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Abstract—Maneuvering target tracking will be an important
service of future wireless networks to assist innovative appli-
cations such as intelligent transportation. However, tracking
maneuvering targets by cellular networks faces many challenges.
For example, the dense network and high-speed targets make
the selection of the sensing nodes (SNs), e.g., base stations,
and the associated power allocation very difficult, given the
stringent latency requirement of sensing applications. Existing
methods have demonstrated engaging tracking performance,
but with very high computational complexity. In this paper,
we propose a model-driven deep learning approach for SN
selection to meet the latency requirement. To this end, we first
propose an iterative SN selection method by jointly exploiting the
majorization-minimization (MM) framework and the alternating
direction method of multipliers (ADMM). Then, we unfold
the iterative algorithm as a deep neural network (DNN) and
prove its convergence. The proposed model-driven method has
a low computational complexity, because the number of layers
is less than the number of iterations required by the original
algorithm, and each layer only involves simple matrix-vector
additions/multiplications. Finally, we propose an efficient power
allocation method based on fixed point (FP) water filling (WF)
and solve the joint SN selection and power allocation problem
under the alternative optimization framework. Simulation results
show that the proposed method achieves better performance than
the conventional optimization-based methods with much lower
computational complexity.

Index Terms—Maneuvering target tracking, perceptive mobile
network, model-driven deep learning, sensing node selection,
power allocation.

I. INTRODUCTION

Innovative applications such as intelligent transportation
systems require high-precision sensing capabilities, which
are unavailable from current cellular networks. To this end,
the recently proposed integrated sensing and communication
(ISAC) paradigm offers a promising way to share spectrum,
hardware, and software between sensing and communication
[ 1[I, [2]]. Perceptive mobile network (PMN) was proposed as a
special type of ISAC system that adds high-precision sensing
capability to the cellular networks [3]]-[6]]. There are many
favorable properties of cellular networks that can facilitate
sensing. For instance, the large number of sensing nodes
(SNs) in PMNs enables collaborative sensing, where multiple
perspectives from different SN are exploited to sense the same
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target. The SNs can be base station (BS) [1f], road side units
[2]], remote radio unit [3[], or target monitoring terminal [4].

However, tracking maneuvering targets by PMNs faces
many challenges. For example, due to the dense cellular
network, selecting a proper set of SNs to track a moving
target can be very difficult, because the handover from one
group of SNs to another faces very stringent latency require-
ments. There have been engaging results on SN selection
and power allocation for tracking maneuvering targets [7]—
[15]. The authors of [7] proposed two SN selection methods
in wireless networks to minimize the posterior Cramér-Rao
lower bound (PCRLB) and maximize the mutual information
between the target location and the measurements of the
selected SN, respectively. In [8]], a cooperative game theoretic
approach was utilized to allocate power for tracking targets in
a radar network. The authors of [9]] proposed two strategies
for resource allocation with given SNs, where one maximizes
the tracking accuracy with limited power budgets, and the
other minimizes the power consumption with required tracking
performance.

To achieve better performance, the joint SN selection and
power allocation schemes were also considered [14], [15]. In
[14], a distributed multi-target tracking method was proposed
for the networked multiple-input multiple-output (MIMO)
radar system, where an alternative optimization (AQO)-based
method was utilized to solve the bi-variable optimization
problem. The boolean constraint on the SN selection vector is
one of the most critical challenges for the joint SN selection
and power allocation problem. To handle this issue, a typical
method is to relax the boolean constraint to allow continuous
and sparse variables [15]—[17]. In [14], [15], the relaxed
SN selection was formulated as a semi-definite programming
(SDP) problem and solved by the CVX toolbox [18]. Un-
fortunately, the complexity of the existing methods increases
exponentially with the number of SNs, which may violate the
stringent latency requirement of sensing applications when a
large number of SNs exist.

To this end, model-driven deep learning (DL) offers a
promising solution. By unfolding an iterative algorithm as
a neural network where each iteration is implemented by
one layer with learnable parameters, model-driven methods
have the potential to offer better performance with reduced
computational complexity. Some research efforts have been
made to utilize model-driven deep neural networks (DNN5s)
to find sparse solutions for better performance and lower
computational costs. In [19], an unfolded vector-approximate



message passing network with random initialization was pro-
posed to learn a denoiser identical to the statistically matched
one. The authors of [20] unfolded the iterative algorithm,
used to solve a problem with [, sparse regularization, to
be a feed-forward neural network for faster inference and
better scalability. In [21], a generalized DNN was proposed to
learn a sparse solution by unfolding the alternating direction
method of multipliers (ADMM) with better accuracy and lower
computational cost. The authors of [22] designed an ADMM-
Net for interference removal in radar imaging, which exhib-
ited much lower imaging error and computational cost than
ADMM and CVX. However, the inverse of high-dimensional
matrices are involved in the existing ADMM-based unfolding
methods, which causes high storage and computational cost.

In this paper, to meet the stringent latency requirement of

sensing applications, we propose a model-driven method for
SN selection to track multiple maneuvering targets. For that
purpose, we first derive an iterative algorithm for SN selection,
leveraging the majorization-minimization (MM) framework
and ADMM. Then, the MM-ADMM algorithm is unfolded
into a DNN where the technical challenges lie in the large
number of learnable parameters and the uncertain convergence
property. To this end, we design a new model-driven DNN
with an additional module to exploit the first- and second-
order momentum, and refer to it as deep alternating net-
work (DAN), which has fewer learnable parameters than the
directly-unfolded MM-ADMM. The convergence proof of the
proposed DAN is also given. The computational complexity
of DAN is low, because the number of layers is less than the
number of iterations required by the original algorithm, and
each layer of DAN only involves simple matrix-vector addi-
tions/multiplications without high-dimensional matrix inverse.
Finally, we propose a fixed-point (FP) water-filling (WF)-
based method for power allocation, which is derived based
on the Lagrange multiplier method. The joint SN selection
and power allocation problem is solved by combining the pro-
posed DAN and FP-WF algorithms under the AO framework.
Experiment results show that the proposed method can achieve
better performance than the optimization-based methods with
remarkably lower computational costs.

The contributions of this paper are summarized as follows:

1) We propose an iterative method based on MM and
ADMM for SN selection. In particular, we exploit
the MM approach to handle the non-convexity of the
penalized cost functions. For each iteration of ADMM,
we derive explicit expressions for the solution to the
constrained optimization problem by exploiting the KKT
conditions, which facilitate the development of the
model-driven method.

