the Online Deep-Unfolding Framework:
We propose a mixed-timescale deep-unfolding framework for
online training, the structure of which is shown in Fig. 6.
At the end of each frame, we train the long-term deep-
unfolding NN, as shown in Fig. 6(a), to optimize the analog
beamformers. The long-term deep-unfolding NN consists of
long-term CEDUN for full CSI estimaiton and HBDUN for
hybrid beamforming. At each time slot, we train the short-
term deep-unfolding NN shown in Fig. 6(b) to optimize the
digital beamformers. The training process is similar to that in
Section III-A.

B. End-to-End Deep-Learning Framework for FDD Systems

1) Channel Estimation and Feedback for FDD Systems:
In FDD systems, there is no channel reciprocity. To acquire
downlink CSI, the BS needs to send pilots to the users. Then
the users estimate the CSI matrix H which is quantized as bits
and fed back to the BS. The BS recovers the CSI matrix for
hybrid beamforming based on the feedback bits. During the
data transmission in the mixed-timescale scheme, we fix the
analog beamformers and only estimate the equivalent CSI at
each time slot. Thus, we only need to feed the equivalent CSI
back to the BS.

2) Structure of the Deep-Learning Based Framework for
FDD Systems: In an end-to-end FDD system, the modules
of channel estimation and hybrid beamforming are required to
have strong generalization and interpretability, which can be
designed by deep-unfolding approaches. However, the module
of channel feedback, which is used to extract and compress
channel features and recover the channel, does not need to
have strong interpretability and generalization for signal-to-
noise ratio (SNR). Black-box NNs can effectively extract
channel features and reduce feedback overhead [28], which
are suitable for channel feedback design. Besides, it is difficult
to unfold the conventional algorithm [16], [50], [51] for chan-
nel quantization and feedback due to the non-differentiable
procedures. Thus, we propose an autoencoder based on the
CRNet in [52] which significantly compresses the channel
matrix and reduces the transmission overhead. The structure
of the feedback autoencoder is shown in Fig. 7, and consists
of several convolution layers and fully connected (FC) layers.
The dimension of the equivalent CSI matrix is much lower
than that of full CSI matrix and less information needs to be
fed back.
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Fig. 6. Structure of the proposed online deep-unfolding framework: (a) Long-term deep-unfolding NN; (b) short-term deep-unfolding NN.

Fig. 7. Architecture of the deep-unfolding framework for FDD systems.

We jointly design the feedback autoencoder and
deep-unfolding NNs in the proposed deep-learning framework.
Here the RLS induced deep-unfolding NN and the channel
quantization module are deployed at the users while the pilot
training NN, channel recovery module, and HBDUN are
deployed at the BS.

The performance of the autoencoder only depends on the
equivalent CSI statistics but not on the transmit power or the
channel noise. Thus, the autoencoder is not required to have
a strong generalization ability for SNR and can be trained
separately. The training process is thus as follows.

• Training Stage I: First we jointly train the
deep-unfolding NN except for the autoencoder according
to Section III.A.

• Training Stage II: Then we separately train the autoen-
coder for channel quantization and recovery. We fix the
analog beamformers and obtain the equivalent CSI matrix
Heq , which is the input of the autoencoder. Its output
is the recovered CSI matrix H̄eq . The loss function is
normalized mean square error (NMSE), which is defined
as follows:

NMSE =
‖ H̄eq − Heq ‖2

2

‖ Heq ‖2
2

. (33)

• Training Stage III: Finally, we load the well-trained
models into the deep-unfolding NN and the autoencoder
and cascade them as shown in Fig. 7. Then we jointly
train them with the sum rate as the loss function.

VII. COMPUTATIONAL COMPLEXITY AND

PERFORMANCE ANALYSIS

In this section, we first develop a black-box NN for the
JCEHB design for comparison. Then we analyze the computa-
tional complexity of the conventional algorithms, the proposed
deep-unfolding NN and the black-box NN. We further analyze
the convergence of the proposed deep-unfolding NN based
algorithm.

