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Abstract 

Future wireless networks must achieve large gains in data rate, energy efficiency and 
latency while integrating sensing and computation. Programmable wave-domain 
computing (pWDC), which processes signals directly through reconfigurable wave–
matter interactions, offers a way to offload part of this burden from electronic processors. 
In this Perspective, we review historical roots and recent work on pWDC and discuss its 
promise and challenges. We focus on three challenges: prototype-aware runtime 
optimization of pWDC hardware, enriching functionalities beyond linear continuous-
wave operation, and integrating pWDC into network-level resource management. Finally, 
we outline open questions regarding expressivity, practicality, and security that will arise 
in the transition of pWDC to real-life deployment in future wireless infrastructures. 
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1. Introduction 
 
Current wireless communications infrastructure heavily relies on digital signal 
processing. Next-generation wireless systems aim for at least 10X improvements in data 
rate, energy efficiency, and latency, and to integrate communications with sensing. To 
achieve these ambitious goals, offloading specific-purpose computations to the wave 
domain is emerging as a technological enabler. Wave-domain computing (WDC) broadly 
refers to information processing that occurs at least partially based on the interactions of 
physical waves (for instance, microwaves, light, or sound) with systems (for instance, 
metamaterials or radio environments). WDC has a long tradition dating back to the dawn 
of computing, but the astonishing rate of improvement of general-purpose electronic 
processors has thus far thwarted practical needs for WDC. Instead of rivaling electronics 
for general-purpose computing, recent interest in WDC targets specific-purpose 
operations that strategically leverage the unique benefits of wave-matter interactions 
related to bandwidth, parallelism, and power consumption1. Over the last decade, these 
concepts have matured thanks to advances in engineered materials and wave control2 – 
see Fig.1 for a timeline of selected milestones. In particular, advances in reconfigurable 
metamaterials3 have established the required hardware for programmable WDC (pWDC). 
pWDC enables deterministic adjustments of the WDC functionality during runtime. Now, 
given the pressing needs of next-generation wireless systems, we see a strong opportunity 
for pWDC to transition to real-world applications in wireless communications. 

In this Perspective, we begin by introducing the fundamental concepts of pWDC and 
providing a historical overview of various disjoint origins of WDC in diverse research 
communities. With a focus on pWDC in wireless systems, we explain physics-consistent 
system modeling and contemporary efforts to maximize wave-domain flexibility. Then, we 
provide an in-depth examination of three key challenges that need to be solved to enable 
the transition of pWDC into real-life deployments in wireless systems.  

First, what are the most promising paradigms for optimizing the configuration of 
programmable wave-domain infrastructure for a desired functionality in situ? This 
question spans from overcoming issues with model-reality mismatch all the way to 
possible embodiments of decentralized self-configuration for pWDC hardware. 

Second, how far beyond linear operations on time-harmonic signals can we go? While 
WDC does not aim at general-purpose computing, features like non-linearity and memory 
may be very valuable assets. Their implementations are open challenges, and existing 
ideas imply important trade-offs between increased pWDC expressivity and metrics like 
speed and energy consumption. 

Third, beyond the traditional scopes of wave-matter control and signal processing, 
what runtime control plane is needed to orchestrate pWDC-empowered wireless 
networks? For instance, what could a dedicated operating system look like?  

We close with a brief discussion of additional open questions in the realms of 
expressivity, practicality, and security that will arise in the transition of pWDC from 
academic research to real-life deployment.   
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Figure 1: Timeline of selected milestones in WDC. Corresponding references by row: free-space optical computing4; 
diffractive multi-layer computing5–10; complex-media wave computing11,12; stand-alone metamaterial wave 
computing13–16; stand-alone RIS-based wave computing17–19; over-the-air computing20,21; hybrid MIMO22–24; 
computational meta-imaging25–27; encoding and structural non-linearity concepts17,28,19,29–33 (see Sec. 3); programmable 
metasurface hardware34–36,3,37,26,38–41. 
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2. Principles and historical origins of pWDC 
 

WDC relies on the fact that a system’s transfer function – the mapping from the impinging 
wavefront to the scattered wavefront – can be viewed as realizing a mathematical 
operation on the impinging wavefront. A basic example thereof is a lens, which is a linear 
optical component that implements a Fourier transform (in the appropriate Fourier 
plane). More elaborate examples of WDC in free-space optics have been explored for 
many decades, including convolution42, wavelet transforms43, and discrete unitary 
operators4. Advances in metamaterial engineering have enabled the miniaturization, 
customization, and reconfigurability of WDC. For example, a stacked metamaterial13 or 
an ultrathin metasurface44 can be designed to perform spatial differentiation, integration 
or convolution. Moreover, desired linear optical operations can be implemented in a static 
or programmable manner based on cascaded diffractive layers5–10,45 or integrated 
photonic systems46–48. Furthermore, random scattering media can implement large-scale 
random projections11 or, combined with spatial light modulators, desired linear 
transformations12.  

