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E lectromagnetic (EM) imaging is widely applied in sensing 
for security, biomedicine, geophysics, and various industries. 
It is an ill-posed inverse problem whose solution is usually 

computationally expensive. Machine learning (ML) techniques 
and especially deep learning (DL) show potential in fast and ac-
curate imaging. However, the high performance of purely data-
driven approaches relies on constructing a training set that is 
statistically consistent with practical scenarios, which is often 
not possible in EM-imaging tasks. Consequently, generaliz-
ability becomes a major concern. On the other hand, physical 
principles underlie EM phenomena and provide baselines for 
current imaging techniques. To benefit from prior knowledge in 
big data and the theoretical constraint of physical laws, physics-
embedded ML methods for EM imaging have become the focus 
of a large body of recent work.

This article surveys various schemes to incorporate physics 
in learning-based EM imaging. We first introduce background 
on EM imaging and basic formulations of the inverse problem. 
We then focus on three types of strategies combining physics and 
ML for linear and nonlinear imaging and discuss their advan-
tages and limitations. Finally, we conclude with open challenges 
and possible ways forward in this fast-developing field. Our aim 
is to facilitate the study of intelligent EM-imaging methods that 
will be efficient, interpretable, and controllable.

Introduction
EM fields and waves have long been used as a sensing method. 
This is because the EM field can penetrate various media, in-
teract with materials, and alter its distribution in both space 
and time. Hence, electric and magnetic properties of materi-
als, such as permittivity, permeability, and conductivity, can be 
inferred from field samples. EM imaging refers to reconstruct-
ing the value distribution of electric or magnetic parameters 
from measured EM fields, through which a better understand-
ing of the domain of investigation (DoI) can be obtained. EM-
imaging techniques have been widely applied in security, bio-
medicine, geophysics, and various industries. In security, for 
example, EM imaging using radars can help locate targets that 
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are invisible to optical imaging. In biomedicine, microwave 
imaging can detect anomalies in the permittivity distribution 
caused, e.g., by a cerebral hemorrhage. As a final example, 
images of conductivity distribution reconstructed from low-
frequency EM fields may reveal deep structures in the earth.

A theoretical model of EM imaging is illustrated in Fig-
ure 1, where EM sensors, i.e., antennas, are deployed around 
the DoI. When an external source illuminates the DoI, sensors 
record the EM field. Given the transmitting waveform as well 
as locations of the transmitting antennas, the EM field propa-
gates according to Maxwell’s equations [1]. In the frequency 
domain, EM propagation can be described by the following 
partial differential equation (PDE):

 ( ) ( ) ( ) ( )iE r r E r J r2# #d d ~ ne ~n- =  (1)

where E is the vector electric field, r is the spatial position, 
n  is permeability, e  is complex permittivity, J is the electric 
current source, ~ is the angular frequency, and #d  is the curl 
operator. Complex permittivity is expressed as / ,iRe e v ~= +  
where its real part Re  is permittivity and its imaginary part 
is related to conductivity .v  Equation (1) can describe both 
wave physics ( )/R &e v ~  and diffusion physics ( / ),R&v ~ e  
depending on the settings of investigation. Here permeability 
is assumed to be constant, which is reasonable in most imag-
ing scenarios. In EM imaging, we usually have information 
about the sources; therefore, ~ and J are both known. Once 
we measure the electric field at the receiver locations, complex 
permittivity can be recovered by solving (1). This process de-
fines EM inverse problems in which EM parameters are solved 
given measured electric fields.

The EM inverse problem is nonlinear and often ill-posed 
due to the following several challenges:

 ■ The nonlinearity comes from complex interactions between 
the measured EM field and the material parameters. As we 
can see from (1), the product of E and e  results in a nonlin-
ear relationship where the nonlinearity increases with .e

 ■ The ill-posedness arises from multiple scatterings, insuffi-
cient measurements, and noise corruption. Due to multiple 
scatterings of EM waves, a slight variation of targets may 
change the EM field substantially. In most cases, we only 

record the field at specific locations, i.e., the field samples 
are sparse in space. The attenuation of EM fields caused by 
diffraction and absorption of media, as well as a noisy 
environment, further increases the ill-posedness.

 ■ Solving EM-imaging problems often requires accurate 
modeling of EM wave propagation in the DoI. This pro-
cess is called forward modeling and is implemented by 
numerical algorithms such as the finite-element method. 
However, it is computationally intensive, especially for 
large DoIs.
Recent advances in big data storage, massive paralleliza-

tion, and optimization algorithms have facilitated the develop-
ment of ML and its applications in EM imaging [2], [3], [4], 
[5]. ML is attractive for overcoming the aforementioned limi-
tations due to the following aspects. First, the time-consum-
ing operations of modeling and inversion can be surrogated 
by data-driven models to make imaging faster. Second, prior 
knowledge that is difficult to describe with rigorous forms can 
be recorded after the learning process, which helps improve 
imaging accuracy. Finally, DL software frameworks provide 
user-friendly interfaces to fully exploit computing power with-
out low-level programming on heterogeneous platforms, which 
largely reduces the complexity of algorithm implementation 
for high-performance imaging.

Training a surrogate model for data-image mappings such 
as deep neural networks (DNNs) has shown promising results 
[3]. However, success relies on constructing a training dataset 
that is statistically consistent with practical scenarios. Due to 
multiple scattering effects, simply establishing the mapping 
from EM data to electric properties by black-box regression 
may lead to implausible predictions, even when the measured 
data are not highly out of distribution. On the other hand, phys-
ical laws provide baselines for EM imaging. The relationship 
between EM fields and electric properties is inherent in Max-
well’s equations.

