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Abstract

Future wireless networks must achieve large gains in data rate, energy efficiency and
latency while integrating sensing and computation. Programmable wave-domain
computing (pWDC), which processes signals directly through reconfigurable wave-
matter interactions, offers a way to offload part of this burden from electronic processors.
In this Perspective, we review historical roots and recent work on pWDC and discuss its
promise and challenges. We focus on three challenges: prototype-aware runtime
optimization of pWDC hardware, enriching functionalities beyond linear continuous-
wave operation, and integrating pWDC into network-level resource management. Finally,
we outline open questions regarding expressivity, practicality, and security that will arise
in the transition of pWDC to real-life deployment in future wireless infrastructures.
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1. Introduction

Current wireless communications infrastructure heavily relies on digital signal
processing. Next-generation wireless systems aim for at least 10X improvements in data
rate, energy efficiency, and latency, and to integrate communications with sensing. To
achieve these ambitious goals, offloading specific-purpose computations to the wave
domain is emerging as a technological enabler. Wave-domain computing (WDC) broadly
refers to information processing that occurs at least partially based on the interactions of
physical waves (for instance, microwaves, light, or sound) with systems (for instance,
metamaterials or radio environments). WDC has a long tradition dating back to the dawn
of computing, but the astonishing rate of improvement of general-purpose electronic
processors has thus far thwarted practical needs for WDC. Instead of rivaling electronics
for general-purpose computing, recent interest in WDC targets specific-purpose
operations that strategically leverage the unique benefits of wave-matter interactions
related to bandwidth, parallelism, and power consumption’. Over the last decade, these
concepts have matured thanks to advances in engineered materials and wave control? -
see Fig.1 for a timeline of selected milestones. In particular, advances in reconfigurable
metamaterials® have established the required hardware for programmable WDC (pWDC).
pWDC enables deterministic adjustments of the WDC functionality during runtime. Now,
given the pressing needs of next-generation wireless systems, we see a strong opportunity
for pWDC to transition to real-world applications in wireless communications.

In this Perspective, we begin by introducing the fundamental concepts of pWDC and
providing a historical overview of various disjoint origins of WDC in diverse research
communities. With a focus on pWDC in wireless systems, we explain physics-consistent
system modeling and contemporary efforts to maximize wave-domain flexibility. Then, we
provide an in-depth examination of three key challenges that need to be solved to enable
the transition of pWDC into real-life deployments in wireless systems.

First, what are the most promising paradigms for optimizing the configuration of
programmable wave-domain infrastructure for a desired functionality in situ? This
question spans from overcoming issues with model-reality mismatch all the way to
possible embodiments of decentralized self-configuration for pWWDC hardware.

Second, how far beyond linear operations on time-harmonic signals can we go? While
WDC does not aim at general-purpose computing, features like non-linearity and memory
may be very valuable assets. Their implementations are open challenges, and existing
ideas imply important trade-offs between increased pWDC expressivity and metrics like
speed and energy consumption.

Third, beyond the traditional scopes of wave-matter control and signal processing,
what runtime control plane is needed to orchestrate pWDC-empowered wireless
networks? For instance, what could a dedicated operating system look like?

We close with a brief discussion of additional open questions in the realms of
expressivity, practicality, and security that will arise in the transition of pWDC from
academic research to real-life deployment.
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Figure 1: Timeline of selected milestones in WDC. Corresponding references by row: free-space optical computing?;
diffractive multi-layer computing®'%; complex-media wave computing’"'?; stand-alone metamaterial wave
computing’6; stand-alone RIS-based wave computing’”'%; over-the-air computing®®?'; hybrid MIMO?24;
computational meta-imaging®-27; encoding and structural non-linearity concepts’”?%192933 (see Sec. 3); programmable
metasurface hardware34-36.3.37.26.38-41
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2. Principles and historical origins of pWDC

WDC relies on the fact that a system’s transfer function — the mapping from the impinging
wavefront to the scattered wavefront — can be viewed as realizing a mathematical
operation on the impinging wavefront. A basic example thereof is a lens, which is a linear
optical component that implements a Fourier transform (in the appropriate Fourier
plane). More elaborate examples of WDC in free-space optics have been explored for
many decades, including convolution*?, wavelet transforms*®, and discrete unitary
operators®. Advances in metamaterial engineering have enabled the miniaturization,
customization, and reconfigurability of WDC. For example, a stacked metamaterial' or
an ultrathin metasurface** can be designed to perform spatial differentiation, integration
or convolution. Moreover, desired linear optical operations can be implemented in a static
or programmable manner based on cascaded diffractive layers®'%% or integrated
photonic systems*-%, Furthermore, random scattering media can implement large-scale
random projections’ or, combined with spatial light modulators, desired linear
transformations™.