A. The Black-Box NNs for JCEHB Design

The structure of the black-box NN is shown in Fig. 8.
For the analog beamforming design, we propose the analog
black-box NN which sets the phase of analog beamformers as
trainable parameters similar to the proposed deep-unfolding
NN. For channel estimation and digital beamforming design,
we propose the channel estimation and digital black-box
NN, which adopt the DNN that consists of conventional FC
layers and batch normalization (BN) layers. ReLU is used
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Fig. 8. Architecture of the black-box NN.

as the activation function. Specifically, the full CSI sample
Hk passes through the analog black-box NN and analog
beamformers {FRF,k,WRF,k} are obtained. Then we obtain
the equivalent CSI matrix Heq,k which passes through the
channel estimation black-box NN that outputs the estimated
equivalent channel matrix Ĥeq,k. Finally, Ĥeq,k passes through
the digital black-box NN which outputs the digital beamform-
ers {FBB,k,WBB,k}. The input of the black-box NN is the
full CSI matrix and the outputs are hybrid beamformers. The
loss function of the black-box NN is the system sum rate.

B. Computational Complexity

We analyze the computational complexity of the conven-
tional RLS and SSCA algorithm, the proposed deep-unfolding
NN, and the black-box NN.

1) Conventional Algorithms: The computational complexity
of the RLS algorithm is

O(LrK(NRF
t )2), (34)

where Lr is the number of iterations. The computational
complexity of the SSCA algorithm is

O(Ls(KNs(NRF
t )3 + K2N2

s (NRF
t )2NRF

r

+ KNs(NRF
t )2NRF

r )), (35)

where Ls is the number of iterations.
2) Proposed Deep-Unfolding NN: The computational com-

plexity of the CEDUN is

O(LcK(NRF
t )2), (36)

where Lc (Lc � Lr) represents the number of layers of the
CEDUN. The computational complexity of the HBDUN is

O(Lh(KNs(NRF
t )2.37 + K2N2

s (NRF
t )2NRF

r

+ K Ns(NRF
t )2NRF

r )), (37)

where Lh (Lh � La) represents the number of layers of the
HBDUN. Compared to the traditional algorithms, the proposed
deep-unfolding NN has a lower computational complexity:

• The number of layers of the proposed deep-unfolding NN
is reduced, i.e., Lc � Lr, Lh � Ls.

• The HBDUN approximates the matrix inversion operation
with computational complexity O(n3) by matrix multi-
plication operation with lower computational complexity
O(n2.37).

3) Black-Box NN: The computational complexity of the
proposed black-box NN is

O(
Lb−1∑
l=1

KFc,lFc,l+1 +
Ld−1∑
l=1

KFh,lFh,l+1), (38)

where Lb and Ld denote the numbers for fully connected
layers of channel estimation and digital black-box NN, respec-
tively, and Fc,l and Fh,l denote the output sizes of the l-th
layer for channel estimation and hybrid beamforming black-
box NN, respectively.

C. Performance Analysis for the Deep-Unfolding NN

We show that the performance of one layer of the
deep-unfolding NN can approach that of several iterations of
the conventional iterative algorithm. We take the HBDUN as
an example; the CEDUN can be analyzed in the same way.

We consider the update of t as an example, where WBB and
FBB are treated as constants. As shown in Algorithm 2, in the
i-th iteration of the SCA algorithm, we have the following
mapping from ti

k,l to ti+2
k,l :

ti+2
k,l = ti

k,l+
2

log α
− 1

log α
(1 + α

1
log α (1−εi+1

k,l
α

ti
k,l ))εi

k,lα
ti

k,l .

(39)

Similarly, we have the following mapping from tj
k,l to tj+1

k,l

in the HBDUN:

tj+1
k,l = Tj

t,kt
j
k,l − Tj

t,kμj
kεj

k,lα
tj

k,l + qj
t,k. (40)

We need to prove that tj+1
k,l approaches ti+2

k,l , i.e., ‖tj+1
k,l −

ti+2
k,l ‖2 < ζ, for any ζ > 0.