Recent trends show that a hybrid of physics- and data-driv-
en methods can analyze and predict data more effectively [5]. 
Such techniques can be grouped into learning-assisted phys-
ics-driven techniques and physics-embedded ML approaches. 
The  former category solves the inverse problem in physics-
based frameworks, where learning approaches are applied to 
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FIGURE 1. The EM-imaging setup. EM imaging converts measured data to the spatial distribution of electric parameters in the DoI.
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augment performance, such as generating better initial guesses 
[6], improving the bandwidth of measured data [7], or encod-
ing prior knowledge [8]. The latter category performs imaging 
mainly in data-driven manners, where algorithms are designed 
according to physical laws, such as tailoring inputs and labels 
[9], [10], [11], [12], loss functions [13], [14], [15], and neural 
network structures [16], [17], [18]. Although frameworks of 
physics-based techniques have been well studied, the learning 
methods for EM imaging vary widely.

This article aims to review recent frontiers in physics-
embedded ML for EM-imaging techniques and shed light 
on designing efficient and interpretable ML-based imaging 
algorithms. Existing approaches include modeling Max-
well’s equations into the learning process and combining 
trainable parameters with full-wave EM solvers or dif-
ferential/integral operators [13], [15], [16], [17], [18], [19], 
[20], [21], [22], [23], [24], [25]. These ML models not only 
describe physical principles but also record the prior knowl-
edge gained from training data. Compared with purely 
data-driven models, physics-embedded approaches possess 
higher generalizability and can learn effectively from fewer 
training data [26]. In addition, as there is no need to train the 
physics part, both the memory and computation complexity 
of DNNs can be reduced.

We begin in the “Formulations and Challenges of EM 
Imaging” section by introducing basic formulations of the 
EM imaging problem and stating some of the challenges with 
conventional methods. We then categorize existing physics-
embedded ML approaches into three kinds: learning after 
physics processing, learning with physics loss, and learning 
with physics models in the “Learning After Physics Process-
ing,” “Learning With Physics Loss,” and “Learning With 
Physics Models” sections, respectively. The “Challenges and 
Opportunities” section discusses open challenges and oppor-
tunities in this fast-developing field. We draw conclusions in 
the “Conclusions and Outlooks” section.

Formulations and challenges of EM imaging
EM imaging is an inverse problem that calculates electric pa-
rameters of the DoI from measured EM fields. This process 
incorporates EM modeling, which simulates “measured” data 
based on numerical models. It can be described as minimizing 
the “misfit” between the observed and simulated data [27]

 ( ) ( ) ( )L Fd robs
2

e e emz= - +  (2)

where dobs  is the field observed by receivers, e  is complex 
permittivity, ( )F e  represents the EM-modeling function, rz  is 
the regularization term, and m  is a regularization factor. Note 
that “complex permittivity” is usually simplified to “conduc-
tivity” in low-frequency EM methods. This article uses “com-
plex permittivity” to represent the unknown in both high- or 
low-frequency methods.

EM modeling, ( ),F e  computes the EM field in space given 
the permittivity distribution in the DoI and the information 
on the sources. It is usually achieved by numerical means, 

e.g., the finite-element and finite-difference techniques and 
the methods of moments [28]. These procedures partition the 
DoI into thousands or millions of subdomains and convert the 
wave equation into a matrix equation. EM fields in space are 
obtained by solving the matrix equation that involves thou-
sands or millions of unknowns. The solution process can take 
minutes or hours. This computationally expensive process is 
usually called full-wave simulation. To accelerate the model-
ing process, one can make approximations so that the EM field 
is linear in the electric parameters, such as the Born or Rytov 
approximations [1]. In this linearized process, the EM field is 
computed by simple matrix operations, such as matrix-vector 
multiplications or the Fourier transform.

The regularization, ( ),r ez  is used to incorporate prior 
knowledge into the imaging process, and it varies in differ-
ent tasks. For instance, in geophysical or biomedical imag-
ing, to emphasize the sharpness or smoothness of material 
boundaries, 1,  and 2,  norms of the spatial gradient of e  are 
usually adopted [29], [30], [31], [32], [33]. In radar imag-
ing, the sparsity of the observed scene is often exploited 
to improve imaging quality by incorporating sparsity regu-
larization, such as the 1,  norm given by ( )r 1e ez =  [34], 
[35], [36].

Equation (2) is usually minimized by iterative gradient 
descent methods, but some challenges still exist. For instance, 
each iteration requires computing the forward problem and its 
Fréchet derivative. Many forward problems are computation-
ally intensive, and computing the Fréchet derivative of ( )F e  
with respect to ,e  i.e., ( ) / ,FS 2 2e e=  needs to call the forward 
solver ( )F e  many times, which exacerbates computational 
burden. Some fast algorithms that compute approximations 
of Fréchet derivatives have been proposed [27], [37], [38], 
but the solution process still needs to be accelerated. Further-
more, when ( )F e  is rigorously solved from Maxwell’s equa-
tions, the objective function is nonconvex and has numerous 
local minima due to nonlinearity between EM responses and 
permittivity. Finally, gradient descent methods lack flexibil-
ity in exploiting the prior knowledge that is not described by 
simple regularization. On the other hand, stochastic inversion 
schemes have been developed to cope with the necessity of 
reliable uncertainty estimation and to have a natural way to 
inform imaging with realistic and complex prior information 
[39], [40], [41]; however, stochastic sampling is often compu-
tationally intensive.

Physics-embedded ML models provide potential solutions 
to the challenges mentioned in this section. In the following, 
we present three types of physics-embedded models for EM 
imaging, as depicted in Figure 2. The first class processes EM 
data using conventional physical methods and ML models 
sequentially [9], [10], [11], [42], [44]. The second type optimiz-
es network parameters with physics constraints, for example, 
solving forward problems in the training loss function [13], 
[15], [19]. The third category unrolls the physical methods with 
neural networks [16], [17], [18], [20], [21], [22], [23], [24], [25]. 
These three approaches are discussed in detail in the following 
three sections.
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Learning after physics processing
The learning after physics processing approach consists of 
two sequential steps: first, a roughly estimated image is re-
covered using classical qualitative or quantitative methods; 
second, the rudimentary image is polished using a DNN 
trained with the ground truth as labels. In this approach, the 
tasks of DNNs become image processing, such as eliminating 
artifacts and improving resolution. Next we introduce several 
classical works that utilize DNNs to enhance image quality in 
this direction.