2) We design a new model-driven DNN, named DAN, by
adding an additional module to the directly-unfolded
MM-ADMM method, which exploits the momentum for
accelerating the convergence. Moreover, we provide the
convergence proof for DAN, which achieves a similar
SN selection performance as the exhaustive searching
method with significantly lower computational cost.

3) Inspired by the classic WF-based power allocation
strategies, we propose an iterative FP-WF power allo-
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Fig. 1. Illustration of the system.

cation method. Specifically, in each water-filling step,
the water level is obtained by solving an FP equa-
tion. This approach not only reduces the computational
complexity, but also provides an interesting physical
insight: the power allocation strategy depends on the
ratio between the Fisher information of the predictions
and the measurements.
The remainder of this paper is organized as follows. Section
IT introduces the system model and formulates the problem.
Section III derives the joint SN selection and power alloca-
tion algorithm. Section IV provides the simulation results to
validate the advantage of the proposed model-driven method.
Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In Fig. [1, we show a PMN consisting of one BS serving
as the sensing signal transmitter and N SNs serving as the
receivers for the echoes, which can be BSs or other types
of SNs [[I]-[4]. In each tracking frame, the BS will transmit
sensing signals to the predicted positions of multiple targets,
and the selected SNs will collaboratively estimate the location
and velocity of the targets (motion state). The estimation
results will be utilized to predict the motion state in the next
tracking fram In this paper, the SN selection and power
allocation will be formulated as an optimization problem to
minimize the PCRLB for the estimation error of the target
motion state. To this end, we first introduce the target motion
model and the signal model, which are the foundation for
deriving the PCRLB.

A. Target Motion Model

The target motion model describes the motion behavior of
the targets and affects the Fisher information of the prediction.
Assume that the target motion follows a near constant velocity
model and the transition matrix G is given by [[11]-[13]], [[15]]
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IThe tracked targets are initialized and the number of the targets is known in
advance. This assumption can be realized by communication or some available
detection approaches, e.g., radio access technology [23[], PDA [24] or multi-
frame detection [25] before target tracking. The targets are widely separated
and each of them moves independently in the monitoring area [13]].



where I» denotes the 2 x 2 identity matrix, ® represents the
Kronecker product, and AT denotes the time between two
adjacent tracking frames. In the kth tracking frame, there
are () point-like targets, where the gth target is located at
rgk) = ( gk%,rg(h)) with a velocity v( ) = (ui(},vé@) The

= Gx! D4, (k 1)7
where x( = [ra.q, Va.q, "ya> Uy, 4]T includes the parameters
to be estimated. Here, z, denotes the state noise, which is
assumed to be a zero-mean Gaussian vector with covariance
matrix [11], [12]]

target motlon state is updated by x(k)
(k) (k) (k) (k)T

L(AT)?
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where ¢ is the intensity of the process noise.

B. Signal Model

In the kth tracking frame, the BS will transmit the sensing
signal s(*)(t) to the targets, and the echoes will be captured by
the selected SNs for sensing purposes. The location of the BS
and the nth SN is given by rpg and r,, respectively. Given
the motion state, we can determine the measurements, i.e.,
the angle of arrival (AOA), the time delay, and the Doppler
frequency of the g¢-th target with respect to the n-th SN as

T/.(k)
H(k) = arccos W, (3)
[rg” — o
1
) = = (e —x® |+ eps —rl), @
k k
® _ Va (ré ) _ r,) VqT(I‘é ) _ rgps)
Hg,n = + (k) ) (5)
Mg = ol Al = rps

where e,, represents the unit vector parallel to the line formed
by all antennas of the uniform linear array, c is the speed of
light, A is the wavelength, and || - || denotes the I3 norm.

Define the power allocation vector p(*) = [pgk) ,pg)]

RE*1 where pgk) denotes the power allocated to the gth target.
The baseband echo of the gth target received by the nth SN
is given by

k) ok
ygk%() ( 5(k) I2hg. tb(k) H S(k)(t_Tékrz) (6)
+ n$3“> (1),
where n;’f)( t) denotes the complex additive white Gaussian

noise with zero mean and variance o2. The transmit and
receive steering vectors are given by b,(f,)I = b(eg’;{) and
agp = a(wék)) respectively, where wé represents the angle
of departure (AOD) of the qth target from the BS. ﬁ(k)
represents the complex gain of the BS-target-SN (qth target
and nth SN) path, which accounts for the array gain, the
propagation loss and the target radar cross section (RCS) [26].
Following [[11[]-[[15]], the local estimation error is modeled
as a zero-mean Gaussian vector with the covariance matrix

21(1]?7)7( = dlag [Uz(k) 5 O'i(k) , UQ(k) , (7)

where 09“‘)’ o? e and o ) denote the CRLBs for the esti-
mation of the dlrectlon range and Doppler shift, respectively.

The local estimation error affects the Fisher information of
measurement, which will be utilized to derive the PCRLB in
the next section.

C. Posterior Cramér-Rao Lower Bound

Based on the above-mentioned target motion model and
signal model, we will derive the PCRLB, which gives the
lower bound of the estimation error for the target motion
state. Define U®) = [ul® ... ,ug)] € RN8s*Q a5 the SN
selection matrix, whose (n, ¢)th entry uék% is 1 if the gth target
is associated with the nth SN. The Fisher information matrix
(FIM) for the gth target is given by [27]]

k
IP (pE u) =30 + 3% 8)
where J )q and J, (k ) denote the prior and data information
matrix, respectlvely In particular, the prior information matrix
is given by

Ty = (Q+G(J§k‘1’>‘1GH)_1. ©)

The data information matrix J (kz is given by

Zu(k) H(k) 2((11? ) 1H((1k7)“ (10)
n=1
where “
Ign
*) _
qu 8X£1k) xfzk)—A(k\k—l), (11)

w1th ( ) denotlng the derivative of the measurements g(k)

[lef,z(x(k)), é,k)( (k )) ug,)( (k))] with respect to the mo-
tion state qu The predicted motion state of the qth target
in the kth frame is updated by xéklk D= chgk*l), where
A( b represents the estimated motion state of the gth target in
the (k — 1)th frame. Note that Eglf% is inversely proportional
to the SNR at the SN [[11]-[15]. Thus, we can rewrite the

measurement covariance in (7)) as
k k)y—
= = o)