Analogous concepts also exist for wireless systems operating in the radiofrequency 
(RF) regime. Related to random projections through optical scattering media11 are over-
the-air computations in wireless sensor networks20,49–51. In this context, the uncontrolled 
radio environment that connects the sensor nodes to the sink node can be viewed as an 
over-the-air analog combiner of the signals radiated by the sensor nodes. The concurrent 
transmission of measurement data by different sensor nodes results in a superposition 
of signals (“channel collision”) which can be exploited to compute a desired function 
over-the-air (such as the mean of the sensor measurements). Thereby, wireless data 
aggregation is achieved in the wave domain, simultaneously with wireless 
communication.  

Besides such statistical and uncontrollable analog combining, deterministic and 
reconfigurable analog combining is of great importance in modern multi-element 
antenna systems – see Fig. 2. Proposals for reconfigurable analog combining already 
emerged in preparation of the 5G era, where beamforming with large-scale multi-element 
antenna arrays was envisioned but confronted with severe hardware complexity, cost, 
and energy consumption52. These issues arise when a complete RF chain is required for 
each antenna element. To overcome this limitation, hybrid analog/digital beamforming 
with a substantially reduced number of RF chains thanks to a reconfigurable analog 
combiner emerged. The analog combining was initially envisioned22,53 and prototyped54,55 
in the form of circuits involving many phase shifters, or switches56. On the receive side, 
this analog combining circuit realizes a programmable linear mapping from the high-
dimensional signal exiting the antenna ports to the low-dimensional signal entering the 
RF chains. A similar approach can be used in reverse order on the transmit side.   

Meanwhile, efforts in microwave imaging were confronted with essentially the same 
challenge: to achieve the required resolution, large coherent apertures composed of 
many antenna elements are required – traditionally, with one RF chain per antenna 
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element. Here, the metamaterials platform has come to the rescue in three steps. First, 
static  metasurfaces generating frequency-diverse pseudo-random scene illuminations 
were explored25,57. These implemented deterministic but static linear low-to-high-
dimensional mappings; it was important to know the realized mapping and to ensure that 
it was pseudo-random (in line with compressed sensing principles), but there was no 
need to engineer one specific mapping. Second, dynamic metasurface antennas (DMAs) 
capable of generating sequences of pseudo-random scene illuminations based on 
random configurations enabled single-frequency operation26,58,59. The computational 
imaging principle was the same as in the frequency-diverse case. Third, the DMA’s 
programmability was leveraged to optimize the analog combining end-to-end for a 
specific task, taking into account hardware impairments, task, prior scene knowledge, 
and measurement noise27,60,61. All versions of these computational microwave imagers 
can be understood as performing integrated sensing and wave-domain computing over 
the air; the latter is particularly advanced in the third case, where salient task-relevant 
information is already preselected in the wave domain.  

DMAs integrate the reconfigurable analog combining into the antenna architecture so 
that they offer the wave-domain flexibility required for hybrid analog/digital beamforming 
in a more compact form-factor than the conventional use of separate analog combining 
circuits23. End-to-end optimization of DMAs for a specific task is also relevant in the 
context of wireless communications62. Besides DMAs, reconfigurable intelligent surfaces 
(RISs) have gained much traction in wireless communications research39. Conceptually, 
the key difference between RISs and DMAs is that DMAs have feeds so that they can 
radiate and/or receive waves in a programmable manner, whereas RISs do not have feeds 
so that they only scatter waves in a programmable manner. Use cases of RISs at the base 
station thus require separate feed antennas63, and the programmable analog combining 
occurs partially over-the-air. This principle can also be generalized to hybrid transceivers 
leveraging stacked intelligent metasurfaces (SIMs)24 instead of a conventional RIS. 
However, the main conceptually distinct use case for RISs in comparison to DMAs is the 
deployment of RISs away from the base station as programmable scatterers in a “smart” 
radio environment that can endow its wireless channels with desirable properties64–67. 
RISs thus offer a possibility to control the over-the-air analog combining in otherwise 
uncontrolled radio environments21. 