Analogous concepts also exist for wireless systems operating in the radiofrequency
(RF) regime. Related to random projections through optical scattering media'" are over-
the-air computations in wireless sensor networks24%%1, In this context, the uncontrolled
radio environment that connects the sensor nodes to the sink node can be viewed as an
over-the-air analog combiner of the signals radiated by the sensor nodes. The concurrent
transmission of measurement data by different sensor nodes results in a superposition
of signals (“channel collision”) which can be exploited to compute a desired function
over-the-air (such as the mean of the sensor measurements). Thereby, wireless data
aggregation is achieved in the wave domain, simultaneously with wireless
communication.

Besides such statistical and uncontrollable analog combining, deterministic and
reconfigurable analog combining is of great importance in modern multi-element
antenna systems — see Fig. 2. Proposals for reconfigurable analog combining already
emerged in preparation of the 5G era, where beamforming with large-scale multi-element
antenna arrays was envisioned but confronted with severe hardware complexity, cost,
and energy consumption®2. These issues arise when a complete RF chain is required for
each antenna element. To overcome this limitation, hybrid analog/digital beamforming
with a substantially reduced number of RF chains thanks to a reconfigurable analog
combiner emerged. The analog combining was initially envisioned?>*® and prototyped>*°°
in the form of circuits involving many phase shifters, or switches®®. On the receive side,
this analog combining circuit realizes a programmable linear mapping from the high-
dimensional signal exiting the antenna ports to the low-dimensional signal entering the
RF chains. A similar approach can be used in reverse order on the transmit side.

Meanwhile, efforts in microwave imaging were confronted with essentially the same
challenge: to achieve the required resolution, large coherent apertures composed of
many antenna elements are required - traditionally, with one RF chain per antenna
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element. Here, the metamaterials platform has come to the rescue in three steps. First,
static metasurfaces generating frequency-diverse pseudo-random scene illuminations
were explored®®’. These implemented deterministic but static linear low-to-high-
dimensional mappings; it was important to know the realized mapping and to ensure that
it was pseudo-random (in line with compressed sensing principles), but there was no
need to engineer one specific mapping. Second, dynamic metasurface antennas (DMAs)
capable of generating sequences of pseudo-random scene illuminations based on
random configurations enabled single-frequency operation?°%%°, The computational
imaging principle was the same as in the frequency-diverse case. Third, the DMA’s
programmability was leveraged to optimize the analog combining end-to-end for a
specific task, taking into account hardware impairments, task, prior scene knowledge,
and measurement noise?”%%8', All versions of these computational microwave imagers
can be understood as performing integrated sensing and wave-domain computing over
the air; the latter is particularly advanced in the third case, where salient task-relevant
information is already preselected in the wave domain.

DMAs integrate the reconfigurable analog combining into the antenna architecture so
that they offer the wave-domain flexibility required for hybrid analog/digital beamforming
in a more compact form-factor than the conventional use of separate analog combining
circuits®. End-to-end optimization of DMAs for a specific task is also relevant in the
context of wireless communications®. Besides DMAs, reconfigurable intelligent surfaces
(RISs) have gained much traction in wireless communications research?®°. Conceptually,
the key difference between RISs and DMAs is that DMAs have feeds so that they can
radiate and/or receive waves in a programmable manner, whereas RISs do not have feeds
so that they only scatter waves in a programmable manner. Use cases of RISs at the base
station thus require separate feed antennas®, and the programmable analog combining
occurs partially over-the-air. This principle can also be generalized to hybrid transceivers
leveraging stacked intelligent metasurfaces (SIMs)?* instead of a conventional RIS.
However, the main conceptually distinct use case for RISs in comparison to DMAs is the
deployment of RISs away from the base station as programmable scatterers in a “smart”
radio environment that can endow its wireless channels with desirable properties®*’.
RISs thus offer a possibility to control the over-the-air analog combining in otherwise
uncontrolled radio environments?'.