=

where Eé% contains the part of E(,)L that is independent

of pi¥). Then, we have qu_ (k>zn u ul) M)

q,n’
M) = HE)T(EE)TH). Note that Mg’f,i_ p™)

denotes the measurement information for the gth target at the
nth SN. The inverse of the derived FIM yields the PCRLB
matrix, i.e., [11]-[15]

Cy(p), ulh) = (J<k>(p<k> ulk >)>’
The diagonal elements of C (p,(zk), ug )) provide a lower
bound on the variances of the estimation error of an unbiased
estimator for the target motion state, i.e.,

E (& = x()(&E = %)) = €, (0, ul),  (14)

where A > B indicates A — B is a positive-semidefinite ma-
trix. Some functions of the diagonal elements of the PCRLB
matrix, e.g., the trace [[12]] and the determinant [28]], [29]], have
been used as the performance metric for target sensing and
tracking.

12)

where

13)



D. Problem Formulation

We want to minimize the PCRLB through SN selection and
power allocation. In the kth frame, the problem is modeled as

Q
Z log det C (pgk)7 ))

p<k> Uk

Zp(k < Pr, (15a)
q=1

P > P, (15b)
1"ul® < Npax, = 1,2, ,Q, (15¢)
U® e {0,1}V*Q, (15d)

where constraint (I5a) limits the total transmit power. Con-
straint (I5b) indicates the minimum power allocated to each
target, constraint limits the maximum number of SNs
to track one target [30], and (I5d) gives the binary constraint
on ug,k). The main reasons to select log det(C,) as the perfor-
mance metric include: 1) the determinant of C, is proportional
to the volume of the minimum achievable covariance ellipsoid,
which is widely used as an important metric for parameter
estimation [28]], [29]; and 2) if the determinant is directly used,
the original problem is not convex, but the monotonic
logarithmic transformations can render this problem convex.

III. MODEL-DRIVEN SENSING NODE SELECTION AND
POWER ALLOCATION SCHEME

Note that the problem in has two variables. To handle
this issue, we propose to update the variables alternatively
based on the AO theory. With a given feasible starting point
{ (k.0) {u(k’o)}Qzl}, we iteratively perform the following
two operations:

1) updating {u

(’”H) —argmmlogdetc (pq (k.j)

7”1)}@ , with fixed p*7) via

u),

(16)
ug’
2) updating p(*7+1) with fixed {uqk’jJrl)}qQ:1 via
p*7 Y = arg r;l(gl;logdet Cy(py? ugY), a7

which decouple the SN selection and power allocation prob-
lem.

In the following, we will first derive an iterative method
for SN selection by jointly exploiting the MM framework and
ADMM. To further reduce the computational complexity, we
will develop a model-driven approach to solve (I6). Finally,
we will propose an FP-based WF method to solve (I7), which
has much lower complexity but offers comparable performance
as the traditional CVX-based method.

A. MM-ADMM based Sensing Node Selection
Given p(k’j ), the problem in can be formulated as
; (k)
n Fuled)
ta (18)
s.t. lTugk) < Nmax, uflk) e {0,1}Vx1,

where }'u(u,(lk)) = logdet C (uq |p(k ) ). In order to enforce
a binary solution and simplify the problem, we introduce a [
pseudo-norm penalty to the objective function and relax the
binary constraint [31]]. Then, the problem in @I) is relaxed as

min ]:u(ul(]k)) + pq ||u((1k) llo
g (19)

s.t. 1Tul(zk) < Npax, 0 < ugk) <1,

where || - ||o denotes the I pseudo-norm. In general, a larger
pq leads to a sparser uqk. Due to the non-convex, non-
continuous, and combinatorial nature of the [y pseudo-norm,
the problem is NP-hard. To simplify the notation, we omit
the index g hereafter unless doing so creates confusion.

Inspired by [32], we approximate the [y pseudo-norm by
a function P,(u®) = SN (1 — ¢=7”), where v is a
sufficiently large constant. Pv(u(k)) is utilized due to several
favorable properties: 1) it is asymptotically equivalent to
[ o, fe. limyoo Py(u®) = 30, (1 — d(us”)) =
[u®]|o; 2) it is continuous, concave, and non-decreasing in
the feasible set; and 3) it is differentiable and its gradient is
easy to obtain.

1) MM framework for solving (I9): The problem in (I9)
can be approximated by

~ (k) (k)
min Fu(u'™) + pPy(u'™)

where S, = {u®1Tu® = N, .., 0 < u®) < 1}. Though
20

(20)

P, (u®) is continuous w.r.t. u*), the problem in (20) is still
hard to solve, due to the complicated form of F,(u™®) w.r.t.
ul®). To handle this difficulty, we propose to utilize the MM
framework [33]], based on which (20) can be solved in an
iterative process. At each iteration, the MM framework updates
the optimization variable by minimizing a tight upperbound of
the function, which is known as the surrogate function. Then,
The next question is how to construct a surrogate function for
the objective function in

Since P, (ut®)) is differentiable and concave with respect
to ul®), it is upperbounded by its first-order Taylor expansion,
ie.,

P, () < P, (ul
&P, () +

Du®h)

(d(k nHT (u(k) —u D

0,

where u®Y) denotes the optimized result at the [th iteration,

k.l k) (kD) oy (BSD)
d(v ) ylemrmT e v e YuN ]T represents the
(k,l

gradient of P, (u'®)), and u;,” ) denotes the nth entry of u(®t,
An appropriate upperbound of fu(u(k)) can be obtained by

G1(u®u*Dy 2 7 (u®D) 4 dT (D) (u® — ukb)
_ u(k,l))TT(k,l)(u(k) _ u(’ml))7 (22)

where dfY = d,(u*?) and d,(u®)
denotes the gradient of JF,(u®) wrt.
nth entry is given by d,,(ul®)

—tr ((J(k) (u® |p(k’j)))_1M5Lk)> . The positive-definite ma-
trix TV should satisfy

TED = H, (D), (23)



OF, (u®

where  H,(ut®)) BB T

denotes the Hes-

sian matrix of F,(u®) wrt. u®, whose (m,n)th
u®
entry is given by H,,.(u®) = % =

tr M (I®) (u®) |plka)y) M. Then, at the (I 4+ 1)th
iteration, the selection vector can be updated by solving the
problem

min  G(u®),

ubes, (24)
where the surrogate function G(u®)) is defined by
G(n) = Gy (¥ ut0) 4 pP, (P D). 25)

The problem in (24) is convex and can be solved by using
the general CVX toolbox based on the interior point method
[18]]. However, the computational complexity of CVX is about
O(N?35), which is not suitable for PMNs with a large N.

