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Nonlinear Waveform Inversion for
Quantitative Ultrasound
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Abstract—Due to its non-invasive and non-radiating nature,
along with its low cost, ultrasound (US) imaging is widely used
in medical applications. Typical B-mode US images have limited
resolution and contrast and weak physical interpretation. Inverse
US methods were developed to reconstruct the media’s speed-of-
sound (SoS) based on a linear acoustic model. However, the wave
propagation in medical US is governed by nonlinear acoustics,
which introduces more complex behaviors neglected in the linear
model. In this work we propose a nonlinear waveform inversion
(NWI) approach for quantitative US, that considers a nonlinear
acoustics model to simultaneously reconstruct multiple material
properties, including the medium’s SoS, density, attenuation, and
nonlinearity parameter. We thus broaden current inverse US ap-
proaches, such as the full waveform inversion (FWI) algorithm, by
considering nonlinear media, and additional physical parameters.
We represent the nonlinear acoustic model by means of a recurrent
neural network, which enables us to apply advanced optimization
algorithms borrowed from the deep learning toolbox and achieve
more efficient reconstructions compared to the FWI method. We
evaluate the performance of our approach on in-silico data and
show that neglecting nonlinear effects may result in substantial
degradation in the reconstruction, paving the way of NWI into
clinical applications.

Index Terms—Biomedical imaging, inverse problems, nonlinear
acoustics, recurrent neural networks, ultrasonic variables
measurement.

I. INTRODUCTION

DUE to its non-invasive and non-ionizing nature, ultrasound
(US) imaging is widely used in medical applications. In

US imaging, an image is generated by transmitting a series
of acoustic pulses from an array of transducer elements. The
transmitted pulses propagate through different tissues, leading
to a sequence of reflections and refractions, which create echoes
that are then detected by the same array. After acquiring the
US signal, beamforming algorithms are used to align the sig-
nals from different transducer elements properly, and the data
acquired from multiple transmission schemes are combined to
generate a US image [1], [2], [3].
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Typical Brightness-mode (B-mode) images are generated by
applying corresponding time delays to the acquired signal and
averaging over the channels with tailored weights [4], [5], [6],
[7], [8], [9]. Nevertheless, B-mode images do not necessarily
provide sufficient contrast for certain anatomical structures and
have poor physical interpretation.

Imaging of physical properties of the material such as speed-
of-sound (SoS), density, acoustic attenuation, and elasticity, is
known to have valuable differentiation capabilities and improve
medical diagnosis [10], [11]. For example, SoS maps can discern
between benign and malignant breast tumors [12], [13], [14],
[15], [16], identify muscle loss and fatty muscular degeneration
(sarcopenia) in seniors [17], and differentiate between healthy
and diseased tissues such as in human and animal livers, affected
by nonalcoholic fatty liver disease (NAFLD) [18], [19]. Acoustic
attenuation maps can improve the diagnosis of non-healthy
tissues [10]. Finally, the tissue density can indicate a risk for
breast cancer [20], and quantify the level of fat and steatosis in
the liver, which is critical to monitor NAFLD and nonalcoholic
steatohepatitis (NASH) [21], [22].

Inverse US algorithms seek to reconstruct the properties of a
medium based on the acquired US signal. A standard method
to solve the inverse US problem is the full waveform inversion
(FWI) algorithm [23], a computational technique initially de-
veloped in geophysics. It relies on a physical wave propagation
model and therefore explains a broader range of phenomena
compared to B-mode images. To reconstruct the properties, the
algorithm formulates the waveform inversion problem as an
optimization problem with a tailored loss function, and utilizes
iterative gradient-based approaches to solve the optimization
problem. The gradients are computationally heavy [24], which
increases the algorithm’s time complexity and precludes real-
time usage. Moreover, the FWI algorithm assumes a linear wave
propagation model, which is inaccurate in medical setups, and
is one source of error in current waveform inversion approaches.
In medical US, the transmitted wave propagates in a highly
nonlinear media [25]. As a result of neglecting nonlinear ef-
fects, some physical properties (such as the medium’s nonlin-
earity), are not possible to extract using the FWI algorithm.
Imaging the nonlinearity parameter of the medium is impor-
tant for several healthcare applications [26], [27], including
cardiac ablation therapy, which is increasingly used to treat
persistent atrial fibrillation [28]. Furthermore, additional inverse
algorithms that exploit the acoustic wave’s reciprocity, cannot
be applied, since nonlinear media do not satisfy time-reversal
symmetry [29].
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More efficient inverse US methods, use a differential path
matrix to estimate the SoS of the medium [30]. The differential
path matrix links the SoS distribution to the obtained time delays
at the transducer. However, the SoS of the medium does not
capture the wave propagation process accurately, specifically
for acoustic waves, where the reflections and refractions of the
waves depend on the density of the tissue. Also, the model
only estimates the medium’s SoS, since it depends on geomet-
ric considerations rather than the wave equation. Alternative
solutions to the inverse US problem, use machine learning
approaches such as deep neural networks [31]. Such approaches
require a significant amount of medical data with known SoS
maps for network training, and the obtained models have poor
interpretability.

In this work, we propose the nonlinear waveform inver-
sion (NWI) algorithm, a model-based recurrent neural network
(RNN) approach to solve inverse nonlinear physical problems.
We apply it to the inverse nonlinear US problem and recover
the medium’s properties. Since the algorithm is no longer con-
strained to the linear acoustic model, additional physical prop-
erties can be reconstructed, such as the medium’s nonlinearity.