It is notable that existing examples of pWDC in the context of wireless systems are 
already integrated with sensing (in the case of computational imaging) or 
communications; in the future, further integration combining sensing, computing, and 
communications is expected. Overall, these schemes are necessarily hybrid, involving 
both wave-domain and digital steps. Thereby, they automatically resolve a concern about 
input/output overhead that exists for purely analog WDC. Indeed, it is important to 
address the question of how the input data is encoded into the impinging wavefront and 
how the output data is read out from the scattered wavefront. The associated input/output 
overhead can imply bottlenecks on speed, energy consumption, and/or footprint that 
may be difficult to amortize. In some cases, amortization is possible if the scale of the 
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implemented mathematical operation is sufficiently large to outweigh the input/output 
overhead. However, the input/output concern is altogether avoided in applications in 
which the input is naturally in the wave domain and the output is naturally in the digital 
domain; in such cases, there is no need for digital-to-analog conversion at the input, and 
the analog-to-digital conversion at the output is already present in any case. This is 
precisely the case for the existing examples of pWDC in the context of wireless systems. 
 

 
Figure 2: Selected examples of pWDC in hybrid wireless systems for MIMO wireless communications and 
computational imaging. In all three cases, the goal is to use fewer RF chains by leveraging pWDC. Three major pWDC 
embodiments exist. Traditionally, a combining circuit between the RF chains and the antenna array is used. Most 
compactly, a dynamic metasurface antenna (DMA) compactly integrates everything. Alternatively, a RIS or SIM 
parametrizes over-the-air combination. The principle can be applied to transmission and reception. 

 
The fundamental ingredients of modern programmable metasurfaces like RISs and 

DMAs started to emerge since the early 2000s34–36,68,3,37. Typically, the reconfigurability 
mechanism relies on tunable lumped elements such as PIN diodes or varactor diodes. 
This common feature enables a universal approach to physics-compliant modeling of 
pWDC hardware that is described in BOX 1. Circuit-based pWDC hardware akin to analog 
combining circuits also continues to be explored16,69 because it can be described with 
high accuracy using simplified closed-form models without accounting for mutual 
coupling. An ongoing quest in contemporary research relates to how to maximize the 
transfer-function tunability of pWDC hardware; an overview of four emerging concepts 
tackling this question is given in BOX 2. 
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BOX 1: Primer on physics-compliant modeling of pWDC hardware  
 
For the vast majority of existing pWDC hardware for applications in wireless 
communications, the programmability relies on tunable lumped elements (for instance, 
PIN diodes or varactor diodes). At a high conceptual level, irrespective of the detailed 
architecture, all these pWDC hardware examples admit the same physics-consistent 
system model that rigorously captures all electromagnetically relevant coupling 
phenomena. The starting point is a partition of the system into three entities: (i) NA ports 
via which waves can enter and exit the system; (ii) NS tunable lumped elements; (iii) all 
other remaining system components (which are static by definition). Each tunable 
lumped element can be viewed as an additional “virtual” port terminated by a tunable 
load. Then, the overall NA-port pWDC system can be viewed as the connection between a 
static (NA+NS)-port system and a tunable NS-port system. Each constituent system is 
characterized by a scattering matrix; the scattering matrix is diagonal for the tunable 
system, given its composition of tunable individual loads. The scattering coefficients 
describing the static constituent system are generally not known in closed form because 
they account for environmental and structural scattering. They must generally be 
extracted from a full-wave simulation or be estimated experimentally – see Sec. 3.  

The complexity of the static structural and environmental scattering is immaterial to 
the applicability of this multiport network system model and its number of parameters 
(which depends only on the number of actual and “virtual” ports). The described model 
even applies to “beyond-diagonal” programmable metasurfaces (see BOX 2) when their 
implementation relies on tunable lumped elements70,71. An illustration of this model for a 
complex RIS-parametrized rich-scattering environment is shown below, together with the 
corresponding equation for evaluating the connection of the two constituent subsystems. 
Upon inspection of the equation, it is apparent that the mapping from the PM’s load vector 
to the resulting transfer function is generally non-linear due to the matrix inversion. 
Physically, this makes sense because of the coupling effects between the tunable 
elements. This can be seen more clearly by rewriting the matrix inversion as an infinite 
sum, in which the kth term corresponds to the family of all k-bounce paths. Paths 
bouncing off multiple tunable elements inevitably intertwine the impact of the tunable 
elements on the transfer function. The coupling-induced non-linear mapping from 
configuration to transfer function complicates optimization but enables enhanced wave-
domain flexibility (see BOX 2) and the implementation of non-linear functions (see Sec. 
4). In addition, the encoding function mapping the PM’s control vector to the PM’s load 
vector is generally non-linear and thus another resource for implementing non-linear 
functions (see Sec. 4). The encoding function is outside the wave domain. 
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Figure 3: Universal physics-compliant system model applied to a rich-scattering multiple-input multiple-output 
system parametrized by a large programmable metasurface (PM). The system is illustrated with a photographic 
image in (a), the corresponding multiport-network schematic is shown in (b), and the associated equations are 
summarized in (c). The equation maps a control vector  (𝑣1, 𝑣2, … , 𝑣𝑁𝑆