2) ADMM:-based method for solving (24): To solve (24)
efficiently, we exploit the ADMM, which splits the problem
into two distinct parts and handles them separately [34]. Since
(25) is Lipschitz continuous, the convergence of the ADMM
can be guaranteed. By introducing an auxiliary variable v(*),
(I9) is equivalent to

min Gy (u®u®D) 4 pP (v kD)
u(k) v(k) (26)
st. 1Tu® = Nmax, 0 < v(#) <1, u® = V(k),

which leads to the augmented Lagrangian function [34]
La® v#) 0y = G (u® [u®D) 4+ p’ﬁw(v(’“)|u(k’l))
+ %Hu(k) —v® @2 27
where z(*) is the dual variable and Pa,l 1S a penalty parameter

at the [th iteration. Then, at the mth iteration, the optimization
variables are updated as

w )y = argmin L™, v 200), 280)
s.t. 1Tu®) = = Numax,

fo;r)l = argmln E( (k. ) ,vF) gDy, (28Db)
s.t.0 < v< ) <1,

2D = g0 gD LD, (28¢)

where u, S,If 4 and zgﬁ’l) denote u, v and z at the mth

ADMM iteration, respectively.
a) Update ugji)l via (28a): By utilizing the Lagrange mul-
tiplier method, (28a) can be reformulated as an unconstrained
problem, whose Lagrange function is given by Lu(u(k)) =
L’(u(k),vgf’l) (k. l)) + 1 (Nmax — 1Tu®), where v is a
Lagrange multiplier. The closed-form solution to (28a) is
ukd) — @-1(@kd —

u

(K1)

), (29)

where &, = T*0) 4 p, T and d(k ) _ — gD .

s
zg:’l)). By substituting into the constraint of l) we
have

L Vi = 1Tu®D 4 179, 1aY  17e; tal!
: 17,1 179, 1
(30)

which follows from the fact that Npax = 1Tu®Y . Therefore,
the closed-form solution to (28a)) is given by

Tg—14FkD
-1 (dﬂi’” — wldm:[) . (3D

17,1

One remaining problem is how to determine ®;, which is
equivalent to choosing a proper T(%!)  Indeed, it is not
difficult to find a matrix T®*) that satisfies , such as
T®D = H, (u®) + €I, where € is a positive constant to
make T(%! positive_definite. However, the matrix inversion
of ®; is involved in 1) when updating ugjﬁl which may be
computationally complex due to the large number of SNs. To
tackle this issue, T(*:!) is desired to be a diagonal matrix. One
feasible solution is to make T(*:Y) proportional to the identity
matrix, i.e., [35]]

ugff_)l —ul) &

T*D = ofFh1, (32)

where C;k’l) is a positive constant to satisfy . For exam-
ple, one feasible choice is C;k’l) = Amax (Hp(u(k’l))) and
Amax(X) denotes the principle eigenvalue of X.

b) Update vf,’fl)l via ([28b): Since is convex, the
closed-form solution vfﬁﬁ to can be obtained based
on the KKT conditions, whose nth entry is given by

v =130, ifd, <0, (33)
1, ifv, >1,
where v,, denotes the nth entry of v, given by
v = —idﬁf’l) + ugﬁ_l + zfﬁ). (34)

Remark 1: The cost function will not increase over the
ADMM iteration process given in (28). According to the
monotone bounded theorem [36], the iteration will converge
to a set of statlonary points in the feasible set, denoted by

ugf;, Ef)) , and ZE ; The selection vector u(ki+1) ig updated

by !

Remark 2: The convergence and performance of de-
pend on the selection of T, If T®*:D is selected as the
Hessian matrix which is usually not diagonal, (31) is similar
to the Newton’s descent update with quadratic convergence,
but high computational complexity. In , T(*D is selected
as a diagonal matrix, i.e., T*®D = ¢ "Z)I, and thus the
update in (3I) moves in the opposite direction of the gradient,
which resembles the gradient descent method. With a diagonal
T(%1, the computational cost at each ADMM iteration is
about O(N?), which is much lower than that of CVX. In
general, a larger Cj(wk"l) is desired to satisfy . However, in
this case, the constant C7."’ + p,,; is inversely proportional
to the step size. An aggressive choice of Cj(qk’l) may require
more iterations to converge. Meanwhile, the choice of T k.0
suggested in (32) may not be optimal, and a better one
within a larger feasible set, i.e., diagonal but not necessarily
proportional to the identity matrix, is desired. To this end, we
propose to unfold the iterative optimization method as a DNN
and tune T*:) with deep learning.
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Fig. 2. Illustration of DAN.

One feasible way is to treat the diagonal elements of T

as the learnable parameters. In this case, the number of
learnable parameters is IV at each layer, which will be large
due to the dense SNs. Moreover, the trained T (*:!) may break
the convergence condition (23). These issues motivate us to
consider another design with three desirable properties: 1) the
number of learnable parameters is moderate, 2) the conver-
gence property is guaranteed, and 3) the proposed method will
be restricted to first-order methods that only require gradients,
since higher-order optimization methods may cost a large
amount of computing and storage resource.

B. Deep-Alternative-Network: DNN Based Sensing Node Se-
lection

To derive a DNN with the above-mentioned properties,
we unfold the MM-ADMM-based SN selection method and
introduce an additional module. The new DNN is called DAN.
As shown in Fig. [2| DAN consists of L cascaded layers with
some learnable parameters, where the (I 4+ 1)th layer takes
the first- and second-order momentum m¢~1 and v(—1 | the
gradients dq(f’l) and dq()k’l), and the output from the previous
layer u* as inputs, and outputs an update ul*!+1) In
particular, the (I + 1)th layer updates u (k l) (k D , and z(]C 2
alternatively, as shown by the blue, green, and orange blocks
in Fig. , respectively. The update of ugsi)l is of the same
form as (31). But we make the following two modifications,
as shown by the red block in Fig. 2}

1) d is constructed as
A\ =1y = pai(viFD = 2(hD), (35)
where
iy = By + (1 - Br)d. (36)
Here, $1, = Bint where 1 € (0,1) and 4 (0,1)

denotes a learnable hyper-parameters to avoid the case that
the momentum diverges severely.