It is notable that existing examples of pWDC in the context of wireless systems are
already integrated with sensing (in the case of computational imaging) or
communications; in the future, further integration combining sensing, computing, and
communications is expected. Overall, these schemes are necessarily hybrid, involving
both wave-domain and digital steps. Thereby, they automatically resolve a concern about
input/output overhead that exists for purely analog WDC. Indeed, it is important to
address the question of how the input data is encoded into the impinging wavefront and
how the output datais read out from the scattered wavefront. The associated input/output
overhead can imply bottlenecks on speed, energy consumption, and/or footprint that
may be difficult to amortize. In some cases, amortization is possible if the scale of the
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implemented mathematical operation is sufficiently large to outweigh the input/output
overhead. However, the input/output concern is altogether avoided in applications in
which the input is naturally in the wave domain and the output is naturally in the digital
domain; in such cases, there is no need for digital-to-analog conversion at the input, and
the analog-to-digital conversion at the output is already present in any case. This is
precisely the case for the existing examples of pWDC in the context of wireless systems.

pWDC in hybrid wireless systems for wireless communications and imaging to use fewer RF chains
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Figure 2: Selected examples of pWDC in hybrid wireless systems for MIMO wireless communications and
computational imaging. In all three cases, the goal is to use fewer RF chains by leveraging pWDC. Three major pWDC
embodiments exist. Traditionally, a combining circuit between the RF chains and the antenna array is used. Most
compactly, a dynamic metasurface antenna (DMA) compactly integrates everything. Alternatively, a RIS or SIM
parametrizes over-the-air combination. The principle can be applied to transmission and reception.

The fundamental ingredients of modern programmable metasurfaces like RISs and
DMAs started to emerge since the early 2000s3%-3%6:357 Typically, the reconfigurability
mechanism relies on tunable lumped elements such as PIN diodes or varactor diodes.
This common feature enables a universal approach to physics-compliant modeling of
pWDC hardware that is described in BOX 1. Circuit-based pWDC hardware akin to analog
combining circuits also continues to be explored'®® because it can be described with
high accuracy using simplified closed-form models without accounting for mutual
coupling. An ongoing quest in contemporary research relates to how to maximize the
transfer-function tunability of pWDC hardware; an overview of four emerging concepts
tackling this question is given in BOX 2.
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BOX 1: Primer on physics-compliant modeling of pWDC hardware

For the vast majority of existing pWDC hardware for applications in wireless
communications, the programmability relies on tunable lumped elements (for instance,
PIN diodes or varactor diodes). At a high conceptual level, irrespective of the detailed
architecture, all these pWDC hardware examples admit the same physics-consistent
system model that rigorously captures all electromagnetically relevant coupling
phenomena. The starting point is a partition of the system into three entities: (i) Na ports
via which waves can enter and exit the system; (ii) Ns tunable lumped elements; (iii) all
other remaining system components (which are static by definition). Each tunable
lumped element can be viewed as an additional “virtual” port terminated by a tunable
load. Then, the overall Na-port pWDC system can be viewed as the connection between a
static (Nat+Ns)-port system and a tunable Ns-port system. Each constituent system is
characterized by a scattering matrix; the scattering matrix is diagonal for the tunable
system, given its composition of tunable individual loads. The scattering coefficients
describing the static constituent system are generally not known in closed form because
they account for environmental and structural scattering. They must generally be
extracted from a full-wave simulation or be estimated experimentally — see Sec. 3.