In conventional EM imaging, permittivity is iteratively 
refined by updating in the descent directions of the objective 
function. This motivates employing multiple convolutional 
neural network (CNN) modules to progressively improve 
image resolution, starting from some rudimentary images. 
These images can come from conventional imaging methods, 
including linear backprojection [9], subspace optimization 
[10], one-step Gauss–Newton [11], and contrast source-inver-
sion techniques [42]. Finally, the CNN can output super-
resolution images close to the ground truth. To construct the 
training dataset, many researchers convert the handwritten 
digits dataset to permittivity models, then perform full-wave 
simulations to obtain the scattered electric data. To train the 
DNN, the rudimentary image is taken as the input, while 
the corresponding true-permittivity image is the label. After 
training with handwritten letters, the DNN predicts targets 
with more complex shapes and permittivity.

Advanced DNN architectures may 
improve the performance of image 
enhancement. The U-Net [5], [74], one 
of the most widely used architectures, is 
built on the encoder-decoder architec-
ture and has skip connections bringing 
encoded features to the decoder. This 
ensures feature similarity between the 
input and output and is especially suit-
able for superresolution. For example, 
the authors in [10] and [42] use U-Nets to 
achieve superresolution for 2D microwave 
imaging. In [44], the 3D inverse scatter-
ing problem is solved by a 3D U-Net, 
where the input is the preliminary 3D 
model recovered by Born approximation 
inversion and the Monte Carlo method.

Another architecture for superreso-
lution is a generative adversarial net-
work (GAN). In [11] and [12], a GAN 
with cascaded, object-attentional super-
resolution blocks is applied to imaging 
with an inhomogeneous background. 
The authors use a GAN with an atten-
tion scheme to improve the resolution 
by highlighting scatterers and inhibiting 
the artifacts. In [11], after training with 
6,000 handwritten digit scatterers, the 
GAN reconstructs U-shape plexiglass 

scatterers in a through-wall imaging test within 1 s. Structural 
similarity improves by more than 50% compared to conven-
tional algorithms.

It should be noted that the more the input is processed by 
physics, the better the generalizability will be. For instance, the 
Wei and Chen [10] compare performances with various net-
work inputs, including raw, scattered data; permittivity from 
backprojection; and permittivity from the dominant current 
scheme (DCS). The network behaves the poorest when direct-
ly inputting raw data, and best when inputting the image from 
the DCS. This is because preprocessing in the DCS involves 
more physics and thus reduces the network’s burden. A simi-
lar conclusion is drawn in [45], where the input and output of 
neural networks are preprocessed with the wave-propagation 
operator, i.e., Green’s function, to a deeper degree, achieving 
better performance on accuracy and robustness against noise 
than the DCS [10] when recovering high-permittivity targets.

The sequential workflow provides great flexibility in borrow-
ing well-developed DL techniques in image processing, and most 
of the mentioned works can achieve real-time imaging. Recent 
works have extended this approach to uncertainty quantification 
of imaging results [46]. However, although a DNN can generate 
a plausible image, the recovered permittivity values may signifi-
cantly differ from true ones. This is because the DNN is trained 
without the supervision of the EM field. In the following section, 
we introduce another group of methods that takes into account 
fitness between the computed and measured data.

Learning After
Physics Processing

Learning With
Physics Loss

Learning With
Physics Models

ML With
Physics-Guided
Loss Function

Physics-Guided
ML Architecture

ML After Physics
Processing

Image Image Image

Measurement Measurement Measurement

Physics Model

Raw Image

Trainable Parameters Physics Operators

FIGURE 2. The three ways of incorporating physics into the ML model. (a) Learning after physics pro-
cessing: the physics model is employed to initialize the input of ML models. (b) Learning with physics 
loss: physics knowledge is incorporated into the loss functions. (c) Learning with physics models: 
physics knowledge is used to guide design of the ML architecture. 
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Learning with physics loss
This section presents several approaches that impose addi-
tional physical constraints on the loss function when  training 
the  network weights, different from conventional ML models, 
which use only the difference between predicted and labeled 
images as a loss function. The advantage of additional con-
straints in loss is demonstrated in “Incorporating Forward 
Modeling in Loss: A Mathematical Example.” In the follow-
ing, we consider different types of physics losses: rigorous 
measurement, learned measurement, and PDE-constrained.

Training with a rigorous measurement loss
Consider the inverse problem solved by a DNN with the mea-
sured data d  as the input and the permittivity e  as the output. 
When the EM data at the receivers can be numerically com-
puted as in many applications, one can embed the data fitness, 
which involves physical rules, in the training loss function [13].

Let Te  and dT  denote the labeled permittivity and EM 
data, respectively, for training. Purely data-driven imaging 
uses permittivity loss L T

2
e e= -e  for training. The phys-

ics-embedded one further incorporates the measurement (data) 
loss ,Ld  given by

 L L L F dT Td
2 2

e e ea b a b= + = - + -e ^ h  (3)

where a  and b  are weighting coefficients. If ,0a =  the DNN 
training can be regarded as unsupervised learning. In the geo-
steering EM data inversion [13], this scheme achieves a two-
orders-of-magnitude-lower data misfit compared to training 
with permittivity loss only ( ).0b =

Training such a DNN requires backpropagating the gra-
dients of the data misfit, where the Fréchet derivative /F2 2e  
needs to be computed outside the DL framework. The methods 
for estimating the derivative have been addressed in traditional 
deterministic inversion, such as the finite-difference or adjoint-
state technique [47].