) via an encoding function 𝜌𝑖 = 𝑓(𝑣𝑖) to the PM’s 
load vector (𝜌1, 𝜌2, … , 𝜌𝑁𝑆

). The latter determines the PM’s load matrix 𝑺𝑳 which is mapped to the measurable scattering 
matrix 𝑺 via multiport network theory. The involved matrix inversion can be recast as an infinite sum of matrix powers, 
where the 𝑘th term represents the family of all 𝑘-bounce paths. The wireless channel matrix 𝑯 is an off-diagonal block 
of 𝑺. The number of model parameters does not depend on the complexity of the scattering, being fixed solely by the 
number of antennas and programmable meta-atoms. 
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BOX 2: Four emerging concepts for maximizing wave-domain flexibility 
Given the pivotal role of wave-domain programmability for adapting to dynamic use 

cases, time-multiplexed multi-functionality, and robustness to fabrication inaccuracies, 
it is pivotal to understand how to design pWDC hardware with maximally flexible wave-
domain properties. Four distinct and complementary answers to this question emerge in 
the literature. Their relevance to a specific application depends on the latter’s constraints 
(for instance, regarding footprint, thickness, number of tunable components, control 
circuit complexity, spectrum allotment). 

First, because the wavefront transformations that can be realized with a single linear 
metasurface layer are often limited, there are several proposals for stacking multiple 
metasurfaces to achieve enhanced wave control5–10,45,72. Common wave-control goals 
include maximizing the normalized fidelity with which a target transformation is 
approximated and the power throughput into the intended output subspace (“output 
diffraction efficiency”). More layers generally increase the degrees of freedom and 
thereby the ability to improve both fidelity and efficiency; yet, even with a fixed number of 
degrees of freedom, multi-layer structures can outperform shallower structures in which 
uncontrolled ballistic photons limit the achievable fidelity.72 Recent stacked intelligent 
metasurfaces (SIMs) combine the idea of stacking with programmability10,24. These 
approaches achieve higher transfer-function flexibility typically at the expense of a less 
compact system and requiring more tunable components. In the absence of non-
linearities, the overall transformation realized by a stack of metasurfaces is linear and can 
be represented by a single matrix. The benefits of the stack over a single layer relate to the 
achieved fidelity, tunability, and/or efficiency. 

Second, beyond locally tuning the meta-atoms in a programmable metasurface (such 
as an RIS or a DMA), there are proposals for additionally tuning the non-local 
interactions between meta-atoms40,73,74,70. These approaches achieve higher transfer-
function tunability at the expense of requiring more tunable components. Envisioned 
beyond-diagonal programmable metasurfaces can be partitioned into a static antenna 
structure, static components of a load circuit, and tunable lumped elements71. In such 
embodiments, the programmability is point-like (lumped), and in that sense local71 – but 
the tunable components are not in one-to-one correspondence with the meta-atoms. 
Regardless of the terminology, the increased number of tunable elements improves the 
wave-domain flexibility compared to conventional programmable metasurfaces.  

Third, there is increasing evidence that stronger mutual coupling between the tunable 
elements increases the transfer-function tunability75–78. The intuitive reason is that the 
wave bounces more often between the tunable components, allowing it to accumulate 
more sensitivity to their configuration75. These approaches achieve higher transfer-
function flexibility at the expense of a stronger non-linearity in the forward mapping from 
configuration to transfer function (which can be reaped as a benefit, see Sec. 4), and a 
stronger vulnerability to perturbations. 
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Fourth, beyond quasi-static programmable metasurfaces whose properties are 
reconfigurable but static during a given measurement, time modulation offers additional 
degrees of freedom that are leveraged by space-time-coding (STC) programmable 
metasurfaces79. Neglecting mutual coupling, the STC concept has recently been explored 
for RISs79–81 and DMAs82. A mutual-coupling-aware STC system model was also 
proposed83, but it remains unexplored whether the aforementioned insights about the 
influence of the strength and tunability of mutual coupling on the transfer-function 
tunability carry over to STC approaches. Altogether, STC approaches achieve higher 
transfer-function flexibility at the expense of a more complex control circuitry and 
potential sideband pollution. 
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3. Prototype-aware optimization for pWDC 
 
A pressing practical challenge for pWDC lies in determining how to configure the 
programmable wave system during runtime so that its transfer function approximates the 
desired one as closely as possible. Theoretically, the underlying high-dimensional, non-
convex, non-linear optimization problems are challenging but well studied. Such 
theoretically studied approaches can be classified as centralized in-silico optimization: a 
central operator with perfect system knowledge utilizes a traditional digital computer to 
optimize the system configuration.  