The complexity of the static structural and environmental scattering is immaterial to
the applicability of this multiport network system model and its humber of parameters
(which depends only on the number of actual and “virtual” ports). The described model
even applies to “beyond-diagonal” programmable metasurfaces (see BOX 2) when their
implementation relies on tunable lumped elements’®”'. An illustration of this model for a
complex RIS-parametrized rich-scattering environment is shown below, together with the
corresponding equation for evaluating the connection of the two constituent subsystems.
Uponinspection of the equation, itis apparent that the mapping from the PM’s load vector
to the resulting transfer function is generally non-linear due to the matrix inversion.
Physically, this makes sense because of the coupling effects between the tunable
elements. This can be seen more clearly by rewriting the matrix inversion as an infinite
sum, in which the kth term corresponds to the family of all k-bounce paths. Paths
bouncing off multiple tunable elements inevitably intertwine the impact of the tunable
elements on the transfer function. The coupling-induced non-linear mapping from
configuration to transfer function complicates optimization but enables enhanced wave-
domain flexibility (see BOX 2) and the implementation of non-linear functions (see Sec.
4). In addition, the encoding function mapping the PM’s control vector to the PM’s load
vector is generally non-linear and thus another resource for implementing non-linear
functions (see Sec. 4). The encoding function is outside the wave domain.
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Figure 3: Universal physics-compliant system model applied to a rich-scattering multiple-input multiple-output
system parametrized by a large programmable metasurface (PM). The system is illustrated with a photographic
image in (a), the corresponding multiport-network schematic is shown in (b), and the associated equations are
summarized in (c). The equation maps a control vector (vy, v, ..., Vy,) via an encoding function p; = f(v;) to the PM’s
load vector (py, pa, -, Png)- The latter determines the PM’s load matrix Sy which is mapped to the measurable scattering
matrix S via multiport network theory. The involved matrix inversion can be recast as an infinite sum of matrix powers,
where the kth term represents the family of all k-bounce paths. The wireless channel matrix H is an off-diagonal block
of S. The number of model parameters does not depend on the complexity of the scattering, being fixed solely by the
number of antennas and programmable meta-atoms.
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BOX 2: Four emerging concepts for maximizing wave-domain flexibility

Given the pivotal role of wave-domain programmability for adapting to dynamic use
cases, time-multiplexed multi-functionality, and robustness to fabrication inaccuracies,
it is pivotal to understand how to design pWDC hardware with maximally flexible wave-
domain properties. Four distinct and complementary answers to this question emerge in
the literature. Their relevance to a specific application depends on the latter’s constraints
(for instance, regarding footprint, thickness, number of tunable components, control
circuit complexity, spectrum allotment).

First, because the wavefront transformations that can be realized with a single linear
metasurface layer are often limited, there are several proposals for stacking multiple
metasurfaces to achieve enhanced wave control>'%472, Common wave-control goals
include maximizing the normalized fidelity with which a target transformation is
approximated and the power throughput into the intended output subspace (“output
diffraction efficiency”). More layers generally increase the degrees of freedom and
thereby the ability to improve both fidelity and efficiency; yet, even with a fixed number of
degrees of freedom, multi-layer structures can outperform shallower structures in which
uncontrolled ballistic photons limit the achievable fidelity.”? Recent stacked intelligent
metasurfaces (SIMs) combine the idea of stacking with programmability’®?*. These
approaches achieve higher transfer-function flexibility typically at the expense of a less
compact system and requiring more tunable components. In the absence of non-
linearities, the overall transformation realized by a stack of metasurfaces is linear and can
be represented by a single matrix. The benefits of the stack over a single layer relate to the
achieved fidelity, tunability, and/or efficiency.

Second, beyond locally tuning the meta-atoms in a programmable metasurface (such
as an RIS or a DMA), there are proposals for additionally tuning the non-local
interactions between meta-atoms*®73747°, These approaches achieve higher transfer-
function tunability at the expense of requiring more tunable components. Envisioned
beyond-diagonal programmable metasurfaces can be partitioned into a static antenna
structure, static components of a load circuit, and tunable lumped elements”’. In such
embodiments, the programmability is point-like (lumped), and in that sense local”’ — but
the tunable components are not in one-to-one correspondence with the meta-atoms.
Regardless of the terminology, the increased number of tunable elements improves the
wave-domain flexibility compared to conventional programmable metasurfaces.