Nonlinearity in acoustics is exploited in a few applications,
and enables to increase the amount of information extracted
from an US scan. For example, harmonic imaging techniques,
use the nonlinearity property to generate a second harmonic,
which leads to substantial improvement in contrast and resolu-
tion of the beamformed images [32]. However, to the best of
our knowledge, there is no waveform inversion technique that
exploits the nonlinearity, in order to improve the inversion, along
with reconstructing additional properties.

The NWI algorithm is based on representing the wave equa-
tion as an RNN, with an architecture determined by the physical
model. Contrary to the common usage of neural networks, we
do not use the networks to learn a set of parameters but rather to
express the wave equation by means of an RNN. This represen-
tation enables us to apply optimization algorithms used in the
deep-learning field and paves the way to very efficient imple-
mentation. The generality of this approach allows reconstructing
multiple properties simultaneously using a nonlinear acoustics
(NLA) model, which better captures the wave’s propagation
in the human body [25]. Moreover, the network representation
enables us to achieve more efficient reconstruction compared to
the FWI method, thus reducing the time and cost of using inverse
techniques.

To demonstrate the capabilities of the proposed approach, we
reconstruct the properties of a simulated medium with character-
istics corresponding to human tissues (fat and liver), and evaluate
the NWI algorithm using the normalized root-mean-square-error
(RMSE), as done in previous works on SoS reconstruction [30],
[33]. We compare the results with the FWI reconstructions. Al-
though these simulations do not mimic human tissues, they serve
as simpler examples to validate the theoretical findings. A more
extensive analysis with clinically accurate simulations should be
conducted to evaluate the contribution of NWI to clinical wave-
form inversion. Using our approach, the reconstruction error is
reduced by a factor up to 2.2, which emphasizes the importance
of considering an adapted nonlinear model. Furthermore, the

NWI algorithm enlarges the set of physical properties that can
be reconstructed from the US signal compared to the FWI
algorithm, such as the medium’s nonlinearity. Finally, although
the NLA model increases the problem’s complexity, the NWI
algorithm reduces the computational complexity compared to
the FWI method.

The rest of the paper is organized as follows. In Section II,
we present the common waveform inversion approach. In Sec-
tion III, we derive the NWI algorithm, along with the RNN
representation of the wave equation described in Section III-B.
We demonstrate the performance of NWI and compare it to
FWI in Section IV, and summarize the key points of our work
in Section V.

Throughout the paper, we use boldface lower-case and upper-
case for vectors and matrices, respectively. The vectorization,
maximum, convolution, Frobenius norm, transpose, element-
wise multiplication (Hadamard product), and Kronecker product
operators are written as vec(·), max(·), ∗, ‖·‖F , (·)T , �, and
⊗ respectively. Matrices division and exponentiation are per-
formed element-wise. Finally, R denotes the set of real numbers.

II. PROBLEM FORMULATION AND BACKGROUND

We begin by formulating the inverse US problem, and then
present the FWI algorithm [23] which is commonly used today
to solve it.

Propagation of acoustic waves in solids is determined by the
physical properties of the material, such as the speed-of-sound
(c0), the density (ρ0), the attenuation/damping (D), Young’s
modulus (E), Lamé constants (λ, μ), and more [34], [35]. These
properties depend on the spatial coordinates and can poten-
tially also depend on the frequency of the applied pulse. They
entirely determine the generated wave inside the medium. In
Section II-A, we formulate the US inverse problem to reconstruct
the medium’s properties based on US data. In Section II-B,
we introduce the FWI algorithm and discuss the assumptions
it relies on.

A. The Inverse Nonlinear US Problem

Consider an US transducer array with nc elements, which
insonifies the medium and measures the acoustic wave (pressure)
on the elements, at nt time steps. The measured signal, M ∈
Rnc×nt , is obtained by sampling the acquired acoustic wave
with temporal intervals of Δt at the elements’ locations. The
US signal is generated from an acoustic pulse F ∈ Rnx×nz×nt ,
where we discretize the spatial coordinates with an interval ofΔ,
forming a grid of size nx × nz . The acoustic pulse, F, specifies
the exterior force that is applied by the transducer’s elements, as
a function of time and space. Multiple types of acoustic pulses
are commonly used, such as plane waves, focused beams, and
diverging waves. A derivation of the acoustic pulse required for
focused beams is presented in Appendix V-B. The measurement
of the acoustic wave is restricted to the transducer elements’
locations. We denote by R(·) the restriction operator, which
given the pressure field over the nx × nz grid, extracts the
pressure at thenc elements’ locations. The restriction operator is
defined by the shape of the transducer array. Various transducer
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types are regularly used, such as linear, convex and endocavitary
probes.

The wave propagation is governed by a chosen physical
model, with nθ model parameters. We denote by {Θi}nθ

i=1 the
set of parameters, such that Θi ∈ Rnx×nz for i ∈ [1, nθ]. The
imaged material has ground-truth (GT) properties denoted by
Θ�

i ∈ Rnx×nz for i ∈ [1, nθ]. In this paper, we consider US
signals for medical applications, where the medium is nonlinear
(see Section III-A), such that the measured signal, commonly
referred to as channel-data in US terminology, can be written as

M = R(N ({Θ�
i }nθ

i=1 ,F)) +N (1)

where N ∈ Rnc×nt is an additive i.i.d. noise with zero mean.
Here, N (·) is the NLA operator, which given the medium’s
properties and the acoustic pulse, returns the acoustic wave.
A detailed derivation of the NLA operator will be given in
Section III-A.