Training with a learned measurement loss
Computing the Fréchet derivative /F2 2e  is time consuming. 
An idea to accelerate it is to surrogate the numerical forward 

Optimizing deep neural network (DNN) parameters with 
the constraint of a forward problem can alleviate the ambi-
guity caused by nonuniqueness of the inverse problem.

We demonstrate it using a toy problem [19], where the 
forward process has analytical solutions: 

 ( ) .m F p p2|= =  (S1)

The inversion has two branches of solutions, p m=+  
and ,p m=-  see the black lines in Figure S1. To solve 
the inverse problem with a DNN, the training dataset is 

constructed such that for each sample , mm^ h, there is 
another one ,m m-^ h  in it. The point that simultaneous-
ly minimizes the distance between the two solutions is 
zero. When training is supervised by labels mp !^ h, 
the predictions are zeros [see Figure S1(a)], which are 
fake answers caused by the nonuniqueness. On the 
other hand, when training is supervised by labels p2, the 
correct branch can be predicted by controlling the signs 
of solutions [see Figure S1(b)]. In EM imaging, the for-
ward problems are described by Maxwell’s equations.

Incorporating Forward Modeling in Loss: A Mathematical Example
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FIGURE S1. Incorporating forward modeling into training to reduce nonuniqueness of the inverse problem [19]. (a) When training is supervised by  
p  ( m! ), the predictions are zeros and (b) when training is supervised by labels ,p2  the correct branch can be predicted by controlling the 

signs of solutions.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on April 02,2023 at 13:05:16 UTC from IEEE Xplore.  Restrictions apply. 



23IEEE SIGNAL PROCESSING MAGAZINE   |   March 2023   |

solver (·)F  with a DNN (·)FH  [19]. The training contains two 
stages: 1) training the forward solver FH)  and 2) training the 
inverse operator ,IH)  given by

 
( ,

( ( )) .

)arg min

arg min d d

dF F T T

I F I T T

2

2
F

I

eH H

H H H

=

= -

-)

) )

H

H

 
(4)

Both stages take the measurement misfit as the loss function, 
which involves physical rules.

This scheme successfully solves the logging-while-
drilling inverse problem for borehole imaging [19], (see 
Figure 3) where the purely data-driven approach did not 
achieve satisfactory reconstructions due to the severe 
nonlinearity and ill-posedness in logging-while-drilling 
inversion [48].

Training with a PDE-constrained loss
The PDE-constrained loss inserts 
PDEs into the loss function. The repre-
sentative work is the physics-informed 
neural network (PINN) [14], [49], 
which is designed for both forward 
and inverse problems. It is a mesh-
free method and can seamlessly fuse 
knowledge from observations and 
physics. We present an example of a 
PINN for the inverse problem in “A 
Physics-Informed Neural Network for 
the Inverse Problem.”

A PINN is applied to electrical impedance tomography 
in [15]. Electrical impedance tomography measures the volt-
ages on a body surface after electric currents are injected. 
The imaging recovers conductivity distribution inside the 
body. It usually contains multiple transmitting and receiv-
ing sensors. In “A Physics-Informed Neural Network for the 
Inverse Problem,” we show that a PINN contains one forward 
network FH  and one inverse network IH  for one transmitting 
source. When J sources illuminate the domain, the PINN will 
contain J + 1 networks, corresponding to J forward networks 
that output voltages generated by different sources and one 
inverse network that outputs conductivity. Furthermore, the 
loss function should be modified to ,L Li

J
iR=  where Li  rep-

resents the loss function for the ith source. Simultaneously 
training all networks can satisfy both PDEs and boundary 
conditions (measurements).

D
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FIGURE 3. Underground resistivity predicted from logging-while-drilling EM data [19]. The gray curve 
represents drilling trajectory, along which EM fields are transmitted and collected by a logging instru-
ment. Resistivity around the trajectory is recovered by a DNN trained with a learned measurement loss. 

Consider the 1D time-domain electromagnetic wave equation

 ( , )
( )

( , )
x

E x t
x t

E x t
02

2

2

2

2
2

2
2

ne- =  (S2)

where E  is the electric field, e  is permittivity, n  is permea-
bility, and t  and x  are the time and spatial coordinate, 
respectively. Together with some boundary conditions, the 
equation can be analytically or numerically solved to yield E  
(forward problem) or e  (inverse problem) given t  and .x

Take the inverse problem with one-source multiple receiv-
ers as an example. A physics-informed neural network 
(PINN) specifies two separate deep neural networks 
(DNNs), namely, FH  and .IH  The input of FH  is x  and t  
and its output is the electric field ,Eu  denoted by 

( , ).E x tFH=u  Similarly, the input of IH  is x  and its output 
is permittivity ,eu  denoted by ( ).xIe H=u  The two separate 
DNNs are simultaneously trained with a shared loss func-
tion ,L  which includes a supervised measurement loss of 
E  regarding initial and boundary conditions

 , ,L N E x t E x t1
i i T i i

i

N
2

1
data

data

data

= -
=

u^ ^ ^h hh|  (S3)

and an unsupervised loss of partial differential equation 
constructed according to (S2)

 
,

( )
,

L N x
E x t

x t
E x t1 j j

j

j j

j

N

2

2 2

1
2

2

PDE
PDE

PDE

2
2

2
2

ne= -
=

u
u

uc ^ ^h h m|  (S4)

given by .L L Ldata data PDE PDEa a= +  Here ,x ti i^ h  and ,x tj j^ h  
are sampled at the initial/boundary position and in the 
domain of investigation (DoI), respectively. In addition, ET  is 
the labeled measurement, Ndata  is the number of labeled sam-
ples, NPDE  is the number of unlabeled samples in the DoI, 
and ·a  are weights. The partial differentiations are achieved 
by the automatic differentiation in the deep learning frame-
work. After training, one can use IH  to predict permittivity at 
arbitrary location .x  Therefore, the PINN is mesh free.