Third, there is increasing evidence that stronger mutual coupling between the tunable
elements increases the transfer-function tunability’>”. The intuitive reason is that the
wave bounces more often between the tunable components, allowing it to accumulate
more sensitivity to their configuration’. These approaches achieve higher transfer-
function flexibility at the expense of a stronger non-linearity in the forward mapping from
configuration to transfer function (which can be reaped as a benefit, see Sec. 4), and a
stronger vulnerability to perturbations.
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Fourth, beyond quasi-static programmable metasurfaces whose properties are
reconfigurable but static during a given measurement, time modulation offers additional
degrees of freedom that are leveraged by space-time-coding (STC) programmable
metasurfaces’®. Neglecting mutual coupling, the STC concept has recently been explored
for RISs”®®" and DMAs®. A mutual-coupling-aware STC system model was also
proposed®, but it remains unexplored whether the aforementioned insights about the
influence of the strength and tunability of mutual coupling on the transfer-function
tunability carry over to STC approaches. Altogether, STC approaches achieve higher
transfer-function flexibility at the expense of a more complex control circuitry and
potential sideband pollution.
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3. Prototype-aware optimization for pWDC

A pressing practical challenge for pWDC lies in determining how to configure the
programmable wave system during runtime so that its transfer function approximates the
desired one as closely as possible. Theoretically, the underlying high-dimensional, non-
convex, non-linear optimization problems are challenging but well studied. Such
theoretically studied approaches can be classified as centralized in-silico optimization: a
central operator with perfect system knowledge utilizes a traditional digital computer to
optimize the system configuration.

The experimentally achieved performance of centralized in-silico optimization hinges
on the accuracy of the utilized system model. Model-reality mismatch can originate from
the model architecture (for instance, when fundamental physical phenomena such as
mutual coupling are neglected) or the choice of model parameters (for instance, when
fabrication inaccuracies result in deviations from the assumed properties). If model-
reality mismatch is inevitable, one can explicitly account for uncertainties by including
suitable randomvariables in the system model. This approach has been shown to achieve
robustness to misalignment in cascaded diffractive multi-layer structures®%, but this
robustness inevitably comes at the expense of performance degradations that scale with
the range of the accounted uncertainties. Moreover, strategies to boost wave-domain
flexibility based on strong mutual coupling (see BOX 2) are fundamentally more sensitive
to inaccuracies and risk being counter-productive without an accurate system model. In
many cases, it is thus crucial to minimize any mismatch between the model and the
experimentally given prototype.

A useful taxonomy considers the model’s architecture and the origin of its parameter
values. The model architecture can be purely physics-based (such as the multiport
network model described in BOX 1), fully physics-agnostic (such as a feed-forward neural
network), or a combination of both®. It is generally favorable to incorporate as much
physics knowledge as possible into the architecture to endow the model with a physics-
based inductive bias. The model parameters can be estimated numerically (based on the
assumed system details) or experimentally. For pWDC hardware leveraging tunable
lumped elements (for instance, PIN diodes or varactor diodes) to achieve
reconfigurability, a universal physics-consistent system model exists (see BOX 1).
Assuming perfect system knowledge, the model parameters can be obtained with a single
numerical simulation®”88, However, perfect system knowledge is rare, and the required
simulation can be computationally costly. Thus, an experimental estimation of the model
parameters is usually needed®-*. This experimental parameter estimation is subject to
inevitable ambiguities, but they are operationally irrelevant for system optimization®. For
typical pWDC hardware such as RISs and DMAs with a few hundred tunable components,
compact physical-model calibration and efficient model-based optimization (leveraging
tricks like the Woodbury identity for efficiently updating previous forward evaluations®’) is
aviable and promising approach.
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For larger-scale pWDC systems, model-based optimization can become unfeasible.
Inspiring ideas for possible model-agnostic techniques are proposed in recent literature
on training physical neural networks (PNNs)®2. Zeroth-order methods, such as a simple
coordinate descent, avoid the need fora model but scale poorly with the number of model
parameters. Advanced model-agnostic methods like in-situ reinforcement learning can
reduce the number of required measurements®. One elegant alternative model-
agnostic idea consists of physically implementing the backpropagation algorithm that
underpins the training of digital neural networks®-%. However, this requires additional
hardware to inject coherent wavefronts viathe PNN’s output ports and intensity detectors
at each tunable component. Another potential solution is to eliminate the need for
gradients altogether by using physical local learning'®’, where each layer is configured
based on two forward passes, one with positive data and one with negative data. However,
the performance in large-scale PNNs remains unexplored.