The experimentally achieved performance of centralized in-silico optimization hinges 
on the accuracy of the utilized system model. Model-reality mismatch can originate from 
the model architecture (for instance, when fundamental physical phenomena such as 
mutual coupling are neglected) or the choice of model parameters (for instance, when 
fabrication inaccuracies result in deviations from the assumed properties). If model-
reality mismatch is inevitable, one can explicitly account for uncertainties by including 
suitable random variables in the system model. This approach has been shown to achieve 
robustness to misalignment in cascaded diffractive multi-layer structures84,85, but this 
robustness inevitably comes at the expense of performance degradations that scale with 
the range of the accounted uncertainties. Moreover, strategies to boost wave-domain 
flexibility based on strong mutual coupling (see BOX 2) are fundamentally more sensitive 
to inaccuracies and risk being counter-productive without an accurate system model. In 
many cases, it is thus crucial to minimize any mismatch between the model and the 
experimentally given prototype.  

 A useful taxonomy considers the model’s architecture and the origin of its parameter 
values. The model architecture can be purely physics-based (such as the multiport 
network model described in BOX 1), fully physics-agnostic (such as a feed-forward neural 
network), or a combination of both86. It is generally favorable to incorporate as much 
physics knowledge as possible into the architecture to endow the model with a physics-
based inductive bias. The model parameters can be estimated numerically (based on the 
assumed system details) or experimentally. For pWDC hardware leveraging tunable 
lumped elements (for instance, PIN diodes or varactor diodes) to achieve 
reconfigurability, a universal physics-consistent system model exists (see BOX 1). 
Assuming perfect system knowledge, the model parameters can be obtained with a single 
numerical simulation87,88. However, perfect system knowledge is rare, and the required 
simulation can be computationally costly. Thus, an experimental estimation of the model 
parameters is usually needed89,90. This experimental parameter estimation is subject to 
inevitable ambiguities, but they are operationally irrelevant for system optimization90. For 
typical pWDC hardware such as RISs and DMAs with a few hundred tunable components, 
compact physical-model calibration and efficient model-based optimization (leveraging 
tricks like the Woodbury identity for efficiently updating previous forward evaluations91) is 
a viable and promising approach.  
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For larger-scale pWDC systems, model-based optimization can become unfeasible. 
Inspiring ideas for possible model-agnostic techniques are proposed in recent literature 
on training physical neural networks (PNNs)92. Zeroth-order methods, such as a simple 
coordinate descent, avoid the need for a model but scale poorly with the number of model 
parameters. Advanced model-agnostic methods like in-situ reinforcement learning can 
reduce the number of required measurements93,94. One elegant alternative model-
agnostic idea consists of physically implementing the backpropagation algorithm that 
underpins the training of digital neural networks95,96. However, this requires additional 
hardware to inject coherent wavefronts via the PNN’s output ports and intensity detectors 
at each tunable component. Another potential solution is to eliminate the need for 
gradients altogether by using physical local learning19,97, where each layer is configured 
based on two forward passes, one with positive data and one with negative data. However, 
the performance in large-scale PNNs remains unexplored. 

As summarized in Fig. 4, all thus-far discussed optimization techniques rely on a 
central operator. Incidentally, this operator is an abstract concept, not limited to a human 
but also applicable to human-written code98 and groups of artificial-intelligence agents 
acting as operators99. In any case, the reliance on a central operator likely imposes 
fundamental limits on scalability due to communications overhead between the operator 
and the tunable components. This raises the following question: can pWDC hardware 
self-configure in a decentralized manner? While a concept for a decentralized self-
configuring linear circuit exists100, it is specific to one particular, feed-forward-only circuit 
architecture and is not applicable to generic pWDC hardware. Identifying analogous 
concepts for generic pWDC would constitute a major advance, but it is unclear whether 
that is even possible without fundamentally requiring non-linear mechanisms, such as 
harmonic feedback101 or self-oscillation102. 
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Figure 4: Taxonomy of approaches to prototype-aware pWDC optimization. Existing schemes for optimizing 
experimental pWDC hardware rely on a central operator, which can be a human, a human-written code98, or a group of 
AI agents99. The central operator optimizes the pWDC hardware either in a model-based or model-agnostic manner. In 
the former case, a model architecture is chosen somewhere on the spectrum between purely physics-based and fully 
data-driven (physics-agnostic), and the model parameters are estimated, either numerically or experimentally. In 
model-agnostic optimization, interesting alternatives to poorly scaling zeroth-order methods include in-situ back-
propagation96 and back-propagation-free local learning19. Decentralized self-configuration of pWDC hardware is 
extremely rare to date, and has only been explored for special architectures of Mach-Zehnder-interferometer meshes100. 
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4. Beyond linear continuous-wave pWDC 
 