A Physics-Informed Neural Network for the Inverse Problem
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The smoothness of conductivity and known conductiv-
ity on the boundary are represented as regularizations in 
the loss function of a PINN to stabilize the inverse pro-
cess [15]. In numerical simulations, the authors set ,J 8=  

, ,N 10 000data =  and ,N 8 000PDE =  and achieve better results 
than two conventional methods. However, one should note 
that we seldom have so many measurements in reality, so 
its performance on experimental data imaging needs to be 
further investigated.

Discussions
When inverting limited-aperture EM data, insufficient mea-
surements may lead to the instability of training a PINN. In 
this case, it would be better to use the first two approaches 
that explicitly define the measurement loss at the receivers. A 
PINN outperforms the two approaches when simulating the 
EM response is prohibitive, for example, due to the high com-
putational cost or complex EM environment. Finally, when re-
covering diverse targets, the former two approaches can make 
predictions without retraining the neural network, while a 
PINN needs to be trained for each target.

Learning with physics models
Following the use of unrolling in other domains [17], [50], 
[51], unrolling has also been used in EM-imaging models, 
yielding physics-embedded neural networks. We group this 
type into three subtypes: unrolling the measurement-to-image 
(inverse), unrolling the image-to-measurement (forward), and 
simultaneously unrolling both mappings.

Unrolling measurement-to-image mapping

Linear problem
We demonstrate the unrolling of linear inverse problems 
through radar imaging. Here, the electric parameters of inter-
est are intensities of scatterers in the DoI, denoted by e  with a 
slight abuse of notation. Then, linear approximation is usually 
applied in the forward model for high computational efficien-
cy, yielding ( ) ,F e eU=  where U  is a matrix determined by 
the radar waveform and the geometry of the DoI. Conventional 
radar imaging can be formulated as a compressed sensing 
problem: .min dobs< < ; ;e emU- +e

2
1  There are myriad meth-

ods proposed to solve such problems. A well-known technique 
is the iterative shrinkage thresholding algorithm (ISTA) that 
iteratively performs proximal gradient descent [52]. Specifi-
cally, the solution is updated by

 I
L L
1 1dSk

L
H H

kobs 1ee U U U= + -m -` ` j j (5)

where ( )L max
Hm U U=  is the Lipschitz constant, and (·)maxm  

represents the maximum eigenvalue of a Hermitian matrix, 
and H$  denotes the conjugate transpose. The elementwise soft-
threshold operator Si  assigns those elements below the thresh-
old i  to zeros, defined as [ ] ,u uu signS i i i i= -i +^ ^ ^h h h66 @@  
where ( )sign $  returns the sign of a scalar, (·)+  means 

(·, ),max 0  and i  is the threshold. The ISTA shows high ac-
curacy but requires thousands of iterations for convergence.

To accelerate the solution process, the learned ISTA 
(LISTA) with only several neural network layers is proposed 
in [53], where each layer unfolds ISTA iterations. Particularly, 
the LISTA treats / , ( / )LL 1 Hm U  and ( )( / )I L1 HU U-  in (5) as 
variables to learn from training data with a backprojection 
algorithm, disregarding their physics structures. The numeri-
cal results in [53] show that the LISTA can achieve virtually 
the same accuracy as the ISTA using nearly two-order fewer 
iterations and does not require knowledge of .U  Nevertheless, 
a challenge in the LISTA is that there are many variables to 
learn, requiring careful tuning of hyperparameters to avoid 
overfitting and gradient vanishing.

Embedding physics models into the neural networks 
reduces the number of variables while maintaining fast 
convergence rate [23], [24]. For example, the mutual inhibi-
tion matrix ( / )I L1 HU U-  has a Toeplitz or a doubly block 
Toeplitz structure due to the nature of radar-forward mod-
els. The degrees of freedom with such a Toeplitz structure 
are reduced to O(N) from ( ),O N2  the counterpart without 
this structure. By incorporating such a structure, the pro-
posed method in [23] significantly reduces the dimension 
of neural networks, thereby reducing the amount of training 
data, memory requirements, and computational cost, while 
maintaining comparable imaging quality as the LISTA. A 
similar approach is also adopted in [24], which explores the 
coupling structure between different blocks in the radar-
forward model .U

Nonlinear problem
The objective function of nonlinear EM imaging, ( )L e = 

( ) ,Fdobs
2

e-  where ( )F e  is numerically solved from PDEs, 
is conventionally minimized through gradient descent meth-
ods. With the Gauss–Newton method, permittivity is updated 
according to

 ( ) ( ( ))FS S S dk k
H H

k1
1

obse e e= + -+
-  (6)

where S is the Fréchet derivative of F at .0e  Note that S con-
tains only the local property of the objective function, and 
computing ( ),F Se  and ( )S SH 1-  is usually expensive.

By unrolling, a set of descent directions sK  can be learned, 
instead of computing S and ( )S S SH H1-  online. This is called 
the supervised descent method (SDM), which was first pro-
posed for solving nonlinear least-squares problems in com-
puter vision [54]. In online imaging, permittivity is updated by

 ( ( )).FK dk k k k1 obse e e= + -+  (7)

In training, the EM response is taken as the input, while the 
corresponding ground truth of complex permittivity is the la-
bel. The interested reader is referred to [21] for more details 
on the training.

The SDM shows high generalizability in EM imaging. The 
imaging process is mainly governed by physical law, with a 
soft constraint imposed by learned descent directions. The 
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experiments show that the descent direc-
tions trained with simple scatterers can 
be applied to predict complex targets 
in inhomogeneous media for various 
applications, such as geophysical inver-
sion [55], [56], [57], [58], microwave 
imaging [21], [59], and biomedical 
imaging [60], [61]. Figure 4 shows its 
applications and generalizability.

The SDM may be flexibly combined 
with techniques in conventional gradi-
ent-based inversion. For example, using  
regularizations on the objective function of prediction, images 
can be predicted with either smooth [55] or sharp [62] inter-
faces without retraining descent directions. Furthermore, the 
SDM and conventional methods can be flexibly switched to 
satisfy different requirements of speed and accuracy [55].