When B;; = 0, the first-order momentum 1n; reduces to
the gradient dgk’l). In this paper, we define 31, = 17} with
B£1 € (0,1) and 1, € (0,1). The momentum terms caused
by non-zero /31, may improve the performance significantly,
especially in deep learning applications.

2) ®; is constructed as

@ =TH®D 4 p, 1, (37)

ALY

ay ’

V101, n ]|

1,1

where T*:1) £ diag

}) ,and pg; =

panl with n’, € (0,1). Here, ©;; denotes the ith entry of the
second-order momentum v;, which is defined by

Vi = Bovi_1 + (1= Bo)(dFD)?,

where 3, denotes a constant to control the second-order
momentum and oy ; = 4%

(38)

i with a1 € [y, f | representing
a set of learnable parameters to control the update step size.
Here, the positive constants a; and «] are the lower and
upper bounds of &; ;. We refer to the diagonal element of

‘I’fl as the learning rate of this algorithm, whose ¢th entry is

given by (bl_’il = (\/|ﬁl,i|/a1,l + pa,l> . Learning rate decay
is critical for training neural networks. In the early training
stage, a large learning rate can accelerate training and help
the network escape spurious local minima. By the end of the
iteration, a small learning rate helps the network converge to
a local minimum and avoid oscillation. Therefore, we desire
a set of p,; and «ay; such that, for any [ € {2,---,L} and
i€ {l,---,N}, we have ¢, < ¢, ;.

The updates are inspired b& the adapiive momentum (Adam)
method [37], i.e., an algorithm for first-order gradient-based
optimization. Adam is chosen due to its favorable properties:
1) simple implementation, computationally efficient, and low
memory requirements; 2) adaptability to large-scale problems;
and 3) adaptation to sparse gradients [37]. Based on the
adaptive estimates of first- and second-order momentum, we
propose a novel construction of dg,]f’l) and T*D as well
as its resultant ®;, which can meet the constraint in (15c]
and the diagonal requirement, simultaneously. But different
from ADAM, the update has additional terms resulting from
the original MM-ADMM and one learnable step size oy
to control the iteration process. Compared with training all
diagonal elements of T*D the learnable parameters in the
DAN are changed to &; ; and §;. The total number of learnable
parameters over all layers is reduced from LN to L + 1

The update of vfn i)l and zfjj +)1 are the same as and
(28c)), respectively With given m; and P, the Lagrange
function £(u®,v(*) z(*)|m; &) defined in b Will not
increase after updatlng ugi 4 5,’§ 4 and z(kl by .,
and (28¢), respectively. The ‘modifiecd ADMM 1teration will

also converge at a set of station points denoted by uéfg (k))

and zgg Therefore, we have

uH) — B — g kD _ @1 (dﬁk’l) - Vll) , (39
where
17, 'd")
A =iy — poa (v —2M), v = S @)

179,11

C. Convergence of DAN

Until now, we have developed a new model-driven method
for SN selection. However, the obtained T*:)) may not satisfy
(23), which indicates that the convergence property of the
MM framework is questionable. To address this issue, we next
analyze the convergence of the proposed DAN.
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For any sequence {u(*!) }L , generated by the proposed

DAN, the regret function is defined as

L
rr2 Y (G®0) —g®™), @

=1
where u**) = argmingm s, G(u'¥)) denotes the best

stationary point in the feasible set S,,. Generally speaking, the
regret function indicates the sum of the difference between
G(u®Y) and G(u®*)), which is widely used for the conver-
gence proof [37]]. Note that the feasible set has bounded diam-
eter, i.e., for all u,v € S, |[[u — v||?> < Da. Define Dy £
1, Dy &

mlaxH uk’ max max cbl_j, Dy1 £ max; ||f)l|\1, and

~ ~ k|l k,l
Dy.5 £ max; ||by||?, where b; = v _ 2D Then, we have

the following theorem for the convergence analysis.
Theorem 1: Assume that, for all I € [2,L], ¢;} < ¢, ;.
The regret is bounded by

Ry < VL + Cy, (42)

where C; = —% and Cs is defined by , given

at the top of tllns page.
Proof: See Appendix [Al [ |
Since C and C5 are constants independent of L, Theorem

indicates that the DAN has a regret of O(Lz), which

guarantees that the sequence {G(u*")}}  will converge to

G(u*) with convergence rate on the order of O(L™2).

D. Transmit Power Allocation For Multiple Targets

k‘ j+1)}

Given {uq q—1- the problem in li can be expressed

as
Q
min F k)
mles = pa(pq )

(44)

log det C (pgk) |u((1k’j )) is the cost function

(k k
and S, = {pW|XL, D Pl > Paing
1,2---,Q} denotes the feasible set of p(*). This problem
is convex and can be reformulated as a SDP problem, i.e.,

where ]-'pa(p((lk))

Q
s ; log det(Q,),

45
o> P (45)

min )

Q
S.t. Zpgk) < PT,
q=1

Jt(lk)(pgk”u((]k’j)) i quq = 172 e 7Qa

where {Q,;,}qQ:1 denotes a set of auxiliary symmetric matrices.
Then, this problem can be solved by the CVX toolbox.

However, the CVX toolbox is generally time-consuming,
especially when the number of targets is large. To reduce the
computational complexity and reveal more physical insights,
we propose an iterative water-filling-based power allocation
method. First, we merge the total power constraint into the
cost function by the Lagrange multiplier method, i.e.,

Q
) = Z}-pa(p(
qg=1

where /\ga is the Lagrange multiplier. The derivative of
(k

Q
N+ Apa(Pr = pM),  @6)
q=1

w.r.t. pg ’ is given by
OLya(p™) o e ie
SR = (35, 4 pIEP)TIER) — A, @)
Ipq
where =F = N ué{“%ﬁ( ) By setting %(k;k)) =0,

we have the following fixed-point equation, i.e.,

k k)s(k)y— k
o L@ plEN I
q Apa tr(Jg+pgk)§gk))_1§gk)

IfJ gf; and f)ék) reduce to one-dimensional constants denoted
by J k;
pgk) can be directly obtalned from ie., p( ) = = Uyt —
J (k)/ S where

Pygq q Hwt =

and i(]k), respectively, the closed-form solution of

+— denotes the water level. For the
l"
matrix-version J gp) and 22 ), we propose to obtain p( ) and
the water level s by an iteration process. In partlcular, at

the 7th iteration, pgkl) 11 is obtained by

5 5k 1 508)
Py = | s — o (T + Pa. i ) i (49)
- tr (@) +p =) 1mP |

where p( ) denotes the power for the gth target at the ith
iteration and la], = max{a b}. Then, the water level fiys is
updated by setting Zq 1 pt(lk;)+1(,uwf) Pr.