While pWDC hardware for reconfigurable linear transformations of continuous-wave 
operations is already quite mature at the prototype level, it is of great interest to expand 
the scope of realizable wave-domain operations103.  

The most obvious concern regards non-linearity. Non-linearities are indispensable in 
many advanced signal-processing algorithms. They are the essential ingredient for the 
universal approximation theorem for digital neural networks104. As shown in Fig. 5, 
implementations of nonlinear RF wave-domain processing are in principle possible using 
all-RF nonlinear circuit components, such as strongly driven limiters or saturating 
amplifiers. However, these RF nonlinearities are typically engineered to operate at 
comparatively high RF power levels, which are usually incompatible with the signal levels 
and energy budget targeted in pWDC systems. Meanwhile, implementing non-linear 
transformations outside the wave domain (e.g., in analog electronics or digital 
processing) is easier. Most proposals for non-linear pWDC are thus inherently hybrids 
between the wave domain and the analog-electronics or digital domain. In hybrid 
architectures, read-out non-linearities arising from bare intensity detection are readily 
available10 but not sufficiently strong for implementing advanced non-linear operations. 
Non-linearities such as one resembling the common ReLU activation function can be 
implemented in analog electronics by driving a tunable gain element with a DC output 
signal from an RF detector, with latencies of tens of nanoseconds105. More elaborate non-
linearities can be implemented in the digital domain at the expense of longer latencies. 
For instance, some schemes integrate linear pWDC hardware into a hybrid pipeline 
together with a non-linear digital backend (such as a digital artificial neural network) for 
end-to-end optimized integrated over-the-air computing and sensing27, circuital non-
linear feedback architectures69, or feedback-loop-based architectures for inverse 
design16. This approach can be extended to enable neuromorphic realizations of wave-
domain PNNs, for instance, with hidden spiking layers. The hybrid nature of such 
schemes can be a significant caveat if it implies additional analog-to-digital and digital-
to-analog conversions, which constitute speed bottlenecks and dominate power 
consumption.  

Another route toward non-linearity consists in tuning structural parameters of the 
system as a function of the input data – see Fig. 5. While the mapping from input wavefront 
to output wavefront is by definition linear in a reconfigurable linear wave system, the 
mapping from configuration to transfer function (or output wavefront for a reference input 
wavefront) is generally non-linear. BOX 1 explains the two reasons: first, the encoding 
function generally constitutes a non-linear mapping from control vector to structural 
parameters (load vector), and, second, mutual coupling between the tunable elements 
causes a non-linear mapping from structural parameters (load vector) to transfer 
function. These two effects, also referred to as “encoding non-linearity” and “structural 
non-linearity”, enable the realization of a non-linear mapping at the system level, despite 
linear wave propagation for any fixed configuration. Neither of the two effects is a pure 
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wave-domain non-linearity: an encoding non-linearity occurs outside the wave domain; 
a structural non-linearity, while occurring in the wave domain, requires encoding of input 
data into structural parameters. Incidentally, encoding input data into the structural 
system parameters (as opposed to the input wavefront) is the basis of backscatter 
communications, whose principle dates back at least to the Great Seal Bug106 from the 
1940s and is nowadays omnipresent in RFID technology. 

Examples of encoding non-linearities include amplitude, intensity and phase 
encoding107, the latter of which has been shown in the context of diffractive multi-layer 
structures to enable highly expressive approximations of desired nonlinear functions33. 
Quantization of the structural parameters’ tunability usually results in an inevitable 
encoding non-linearity, unless the input data is already discrete on a compatible 
alphabet. For the special case of binary input data and 1-bit-programmable structural 
parameters, which is common for programmable metasurface prototypes, the encoding 
function is always affine (linear plus a constant term).  

