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Optimal Detection of Symmetric
Mixed Quantum States
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Abstract—We develop a sufficient condition for the least-squares
measurement (LSM), or the square-root measurement, to mini-
mize the probability of a detection error when distinguishing be-
tween a collection of mixed quantum states. Using this condition we
derive the optimal measurement for state sets with a broad class of
symmetries.

We first consider geometrically uniform (GU) state sets with a
possibly non-Abelian generating group, and show that if the gener-
ator satisfies a weighted norm constraint, then the LSM is optimal.
In particular, for pure-state GU ensembles, the LSM is shown to be
optimal. For arbitrary GU state sets we show that the optimal mea-
surement operators are GU with generator that can be computed
very efficiently in polynomial time, within any desired accuracy.

We then consider compound GU (CGU) state sets which consist
of subsets that are GU. When the generators satisfy a certain con-
straint, the LSM is again optimal. For arbitrary CGU state sets, the
optimal measurement operators are shown to be CGU with gener-
ators that can be computed efficiently in polynomial time.

Index Terms—Compound geometrically uniform (CGU) quan-
tum states, geometrically uniform quantum states, least-squares
measurement (LSM), mixed quantum states, quantum detection,
semidefinite programming, square-root measurement.

I. INTRODUCTION

I N a quantum detection problem, a transmitter conveys clas-
sical information to a receiver using a quantum-mechan-

ical channel. Each message corresponds to a preparation of the
quantum channel in an associated quantum state represented by
a density operator, drawn from a collection of known states. To
detect the information, the receiver subjects the channel to a
quantum measurement. Our problem is to construct a measure-
ment that minimizes the probability of a detection error.

We consider a quantum state ensemble consisting of den-
sity operators with prior probabilities

, acting on an -dimensional complex Hilbert
space . A density operator is a positive semidefinite (PSD)
Hermitian operator with ; we write to indicate

is PSD. A mixed-state ensemble is one in which at least one of
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the density operators has rank larger than one. A pure-state
ensemble is one in which each density operator is a rank-one
projector , where the vectors , though evidently nor-
malized to unit length, are not necessarily orthogonal.

For our measurement we consider general positive operator-
valued measures [1], [2]. Necessary and sufficient conditions
for an optimum measurement minimizing the probability of a
detection error have been derived [3]–[5]. However, in general,
obtaining a closed-form analytical expression for the optimal
measurement directly from these conditions is a difficult and
unsolved problem. Iterative algorithms minimizing the proba-
bility of a detection error have been proposed in [5], [6].

We note that recently, several other approaches to quantum
detection have emerged, including unambiguous quantum de-
tection [7]–[13], and mixed quantum state detection [12], [14],
[15]. Here, we focus on strategies that maximize the probability
of correct detection.

There are some particular cases in which the solution to the
quantum detection problem is known explicitly [1], [16]–[19].
Ban et al. [18] derive the solution for a pure-state ensemble
consisting of density operators , where the vec-
tors form a cyclic set, i.e., the vectors are generated by the
action of a cyclic group of unitary matrices on a single gener-
ating vector. The optimal measurement for this case coincides
with the least-squares measurement (LSM) [19], also known as
the square-root measurement [20], [21]. Eldar and Forney [19]
derive the optimal measurement for a pure-state ensemble in
which the vectors have a strong symmetry property called
geometric uniformity. In this case, the vectors are defined
by the action of a finite Abelian group of unitary matrices on a
single generating vector; the optimal measurement again coin-
cides with the LSM. Note that a cyclic state set is a special case
of a geometrically uniform state set. Barnett [22] considers the
case of distinguishing between multiply symmetric pure states,
which are generated by the action of two cyclic groups of uni-
tary matrices on a single generating vector. When the groups
satisfy a certain constraint, the optimal measurement is shown
to coincide with the LSM.

The LSM has many desirable properties [18]–[21], [23]–[25]
and has, therefore, been proposed as a detection measurement
in many settings (see, e.g., [26]–[28]). It has also been realized
experimentally, see, e.g., [29], [30]. In Section III, we derive a
sufficient condition on the density operators for the LSM to min-
imize the probability of a detection error, when distinguishing
between mixed states. For rank-one ensembles we show that the
LSM minimizes the probability of a detection error if the prob-
ability of correctly detecting each of the states using the LSM is
the same, regardless of the state transmitted.