For deterministic channels, we can demonstrate that there
exist trainable parameters Tj

t,k, μj
k and qj

t,k that satisfy
‖tj+1

k,l − ti+2
k,l ‖2 < ζ. Based on (39) and (40), we obtain the

following formulation:

Tj
t,k = 1, ∀k, (41a)

qj
t,k =

2
log α

, ∀k, (41b)

μj
k =

1
log α

(1 + α
1

log α (1−εi+1
k,l α

ti
k,l )), ∀k, (41c)

where εi+1
k,l can be obtained by WBB and FBB in the i-th

iteration according to (23). For channels that follow a certain
distribution, we need to show that EH{‖tj+1

k,l − ti+2
k,l ‖2} < δ.

By taking Tj
t,k = 1 and qj

t,k =
2

log α
, ∀k, we need to prove

that

EH{‖(μi
k−

1
log α

(1+α
1

log α (1−εi+1
k,l

α
ti
k,l )))εi

k,lα
ti

k,l‖}<ζ.

(42)

Based on CauchyC-Schwarz Inequality, we have

EH{(μi
k − 1

log α
(1 + α

1
log α (1−εi+1

k,l α
ti
k,l )))εi

k,lα
ti

k,l}

≤ EH{‖(μi
k − 1

log α
(1 + α

1
log α (1−εi+1

k,l α
ti
k,l )))‖}. (43)

Then we set

μi
k = EH{ 1

log α
(1 + α

1
log α (1−εi+1

k,l α
ti
k,l ))}. (44)

According to The Law of Large Numbers, (43) converges to
0 with a sufficiently large number of channel samples. Thus
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there exists the trainable parameter μj
k which satisfies (42) for

any ζ > 0, i.e., the performance of one layer of the proposed
deep-unfolding NN can approach that of two iterations of
the corresponding conventional iterative algorithm. Indeed,
we can extend that the performance generated by one layer
of the deep-unfolding NN with a more complex structure
can approach that of multiple iterations of the conventional
iterative algorithm.

VIII. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
deep-unfolding algorithm based on simulation results.

A. Simulation Setup

The simulation setting is given as follows. We set Nt = 64,
NRF

t = 16, Nr = 32, NRF
r = 4, K = 4, and Ns = 4. We set

the SNR as 10 dB and the number of the layers for CEDUN
and HBDUN are 16 and 5, respectively. The CSI matrix is
given by

H =

√
NtNr

NcNray

NC∑
i=1

NRay∑
l=1

αilar(φr
il)a

H
t (φt

il), (45)

where Nc and Nray are the number of clusters and propagation
rays, respectively, αil ∼ CN (0, σ2

α) is the complex gain, and
φr

il and φt
il denote the angle of arrival (AoA) and angle of

departure (AoD) for the l-th ray in the i-th cluster, respectively.
The ar(φr

il) and at(φt
il) denote the receive and transmit array

response vectors, respectively, and for a uniform linear array
with N antenna elements and angle φ, the response vector can
be expressed as

a(φ) =
1√
N

[
1, e−j2π d

λ sin(φ), · · · , e−j2π d
λ (N−1) sin(φ)

]T
,

(46)

where d and λ denote the distances between the adjacent
antennas and carrier wavelength, respectively. We set Nc =
4, Nray = 2, σ2

α = 0.1, φr
il ∼ U(−π/3, π/3) and φt

il ∼
U(−π/3, π/3). We use Python (version 3.6) as the program-
ming language and use the library of Pytorch (version 1.8.1)
to build the deep learning framework. Besides, the simulations
are carried out on a computer with Intel i5 CPU running at
2.8GHz and with 16GB RAM.

We provide the following benchmarks as comparison:
• Joint design NN: The proposed mixed-timescale deep-

unfolding NN which jointly trains the CEDUN and
HBDUN.