As summarized in Fig. 4, all thus-far discussed optimization techniques rely on a
central operator. Incidentally, this operator is an abstract concept, not limited to a human
but also applicable to human-written code® and groups of artificial-intelligence agents
acting as operators®. In any case, the reliance on a central operator likely imposes
fundamental limits on scalability due to communications overhead between the operator
and the tunable components. This raises the following question: can pWDC hardware
self-configure in a decentralized manner? While a concept for a decentralized self-
configuring linear circuit exists'®, it is specific to one particular, feed-forward-only circuit
architecture and is not applicable to generic pWDC hardware. Identifying analogous
concepts for generic pWDC would constitute a major advance, but it is unclear whether
that is even possible without fundamentally requiring non-linear mechanisms, such as
harmonic feedback™’ or self-oscillation®2,
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pWDC Optimization: How to identify a configuration of the tunable elements that yields {approximately) a desired transfer function?
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Figure 4: Taxonomy of approaches to prototype-aware pWDC optimization. Existing schemes for optimizing
experimental pWDC hardware rely on a central operator, which can be a human, a human-written code®, or a group of
Al agents®. The central operator optimizes the pWDC hardware either in a model-based or model-agnostic manner. In
the former case, a model architecture is chosen somewhere on the spectrum between purely physics-based and fully
data-driven (physics-agnostic), and the model parameters are estimated, either numerically or experimentally. In
model-agnostic optimization, interesting alternatives to poorly scaling zeroth-order methods include in-situ back-
propagation®® and back-propagation-free local learning’®. Decentralized self-configuration of pWDC hardware is
extremely rare to date, and has only been explored for special architectures of Mach-Zehnder-interferometer meshes’.
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4. Beyond linear continuous-wave pWDC

While pWDC hardware for reconfigurable linear transformations of continuous-wave
operations is already quite mature at the prototype level, it is of great interest to expand
the scope of realizable wave-domain operations',

The most obvious concern regards non-linearity. Non-linearities are indispensable in
many advanced signal-processing algorithms. They are the essential ingredient for the
universal approximation theorem for digital neural networks'. As shown in Fig. 5,
implementations of nonlinear RF wave-domain processing are in principle possible using
all-RF nonlinear circuit components, such as strongly driven limiters or saturating
amplifiers. However, these RF nonlinearities are typically engineered to operate at
comparatively high RF power levels, which are usually incompatible with the signal levels
and energy budget targeted in pWDC systems. Meanwhile, implementing non-linear
transformations outside the wave domain (e.g., in analog electronics or digital
processing) is easier. Most proposals for non-linear pWDC are thus inherently hybrids
between the wave domain and the analog-electronics or digital domain. In hybrid
architectures, read-out non-linearities arising from bare intensity detection are readily
available' but not sufficiently strong for implementing advanced non-linear operations.
Non-linearities such as one resembling the common RelLU activation function can be
implemented in analog electronics by driving a tunable gain element with a DC output
signal from an RF detector, with latencies of tens of nanoseconds'®. More elaborate non-
linearities can be implemented in the digital domain at the expense of longer latencies.
For instance, some schemes integrate linear pWDC hardware into a hybrid pipeline
together with a non-linear digital backend (such as a digital artificial neural network) for
end-to-end optimized integrated over-the-air computing and sensing?, circuital non-
linear feedback architectures®, or feedback-loop-based architectures for inverse
design'®. This approach can be extended to enable neuromorphic realizations of wave-
domain PNNs, for instance, with hidden spiking layers. The hybrid nature of such
schemes can be a significant caveat if it implies additional analog-to-digital and digital-
to-analog conversions, which constitute speed bottlenecks and dominate power
consumption.

Another route toward non-linearity consists in tuning structural parameters of the
system as afunction of the input data-see Fig. 5. While the mapping from input wavefront
to output wavefront is by definition linear in a reconfigurable linear wave system, the
mapping from configuration to transfer function (or output wavefront for a reference input
wavefront) is generally non-linear. BOX 1 explains the two reasons: first, the encoding
function generally constitutes a non-linear mapping from control vector to structural
parameters (load vector), and, second, mutual coupling between the tunable elements
causes a non-linear mapping from structural parameters (load vector) to transfer
function. These two effects, also referred to as “encoding non-linearity” and “structural
non-linearity”, enable the realization of a non-linear mapping at the system level, despite
linear wave propagation for any fixed configuration. Neither of the two effects is a pure
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wave-domain non-linearity: an encoding non-linearity occurs outside the wave domain;
a structural non-linearity, while occurring in the wave domain, requires encoding of input
data into structural parameters. Incidentally, encoding input data into the structural
system parameters (as opposed to the input wavefront) is the basis of backscatter
communications, whose principle dates back at least to the Great Seal Bug'® from the
1940s and is nowadays omnipresent in RFID technology.