0018-9448/04$20.00 © 2004 IEEE
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In Section IV, we consider geometrically uniform (GU) state
sets defined over a finite group of unitary matrices. In contrast
to [19], the GU state sets we consider are not constrained to be
rank-one state sets but rather can be mixed-state sets, and the
unitary group is not constrained to be Abelian. We obtain a con-
venient characterization of the LSM and show that the LSM op-
erators have the same symmetries as the original state set. We
then show that for such GU state sets, the probability of cor-
rectly detecting each of the states using the LSM is the same,
so that for rank-one ensembles, the LSM minimizes the proba-
bility of a detection error. For an arbitrary mixed GU ensemble,
the optimal measurement operators are shown to be GU with the
same generating group, and can be computed very efficiently in
polynomial time. Furthermore, under a certain constraint on the
generator, the LSM again minimizes the probability of a detec-
tion error.

In Section V, we consider the case in which the state set is
generated by a group of unitary matrices using multiple genera-
tors. Such a collection of states is referred to as a compound GU
(CGU) state set [31]. We obtain a convenient characterization of
the LSM for CGU state sets, and show that the LSM vectors are
themselves CGU. When the probability of correctly detecting
each of the generators using the LSM is the same, we show that
the probability of correctly detecting each of the states using
the LSM is the same. Therefore, for rank-one CGU ensembles
with this property, the LSM minimizes the probability of a de-
tection error. An interesting class of CGU state sets results when
the set of generating vectors is itself GU, which we refer to as
CGU state sets with GU generators. In the case in which the
generating vectors are GU and generated by a group that com-
mutes with the total density operator , we show that the
LSM vectors are also CGU with GU generators, so that they
are generated by a single generating vector. For such state sets,
the probability of correctly detecting each of the states using
the LSM is the same, so that for rank-one ensembles, the LSM
again minimizes the probability of a detection error. An example
of such a state set is when the generating group of the GU state
sets commutes up to a phase factor with the CGU group. We
note that the symmetric states studied by Barnett in [22] are a
special case of the CGU state sets with commuting GU genera-
tors, in which both the GU group and the CGU group are chosen
as cyclic groups. Finally, we show that for arbitrary CGU state
sets, the measurement operators minimizing the probability of
a detection error are also CGU, and we propose an efficient al-
gorithm for computing the optimal generators.

Before proceeding to the detailed development, in Section II,
we present our problem and summarize results from [5] per-
taining to the conditions on the optimal measurement operators.

II. OPTIMAL DETECTION OF QUANTUM STATES

Assume that a quantum channel is prepared in a quantum state
drawn from a collection of given states, represented by den-
sity operators in an -dimensional complex
Hilbert space . We assume, without loss of generality, that the
eigenvectors of the density operators , collec-

tively span1 . Since is Hermitian and PSD, we can express
as for some matrix , e.g., via the Cholesky or

eigendecomposition of [32]. We refer to as a factor of .
Note that the choice of is not unique; if is a factor of ,
then any matrix of the form , where is an arbitrary
matrix satisfying , is also a factor of .

At the receiver, the constructed measurement comprises
PSD Hermitian measurement operators on

that satisfy , where is the identity operator on
. We thus seek the measurement operators

satisfying

(1)

that minimize the probability of a detection error, or equiva-
lently, maximize the probability of correct detection. Given that
the transmitted state is , the probability of correctly detecting
the state using measurement operators
is . Therefore, the probability of correct detection is
given by

(2)

where is the prior probability of , with .
It was shown in [4], [5] that a set of measurement operators

maximizes if and only if there exists a
Hermitian satisfying

(3)

(i.e., ) such that

(4)

The matrix can be determined as the solution to the dual
problem

(5)

where is the set of Hermitian operators on , subject to

(6)

Except in some particular cases [1], [16]–[19], obtaining a
closed-form analytical expression for the optimal measurement
operators directly from these necessary and sufficient condi-
tions for optimality is a difficult and unsolved problem. Since
(5) is a (convex) semidefinite programming problem [33]–[35],
there are very efficient methods for solving it. In particular,
the optimal matrix minimizing subject to (6) can be
computed in Matlab using the linear matrix inequality (LMI)
Toolbox. A convenient interface for using the LMI toolbox is
the Matlab package2 IQC (see [5] for further details). Once

1Otherwise, we can transform the problem to a problem equivalent to the one
considered in this paper by reformulating the problem on the subspace spanned
by the eigenvectors of f� ; 1 � i � mg.