A limitation of the SDM is its lower speed of prediction 
compared with end-to-end DNNs because the online forward 
modeling is, in general, computationally intensive. Efforts have 
been made to unroll nonlinear forward modeling to accelerate 
imaging, which will be discussed in the following section.

Unrolling image-to-measurement mapping
Accelerating the forward process also improves the efficiency 
of EM imaging. The next sections introduce two methods where 
the frequency- and time-domain forward modeling is accelerat-
ed by unrolling integral and differential operations, respectively.

Unrolling the integral operation
In this scheme, the differential equation (1) is first converted 
into an integral form, and then the forward modeling ( )F e  in-
volving integral operations is unrolled as a physics-embedded 
network .FH  After the networks are trained, they are com-

bined with generic networks IH  that perform inverse mappings 
to achieve full-wave EM imaging; hence, the cascaded neural 
networks become a physics-embedded DNN (PE-Net) [22].

The schematic architecture of the PE-Net is shown in 
Figure 5, where 0e  is the initial permittivity, FH  represents 
the DNN-based forward-modeling solver, and { , , }I I

1 2 fH H  
represent neural networks that predict the update of complex 
permittivity. Let K be a predefined maximum number of itera-
tions. The final output Ke  is then

 , d dK I I
k

k

K

F k0 obs 0
1

obs 1e e e eH H H= = + -
=

-^ ^ ^h hh/  (8)

where k is the index of iterations.
The integral form of the wave equation is

 ( ) ( ) , ( )( ) dGE r E r r r E r rr
V

inc 2
0 0~ n e e= + -l l ll^ h6 @#  (9)

where Einc  is the incident field generated by the source, G 0  
is the Green’s function describing wave propagation, 0e  is the 
permittivity of the background, and V is the DoI. Here, ,FH  
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which essentially solves (9), is established by unfolding the 
conjugate gradient method. Conventionally, solving (9) is sim-
plified as calculating x  (representing the unknown E) from 

( ) ,A x be =  where ( )A e  is a matrix related to wave physics 
and target permittivity, and b is a constant vector. Generally, 
A is a full matrix with millions of elements, making solving 
using iterative matrix equation solvers very time consuming. 
In [18], inspired by the conjugate gradient method, the matrix 
equation is solved by alternately predicting the conjugate direc-
tion p and the solution update xT  iteratively. The details can 
be found in “The Conjugate Gradient and Update-Learning 
Methods.” The experiments show that FH  needs many fewer 
iterations than the conjugate gradient method.

Aside from fast convergence, FH  possesses high generaliz-
ability thanks to the incorporation of wave physics. Note that 
the A matrix is constructed inside the network by integral 
operations, which involves Green’s function that describes the 
interactions of electric fields in the entire domain. The explicit 
field integration brings global information of wave propaga-
tion to the receptive field of convolutional layers. After train-
ing with 32,000 samples, the network can predict the field of 
targets statistically different from the training ones in real time, 
which builds the foundation for the following imaging problem.

The weights of the FH  are fixed during training .sIH  The 
sIH  are achieved by generic networks, which perform nonlin-

ear mapping from the measurement domain to the permittiv-
ity domain. In training, the EM fields generated by synthetic 
targets are taken as the input, while the target images are taken 
as labels. In prediction, the network achieves superresolution 

reconstruction of targets that is quite different from the train-
ing ones. At the same time, the simulated field of the predicted 
target is in good agreement with the observed field.

Unrolling the differential operation
Attempts have also been made to unroll the time-domain wave 
equation with recurrent neural networks (RNNs) [20], [63], 
where differential operations are represented by network lay-
ers. In the 2D case, Maxwell’s equations can be written as
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where E and H are the electric and magnetic fields, respec-
tively, that are coupled with each other; the subscripts represent 
spatial components of the vector field; Re  is permittivity; v  is 
conductivity; and x, y, z, and t is the spatial and time coordi-
nates, respectively.

After discretization, for instance, the ( / ) ( /H t Ex z2 2 2n =-  
)y2  term becomes
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(11)

To solve the matrix equation Ax b=  whose A  is positive 
definite, the conjugate gradient method computes the con-
jugate direction p  and updates the solution in an iterative 
manner. The solution process may take hundreds to thou-
sands iterations.

In electromagnetic modeling, incident waves at a cer-
tain frequency behave similarly, which leads to a limited 
diversity of the right-hand term b. In addition, the back-
ground Green’s function does not change with different 
targets. Thus, characteristics of matrix equations derived 
from (9) are similar given a certain scenario. This enables 
the machine to learn how to update p  and x  from train-
ing data, rather than computing them online, as in the 
conjugate gradient method, to obtain a faster conver-
gence speed.

In the update-learning method [22], iterations in conju-
gate gradient approach are unrolled by N  neural network 
blocks, which contain cascaded neural network pH  and 

,dxH  which predict the quasi-conjugate direction and the 
solution update, respectively. The following detailed algo-
rithms of the two approaches are presented:

The Conjugate Gradient and Update-Learning Methods

Update-learning method.

1: Input x0

2: ,r b Ax p r0 0 1 0= - =
3: x x1 0=
4: for , , , ,k N1 2 f=  
5:   r b Axk k= -
6:   ( , , )p p r rk p

k
k k k1 1H=+ -

7:   ( , , )x x p Ap rk k dx
k

k k k1 1 1H= ++ + +

Conjugate gradient method.