Examples of encoding non-linearities include amplitude, intensity and phase
encoding'”, the latter of which has been shown in the context of diffractive multi-layer
structures to enable highly expressive approximations of desired nonlinear functions?®:.
Quantization of the structural parameters’ tunability usually results in an inevitable
encoding non-linearity, unless the input data is already discrete on a compatible
alphabet. For the special case of binary input data and 1-bit-programmable structural
parameters, which is common for programmable metasurface prototypes, the encoding
function is always affine (linear plus a constant term).

As for structural nonlinearity, the non-linear mapping from programmable-
metasurface configuration to transfer function inside a rich-scattering cavity was
explicitly noted in Ref."”, where it was deliberately mitigated to implement a linear
operation. An analogous optical system was realized in Ref.?°. A more involved version of
structural non-linearity was theoretically studied for a time-varying system in Ref.?.
Experimental demonstrations of structural non-linearity in PNNs were initially reported
for microwaves' and subsequently also transposed to optics3®32, Structural non-linearity
arises because of a superposition of multi-bounce paths that interact multiple times with
the input-data-carrying structural parameters (“virtual data repetition”). The precise
mathematical form of structural non-linearity relates to a matrix inversion which
compactly sums the contributions of all multi-bounce paths, as seen in Fig. 3c. By
judiciously mapping input data to structural parameters, one can thus realize matrix-
inversion-type operations such as those underpinning linear minimum mean square error
estimation'®, A related but distinct implementation of structural non-linearity in Ref.?!
unfolds the repeated interactions into a forward-multiple-scattering cascade of
sequential programmable modulation planes into which the same input data is encoded.
Because structural non-linearity requires by construction the (usually non-linear)
encoding of input data into structural parameters, it is accompanied by an encoding non-
linearity in most implementations.

Page 16 of 28



" A . How is input data
Reconfigurable Linear Operation encoded?

Input Structural
Wavefront Parameters

Wave-Domain Analog- Electronics Digital-Domain Encoding Non-Linearity and/or
Nen-Linearity Non-Linearity Non-Linearity Structural Non-Linearity
et Fig, 721 I B
1
y=H{f ()
OuputDiata
{Wave-Domain or Analog-Electronics) Circuital Non-Linearity Read-Qut and/or Digital Non-Linearity Encoding and/or Structural Non-Linearity

Circuital Non-Linear Processing with Feedback-Loop-Based RIS-Based PNN with
Feadback Architecture MNon-Linear Digital-Backend Non-Linear Processing Structural Non-Linearity

() &f w . (€
&
ASH:)

&

g K,
K, =

Figure 5: Routes toward non-linear processing with pWDC hardware. Taxonomy (top row), corresponding

schematics (middle row) and selected examples’%¢927.16.19 of experimental implementations of non-linear operations
leveraging pWDC hardware.

Activation function

Tzt

Besides non-linearity, memory is often an important feature in advanced signal
processing algorithms. Within the realm of linear time-invariant wave systems, systems
with long dwell times exhibit a form of fading memory. For example, a static integrated
photonic chaotic cavity has been demonstrated to have a memory of up to 6 bits, which
is useful for header recognition in telecom applications®. Interestingly, long dwell times
also tend to lead to strong mutual coupling between the tunable components, which
improves the transfer-function flexibility, as discussed in BOX 2. Beyond the scope of
time-invariant systems, switched networks can exceed the delay-bandwidth limit'°,
offering another potential route to a form of memory.