2This software was created by A. Megretski, C-Y. Kao, U. Jönsson, and
A. Rantzer and is available at : http : ==web:mit:edu=ameg=www=.
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we determine , the optimal measurement operators can be
computed using (4) and (1), as described in [5].

A suboptimal measurement that has been employed as a
detection measurement in many practical applications and
has many desirable properties is the LSM [19], [25]. Using
the necessary and sufficient conditions (1), (3), and (4), in
Section III we derive a general condition under which the LSM
is optimal, i.e., it minimizes the probability of a detection error
when distinguishing between possibly mixed quantum states.
In Sections IV and V, we consider some special cases of mixed-
and pure-state sets for which the LSM is optimal, and derive
explicit formulas for the optimal measurement operators.

III. THE LSM AND THE OPTIMAL MEASUREMENT

The LSM corresponding to a set of density operators
with eigenvectors that collectively

span and prior probabilities consists of the
measurement operators where [19],
[25]

(7)

with

(8)

Here is the matrix of (block) columns , is
the unique Hermitian square root of the corresponding matrix,
and is the inverse of this square root. Note that since the
eigenvectors of the collectively span , the columns of the

also together span , so is invertible. From (7)

(9)

so that the LSM operators defined by (7) satisfy (1). In the case
in which the prior probabilities are all equal

(10)

with

(11)

where is the matrix of (block) columns .
Since the factors are not unique, the LSM factors

are also not unique. In particular, if are the LSM factors
corresponding to , then the LSM factors corresponding to

with are . Therefore, although
the LSM factors are not unique, the LSM operators
are unique.

The LSM corresponding to a pure-state ensemble con-
sists of the measurement vectors , where

. It was shown in [19] that for rank-one ensembles, the
LSM vectors minimize the sum of the squared norms of the
error vectors , so that they are the measurement
vectors that satisfy (1) and are closest in a squared-error sense
to the weighted state vectors . In the case in

Fig. 1. Example of the LSM. Since the vectors j i are linearly independent,
the LSM vectors j� i are orthonormal and minimize he je i where je i =
j i � j� i.

which the vectors are linearly independent so that ,
(9) implies that the vectors must be orthonormal, so that the
LSM vectors are the closest orthonormal vectors to the vectors

in a least-squares sense, as illustrated in Fig. 1. A similar
result was obtained for the LSM factor corresponding to a
mixed-state ensemble with factors [24].

The LSM is equivalent to the square-root measurement [18],
[20], [21], [26]–[28], and has many desirable properties. Its con-
struction is relatively simple; it can be determined directly from
the given collection of states; it minimizes the probability of
a detection error for pure-state ensembles that exhibit certain
symmetries [18], [19]; it is “pretty good” when the states to be
distinguished are equally likely and almost orthogonal [20]; it
achieves a probability of error within a factor of two of the op-
timal probability of error [23]; and it is asymptotically optimal
[21], [25]. Because of these properties, the LSM has been pro-
posed as a detection measurement in many applications (see,
e.g., [26]–[28]).

It turns out that in many cases of practical interest the LSM
is optimal, i.e., it minimizes the probability of a detection error.
From the necessary and sufficient conditions for optimality dis-
cussed in Section II it follows that the LSM minimizes the prob-
ability of a detection error if and only if the measurement opera-
tors defined by (7) satisfy (4) for some Hermitian
satisfying (6). A sufficient condition for optimality of the LSM
is given in the following theorem.

Theorem 1: Let denote a collec-
tion of quantum states with prior probabilities .
Let with denote
the LSM operators corresponding to ,
where and is the matrix with block columns

. Then the LSM minimizes the probability of a detection error
if, for each , , where is a constant inde-
pendent of .

(It is easily verified that the condition does not
depend on the choice of factor .) A similar result for the spe-
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cial case in which the density operators are rank-one opera-
tors of the form and the vectors are linearly
independent was derived in [26].

Proof: We shall show that for a set of states with
prior probabilities , if , where

are the LSM factors and , then there exists an
Hermitian such that

(12)

Let . Since , it
follows that the eigenvalues of are all equal to

. Therefore, each eigenvalue of can take on the
value or which implies that

(13)

Right and left multiplying both sides of (13) by we have

(14)

which verifies the first condition in (12).
Next

(15)

so that the second condition in (12) is also satisfied.