The goal of inverse US algorithms, is to estimate the medium’s
physical properties, based on the measured US signal, M. For-
mally, given a loss function, L, the goal is to find the properties
that reproduce the experimental data, by solving the following
minimization problem{

Θ̂i

}nθ

i=1
= argmin
{Θi}nθ

i=1

L({Θi}nθ

i=1 ,M). (2)

Usually, the additive noise is assumed to be normally distributed,
and accordingly, the loss is chosen as the L2 norm of the differ-
ence between the measured and predicted data. The predicted
data can be written as

P = R(N ({Θi}nθ

i=1 ,F)) (3)

where P ∈ Rnc×nt . The main difference between the predicted
and measured signals, arise from the additive noise which cannot
be approximated by a physical model. Due to the added noise and
the inherent complexity of the nonlinear optimization problem,
multiple solutions are expected.

B. Full Waveform Inversion Algorithm

The FWI method, is a computational approach to solve (2) for
theL2 loss, under the assumption of a linear acoustic model [23].
To reconstruct the medium’s properties, the FWI algorithm uses
a gradient-based optimizer to minimize the loss, L, between the
predicted and observed data:

L =
1

2
‖p−m‖22 (4)

wherem = vec(M) ∈ Rncnt×1 is the measured (observed) data
organized as a column vector, andp = vec(P) ∈ Rncnt×1 is the
predicted data which depends on the estimated properties p =
p({Θi}nθ

i=1). As a result, also the loss depends on the material’s
properties. At each iteration, the iterative algorithm computes
the derivatives of the loss with respect to the properties, which
are used to update the estimations. Denote by θi = vec(Θi) ∈
Rnxnz×1 for i ∈ [1, nθ], the medium’s properties organized as
column vectors. The derivative of the loss with respect to each

of the material’s properties, θi for i ∈ [1, nθ], is

∂L

∂θi
=

(
∂p

∂θi

)T

(p−m). (5)

The predicted data is a subset of the pressure wavefield u ∈
Rnxnznt×1, which represents the pressure as a function of time
and space, organized as a column vector. The predicted data
is obtained by applying the restriction operator on the pressure
wavefield. In vector notation, the restriction operator,R, can be
expressed in matrix form as R ∈ Rncnt×nxnznt , such that:

p = Ru. (6)

The pressure wavefield u, is obtained by solving the wave
equation. The FWI algorithm assumes a linear wave equation:

Au = f (7)

where f = vec(F) ∈ Rnxnznt×1 is the applied acoustic pulse,
organized as a column vector. In addition,A ∈ Rnxnznt×nxnznt

is the linear wave equation operator written in discrete form. This
operator, governs the wave propagation, and can be computed
explicitly from the set of physical properties:A = A({Θi}nθ

i=1).
As an example, we derive the linear wave equation operator
explicitly, for homogeneous media, in Appendix V-A. The pres-
sure wavefield, u, is obtained by solving (7). For a given set
of parameters, the wave equation (7) has a unique solution, and
since A is a square matrix, it is invertible, leading to

u = A−1f . (8)

We note that A and u depend on the material’s properties,
whereas f does not. Taking the derivative of (7), leads to

A
∂u

∂θi
+

∂A

∂θi
u = 0. (9)

The term ∂A
∂θi
∈ Rnxnznt×nxnznt×nxnz , is a three dimensional

matrix, such that ( ∂A∂θi
u) ∈ Rnxnznt×nxnz . Since A is invert-

ible, we can write

∂u

∂θi
= −A−1

(
∂A

∂θi
u

)
. (10)

Noting that the restriction matrix, R, is independent of the
physical properties, we have for all i ∈ [1, nθ]:

∂p

∂θi
= R

∂u

∂θi
= −RA−1

(
∂A

∂θi
u

)
. (11)

Substituting (11) into (5) gives

∂L

∂θi
= −

(
∂A

∂θi
u

)T

A−TRT (p−m). (12)

The term r = A−TRT (p−m) can be thought of as injecting
the residual signal (p−m) into the medium through the trans-
ducer array, and propagating the wave backward in time with
A−T . The method is summarized in Algorithm 1.

The computational complexity of each iteration is determined
by the complexity of the gradients computation. Computing the
gradient with respect to single element in θi, requires a applying
the derivative of A with respect to that element on u, and
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Algorithm 1: Full Waveform Inversion.
Inputs:

m ∈ Rncnt×1 � The measured channel data
f ∈ Rnxnznt×1 � The applied pulse
θ
(0)
i ∈ Rnxnz×1, ∀i ∈ [1, nθ] � Set of initial

properties
θi ←− θ

(0)
i , ∀i ∈ [1, nθ] � Properties’ initialization

while stopping criteria is not satisfied do
Compute the pressure field u = A−1f
Compute the predicted signal p = Ru
Calculate the gradients for θi, ∀i ∈ [1, nθ]:

∂L
∂θi

= −( ∂A∂θi
u)TA−TRT (p−m)

Update the estimators θi, ∀i ∈ [1, nθ] using a
gradient-based optimizer

end while
Output: {θi}nθ

i=1 � The set of reconstructed properties

multiplying the result by the residual wave, r. The computational
complexity of these operations isO(nxnznt), as detailed in [24].
This process is repeated for each element in θi, leading to an
overall computational complexity of O((nxnz)

2nt).
Algorithm 1 suffers from a few inherent drawbacks. First, the

algorithm considers only linear wave equations, which is not
suited for medical applications, where higher orders of u affect
the wave’s propagation. Neglecting nonlinear effects, impairs
the reconstruction and prevents estimating some properties,
such as the medium’s nonlinearity. Second, due to the matrix
representation of the wave, the gradient computation requires
high computational complexity, which precludes usage of this
method in many practical settings.

III. NONLINEAR WAVEFORM INVERSION

In this section, we introduce the NWI algorithm, which is
a model-based RNN approach for properties estimation. The
method generalizes the FWI algorithm by considering nonlinear
physical models, which are imperative for medical setups. The
NWI algorithm broadens the set of properties that can be esti-
mated, and considers nonlinear effects in the reconstruction pro-
cess. The algorithm exploits the neural network representation of
the wave equation, and although the nonlinear models are more
complex, it achieves more efficient gradients’ computation.