As for structural nonlinearity, the non-linear mapping from programmable-
metasurface configuration to transfer function inside a rich-scattering cavity was 
explicitly noted in Ref.17, where it was deliberately mitigated to implement a linear 
operation. An analogous optical system was realized in Ref.29. A more involved version of 
structural non-linearity was theoretically studied for a time-varying system in Ref.28. 
Experimental demonstrations of structural non-linearity in PNNs were initially reported 
for microwaves19 and subsequently also transposed to optics30,32. Structural non-linearity 
arises because of a superposition of multi-bounce paths that interact multiple times with 
the input-data-carrying structural parameters (“virtual data repetition”). The precise 
mathematical form of structural non-linearity relates to a matrix inversion which 
compactly sums the contributions of all multi-bounce paths, as seen in Fig. 3c. By 
judiciously mapping input data to structural parameters, one can thus realize matrix-
inversion-type operations such as those underpinning linear minimum mean square error 
estimation108. A related but distinct implementation of structural non-linearity in Ref.31 
unfolds the repeated interactions into a forward-multiple-scattering cascade of 
sequential programmable modulation planes into which the same input data is encoded. 
Because structural non-linearity requires by construction the (usually non-linear) 
encoding of input data into structural parameters, it is accompanied by an encoding non-
linearity in most implementations.  
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Figure 5: Routes toward non-linear processing with pWDC hardware. Taxonomy (top row), corresponding 
schematics (middle row) and selected examples105,69,27,16,19 of experimental implementations of non-linear operations 
leveraging pWDC hardware.  

 
 Besides non-linearity, memory is often an important feature in advanced signal 

processing algorithms. Within the realm of linear time-invariant wave systems, systems 
with long dwell times exhibit a form of fading memory. For example, a static integrated 
photonic chaotic cavity has been demonstrated to have a memory of up to 6 bits, which 
is useful for header recognition in telecom applications109. Interestingly, long dwell times 
also tend to lead to strong mutual coupling between the tunable components, which 
improves the transfer-function flexibility, as discussed in BOX 2. Beyond the scope of 
time-invariant systems, switched networks can exceed the delay-bandwidth limit110, 
offering another potential route to a form of memory. 

Ultimately, the limiting factor regarding beyond-linear continuous-wave pWDC is not 
only the hardware realization but also the identification of a compelling use case in which 
the additional cost (for instance, regarding latency or power consumption) can be 
amortized. Simple linear continuous-wave pWDC, possibly augmented by a digital 
backend performing non-linear operations, is poised for initial deployments, while the 
compatibility with a convincing use case is an important concern for more complex 
pWDC hardware proposals.  
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5. Integrating pWDC into system-level architectures  
 
Integrating pWDC into wireless networks requires concerted efforts across layers, ranging 
from the technology and device layers via the application layer to the overall network 
architecture design. pWDC constitutes a fundamentally new type of resource that must 
be appropriately managed so that it can be seamlessly integrated into the overall network 
architecture. To date, most research efforts have focused on the technology and device 
layers (for instance, how to design an RIS or a DMA and what technology maximizes its 
wave-domain flexibility) and have demonstrated their suitability for selected applications 
(for instance, beam-forming, computational imaging, or direction-of-arrival estimation). 
However, a holistic network-level view, abstracting pWDC as a shared, schedulable 
resource rather than a micromanaged device, is still largely missing. Applying common 
virtualization techniques to pWDC resources in the spirit of network slicing (sharing a 
physical resource among multiple applications111, see Fig. 6) may fundamentally struggle 
with electromagnetic phenomena occurring at the device level. For instance, coupling 
and interference phenomena between distinct pWDC hardware slices can undermine the 
intended functioning.  

Integrating pWDC into system-level architectures calls for an operating-system (OS) 
view in which pWDC is treated as a shared, schedulable resource112. As shown in Fig. 6, 
this OS layer is interposed between applications and the heterogeneous pWDC hardware. 
Within the OS, a service broker lets ordinary applications ask for connectivity, sensing, 
security or wireless power without naming specific hardware; an orchestrator translates 
those demands into plans, possibly consulting a simulator to anticipate how nearby 
pWDC hardware will interact, and then uses a scheduler to multiplex tasks across time, 
frequency and space; beneath it, a hardware manager hides heterogeneity and pushes 
pre-validated configurations to both existing and newly deployed pWDC hardware while 
drawing on sensors, access points and base stations for feedback. Given the rapid 
advances in artificial intelligence (AI), AI-based workflow automation is becoming 
increasingly feasible and likely. Workflow automation in a prototypical smart radio 
environment based on a group of AI agents, each with dedicated expertise (such as a 
hardware manager or scheduler) and communicating in natural language, was recently 
prototyped99. These early tests, displayed in Fig. 6, already tackled moderately complex 
scenarios involving RIS resources to facilitate a combination of sensing and 
communications objectives as part of a sequence of self-defined tasks. 
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Figure 6: AI-driven pWDC resource management at the network level. (top left) Virtualization concept for sharing 
pWDC hardware (here RIS) among different network services.111 (bottom left) Overview of a possible ecosystem in which 
an operating system manages pWDC hardware, possibly with AI-based workflow automation112. (right) Prototype of a 
group of AI agents, each with distinct expertise and communicating in natural language, that autonomously plan and 
execute a complex sequence of self-defined tasks, leveraging pWDC hardware (here RIS) for wireless sensing and 
communications99. 
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6. Discussion 
 