If the state is transmitted with prior probability
, then the probability of correctly detecting the state using

measurement operators is

It follows that if the condition for optimality of Theorem 1 is
met, so that , then the probability of correctly de-
tecting each of the states using the LSM is , independent
of .

For a pure-state ensemble consisting of states with prior
probabilities , the probability of correct detection of the th
state is given by . Since for
any set of weighted vectors , is constant for all if
and only if is constant for all . Therefore, we may
state the condition in Theorem 1 for pure-state ensembles as the
following corollary.

Corollary 2: The LSM is optimal for a pure-state set
with prior probabilities if the probability of detecting each
one of the states using the LSM vectors is the same, regardless
of the specific state chosen.

In the remainder of the paper, we use Theorem 1 to derive the
optimal measurement for mixed- and pure-state sets with cer-
tain symmetry properties. The symmetry properties we consider
are quite general, covering many cases of practical interest, in-
cluding most cases where explicit solutions have been reported
in the literature.

IV. GEOMETRICALLY UNIFORM STATE SETS

In this section, we consider the case in which the density op-
erators are defined over a (not necessarily Abelian) group of
unitary matrices and are generated by a single generating ma-
trix. Such a state set is called GU [36]. We first obtain a conve-
nient characterization of the LSM in this case and then show that
under a certain constraint on the generator, the LSM minimizes
the probability of a detection error. In particular, for pure-state
ensembles the LSM minimizes the probability of a detection
error.

Let be a finite group of unitary ma-
trices . That is, contains the identity matrix ; if contains

, then it also contains its inverse ; and the product
of any two elements of is in [37].

The state set generated by using a single generating oper-
ator is the set . The group will
be called the generating group of . For concreteness, we as-
sume that so that . Such a state set has strong
symmetry properties and is called GU. For consistency with the
symmetry of , we will assume equiprobable prior probabilities
on the elements of .

If the state set is GU, then we can always
choose factors of such that where
is a factor of , so that the factors are also GU with generator

. In the remainder of this section, we explicitly assume that the
factors are chosen to be GU.

We note that in [19] a GU state set was defined for the case
of rank-one ensembles. Furthermore, the generating group was
assumed to be Abelian.

In Section IV-A, we derive the LSM operators for GU state
sets and show that the LSM operators are also GU with the same
generating group. We will see that this implies that when using
the LSM, the probability of correct detection of each of the states
in a GU state set is the same regardless of the particular state
chosen. From Corollary 2 it then follows that for pure-state en-
sembles, the LSM is optimal.

A. The LSM for GU States

To derive the LSM for a GU state set with generating group
, we first show that commutes with each of the matrices

. Indeed, expressing as

(16)

we have that for all

(17)

since is just a permutation of .
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Because commutes with , it follows that
also commutes with for all . Thus,

from (10), the LSM operators are with

(18)

where

(19)

It follows that the LSM factors are also GU with generating
group and generator given by (19). Therefore, to compute
the LSM factors for a GU state set, all we need is to compute
the generator . The remaining measurement factors are then
obtained by applying the group to .

A similar result was developed in [19] for rank-one ensembles
in the case in which the group is Abelian, using the Fourier
transform defined over .

B. Optimality of the LSM

We have seen that for a GU state set
with equal prior probabilities and generating group

, the LSM operators
are also GU with generating group . Therefore,

(20)

where and are the generators of the state factors and the
LSM factors, respectively. It follows that the probability of cor-
rect detection of each one of the states using the LSM is the
same, regardless of the state transmitted. This then implies, from
Corollary 2, that for pure-state GU ensembles the LSM is op-
timal. For a mixed-state ensemble, if the generator satisfies

(21)

for some , then, from Theorem 1, the LSM minimizes the prob-
ability of a detection error.

Note that the condition does not depend on the
choice of generator . Indeed, if is another factor of ,
then from (19) the generator of the LSM factors is so
that if and only if .

C. Optimal Measurement for Arbitrary GU State Sets

If the generator does not satisfy (21), then the LSM is no
longer guaranteed to be optimal. Nonetheless, as we now show,
the optimal measurement operators that minimize the proba-
bility of a detection error are GU with generating group . The
corresponding generator can be computed very efficiently in
polynomial time.