1: Input x0

2: ,b Ax p rr0 0 1 0= - =

3: /( ) ( )r r p ApT T
1 0 0 1 1a =

4: x x p1 0 1 1a= +
5: for , ,k 1 2 f=  until rk< < E f
6:   ( )r r Apk k k k1 a= --
7:   /( ) ( )r r r rk k

T
k k

T
k1 1 1b =+ - -

8:   p r pk k k k1 1b= ++ +

9:   /( ) ( )r r p Apk k
T

k k
T

k1 1 1a =+ + +

10:   x x pk k k k1 1 1a= ++ + +
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where ( , / ), ( , )i j i j1 2+  and ( , )i j 1+  represent the discrete 
spatial coordinate, / ,n 1 2-  n and /n 1 2+  represent discrete 
time; and tT  and yT  are time and space intervals, respectively. 
The spatial differentiation in the right side can be represent-
ed by convolutional kernels. In the time domain, the H-field 
at time /n 1 2+  is computed by ( ),H H E/ /

x
n

x
n

F z
n1 2 1 2 H= ++ -  

where FH  represents basic operations on Ez
n  realized by neural 

networks. Therefore, fields at the next time step can be updated 
from fields at current time steps. The updating process can be 
described by an RNN.

Considering the couplings between the E- and H-fields, 
the architecture unrolled from (10) is presented in Figure 6. 
In the forward problem, after the target material is specified, 
EM data are generated by running the RNN without training. 
In the inverse problem, the material is represented by train-
able parameters that are optimized by minimizing the misfit 
between simulated and labeled data. Training such a network 
and updating its weights is equivalent to gradient-based EM 
imaging. The use of automatic differentiation greatly improves 
the accuracy of gradient computation and achieves three-
orders-of-magnitude acceleration compared with the conven-
tional finite-difference method [20].

Simultaneously unrolling  
both mappings
Many approaches, such as Born iterative [1] or contrast source 
inversion [64], solve the inverse scattering problem from a 
physics point of view: the target is progressively refined by 
simulating the physics more accurately. To be specific, they 
first reconstruct permittivity from a linear process by approxi-
mating the electric field E in the inte-
gration of (9) to the incident field .Einc  
Intermediate parameters, e.g., total field 
and contrast source, can be estimated 
with this permittivity. Then, a more ac-
curate permittivity model is computed 
from the intermediate parameters and 
measurements, which are used to bet-
ter approximate the intermediate pa-
rameters in the next iteration. When 
the intermediate parameters lead to 
scattered fields that fit measurements, 
the iteration stops and outputs the final 
estimated permittivity.

The aforementioned process can be 
unfolded into neural networks [16], [25]. 
Here, for instance, the cell architecture 
of a physical model-inspired neural 
network (PM-Net) [16] is presented in 
Figure 7. Each cell contains approxi-
mated forward and inverse processes. 
In the forward process, the total field E 
is computed from the contrast source J, 
and a better contrast source is predicted 
from the total field and permittivity. In 
the inverse process, permittivity is pre-

dicted from the contrast source and the total field. The network 
is trained using 300 handwritten letter profiles. In prediction, 
it achieves real-time imaging within 1 s while the alternating 
direction method of multipliers (ADMMs) needs 300 s. The 
resolution is also largely improved [16].

Comparisons
Based on [16] and our previous work [18], it is possible to com-
pare different strategies of deep unrolling when they solve the 
same inverse scattering problem. We note that some simulation 
setups, e.g., electric scale, number of measurements, random 
noises, and training set, are not exactly the same. However, 
these differences are at an acceptable level and do not affect the 
conclusions of the comparison. The test data are simulated from 
the “Austria” model, which is often used as a benchmark model 
in inverse scattering. It is challenging due to strong scatterings 
inside and among the rings. The reconstructed images with 
different approaches are presented in Figure 8, where the AD-
MMs is taken as the benchmark. The result in contrast source 
network (CS-Net) is recovered by gradient-based optimization, 
whose initial guess is provided by a DNN [6]. Imaging with 
back projection scheme (BPS) is in the scope of learning after 
physics processing, where the neural network performs image 
enhancement after traditional qualitative imaging [10]. The 
SDM unrolls the inverse mapping [21], the PE-Net unrolls the 
forward mapping [18], and the PM-Net unrolls both mappings 
[16]. In general, learning-governed methods can achieve higher 
resolution than physics-governed ones thanks to incorporating 
prior knowledge through offline training. BPS has lower accu-
racy than the other three approaches belonging to learning with 
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FIGURE 7. Simultaneously unrolling forward and inverse processes into neural networks [16]. The for-
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physics models. The PM-Net obtains the best accuracy by elab-
orately tailoring the neural network according to EM theory.

The comparisons of imaging time and memory of network 
parameters are depicted in Table 1. Note that the SDM and PE-
Net are trained for two- and three-frequency imaging, respec-
tively, while other methods are trained for single-frequency 
imaging. Therefore, the time/memory cost in the SDM and PE-
Net for single-frequency imaging can be less than the shown 
values. The imaging time of the PE-Net and the PM-Net is at 
the same level, which is much faster than other methods. The 
CS-Net sequentially performs network inference and gradient-
based optimization; hence, it takes the most time. BPS improves 
imaging speed by avoiding the EM-modeling process. We note 
that the speed of BPS in the original article [10] is faster than the 

presented one [16]. The SDM needs to rigorously solve Max-
well’s equations in the prediction stage, hence, it is slower than 
BPS, PE-Net, and PM-Net. In addition, the memory of neural 
network parameters is also compared. Smaller networks imply 
that fewer training data are needed. The SDM is the most mem-
ory consuming as it records several descent directions repre-
sented by full matrices. The PE-Net requires the second-largest 
amount of memory because it unrolls a number of complete 
EM-modeling processes into the neural network. In contrast, 
according to the inverse scattering theory, the PM-Net finds a 
better way to unroll approximated forward and inverse prob-
lems, which leads to a much smaller network size.

Discussion
Using trainable layers to unroll linear imaging problems is time 
and memory efficient but only suitable for simple backgrounds 
because linear approximation neglects the interactions of EM 
fields in complex media. In highly inhomogeneous media, 
nonlinear EM imaging is required to quantitatively evaluate 
the target. The SDM provides a way that seamlessly combines 
ML and EM modeling, but the numerical forward modeling 
process limits its online prediction speed. The strategies un-
rolling PDE-based forward and inverse processes on neural 
networks for higher speed are proposed.