In Section III-A, we present the discrete NLA model adopted
from [34], used to numerically solve the inverse US problem.
We then show in Section III-B, that the acoustic wave can be
represented as an RNN, enabling us to apply advanced optimiza-
tion algorithms developed for deep neural networks, in order to
solve the inverse US problem in (2), more efficiently than FWI.
In Section III-C we present our proposed reconstruction tech-
nique that considers nonlinear effects in the estimation process.
Finally, in Section III-E we present a generalized version of the
algorithm adapted for practical settings. In practice, multiple
insonifications are created by the US transducer, generating a
series of measured channel-data. In Algorithm 3, we show how
to combine the information from multiple measurements, to
improve the reconstruction.

A. Nonlinear Acoustic Wave Equation

Nonlinearity in acoustic waves arises from coupling between
the material’s properties and the thermodynamics fields, re-
sulting in additional frequency components introduced to the
system. When traveling inside the material, the wave alters
various thermodynamics fields (such as the temperature and
density) which affect the propagation, leading to self distortion.

In this work, we consider the nonlinear acoustic wave equation
in two dimensions, given by the lossy Westervelt equation [34],
[35]:

∂2 u

∂t2
+ 2D

∂u

∂t
+D2 u+

β

c20ρ0

∂2 u2

∂t2

= c20ρ0

(
∂

∂x

(
1

ρ0

∂u

∂x

)
+

∂

∂z

(
1

ρ0

∂u

∂z

))
+ F (13)

whereF is the continuous acoustic pulse, c0, ρ0, D, andβ are the
medium’s continuous SoS, density, attenuation, and nonlinearity
parameter, respectively, and u is the resulting acoustic wave. In
medical applications, the imaged materials are highly nonlinear:
blood (β = 4.0), fat (β = 6.0), and muscle (β = 4.7) [25]. We
note that (13) is nonlinear in u, and therefore this model cannot
be used by the FWI algorithm. As a result, the nonlinearity
parameter, β, cannot be estimated using the FWI approach.

In order to obtain a discrete version of the lossy Westervelt
equation, the wave is sampled on a discrete grid. The discrete
form of the temporal derivative, is given by a weighted average of
past time samples, and the discrete spatial derivative of a signal
is obtained by filtering (convolving) it with the discrete gradient
or Laplacian filters. We denote by U ∈ Rnx×nz×nt the pressure
as a function of time and space, in matrix form. Following the
derivation in [34], the discrete wave is

1

Δ2
t

(
1+ 2

B�U[n− 1]

C2 �Q

)

� (U[n]− 2U[n− 1] +U[n− 2])

+
2

Δ2
t

B

C2 �Q
� (U[n− 1]−U[n− 2])2

+
2

Δt
D� (U[n− 1]−U[n− 2]) +D2 �U[n− 1]

= C2 �Q

(
∇D ∗

(
1

Q

))
· (∇D ∗U[n− 1])

+C2 �Q
(∇2

D ∗U[n− 1]
)
+ F[n] (14)

where U[n′],F[n′] ∈ Rnx×nz are the acoustic wave and ap-
plied pulse at the n′th time step, C,Q,D,B ∈ Rnx×nz are the
discrete SoS, density, attenuation, and nonlinearity parameter,
respectively,∇D is the discrete gradient filter,∇2

D is the discrete
Laplacian filter, and 1 ∈ Rnx×nz is a matrix of ones. All matrix
divisions and exponentiation are performed element-wise. In this
work, we aim to recover the following properties {Θi}nθ=4

i=1 =
{C,Q,D,B}. However, additional physical properties can be
reconstructed, by choosing an appropriate model.

To ensure the convergence of the numerical equation to a
valid partial differential equation (PDE) solution, we enforce
the Courant-Friedrichs-Lewy (CFL) condition which imposes
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restrictions on the relation between the spatial and temporal
intervals - Δ and Δt [36]. Specifically, we require that Cr =
max(C)Δt

Δ ≤ 1, where Cr is the Courant number.
The wave field U is the solution to (14), and depends on the

set of physical properties. It can be expressed as

U = N ({Θi}nθ

i=1 ,F) (15)

where N is the NLA operator. Similarly to the FWI algorithm,
to reconstruct the material’s properties, we will compute the
gradients of the loss with respect to the properties - ∂L

∂Θi
for

i ∈ [1, nθ]. As a result, the computation of the gradients of the
acoustic wave with respect to the properties, ∂U

∂Θi
for i ∈ [1, nθ],

plays an important role in the reconstruction process. In Sec-
tion III-B, we derive a convenient way to represent the NLA
operator, by means of a recurrent neural network, which enables
efficient gradients computation.

B. Recurrent Neural Network Representation

RNNs are a class of artificial neural networks where the nodes
are connected over a temporal sequence, such that the same
operation is applied at each time step, allowing it to exhibit
dynamic behavior.