Remark 3: According to the Rayleigh quotient, we have
tr (I +p{ BR300
- (J<k) By 12<k>
max denote the minimum and maximum elgenvalue of
E(k)) 1.]50), respectively. Note that J(k) and 2( ) denote
he FIM of the prediction and the measurement respectively.

P

< Amax, Where Apin and

min X

/-\>/1

—



Thus, the eigenvalues of (E((Ik)) 1y (k; denote the ratlo be-
tween the prediction and measurement. Recalling (48)), if the
eigenvalues of (E(k)) J5 (k) are larger, pgk) will be lower.
This indicates that, more power will be allocated to a target,
if 1) the measurement provides more information than the
prediction, which enables the system to improve the accuracy
of the prediction, or 2) the prediction of this target is so
bad such that the system needs to allocate more power for
better motion state estimation. In turn, if the eigenvalues of
(igk))*l.] 5531 are smaller, pgk) will be lower. This indicates
that, a targe7t will be assigned with a lower power, if 1) the
prediction is good enough; or 2) the measurement is too bad.

IV. SIMULATION

In the simulation, we will show the efficiency and effec-
tiveness of the proposed DAN and FP-WF algorithms. In
the following, we first introduce the system parameters, the
training details of DAN, and the benchmark algorithms.

System parameters: We consider a mmWave system oper-
ating at a carrier frequency of 28 GHz. There is one BS acting
as the transmitter, which is located at [0,0] m. The number
of SNs is N = 32. These SNS are uniformly distributed
in the area within 400 x 400 m2. On average, there is one
SN within an area of 5000 m? The measurement covariance
defined in ll is generated by Eg% = 1 Eflﬁl, where

SNR
»h = diag[6% ) 0%, 6%y | With 5y = 2,6,y = 1,
")
G ) = = 1. The SNR is defined by SNR(k) P70 where

o2(dk)y2?

70 = —61.4 dB denotes the pathloss at reference( (ﬁlst)ance We
set the total power at BS P = 30 dBm, the minimum power
for single target P,,;,, = 20 dBm, the noise power o2 = —90
dBm, the intensity of process noise gs = 5, and AT = 0.5 s.
Initialization of motion state: There are three targets to
be tracked, i.e., Q = 3, if not otherwise specified. The initial
velocities of the targets are given as vi = [—10,0]T mys,

vy = [0,—10]T m/s, vz = [10,0]" m/s, respectively. The
initial locations of the targets are given as x(lo) = [124,124]T
m, x¥ = [~134,134]7 m, and x{” = [~144, —144]T
respectively.

Training details: During training, the learnable parameters
are optimized by the SGD optimizer in the PyTorch with a
learning rate 5 x 107°. In our expenment the loss function
for training is selected as fioss = T Zl 1 [Jugs—a'[|?, where
uggs denotes the selection vector obtained by the exhaustive
search (ES). The number of data for training is set as Ny, =
500. The network parameters are set as p = 1, p, = 102,
~v =10%, 3, = 0.999, n; = 0.99, and 1, = 0.99. The learnable
parameters are initialized as $; = 0.99, and «; = 0.15 for all
layers. The number of layers is set as L = 10. The maximum
number of ADMM iterations is set as 200.

Benchmark methods: The proposed methods are compared
with the following algorithms for SN selection and power
allocation.

1) SN selection: We compare DAN with the following
methods:

e ‘Nearest SN Selection’:
SN nearest to the target;

this method selects the subset of

TABLE I
RUNNING TIME IN SECOND FOR JOINT SN SELECTION (ES, MA-I, MA-II,
DAN) AND POWER ALLOCATION (CVX, FP-WF) (AVERAGED OVER 1000
MONTE-CARLO TRIALS)

Method |  ES MM-CVX MA-I MA-II DAN

CVvX 18.6242 24.4350 10.0120  13.7984  6.6404

FP-WF | 13.5733 19.4870 4.5109 9.1722  0.7724
TABLE I

RUNNING TIME IN SECOND FOR SN SELECTION (ES, MA-I, MA-II,
DAN) (AVERAGED OVER 1000 MONTE-CARLO TRIALS)

N | ES MM-CVX MA-I MA-II DAN
32 4.2662 6.4081 1.3712 2.8322  0.2453
64 34.7366 23.0416 3.9726 9.1618  0.3263
128 | 280.1406 93.2871 18.9184  40.0574 0.6316

e ‘Exhaustive Search (ES)’: this method selects the subset
of SNs which minimizes the cost function;

o ‘MM-CVX’: the method solves by CVX toolbox.

e ‘MM-ADMM’: the optimization-based method proposed
in Sec. III. A. To show the impact of T*!) in MM-ADMM,
we use two different T(*!) Specifically, the first choice is
T = tr(Hp(u*D))I, and the second choice is TS =
Amax (Hp(u®D)NT, which are denoted by ‘MA-I" and ‘MA-
IT’, respectively. The parameters of MM-ADMM and MM-
CVX are the same as that for DAN. The maximum number
of MM iterations for MM-ADMM and MM-CVX is set as 30
and 50, respectively, unless specified otherwise.

2) Power allocation: We compare FP-WF with ‘CVX’,
which represents the method for solving {@3)) by CVX.

A. Computational Cost

Tableshows the running timeﬂ of the algorithms composed
of different power allocation and SN selection methods. It
can be observed that the running time of DAN & FP-WF
is 0.7724 s, which is the lowest among all combinations.
Meanwhile, we can observe that the running time of ES &
CVX is 18.6242 s, which is about 24.11 times more than
that of DAN & FP-WF. To further demonstrate the low
computational complexity provided by DAN and FP-WF, we
study the computational cost of the SN selection and power
allocation methods, respectively.