• Separate Design NN: The proposed mixed-timescale
deep-unfolding NN which separately trains the CEDUN
and HBDUN with the minimization of MSE and the max-
imization of sum rate as the loss function, respectively.

• HBDUN: The proposed deep-unfolding NN for the
design of hybrid beamforming with perfect CSI.

• RLS-SSCA: The cascaded RLS algorithm for the design
of channel estimation and the SSCA algorithm for the
hybrid beamforming design.

Fig. 9. Signaling bits versus the number of frames.

• RLS-ZF: The cascaded RLS algorithm for the design of
channel estimation and the zero-forcing (ZF) algorithm
for the hybrid beamforming design.

• Black-box NN: The proposed black-box NN for the
JCEHB design.

B. Pilot Overhead

We compare the signaling bits for the feedback of pilots
versus the number of frames for the single-timescale and
mixed-timescale schemes in Fig. 9. For the full CSI estimation,
the users need to transmit the pilots W̃RF,k ∈ CNr×NRF

r ,
F̃RF,k ∈ CNt×NRF

t , and X̃k ∈ CNRF
t ×L. The number of

feedback signaling bits for pilots is given by

Qf = q(NrN
RF
r + NtN

RF
t + NRF

t L), (47)

where q denotes the number of bits for quantifying each
element of pilot matrix. For the equivalent CSI estimation,
the users only need to feed back the pilot X̃eq,k ∈ CNRF

t ×L

and the number of feedback signaling bits is given by

Qeq = qNRF
t L. (48)

For the single-timescale scheme, we need to estimate full CSI
at each time slot. Thus, the number of feedback signaling bits
for the single-timescale scheme over each superframe is given
by

Qsingle = TfTsQf , (49)

where Tf is the number of frames in a superframe and Ts is
the number of time slots in each frame.

In the offline mixed-timescale scheme, we need to estimate
CSI statistics for offline training. We can estimate full CSI
and employ the expectation-maximum (EM) algorithm [53]
or maximum likelihood (ML) algorithm to estimate the distri-
bution function of channel parameters, e.g., AoAs, AoDs, and
complex gains. During the data transmission stage, we only
need to estimate the equivalent CSI at each time slot. Thus,
the pilot overhead of the offline mixed-timescale scheme over
each superframe is given by

Qoffline = TfTsQeq + NsampleQf , (50)
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Fig. 10. The sum rate versus the SNR.

where Nsample represents the number of estimated channel
samples for CSI statistics estimation.

In the online mixed-timescale scheme, we need to estimate
full CSI at the end of each frame and estimate equivalent
CSI at each time slot. Thus, the pilot overhead of the online
mixed-timescale scheme over each superframe is given by

Qonline = Tf (TsQeq + Qf ). (51)

In Fig. 9, we consider a superframe where channel statistics
do not change. The number of frames in a superframe depends
on the coherence time of the channel. When the CSI statistics
change fast, the number of frames in a superframe is small and
the CSI statistics need to be estimated frequently in the offline
scheme, which leads to high pilot overhead. In contrast, when
the CSI statistics change slow, the number of frames is large
and the pilot overhead can be reduced in the offline scheme.
Here, we assume that the superframe consists of 16 frames,
i.e., Tf = 16.

It can be observed that when the number of frames is
samll, e.g., the number of frames is 2, the pilot overhead
of offline mixed-timescale scheme is larger than that of the
other two schemes due to the estimation for CSI statistics.
As the number of frames increases, the pilot overhead of
three schemes increase. We can observe that when the number
of frames is large, the pilot overhead of the single-timescale
scheme is much larger than that of the mixed-timescale scheme
since we need to estimate the full CSI at each time slot in
the single-timescale scheme. In addition, the pilot overhead
of online and offline mixed-timescale is almost the same.
Thus, taking both of the offline training stage and the data
transmission stage into consideration, the pilot overhead of
the mixed-timescale schemes is much smaller than that of the
conventional single-timescale schemes.