To compute the discrete wave efficiently, we represent it as
an RNN, where each wave equation’s time step coincides with
the corresponding RNN’s time step. This is done by rearranging
(14), and obtaining the recurrence relation between U[n] and its
past time samples:

U[n] =
G2

G1
�U[n− 1] +

G3

G1
�U[n− 2]

+
G4

G1
� (U[n− 1]−U[n− 2])2

+
C2 �Q

G1
�
(
∇D ∗

((
1

Q

))
· ∇D ∗U[n− 1]

)

+
C2 �Q

G1
�∇2

D ∗U[n− 1]

+
1

G1
F[n] (16)

where

G1 =
1

Δ2
t

(
1+ 2

B�U[n− 1]

C2 �Q

)

G2 = 2G1 −D2 +
2

Δt
D

G3 = −G1 +
2

Δt
D

G4 = − 2

Δ2
t

B

C2 �Q
. (17)

The RNN performs the above operation repeatedly, where at
each iteration, the network outputs the acoustic wave restricted
to the array elements’ locations, as illustrated in Fig. 1. We
note that the recurrent relation is composed of element-wise
multiplications and convolutions with kernels determined by
the physical model (the gradient and Laplacian kernels) which

Fig. 1. RNN representation of the nonlinear acoustic wave equation. At each
iteration, the recurrent network computes the pressure at the next time step,
depending on the medium’s properties and past time samples, according to the
NLA recurrent relation (16). The pressure map U[n], is related to U[n− 2]
and U[n− 1] by convolution operations with known kernels determined by the
NLA wave equation (16). The pulse applied by the transducer array, F, serves
as the input to the network at each iteration. The measured signal, P, is obtained
by restricting the acquired signal to the transducer’s elements locations, using
the restriction operatorR.

are not learned, as opposed to the typical usage of convolution
kernels in neural networks for deep learning algorithms.

This representation will help us in Section III-C, where we
exploit the recurrence relation to backpropagate the gradients
through the network. Applying the backpropagation algorithm,
on the RNN specified in (16), returns the gradients of the wave
with respect to the physical properties, ∂U

∂Θi
for i ∈ [1, nθ]. These

gradients are essential in the reconstruction process, as they
serve for computing ∂P

∂Θi
and ∂L

∂Θi
. In contrast to FWI, the

gradients of any wave equation, can be computed based on this
representation.

C. Properties Reconstruction

To reconstruct the medium’s properties, we solve (2) using
a gradient-based iterative algorithm, such as gradient-descent,
L-BFGS [37], Adam [38], and AdaDelta [39]. The gradients of
the loss with respect to the physical properties, are computed
with the backpropagation algorithm on the specified RNN (16).

The backpropagation algorithm exploits the fact that the neu-
ral network is composed from sequences of basic computational
steps, in order to compute the derivative of the output with
respect to the inputs [40]. The derivative computation consists
of computing the derivatives of the basic operations on the
network’s nodes, and propagating them through the network
according to the chain rule. The implementation is done through
automatic differentiation tools, which offer a general frame-
work to construct neural networks and compute their derivatives
through the backpropagation algorithm [41].

The set of estimated properties, {Θi}nθ
i=1, is updated at each

iteration of the iterative algorithm. For example, to estimate
Θi, ∀i ∈ [1, nθ] using gradient-descent, the algorithm will per-
form the following step at each iteration

Θi ←− Θi − α
∂L

∂Θi
(18)
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Algorithm 2: Nonlinear Waveform Inversion.
Inputs:

M ∈ Rnc×nt � The measured channel data
F ∈ Rnx×nz×nt � The applied pulse
Θ

(0)
i ∈ Rnx×nz , ∀i ∈ [1, nθ] � Set of initial

properties
Θi ←− Θ

(0)
i , ∀i ∈ [1, nθ] � Properties’ initialization

while stopping criteria is not satisfied do
Backpropogate the gradients through the network:
∂L
∂Θi

for i ∈ [1, nθ]
Update the estimators Θi for i ∈ [1, nθ], according
to the chosen optimizer

end while
Output: {Θi}nθ

i=1 � The set of reconstructed properties

where α is the learning rate, and ∂L
∂Θi

is the derivative of the loss
with respect to Θi, obtained by applying the backpropagation
algorithm on the RNN (16). The method is summarized in
Algorithm 2.

Contrary to the common use of neural networks, here, we do
not perform learning, but rather express the objective function
in terms of an RNN, in order to facilitate the gradients’ compu-
tation. Once the acoustic wave is represented by an RNN, we
can apply advanced optimization algorithms borrowed from the
deep-learning toolbox, based on the backpropagation algorithm.

In contrast to the FWI algorithm, the RNN representation
does not rely on the linearity of the model, and allows to capture
more complex physical behaviors. Although we have demon-
strated that this approach holds specifically for the NLA wave
equation, this is part of a broader concept, which can be applied
to additional physical problems such as in photoacoustics and
seismology.

Finally, similarly to the FWI algorithm and contrary to
geometry-based methods [30], the NWI approach can be applied
with an arbitrary type of pulse F (plane wave, diverging wave,
and focused beam), and transducer array geometry, captured
by the restriction operator R (linear, convex, and endocavitary
probes).

D. Complexity Analysis

The algorithm’s time complexity is crucial in practice, in
particular for real-time imaging applications. The time com-
plexity of the forward and backward passes through the RNN,
are obtained by performing nt convolutions of nx × nz matri-
ces. This leads to a complexity of O(nxnznt), resulting in a
complexity reduction by a factor of nxnz compared to the FWI
algorithm, despite the increase in the model’s complexity due to
nonlinearity.

To further reduce the size of the spatial grid and improve the
efficiency of the algorithm, the acoustic wave can be restricted
to the region of interest in the medium. However, naive bound-
ary conditions will introduce further reflections to the system.
To inhibit those unwanted reflections without increasing the
computational complexity, perfectly matched layers (PMLs) are

used [34]. The PML applies a gradual attenuation of the acoustic
wave near the simulation grid’s boundaries, thus suppressing
artificial reflections and mimicking a grid without boundaries.
In our method, we add an artificial attenuation at the boundary
of the grid, of the form:

D(l) ∝
(

l

LP

)2

(19)

where LP is the width of the absorbing layer, and l ∈ [0, LP ]
denotes the distance to the boundary.