Running time of the SN selection methods: Table
shows the running time of the SN selection algorithms with
different N. DAN achieves the lowest computational cost
among the candidates with different N. The computational
consumption of ES is extremely large, especially when N is
large. For example, when N = 128, the DAN is about 443
times faster than ES. MM-CVX is more time-consuming than
MM-ADMM. Meanwhile, the running time of DAN is less
than that of the MM-ADMM. There are two main reasons:
1) one layer of DAN has a lower computational cost than one

2Configuration of this computer: CPU: Inter Core i9-9900 @3.10GHz;
RAM: 16GB; Software: Python 3.10.9 in Microsoft visual studio code and
Matlab 2020b.
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TABLE III
RUNNING TIME IN SECOND FOR POWER ALLOCATION (CVX, FP-WF)
(AVERAGED OVER 1000 MONTE-CARLO TRIALS)

Method | Q=3 Q=4 Q=5 Q=6
CVX 1.7246  1.9854  2.0828  2.2966
FP-WF | 0.0030 0.0060 0.0072  0.0087

iteration of MM-ADMM. In particular, DAN only requires the
gradient, while MM-ADMM requires both the gradient and
Hessian matrix, which needs more computational cost, and
2) owing to the well-trained T!), DAN can converge faster
than MM-ADMM, which will be shown in the following.

Convergence of the SN selection methods: The running
time of MM-CVX, MM-ADMM and DAN is proportional to
the required number of iterations/layers to converge. Fig. 3]
shows the cost function over the number of the iterations
(optimization-based methods) or the layers (DAN). First, MM-
CVX needs about 50 iterations to converge, which is more
than MM-ADMM and DAN. Meanwhile, we can observe
that DAN can converge within 3 layers, while MM-ADMM
needs about 15-20 iterations to converge, which leads to more
running time. This is because, unlike MM-ADMM, DAN
utilizes the momentum, which accumulates the gradient of
the past layers and can thus speed up the convergence [37].
Meanwhile, we see that MM-ADMM-II can converge faster
than MM-ADMM-I which indicates that the convergence of
MM-ADMM highly depends on the choice of T(%) This is
also the motivation to learn T(*!) in DAN.

Running time of the power allocation methods: Table
shows the running time for the power allocation algorithms
versus different ). We can observe that the running time of
FP-WF is much lower than CVX for different cases. This is
because FP-WF is derived based on the Lagrange multiplier
method, which can solve @]) more efficiently than the interior
point method used by CVX.

B. Tracking Accuracy

The average root mean square error (RMSE) of multiple
targets tracking over ) targets and K frames is selected as
the performance metric for multiple target tracking, which is
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Fig. 4. Average RMSE versus the total power budget P.
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defined as 5z >°.7; D ket \/ch Dol lxg T =% %,
where Xék’l) denotes the estimated position of the target ¢

at the kth time frame in the ith Monte-Carlo trial, and N,
denotes the number of Monte-Carlo trials. The number of
tracking frames is set as K = 10. Fig. [4] shows the average
RMSE with different power budget P. We have several obser-
vations. First, associated with different SN selection methods,
FP-WF can achieve the same performance as CVX. Recalling
from the results in Table compared to CVX, FP-WF can
reduce the computational cost without losing performance
loss. Second, we can observe that ES can achieve the best
performance among the SN selection methods. However, from
Table |I} it can be observed that the running time of ES is
extremely high, which limits its real application. Third, MM-
CVX and MM-ADMM can achieve similar performance, but
as shown in Table [l the computational cost of MM-CVX
is higher than that of MM-ADMM. Furthermore, DAN can
outperform MM-ADMM, which is because a more suitable T
is learned by DAN. Finally, the performance of the nearest
SN selection is worse than DAN. This is because the tracking
performance is affected by both the distance and the angle
from target to SNs. DAN takes both of them into consideration,
while the nearest SN selection only considers the distance.
This will be further demonstrated in the next part.

Ilustration of SN selection: To better understand the effect
of SN selection, we focus on the single target case in this
section. The power allocated to the target is set as p = 25 dBm.
The initial state of the target is given by v = [—10,0]T m/s
and x(©) = [124,124]" m. Fig.shows the SN selection result
by DAN in 4 consecutive frames. The selection depends on the
geometric relation between the target and SNs. DAN does not
always choose the nearest SNs, because, besides the distance,
the different perspectives to observe the target provided by
different SNs will also affect the tracking performance. Fig.
[6] shows the corresponding RMSE over the tracking frames.
It can be observed that DAN consistently outperforms the
Nearest SN selection and achieves comparable performance
as ES.

Effect of noise power: One of the biggest drawbacks of
DL-based approaches is the performance degradation when
the features (such as the noise power) in test data differ from
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those in training. This leads to the study of generalization in
this part. Fig. [/| shows the performance under different noise
power with N = 32. When the noise power is different from
that of the training data, DAN can provide a near-ES RMSE.
It indicates that DAN can adapt to the change of o2, which
makes DAN attractive in real applications.

C. Accuracy-Complexity Tradeoff

By adjusting the termination tolerance and the maximum
number of iterations, a tradeoff between computational cost
and accuracy can be achieved by MM-ADMM. Meanwhile,
the proposed DAN requires a fixed number of layers and thus
has a fixed running time. Fig. [§] shows the RMSE performance
of different algorithms versus the running time. It is observed
that DAN can always outperform MM-ADMM in terms of
both computational cost and RMSE. Moreover, though MM-
ADMM-II can converge faster than MM-ADMM-I, Ték’l)
requires more computational cost than Tgk’l). Thus, given the
same time cost, MM-ADMM-I outperforms MM-ADMM-II.
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V. CONCLUSION

In this paper, we considered the joint SN selection and
power allocation problem for tracking multiple maneuvering
targets in PMNs. To meet the stringent latency requirement of
sensing applications, we proposed a model-driven approach
for SN selection by unfolding the optimization-based MM-
ADMM method. A novel DNN architecture was derived to
speed up the convergence by exploiting the momentum, whose
convergence property was also guaranteed by deriving the
regret bound. Furthermore, we proposed an efficient power al-
location method based on fixed-point water filling and revealed
some physical insights. Simulation results demonstrated that
the proposed method can achieve better performance than the
existing methods with much lower computational cost. This
work demonstrated that, by reducing the number of iterations
and improving the effectiveness of each layer, model-driven
approaches offer a promising solution to meet the stringent
latency requirement of sensing applications.