C. System Sum Rate

Fig. 10 illustrates the sum rate of the proposed network
and the benchmarks for different values of SNR. Firstly it
can be seen that for all algorithms, the sum rate increases

Fig. 11. The sum rate versus the number of RF chains NRF
t .

gradually with SNR. The proposed separate deep-unfolding
NN can achieve comparable performance compared to the
conventional SSCA and RLS algorithms, which indicates the
effectiveness of our proposed deep-unfolding NN. The results
also illustrate the superiority of the joint design compared to
the separate NN. Besides, both of the proposed deep-unfolding
NNs significantly outperform the black-box NN. It is mainly
because the proposed deep-unfolding NNs are designed based
on the iterative optimization algorithms.

Fig. 11 indicates the sum rate of the proposed algorithm
and the benchmarks for different numbers of the RF chains
NRF

t . We can see that the sum rate achieved by different
algorithms increases with the number of RF chains. Moreover,
it is observed that the sum rate of the proposed joint design NN
exceeds that of the conventional iterative algorithms. Besides,
we can see that the performance gap between the joint design
NN and separate design NN becomes larger as NRF

t increases,
which illustrates the performance gain of the joint design NN.

Table I manifests the sum rate versus the number of users K .
We normalize the sum rate of NNs by the corresponding value
of the RLS-SSCA algorithm. We can see that when K is small,
e.g., K = 2, the proposed separate design NN can achieve
97.23% performance of the conventional iterative algorithms
and the joint design NN outperforms the conventional iterative
algorithms. It can be seen that the sum rates of deep-unfolding
NNs and black-box NNs both degrade with the increase of
K . It is mainly because as K increases, the problem turns
more complex and it is difficult for NNs to find a satisfactory
solution.

Table II presents the sum rate versus the number of training
samples. We normalize the results by the sum rate of the
RLS-SSCA algorithm. It is obvious that the samples required
by the deep-unfolding NN for training are much fewer than
that of the black-box NN. In reality, it is challenging to
obtain a large quantity of training samples. Thus, the proposed
deep-unfolding NN is more practical.

Table III and Table IV indicate the sum rate versus the
number of layers/iterations for deep-unfolding NN and con-
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TABLE I

THE SUM RATE VERSUS DIFFERENT NUMBERS OF K

TABLE II

THE SUM RATE VERSUS THE NUMBER OF TRAINING SAMPLES

TABLE III

THE SUM RATE VERSUS THE NUMBER OF HBDUN/SSCA LAYERS/ITERATIONS

TABLE IV

THE SUM RATE VERSUS THE NUMBER OF CEDUN/RLS LAYERS/ITERATIONS

Fig. 12. The sum rate versus the SNR for different numbers of phase shifter
quantization bits QRF .

ventional iterative algorithms. We normalize the results by
the sum rate which is achieved by the conventional algorithm
with 90 layers of the RLS algorithm and 70 layers of the
SSCA algorithm. We can see that the deep-unfolding NNs
achieve better performance than the conventional algorithms
with much less number of layers. It is observed that with
more layers, the sum rate achieved by the joint deep-unfolding
NN improves firstly and then fluctuates. It is mainly because
when there are few layers, e.g., 3 layers of the HBDUN,
the degree of freedom limits its learning capability. Thus,
the sum rate improves with the number of layers. When the
number of layers is large, e.g., 8 layers of the HBDUN,

Fig. 13. The sum rate versus the SNR for one/two-stage training and
benchmarks.

the numerical error caused by the matrix multiplication and
inversion becomes large. Then the learning capability of the
NN is limited and the sum rate fluctuates. Note that the
layers of the CEDUN is the length of the pilots and we can
observe that our proposed deep-unfolding NN can save the
pilot resources compared to the RLS algorithm. Considering
both the sum rate and training time, the optimal choice is 5
layers for the HBDUN and 16 layers for the CEDUN.