Since the PML is part of the simulation grid, smaller PML
sizes allow to reduce the computational complexity of the algo-
rithm. We choose to work with the smallest size of PML that
inhibits artificial reflections from the boundaries, thus reducing
the overhead.

E. Reconstruction From Multiple Pulses

Until now, we discussed how to reconstruct the medium’s
properties, from an US signal generated by a single acoustic
pulse. However, in practical settings, the US transducer per-
forms a sequence of multiple insonifications, originating from
multiple pulses. The pulses usually differ by their position and
orientation inside the medium. The data collected from multiple
insonifications can be combined to improve the reconstruction.

We consider a sequence ofnl insonifications, originating from
pulses Fl ∈ Rnx×nz×nt for l ∈ [1, nl]. As a result, a series of
measurement data is acquired denoted by Ml ∈ Rnc×nt for l ∈
[1, nl]:

Ml = R(N ({Θ�
i }nθ

i=1 ,Fl)) +Nl (20)

where Nl ∈ Rnc×nt , ∀l ∈ [1, nl] are additive i.i.d. noises with
zero mean.

To reconstruct the medium’s properties, we use a local
gradient-descent based algorithm [42]. This is an iterative al-
gorithm, where at each iteration, we apply Algorithm 2 on each
of the acquired signals, and the resulting estimators are averaged
to obtain the final estimation. Due to the locality of the method,
the uses of Algorithm 2 are independent and can be distributed
over multiple processing units, using parallel computing tools.
As a result, for nl processing units, the time complexity of each
iteration is similar to Algorithm 2. Moreover, this algorithm
is efficient in terms of communication between the processing
units [42], since the number of synchronization across all units
is reduced compared to common gradient-descent based algo-
rithms. The method is summarized in Algorithm 3.

IV. SIMULATION RESULTS

To test our method, we applied the NWI algorithm on in-silico
data with known properties. In Section IV-A, we describe the
settings of the US transducer along with the setup for the NWI
algorithm. In Section IV-B, we describe the simulation experi-
ments we performed, following previous inverse US works for
medical application [30], [33]. We present the results obtained
from the experiments with NWI, evaluate them, and compare
them to the FWI reconstructions.
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Algorithm 3: Reconstruction From Multiple Insonifica-
tions.

Inputs:
Ml ∈ Rnc×nt , ∀l ∈ [1, nl] � The measured channel
data
Fl ∈ Rnx×nz×nt , ∀l ∈ [1, nl] � The applied pulses
Θ

(0)
i Rnx×nz , ∀i ∈ [1, nθ] � Set of initial properties

Θi ←− Θ
(0)
i , ∀i ∈ [1, nθ] � Properties’ initialization

for number of iterations do
Apply Algorithm 2 in parallel ∀l ∈ [1, nl]:
{Θ(l)

i }nθ
i=1 ←− Algorithm 2 (Ml,Fl, {Θi}nθ

i=1)
Average the estimators:

Θi ←− 1
nl

∑nl

l=1 Θ
(l)
i , ∀i ∈ [1, nθ]

end for
Output: {Θi}nθ

i=1 � The set of reconstructed properties

A. Simulation Setup

To demonstrate the capabilities of our approach, we re-
constructed the properties of a 50[mm]× 50[mm] simulated
medium with similar characteristics as human tissues [43]. We
used a linear transducer array with 80 elements. At each lateral
emission, 16 transducer’s elements are employed to generate an
acoustic pulse F, with a central frequency of f0 = 4MHz. The
pulses are focused beams, with a focus depth of 5 [mm], and no
steering angle. A more detailed explanation on focused beams
can be found in Appendix V-B. The transducer performsnl = 16
consecutive lateral emissions of the focused beam, moving along
the array with a stride of four elements between the emissions.

The additive noises are normally distributed with zero means.
The variance is chosen such that the obtain signal-to-noise ratio
(SNR) is 20, imitating in-vivo US scans [44]. Accordingly, we
used the regularized L2 loss:

L({Θi}nθ

i=1 ,m) = ‖P({Θi}nθ

i=1 ,F)−M‖F

+

nθ=4∑
i=1

λΘi
‖DSΘi‖F (21)

whereP is the predicted signal (3), andM is the measured signal
(1). Here, DS is the Sobel regularization operator that enforces
soft edges, and λΘi

∈ R for i ∈ [1, nθ], control the level of
regularization. To justify the usage of the Sobel regularization,
we recall that in ultrasound imaging the reflections results from
edges in the medium properties, as opposed to smooth regions
that do not create reflections. As a result, sharp edges might
create a similar reflection pattern to a transition between different
tissues. The Sobel regularizer enforces that reflections indicate
the transition between different tissues. Nonetheless, additional
regularizations can be employed, depending on the available
prior knowledge on the reconstructed medium. At each iteration,
the estimations are updated with the Adam optimizer.

B. Reconstructions

First, we reconstruct the properties of a simulated medium
containing two tissues placed in water. The left and right tissues
correspond to fat and liver [43], as demonstrated in Fig. 2. This

Fig. 2. Illustration of the simulated medium. Water is represented in white.
The left and right objects are fat and liver, respectively. The tissues and the water
have different SoS, density, attenuation, and nonlinearity. The transducer array
is located at the top.

synthetic examples serve serve to asses the correctness of the
proposed approach, as was done in previous works [30], [33].
In Fig. 3, we show the GT properties of the medium along with
their reconstructions. In all maps, the values corresponding to
water are marked in white. The PML is the absorbing layer at
the grid boundaries with high acoustic attenuation, and is visible
in the attenuation maps.