Suppose one set of optimal measurement operators that
maximize

(22)

is , and let

Let be the mapping from to with ,
defined by if . Then the measurement op-

erators for any are
also optimal. Indeed, it is easy to see that these operators satisfy
(1) and (using the fact that for some generator )
that

(23)

Since the measurement operators

are optimal for any , it follows immediately that the measure-
ment operators

are also optimal. Indeed, it is immediate that satisfy (1). In
addition, . Now

(24)

where .
We, therefore, conclude that the optimal measurement oper-

ators can always be chosen to be GU with the same generating
group as the original state set. Thus, to find the optimal mea-
surement operators all we need is to find the optimal generator

. The remaining operators are obtained by applying the group
to .
The optimal measurement operators satisfy and

so that the problem (2)
reduces to the maximization problem

(25)

where is the set of Hermitian operators on , subject to the
constraints

(26)
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Since this problem is a (convex) semidefinite programming
problem, the optimal can be computed very efficiently
in polynomial time within any desired accuracy [33]–[35],
for example, using the LMI Toolbox on Matlab. Note that
the problem of (25) and (26) has real unknowns and two
constraints, in contrast with the original maximization problem
(1) which has real unknowns and constraints.

We summarize our results regarding GU state sets in the fol-
lowing theorem.

Theorem 3 (GU State Sets): Let

be a GU state set generated by a finite group of unitary ma-
trices, where is an arbitrary generator, and let be
the matrix of columns . Then the LSM is given by the
measurement operators with

where

The LSM has the following properties.

1) The measurement operators are GU with generating
group .

2) The probability of correctly detecting each of the states
using the LSM is the same.

3) If , then the LSM minimizes
the probability of a detection error. In particular, if

is a vector so that the state set is a rank-one ensemble,
then the LSM minimizes the probability of a detection
error.

For an arbitrary generator the optimal measurement opera-
tors that minimize the probability of a detection error are also
GU with generating group and generator that maximizes

subject to and .

V. COMPOUND GEOMETRICALLY UNIFORM (CGU)
STATE SETS

In this section, we consider state sets which consist of sub-
sets that are GU, and are therefore referred to as CGU [31]. As
we show, the LSM operators are also CGU so that they can be
computed using a set of generators. Under a certain condition on
the generators, we also show that the optimal measurement as-
sociated with a CGU state set is equal to the LSM. For arbitrary
CGU state sets, the optimal measurement is no longer equal to
the LSM. Nonetheless, as we show, the optimal measurement
operators are also CGU and we derive an efficient computational
method for finding the optimal generators.

A CGU state set is defined as a set of density operators

such that , where the matrices
are unitary and form a group , and the operators

are the generators. For concreteness, we assume that

Fig. 2. A compound geometrically uniform pure-state set. The state sets S =

fj� i; j� ig andS = fj� i; j� ig are both GU with the same generating
group; both sets are invariant under a reflection about the dashed line. However,
the combined set S = fj� i; j� i; j� i; j� ig is no longer GU.

so that . We also assume equiprobable prior
probabilities on the elements of .

If the state set is CGU, then we
can always choose factors of such that

where is a factor of , so that the factors are
also CGU with generators . In the remainder
of this section we explicitly assume that the factors are chosen
to be CGU.

A CGU state set is in general not GU. However, for every ,
the matrices and the operators

are GU with generating group .

A. Example of a Compound Geometrically Uniform State Set

An example of a CGU state set is illustrated in Fig. 2. In this
example, the state set is
where , with

(27)

and the generating vectors are

(28)

The matrix represents a reflection about the dashed line in
Fig. 2. Thus, the vector is obtained by reflecting the gen-
erator about this line, and, similarly, the vector is
obtained by reflecting the generator about this line.

As can be seen from the figure, the state set is not GU.
In particular, there is no isometry that transforms
into while leaving the set invariant. However, the sets

and are both GU with
generating group .