Ultimately, the limiting factor regarding beyond-linear continuous-wave pWDC is not
only the hardware realization but also the identification of a compelling use case in which
the additional cost (for instance, regarding latency or power consumption) can be
amortized. Simple linear continuous-wave pWDC, possibly augmented by a digital
backend performing non-linear operations, is poised for initial deployments, while the
compatibility with a convincing use case is an important concern for more complex
pWDC hardware proposals.
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5. Integrating pWDC into system-level architectures

Integrating pWDC into wireless networks requires concerted efforts across layers, ranging
from the technology and device layers via the application layer to the overall network
architecture design. pWDC constitutes a fundamentally new type of resource that must
be appropriately managed so thatit can be seamlessly integrated into the overall network
architecture. To date, most research efforts have focused on the technology and device
layers (for instance, how to design an RIS or a DMA and what technology maximizes its
wave-domain flexibility) and have demonstrated their suitability for selected applications
(for instance, beam-forming, computational imaging, or direction-of-arrival estimation).
However, a holistic network-level view, abstracting pWDC as a shared, schedulable
resource rather than a micromanaged device, is still largely missing. Applying common
virtualization techniques to pWDC resources in the spirit of network slicing (sharing a
physical resource among multiple applications’’, see Fig. 6) may fundamentally struggle
with electromagnetic phenomena occurring at the device level. For instance, coupling
and interference phenomena between distinct pWDC hardware slices can undermine the
intended functioning.

Integrating pWDC into system-level architectures calls for an operating-system (OS)
view in which pWDC is treated as a shared, schedulable resource’?. As shown in Fig. 6,
this OS layeris interposed between applications and the heterogeneous pWDC hardware.
Within the OS, a service broker lets ordinary applications ask for connectivity, sensing,
security or wireless power without naming specific hardware; an orchestrator translates
those demands into plans, possibly consulting a simulator to anticipate how nearby
pWDC hardware will interact, and then uses a scheduler to multiplex tasks across time,
frequency and space; beneath it, a hardware manager hides heterogeneity and pushes
pre-validated configurations to both existing and newly deployed pWDC hardware while
drawing on sensors, access points and base stations for feedback. Given the rapid
advances in artificial intelligence (Al), Al-based workflow automation is becoming
increasingly feasible and likely. Workflow automation in a prototypical smart radio
environment based on a group of Al agents, each with dedicated expertise (such as a
hardware manager or scheduler) and communicating in natural language, was recently
prototyped®. These early tests, displayed in Fig. 6, already tackled moderately complex
scenarios involving RIS resources to facilitate a combination of sensing and
communications objectives as part of a sequence of self-defined tasks.
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6. Discussion

The last two decades have witnessed rapid progress in developing hardware and exploring
applications for pWWDC across wave phenomena, including the microwave regime that is
currently most relevant to wireless communications. Programmable metasurfaces
unlock advanced wave control that endows wave-domain sighal processing with
unprecedented flexibility. Hybrid systems combining pWDC with digital processing are
already among the most prominent systems considered for pWWDC-empowered wireless
sensingand communications. Because hybrid systems can avoid the additional overhead
and cost that would arise from extra conversions between analog and digital domains, as
well as synergistically combine the distinct advantages of each domain, they are poised
to be one of the most promising directions for transitioning pWDC to real-life applications
in the wireless domain.

Encouraged by recent prototype systems at the device and application levels,
important questions for future research span from fundamental aspects to the system-
level architecture. Perhaps most fundamentally, theoretical tools for understanding the
expressivity of pWDC are missing; electromagnetically consistent bounds on transfer
functions that can be realized with a given pWDC hardware remain unknown to date.
Understanding the range of realizable mathematical operations gets even more
complicated as we go beyond linear continuous-wave systems. At the same time, the
trade-offs between hardware complexity and performance gains are unexplored. For
instance, are the latency and power consumption penalties of implementing non-linear
pWDC worth the ensuing benefits? Mapping out the complexity-performance Pareto
frontier is an important avenue for future work, with the notion of complexity
encompassing both the complexity of realizing the hardware as well as the complexity of
the necessary efforts to optimize the hardware configuration in real time.

In addition, several practical aspects, such as footprint, power consumption, and
security, have not been the center of recent research on pWDC. For instance, the marked
differences in compactness among the three hybrid antenna architecture families in Fig.
2 have not received much attention. Given the potential of metamaterial engineering to
miniaturize devices and maximize their wave-domain flexibility with a fixed budget of
tunable components, there remain important avenues for metamaterials research on the
technology level. At the same time, reliable end-to-end evaluations of power budgets are
urgently needed. Finally, we anticipate that security considerations, both on the physical
layer and in Al-empowered operating systems for pWDC, will become increasingly
important.
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