To reconstruct the properties of the simulated medium, we
apply Algorithm 3 on the sequence of acquired channel data, as
detailed in Section IV-A. The medium is assumed to contain
mostly water, and therefore we initialize the properties with
values corresponding to water (e.g., the SoS map is initialized to
the SoS in water (1480 [m/s]) and the density map is initialized
to water’s density (1000 [kg/m3])), as demonstrated in Fig. 3.

Following previous works on SoS estimation [30], [33], we
use the normalized RMSE evaluation metric to quantitatively
evaluate the reconstructions. This metric compares the estimated
to the GT properties, and returns values in [0,1]:

NRMSE(Θ̂i) =

√∥∥∥Θ̂i −Θ�
i

∥∥∥2
F
/(nxnz)

Θi,max −Θi,min
, ∀i ∈ [1, nθ]

(22)
where Θ̂i are the reconstructed properties, and Θi,min and
Θi,max are the lower and upper bounds on the property’s values,
respectively.

In our experiments, the SoS and density were estimated
before the damping and nonlinearity parameter. To improve the
estimation of the latter, we extract from the estimated density
map a mask indicating the tissues’ location inside the medium.
This is done, by locating the regions in the reconstructed density
map, with values that are distant from the density of the water,
by a predefined threshold. The estimations of the damping and
the nonlinearity parameter are then updated only in a restricted
region of the medium, defined by the mask.

In Fig. 4 we reconstruct the properties of the medium using
the FWI algorithm. In this case, the nonlinearity parameter, β,
is not considered in the model, and therefore cannot be recon-
structed. The FWI algorithm was tested with the same number
of iterations, as the NWI approach, and the same regularization
and optimizer were employed during the optimization. We note
that the regions consisting of water were estimated incorrectly in
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Fig. 3. Reconstruction of simulated medium properties, using the NWI algorithm. The first row shows the GT values of the simulated medium. The second row
shows the initial values used as input to the inverse algorithm. In the third row we present the obtained reconstructions using NWI. We evaluate the difference using
the normalized RMSE metric. Across all maps, white values correspond to the water’s properties. The left and right objects are fat and liver respectively. The PML
layer applies a gradual attenuation, which increases close to the boundaries of the grid, as shown in the attenuation maps.

Fig. 4. Reconstruction of the SoS, density, and attenuation of the same medium as in Fig. 3, using the FWI algorithm. The first row shows the GT values of the
simulated medium. The second row shows the initial values used as input to the inverse algorithm. In the third row we show the results from FWI. The nonlinearity
parameter cannot be reconstructed using the linear acoustic model, assumed by the FWI method. The estimation errors of the SoS, density, the attenuation increased
by factors of 1.4, 1.7 and 2.2, respectively, highlighting the importance of using an adapted reconstruction algorithm that considers nonlinearity.
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the SoS map, which increased its NRMSE score. The estimation
errors of the SoS, density, and attenuation increased by factors
of 1.4, 1.7 and 2.2, respectively, emphasizing the importance
of using an adapted nonlinear acoustic model. Moreover, the
reconstructions’ time increased substantially.

V. DISCUSSION

We presented the NWI algorithm, a model-based approach
to reconstruct multiple material’s properties in nonlinear media,
from US scans. The algorithm exploits the RNN representation
of the NLA wave equation to compute the gradients efficiently.

Reconstructing the properties of nonlinear media is suited
for medical imaging, where the tissues are highly nonlinear.
The nonlinearity poses further challenge compared to linear
media, and is not considered in any wave inversion algorithm
today. In the example we presented, neglecting nonlinear effects
introduced artifacts to the reconstruction, damaged its quality,
and doubled the reconstruction error.

Other imaging modalities are similarly determined by the
wave equation, and therefore can be represented as an RNN,
such as in photoacoustics and seismology. The proposed method
can be applied to these inverse physical problems, by adapting
the physical model on which the algorithm relies.

The NWI algorithm expands the range of physical properties
that can be reconstructed with US, and improves their recon-
struction. Our results show that considering adapted physical
models in nonlinear media, such as the human body, can sub-
stantially improve the reconstructions over conventional inverse
US methods today. Moreover, taking advantage of the RNN
representation of the wave equation, reduces time and costs for
applying inverse US methods, paving the way for deploying
inverse US modalities into the clinic. In our future work, we
hope to conduct an extensive analysis with accurate human
tissues simulation, to asses the importance of considering NLA
for clinical applications, and explore the advantages of NWI
in various clinical applications (including tumors detection and
classification, tissues’ fat quantification, and imaging of com-
plex media such as cranial US), toward increasing the reliability
of US based medical diagnosis. Also, we aim to generalize
the proposed method for reconstructing the properties of three
dimensional media, which imposes additional challenges due to
the increase in the problem’s computational complexity.

APPENDIX

A. Linear Acoustic Operator

In this appendix, we derive the linear acoustic matrix, starting
from an homogeneous medium (with constant density). This is a
simple model that exemplifies how to construct the linear acous-
tic operator. Assuming a linear acoustic model in homogeneous
media, the wave equation in vector notations reduces to:

∂ttu = diag(c0)
2(∂xx + ∂zz)u+ f (23)

where c0 = vec(C)⊗ 1v ∈ Rnxnznt×1 is the discrete
medium’s SoS organized as a column vector, repeated nt

times, 1v ∈ Rnt×1 is a vector of ones, and diag(·) returns a

square diagonal matrix with the elements of the input vector on
the main diagonal. In addition, ∂tt, ∂xx, and ∂zz are the discrete
second order temporal and spatial derivatives, respectively. This
can be written as a linear equation, Ahu = f , where

Ah = ∂tt − diag(c0)
2(∂xx + ∂zz). (24)

This linear operator is also known as the d’Alembert operator
Ah = �. We observe that the linear wave acoustic operator
is a function of the medium’s SoS, Ah = Ah(c0), and can
be represented by an nxnznt × nxnznt matrix. Moreover, the
derivative of the operator with respect to the SoS, ∂Ah

∂c0
, can be

computed, yielding a three dimensional matrix that we do not
present here.