B. The LSM for CGU State Sets

We now derive the LSM for a CGU state set with equal prior
probabilities. Let denote the matrix of columns . Using
a similar argument to that used in (17) (see also [31]), we can
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Fig. 3. The LSM vectors associated with the compound geometrically uniform
state set of Fig. 2. As can be seen from the figure, the measurement vectors have
the same symmetries as the original state set.

show that for a CGU state set with generating group ,
commutes with each of the matrices . If commutes
with , then also commutes with for all . Thus, the
LSM operators are with

(29)

where

(30)

Therefore, the LSM factors are also CGU with generating group
and generators given by (30). To compute the LSM factors,

all we need is to compute the generators . The remaining
measurement factors are then obtained by applying the group

to each of the generators.
For the CGU state set of Fig. 2 we have that

(31)

Therefore, the LSM vectors are

where with given by (27), and from (30) the
generating vectors are

(32)

The LSM vectors are depicted in Fig. 3. The vectors have the
same symmetries as the state set of Fig. 2, with different gener-
ating vectors. Since in this example the generating vectors sat-
isfy , we have that for

.

C. CGU State Sets With GU Generators

A special class of CGU state sets is CGU state sets with GU
generators in which the generators
and the factors are themselves GU. Specifically,

for some generator , where the matrices are
unitary, and form a group .

We now consider the special case in which commutes with
. We refer to the resulting set as CGU with commuting GU

generators. For example, if and commute up to a phase
factor for all and so that where
is an arbitrary phase function that may depend on the indexes
and , then commutes with [31]. (In the special case in
which so that for all , the resulting state
set is GU [31]). A special case of a CGU set with commuting
GU generators is the multiply symmetric state set, defined by
Barnett [22], in which both and are cyclic groups.

For a CGU group with commuting GU generators, the LSM
factors are

(33)

where . Thus, even though the state set is not in general
GU, the LSM factors can be computed using a single generator.

Alternatively, we can express as , where the
generators are given by

(34)

From (34) it follows that the generators are GU with gener-
ating group and generator .

We conclude that for a CGU state set with commuting GU
generators and generating group , the LSM vectors are also
CGU with commuting GU generators and generating group .

D. Example of a CGU State Set With Commuting GU
Generators

We now consider an example of a CGU state set with com-
muting GU generators. Consider the group of unitary ma-
trices on where , , and is the matrix
defined by

...
... (35)

Let be the group of unitary matrices ,
, where is the diagonal matrix with diagonal ele-

ments , . We can immediately verify that for
this choice of and , . We, therefore, con-
clude that the LSM operators corresponding to the CGU state
set with and

for some generator , are also CGU with
commuting GU generators and can, therefore, be generated by
a single generator.

As a special case, suppose that so that consists of the
matrices and where

(36)

and consists of the matrices and where

(37)
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Fig. 4. A compound geometrically uniform state set with commuting GU
generators. The state sets S = fj� i; j� ig and S = fj� i; j� ig
are both GU with the same generating group; both sets are invariant under
a reflection about the dashed line. The set of generators fj� i; j� ig
is GU and is invariant under a reflection about the x-axis. The combined
set S = fj� i; j� i; j� i; j� ig is no longer GU. Nonetheless, the
LSM vectors are generated by a single generating vector and are given by
j� i = (1=

p
2)j� i.

Let the state set be , where
. Since must be normalized, .

Then

(38)

The LSM vectors are given by ,
where , and

(39)

We can immediately verify that

(40)

Thus, the LSM vectors are

(41)

In Fig. 4, we plot the state vectors given by (38) for the
case in which . As can be seen from the
figure, the state set is not GU. In particular, there is no isometry
that transforms into while leaving the set invariant.
Nonetheless, we have seen that the LSM vectors can be gener-
ated by a single generating vector .

Note, that in the example of Section V-A, the CGU state
set also has GU generators. Specifically, the set of generators

with and is invariant
under a reflection about the -axis: where
is given by (37). However, the group of gener-
ators does not commute up to a phase with the generating group

, where is given by (27) and represents a reflec-
tion about the dashed line in Fig. 2. This can be verified graph-
ically from Fig. 2. Suppose we apply to and then apply

. Then the resulting vector is equal to . If, on the other

hand, we first apply to and then apply , then the re-
sulting vector is the reflection of about the -axis, which
is not related to by a phase factor.

Now, consider the state set in Fig. 4. In this case,
and where represents a reflection about the

-axis and represents a reflection about the dashed line in
Fig. 4. We can immediately verify from the figure that applying

and then to any vector in the set results in a vector that is
equal up to a minus sign to the vector that results from first ap-
plying and then . For example, applying to and then
applying results in . If, on the other hand, we first apply

to and then apply , then the resulting vector is the re-
flection of about the -axis, which is equal to .