APPENDIX A
PROOF OF THEOREM [I]

Given L(u®)) is convex, we have

Gu®D) - gy < (D, au®D), (50)



where AuFb) = u®b — wEY o Since R <
S 1< (D Aukd > the main idea of the proof is to find an

upperbound of 1, <d£Lk’l),Au(k’l)>. Recalling from ||
we have
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where step (a) follows (39), step (b) follows (@0), and step (c)

follows (36).

By adding 2 <(1 — B1)dFY AukD ) — H‘I)I% Aulkl+D)|2
to both sides of , and dividing both sides of by 2(1—
B1,1), we have
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By uzsing the Young’s inequality for products, i.e., ab <
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To bound R;,, we upperbound of the summation of the terms
@-® over the index [ as follows.

1) Term @©: Tt can be shown that
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where step (a) comes from (38). Then, with the decreasing
learning rate ¢fi1, we have
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2) Terms @ & ®: Since (1 — 1) is a non-zero constant,
_1
we focus on the upperbound of the terms Zle @, 2xy|?

1
and Zlel B/, 1iy_1]|2. Denote 77;; and d,,; as the ith



entry of m; and d,(k’l) respectively Then, we have 4) Terms ® & ®: By the definition of v; in (30), we have

N kD)
1 v < [|a (60)
7 b = Z ﬁ : = =
i=1 ULil/ Similar to (36), we can obtain
2
N ( (1= Bip) [1°25 Briegird ’-p))
1 P =1 FPLl=q+1%y i
=2 — Zumznl<ZZ ST o)
i=1 |Ul7i|/all i=1 \p=1q=1 (61)
l l—p l—p d(kvil’) (56) L (k,p)
a al,ml Zp*l ﬁ Zp 1 5 ( ) Z ‘d || 17 Du,l
= Z I—p (kyp)z —  (1-p1) (1—771)(1—51)'
Y S TR e =
o) —p Then, we have
v < ) (k.p)
< ldyi | L . L D
a—m¢v@§:@:v% ) Eywwm:mam2¢s%li (62)
—
where step (a) comes from the inequality (1 — [ <1, - - ‘
P quality D o .
Hq  Briqi1 < BUPnl and the Jensen inequality, i.e., By substituting (61) and (62) into (64), we have
Z/azbl) < S aib? . .. L L L
( 5t azl < Zvai , and step (b) follolws ﬂ(l: 1)nequaht1es ZVIH 3, 21||2 < D¢Z ”
Zp B < g and YL (1 - B0)By PldyT R > (1 - =1 I=1 (63)
B2)8 é p‘d(k7p)|2 <D ( Dy n Pan,1>
By summing up (36) over the index I, we have ¢ (T=m)A=p51) 1-n/)

L . It thus follows that
Z [ L
1=

_1 Dy 1D 2Dy 1D
S w212 < R

L o ARG — (L=m)1—=F1) 1-mna
1,0 1 1 (7% )
= Z (1—B1)VI—=PF2 & Z (Z ( 52> |y |> Similarly, we can obtain

L 2 212
. 2Dz, D 2p5D; D
L L il 2 -1 2 u, 1 ¢ Pa b1
Y o jagon (S5(2) ) en 2 IS o et =

(1- Do VB2 =1

= 5) Term ®: By (33), we have
i Dy, Z Ui L )
(1 = A1 - \ﬁ) VI=B = Vi ZBl,lH‘I)fAu(k’l)llz
(a) a+D 1 =1
< - ) P1v1— [y ! 11
(1-p)1 - jﬁ%)v 1= Bo(l—n7) < mDu,lDA\/hh + Daprpainl, (69
where we have utilized the property that Zlel "—\; < (2) Biv1— 2Dy 1 DA i BipaDa
Zle 2l < 1 7 in step (a). Then, we have ar (1 =+vB2)(1—m)? (1 =mna)
I where we have utilized the bound of the arithmetic-geometric
-1 o Dy s series, i.e., Z Int < —L— in (a).
D@, 2y * < <1 lm < gy
! = 1B r),/l —Ba(1—n2) 6) Term ®: By replacing 31, with p,; in (63), we have
Similarly, we can obtain L T pav/T = B2Dy1Da p2Da
L L > paall®f AutD P < Lo 2 S+ Dl
-1 2 -1 9 =1 Qy (1 - 52)(1 - TIa) Na
Zﬁl,l”q’l mq " < 2,31,1”‘1’1,11111—1“ )
= 58) 7) Term @: Recalling and (62), we have
Qq ﬁlDu 1 ~ A Du,l 1 1
. v < [[iy||1 + pailbillt < m—2=<m1 + paDb 17, (66)
(1_61)(1 \/ﬁj)\/l_ﬁQ(l_n%) (1*51)
3) Terms ® & @: First, we have Then, we can obtain
- i - 5 paDyDys B ALD? 1 S | AuDP2
S pedll®; FBil? < 3 punk Dy [By? < Lo nl|@F Au®VP =y guldu™|
7 1 —1q i=1
1=1 =1 N
where Dl¢7 = max ¢Zi1' Similarly, we can obtain _ il Z lo1.4] - |Au£k,l)|2 + le@JHAu(k,Z)HQ (67)
-1 D¢Db2 /I_
Z paill® by < 7772 (59 < 2 b Dy DavVi+vDapan),.

=1 a T (1=+Pe)



Similarly, we have

fyuzw(

)m + pa Dy, ma)

(68)
< Du,l pa-Db,l
T A=) =m)? (1 -ma)?
L
anzylzzna( )77] +pan177a>
=1 (69)

Du,l

pan,l
ST Aa-mi—m)

(1 —na)?

By substituting (68) and (69) into (67), we have

L

1
3 wl|l@f Au®D |2
=1

§<U—&M—mV
+(O—ﬁﬂﬂ—nﬁﬂ—n0

D, 1 V1 —=B2Dy 1D

a1(1—+/B2)
) Dapa. (70)

pan,l >
(1 =ma)?
Du71 p D
(1 - 77(1)

By combining the upperbounds for the summations of terms
@-©, can be proved.
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