We further broaden the linear acoustic operator to capture
more complex behaviours, by considering the following lin-
ear model, which is similar to (13), except neglecting the
nonlinearity:

∂ttu+ 2diag(d)∂tu+ diag(d)2u

= diag(c0)
2diag(ρ0)

(
∂x

(
diag

(
1

ρ0

)
∂xu

))

+ diag(c0)
2diag(ρ0)

(
∂z

(
diag

(
1

ρ0

)
∂zu

))
+ f

(25)

where ρ0 = vec(Q)⊗ 1v, d = vec(D)⊗ 1v ∈ Rnxnznt×1

are the discrete medium’s density and attenuation organized as
column vectors, respectively, and ∂t, ∂x, and ∂z are the discrete
first order temporal and spatial derivatives, respectively. This
can be written as a linear equation, Au = f , where

A = ∂tt + 2diag(d)∂t + diag(d)2

− diag(c0)
2diag(ρ0)∂xdiag

(
1

ρ0

)
∂x

− diag(c0)
2diag(ρ0)∂zdiag

(
1

ρ0

)
∂z. (26)

Similarly, this operator depends on the medium’s SoS, den-
sity, and attenuation, A = A(c0, ρ0,d), and the derivatives,
∂A
∂c0

, ∂A
∂ρ0

, ∂A
∂d , can be computed.

Generally, the linear wave equation operator, A, can cover
additional behaviours, and depend on additional physical prop-
erties, A = A({θi}nθ

i=1). However, we note that this wave rep-
resentation is limited to linear models, and cannot contain higher
orders in u (such as u2).

B. Focused Acoustic Beam

Here we demonstrate how to generate a focused beam from
a linear transducer array. We denote by s(t) the acoustic pulse
generated from a single transducer element, with a central fre-
quency of f0, and consider a beam created from N transducer
elements. We design the beam to focus at a focal point at distance
P from the transducer array, on the vertical line from the middle
transducer element.

To generate a focused beam at the focal point, all N elements
apply the same acoustic pulse, s(t), with tailored time delays.
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Fig. 5. Comparing the reconstruction of NWI and FWI of a simulated medium properties. The first row shows the GT values of the simulated medium. The
second and third rows shows the obtained reconstructions using NWI and FWI, respectively.

The choice of the acoustic pulse varies in different applications.
The time delays are calculated from the differences between the
arrival times of the waves at the focal point, such that the pulses
created from all elements, constructively interfere at the focal
point [45]. Specifically, the time delay, τj , of the jth element in
the array, j ∈ [1, N ], is:

τj =
P −

√
P 2 + d2j

c0
(27)

where dj denotes the distance between the jth element and the
middle point in the transducer array. Also, c0 is a constant value
that characterizes the average SoS inside the medium. Since most
of the simulated medium presented in Section IV-B is assumed
to be water, we fixed it to the water’s SoS c0 = 1480 [m/s] (in
practice, this value is fixed to the average SoS in the human body
- c0 = 1540 [m/s]). Accordingly, the acoustic pulse generated
from the jth element is s(t− τj), for j ∈ [1, N ]. This is sampled
with time intervals of Δt, and is organized in matrix form such
as

F[xj , zj , n] = s(nΔt − τj) (28)

where xj and zj denote the location of the jth element on the
grid, for j ∈ [1, N ].

C. Implementation Details

Here we complete the implementation details for the pre-
sented simulations. The simulation grid covers an area of
50[mm]× 50[mm], and is divided into 100× 100 spatial pixels
(resulting in Δ = 0.5[mm]). In our simulations, the location of
the transducer’s elements are set to points on the grid. However,

assuming this is not the case, one can divide the transducer’s
elements into multiple pixels with different weights (which de-
pend on the distances between the element and the pixel), which
act as effective elements during transmission and reception. For
simulating the wave we useΔt = 0.14[μs], leading to a Courant
number of Cr = 0.43, satisfying the CFL condition.

For the discrete Laplacian kernel, we used

∇2
D =

1

Δ2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
12 0 0

0 0 4
3 0 0

− 1
12

4
3 −2 · 52 4

3 − 1
12

0 0 4
3 0 0

0 0 − 1
12 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)

Similarly, for the Sobel regularization, the properties are con-
volved with the Sobel kernel in the z axis

∇S =

⎛
⎜⎝ 1 2 1

0 0 0

−1 −2 −1

⎞
⎟⎠ . (30)

The PML is used to inhibit artificial reflections from the
boundaries of the simulation’s grid. To this end, the size of the
PML is 15 pixels.

The acoustic pulse we applied is

s(t) = sin(2πf0t) exp

(
−
(

t

tw

)2
)

(31)

where f0 = 4[MHz] is the central frequency and tw = 0.25[μs]
is the signal bandwidth. The generation of the focused beam is
detailed in Appendix V-B.
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Fig. 6. Comparing the reconstruction of NWI and FWI of a simulated medium properties. The first row shows the GT values of the simulated medium. The
second and third rows shows the obtained reconstructions using NWI and FWI, respectively.

D. Additional Reconstructions

In this appendix, we present additional reconstruction results,
obtained with NWI and FWI, in order to better assess the NWI
algorithm. In Fig. 5 and Fig. 6, we observe that the liver tissue
is enclosed in fat, resulting in mediums with multiple layers.
In these experiments, NWI achieves lower normalized RMSE
compared to FWI.
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