E. Optimality of the LSM

We have seen in Section V-D that the LSM operators
corresponding to a CGU state set with generating group

are also CGU with the same generating
group. In particular, for each , the sets
and are both GU with generating group .
Therefore,

(42)

which implies that the probability of correctly detecting each
of the states in using the LSM is the same. It follows from
Theorem 1 that if

(43)

then the LSM minimizes the probability of a detection error.
Note that the condition does not depend on the
choice of generator .

In Section V-C, we showed that the LSM operators corre-
sponding to a CGU state set with GU generators
where and and commute with , are also CGU
with GU generators generated by the same group and some
generator . Therefore, for all

(44)

so that the probability of correctly detecting each of the states
is the same. If in addition

(45)

then combining (42), (44). and (45) with Theorem 1 we con-
clude that the LSM minimizes the probability of a detection
error. In particular, for a rank-one ensemble, is a scalar
so that (45) is always satisfied. Therefore, for a rank-one CGU
state set with commuting GU generators, the LSM minimizes
the probability of a detection error. This generalizes the previous
result of Barnett [22].

F. Optimal Measurement for Arbitrary CGU State Sets

If the generators do not satisfy (43), then the LSM is no
longer guaranteed to be optimal. Nonetheless, as we now show,
the optimal measurement operators that minimize the proba-
bility of a detection error are CGU with generating group .
The corresponding generators can be computed very efficiently
in polynomial time within any desired accuracy.
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Suppose that one set of optimal measurement operators that
maximize

(46)

are , and let

Let be the mapping from to with ,
defined by if . Then the measurement

operators for any are also
optimal. It is easy to see that these operators satisfy (1) and that
using the fact that for some generators

(47)

Since the measurement operators

are optimal for any , it follows immediately that the measure-
ment operators

are also optimal, since satisfy (1) and

Now

(48)

where .
We, therefore, conclude that the optimal measurement opera-

tors can always be chosen to be CGU with the same generating
group as the original state set. Thus, to find the optimal mea-
surement operators all we need is to find the optimal generators

. The remaining operators are obtained by ap-
plying the group to each of the generators.

Since the optimal measurement operators satisfy
and , ,

so that the problem (2) reduces to the maximization problem

(49)

subject to the constraints

(50)

Since this problem is a (convex) semidefinite programming
problem, the optimal generators can be computed very
efficiently in polynomial time within any desired accuracy
[33]–[35], for example, using the LMI Toolbox on Matlab.
Note that the problem of (49) and (50) has real unknowns
and constraints, in contrast with the original maximization
problem (2) and (1) which has real unknowns and
constraints.

We summarize our results regarding CGU state sets in the
following theorem.

Theorem 4 (CGU State Sets): Let

be a CGU state set generated by a finite group of unitary
matrices and generators , and let be
the matrix of columns . Then, the LSM is given by
the measurement operators with

where

The LSM has the following properties.

1) The measurement operators are CGU with generating
group .

2) The probability of correctly detecting each of the states
for fixed using the LSM is the same.

3) If for , then
the LSM minimizes the probability of a detection error.

If, in addition, the generators are
geometrically uniform with for all , then

1) where so that the
LSM operators are CGU with geometrically uniform
generators.

2) The probability of correctly detecting each of the states
using the LSM is the same.

3) If , then the LSM minimizes
the probability of a detection error. In particular, if

is a vector so that the state set is a rank-one ensemble,
then the LSM minimizes the probability of a detection
error.

For arbitrary CGU state sets, the optimal measurement op-
erators that minimize the probability of a detection error
are CGU with generating group and generators that
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maximize subject to , and
.

VI. CONCLUSION

In this paper, we considered the optimal measurement oper-
ators that minimize the probability of a detection error when
distinguishing between a collection of mixed quantum states.
We first derived a general condition under which the LSM min-
imizes the probability of a detection error. We then considered
state sets with a broad class of symmetry properties for which
the LSM is optimal. Specifically, we showed that for GU state
sets and for CGU state sets with generators that satisfy certain
constraints, the LSM is optimal. We also showed that for arbi-
trary GU and CGU state sets, the optimal measurement opera-
tors have the same symmetries as the original state sets. There-
fore, to compute the optimal measurement operators, we need
only to compute the corresponding generators. As we showed,
the generators can be computed very efficiently in polynomial
time within any desired accuracy by solving a semidefinite pro-
gramming problem.
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