Table V shows the training and testing time of differ-
ent algorithms with different numbers of RF chains NRF

t

and users K . It is observed that the training time of the
deep-unfolding NN is much less than the black-box NNs,
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TABLE V

THE CPU RUNNING TIME OF THE ANALYZED ALGORITHMS

Fig. 14. The generalization ability: (a) The number of user K and SNR. (b) The length of pilot L and the complex gain of rays.

which indicates that the deep-unfolding NN converges faster.
It is because that the CEDUN and HBDUN employ the struc-
ture of the RLS and SSCA algorithms, respectively. Moreover,
the gap of CPU training time between the deep-unfolding NN
and black-box NN increases with NRF

t and K . Furthermore,
the testing time of the black-box NN and the joint design NN
is much less than that of the RLS-SSCA algorithm, which
becomes more obvious as NRF

t and K increase.
We investigate the impact of finite resolution phase shifters

on the deep-unfolding NN. Specifically, we considered a
uniform quantization scheme for the analog phase shifters.
Fig. 12 presents the sum rate versus the SNR for different
numbers of phase shifter quantization bits QRF . It can be
seen that the sum rate of the proposed deep-unfolding NN
improves with QRF as expected. In particular, the performance
with QRF = 8 bits can approach the performance with infinite
resolution phase shifters.

Fig. 13 indicates the sum rate versus the SNR of the
one/two-stage training and benchmarks. The curve “Two-
stage Training” shows the sum rate of the proposed two-stage
training while the curve “One-stage Training” shows that of
one-stage training where we jointly train the whole network
shown in Fig.3 (b) in one stage. We see that the performance
of two-stage training is better than that of one-stage training
as expected, which illustrates the advantage of the proposed
two-stage training method.

Fig. 14(a) illustrates the generalization ability for different
numbers of K and SNR. We train the joint deep-unfolding
NN in the case of K = 6 and SNR = 10 dB and test
it under different values of K and SNR, such as K = 4
and SNR = 5 dB. The performance of “Joint Design NN”
is obtained when the testing scenario is the same as the

training scenario while the performance of “Joint Design NN
(mismatch)” is obtained when there is a mismatch between
testing scenario and training scenario. It can be observed
that there is only a tiny performance gap between the two
curves, which demonstrates that the deep-unfolding NN has
satisfactory generalization ability for different numbers of K
and SNR. It is also observed that the performance gap becomes
smaller when K increases.

Fig. 14(b) illustrates the generalization ability for the length
of pilot L and the complex channel gain. We train the joint
deep-unfolding NN in the case of L = 26 and σα = 0.1 and test
it under different values of L and σα, such as L = 22 and σα =
0.08. Again, there is only a tiny performance gap between the
two curves, which demonstrates that the deep-unfolding NN
has satisfactory generalization ability for different values of L
and σα. The performance gap becomes larger with decreasing
L since the number of layers of the CEDUN decreases with
L and the channel estimation error becomes larger.

We show the generalization ability of the deep-unfolding
NN for the channel with different AoAs/AoDs and clus-
ters/rays in Fig. 15. We train the deep-unfolding NN in the
scenario where Nc = 4, Nray = 2, φr

il ∼ U(−π/3, π/3)
and φt

il ∼ U(−π/3, π/3). The performance of “Joint Design
NN (no mismatch)” is obtained when the testing scenario is
the same as the training scenario. The performance of “Joint
Design NN (mismatch)” is obtained when Nc = 3, Nray =
3, φr

il ∼ U(−π/2, π/2) and φt
il ∼ U(−π/2, π/2) in the testing

scenario, which is different from that of training scenario.
It can be seen that there is a small gap between the perfor-
mance of “Joint Design NN (no mismatch)” and “Joint Design
NN (mismatch)”, which demonstrates that the deep-unfolding
NN achieves satisfactory generalization ability for different
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Fig. 15. The generalization ability for the channel with different AoAs/AoDs
and clusters/rays.

Fig. 16. The convergence performance when the CSI statistics change.