The methods in [22] and [16] are applicable when the back-
ground medium is known a priori (so that the Green’s function 
is known). They originate from different views, i.e., the mathe-
matical and physical views. The former mimics the optimization 
process, while the latter progressively retrieves the permittivity 
by predicting more accurate electric fields, which is equivalent 
to taking more multiple scatterings into account. It is shown that 
partially unfolding forward and inverse problems according to 
the inverse scattering theory leads to a time- and memory-effi-
cient neural network.

When the background medium is unknown, describing 
wave equations using partial differential operations is more 
appropriate. The work in [20] shows the feasibility of embed-
ding partial differential operations into the network. This 
direction has potentially many applications for reconstructing 
complex media, such as biomedicine engineering and geo-
physical exploration.

Challenges and opportunities
We tentatively discuss some open challenges and opportunities 
in this field from three aspects: data, physics, and algorithm.

Data
In detection, it is usually challenging to obtain the exact elec-
tric properties of targets, and the images in historical datasets 
often suffer from nonunique interpretations. Synthetically gen-
erating training data is time consuming for large-scale imaging 
problems. Therefore, public datasets that cover various typical 
applications are required so that researchers can train, test, and 
compare among different methods. The datasets should contain 
scenarios where the inverse problem is highly ill-posed, e.g., 
highly inhomogeneous media, multiple strong scatterers, and 

Table 1. Imaging time and memory of network parameters in different 
methods [16].

Methods Imaging Time (s) Memory of Parameters 
ADMMs 308.76 —
CS-Net 531.24 144 MB
BPS 7.12 15 MB 
SDM 19.87 2.3 GB 
PE-Net 1.55 483 MB 
PM-Net 0.99 0.59 MB 
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` r

Ground Truth

FIGURE 8. Comparisons of the reconstructed “Austria” model with differ-
ent methods [16], [18], [21]. The true relative permittivity ( )/r 0e e e=  is 
1.5. The imaging results are plotted in the same color scale. The ADMMs 
is taken as the benchmark. CS-Net [6] uses a neural network to provide 
initial guesses for gradient-based optimization. BPS [10] belongs to 
learning after physics processing. The SDM, PE-Net, and PM-Net are 
learning with physics models. Specifically, the SDM [21] learns the 
inverse mapping, the PE-Net [18] unfolds the forward modeling, and the 
PM-Net unfolds both forward and inverse mappings [16]. 
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limited observations, to test the performance limit of imaging 
algorithms. In addition, the methodology used for evaluating the 
completeness of training datasets should be investigated [65].

Physics
Incorporating physics theory into data-driven methods is chal-
lenging. The DoI is partitioned into triangle (2D) or tetrahedral 
(3D) elements for accurate EM modeling in many applications. 
The element’s size, number, and topology are different case 
by case, which means that the number of neurons and their 
connections vary with training samples. A 
graph neural network may provide a solu-
tion [66], [67] to this challenge but needs 
further investigation. For large-scale EM 
problems, the number of elements may be 
millions or billions. The training cost will 
be a critical issue when the elements are ex-
pressed as neurons. Finally, DL techniques 
also provide new perspectives of integrating 
EM methods with other imaging modalities to achieve better 
resolution [68], [69], [70], but how to embed different physical 
principles in a unified neural network remains open.

Algorithm
The credibility of predictions needs to be improved. Current 
strategies mainly rely on statistical analyses of test datasets. An 
alternative may be checking data fitness after image reconstruc-
tion. Other methods, such as uncertainty analysis, are in urgent 
need [46], [71]. In addition, performance guarantees can be 
further investigated. Physics-embedded DL structures increase 
interpretability, which may benefit the progress of theoretical 
guarantees and thus release the burden on parameter tuning. 
Furthermore, although mean-squared error is mainly used as 
the optimization target in EM imaging, loss functions that mini-
mize structure similarity [72], image features [73], or probabili-
ty distribution [43] can be flexibly applied in the DL framework.

Conclusions and outlooks
We surveyed three types of physics-embedded, data-driven im-
aging methods. Learning after physics processing is straight-
forward, and it allows for borrowing advanced DL techniques 
in image processing at a minimal cost. Its shortcoming is that 
the DNN training does not follow wave physics, leading to dif-
ficulties in processing out-of-distribution data. Therefore, it is 
suitable for fast estimation of target shapes and properties but 
has risks in quantitative imaging.

Learning with physics loss ensures training to obey wave 
physics and reduces the ill-posedness of imaging so that the neu-
ral networks are more robust than learning after physics process-
ing. The solution process for the PDE and the inverse problem 
can be simultaneously trained using a PINN; however, it requires 
a large volume of data that may be difficult to collect in practice. 
Using a measurement loss function based on a predefined for-
ward problem can perform better for inverting limited-aperture 
data. One limitation of this method is that physics cannot guide 
image reconstruction in online prediction.  Compared to  learning 

after physics processing, techniques of this type require more 
computation resources in the training stage.

Learning with physics models incorporates physics opera-
tors in both training and prediction. The imaging mainly relies 
on physics computation, while trained parameters provide the 
necessary prior knowledge for image reconstruction. It has 
better generalizability than former methods and can achieve 
real-time imaging. However, the neural network architecture 
needs to be tailored for different problems, increasing com-
plexity in the design.

Artificial intelligence has blossomed in 
recent years due to the advancement of mod-
ern hardware and software, which builds the 
foundations of these progresses. Although 
the EM community is happy to embrace 
these changes, the reliability of data-driven 
imaging remains an issue. EM theory pro-
vides baselines for EM sensing and imaging. 
Embedding physics in DNNs can improve 

interpretability and generalizability and thus improves safety 
in real-world applications. Recent research in EM imaging has 
proven its feasibility, and we are sure this path will continue to 
expand in the next few years.
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