AoAs/AoDs and numbers of clusters/rays. Furthermore,
we employ transfer learning to fine-tune the deep-unfolding
NN when the channel statistics change. The “Transfer learn-
ing” shows the performance of the deep-unfolding NN after
transfer learning and is very close to that of “Joint Design NN
(no mismatch)”, which indicates the deep-unfolding NN can
adapt to the change of CSI statistics after transfer learning.

Fig. 16 presents the convergence performance of the pro-
posed deep-unfolding NN. It can be seen that when the
channel statistics change, the sum rate decreases first, and then
increases within several numbers of training batches, which
shows that the proposed deep-unfolding NN combined with
the method of transfer learning can track the channel variation
rapidly. If the channel statistics change fast, we can slightly
update the analog beamformers to track the variation.

Fig. 17 shows the sum rate of online and offline training ver-
sus the number of frames. We collect 50 channel samples each
frame to train the deep-unfolding NN in the online training.
It can be seen that the sum rate of offline training is stable as
the number of frames increases because the deep-unfolding

Fig. 17. The sum rate of online and offline optimization versus the number
of frames.

Fig. 18. The sum rate of online optimization versus the SNR.

NN is well-trained before data transmission. The sum rate
of online optimization gradually improves and eventually
converges as the number of frames increases because the
deep-unfolding NN is optimized based on the collected chan-
nel samples. The converge performance of online training is
close to that of offline training.

Fig. 18 illustrates the sum rate of the proposed
deep-unfolding NN and the benchmarks for different val-
ues of SNR. The analog beamformers are optimized online
in these algorithms. It is observed that the sum rate
increases with SNR for all the algorithms. The performance
of the deep-unfolding NN is prominently better than that
of the black-box NN. Besides, the proposed joint design
deep-unfolding NN achieves comparable performance of the
RLS and SSCA algorithm, which indicates the effectiveness
of the proposed framework of online optimization.

Fig. 19 illustrates the sum rate versus different numbers of
feedback bits in the FDD system. For conventional algorithms,
the optimal Lloyd-Max algorithm is employed to quantize the
channel parameters {φr

il, φ
t
il,�{αil},�{αil}} and the phase
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Fig. 19. The sum rate versus different numbers of feedback bits.

of analog beamformers {φW , φF }. The performance of “Sep-
arate Design NN (FDD)” is obtained where the deep-unfolding
NNs and the feedback autoencoder are trained separately.
The performance of “Joint Design NN (FDD)” is obtained
where the deep-unfolding NNs and the feedback autoencoder
are jointly trained according to the aforementioned training
process. It can be observed that the proposed deep-learning NN
outperforms the conventional algorithm with the same number
of feedback bits. The joint design NN with 48 feedback bits
achieves the same sum rate with the SSCA-RLS algorithm
with 112 feedback bits, which verifies that the proposed
deep-learning NN can significantly reduce the number of feed-
back bits. The joint design NN achieves better performance
than the separate design NN, which indicates the effectiveness
of our end-to-end joint design deep-learning framework.

IX. CONCLUSION

In this work, a mixed-timescale deep-unfolding based
JCEHB framework has been proposed for hybrid mas-
sive MIMO systems. We developed a RLS algorithm
induced deep-unfolding NN and an SSCA algorithm induced
deep-unfolding NN for channel estimation and hybrid beam-
forming, respectively. Specifically, we introduced some train-
able parameters and non-linear operations to replace the high
complexity operations and increase the convergence speed.
In addition, we propose a mixed-timescale deep-unfolding NN
where analog beamformers are optimized online, and extend
the framework to the FDD systems where channel feedback
is considered. Furthermore, we analyzed the computational
complexity and performance of the proposed deep-unfolding
algorithm. The simulation results showed that the proposed
deep-unfolding algorithm can outperform the conventional
iterative algorithms. For the future study, it is worth generating
our deep-unfolding framework to solve more complex wireless
systems around the research hot spots, such as multi-cell
MIMO, drones and intelligent reflecting surface systems.
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