The last two decades have witnessed rapid progress in developing hardware and exploring 
applications for pWDC across wave phenomena, including the microwave regime that is 
currently most relevant to wireless communications. Programmable metasurfaces 
unlock advanced wave control that endows wave-domain signal processing with 
unprecedented flexibility. Hybrid systems combining pWDC with digital processing are 
already among the most prominent systems considered for pWDC-empowered wireless 
sensing and communications. Because hybrid systems can avoid the additional overhead 
and cost that would arise from extra conversions between analog and digital domains, as 
well as synergistically combine the distinct advantages of each domain, they are poised 
to be one of the most promising directions for transitioning pWDC to real-life applications 
in the wireless domain.  

Encouraged by recent prototype systems at the device and application levels, 
important questions for future research span from fundamental aspects to the system-
level architecture. Perhaps most fundamentally, theoretical tools for understanding the 
expressivity of pWDC are missing; electromagnetically consistent bounds on transfer 
functions that can be realized with a given pWDC hardware remain unknown to date. 
Understanding the range of realizable mathematical operations gets even more 
complicated as we go beyond linear continuous-wave systems. At the same time, the 
trade-offs between hardware complexity and performance gains are unexplored. For 
instance, are the latency and power consumption penalties of implementing non-linear 
pWDC worth the ensuing benefits? Mapping out the complexity-performance Pareto 
frontier is an important avenue for future work, with the notion of complexity 
encompassing both the complexity of realizing the hardware as well as the complexity of 
the necessary efforts to optimize the hardware configuration in real time.  

In addition, several practical aspects, such as footprint, power consumption, and 
security, have not been the center of recent research on pWDC. For instance, the marked 
differences in compactness among the three hybrid antenna architecture families in Fig. 
2 have not received much attention. Given the potential of metamaterial engineering to 
miniaturize devices and maximize their wave-domain flexibility with a fixed budget of 
tunable components, there remain important avenues for metamaterials research on the 
technology level. At the same time, reliable end-to-end evaluations of power budgets are 
urgently needed. Finally, we anticipate that security considerations, both on the physical 
layer and in AI-empowered operating systems for pWDC, will become increasingly 
important.   
 
  



Page 21 of 28 
 

7. References 
 
1. McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 

(2023). 
2. Zangeneh-Nejad, F., Sounas, D. L., Alù, A. & Fleury, R. Analogue computing with 

metamaterials. Nat. Rev. Mater. 6, 207–225 (2021). 
3. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital 

metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 
(2014). 

4. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any 
discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994). 

5. Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. 
Am. A 27, 2524 (2010). 

6. Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. 
J. Efficient Sorting of Orbital Angular Momentum States of Light. Phys. Rev. Lett. 
105, 153601 (2010). 

7. Pfeiffer, C. & Grbic, A. Cascaded metasurfaces for complete phase and 
polarization control. Applied Physics Letters 102, 231116 (2013). 

8. Lin, X. et al. All-optical machine learning using diffractive deep neural networks. 
Science 361, 1004–1008 (2018). 

9. Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a 
reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021). 

10. Liu, C. et al. A programmable diffractive deep neural network based on a digital-
coding metasurface array. Nat. Electron. 5, 113–122 (2022). 

11. Dong, J., Rafayelyan, M., Krzakala, F. & Gigan, S. Optical Reservoir Computing 
Using Multiple Light Scattering for Chaotic Systems Prediction. IEEE J. Select. 
Topics Quantum Electron. 26, 1–12 (2020). 

12. Matthès, M. W., del Hougne, P., de Rosny, J., Lerosey, G. & Popoff, S. M. Optical 
complex media as universal reconfigurable linear operators. Optica 6, 465 (2019). 

13. Silva, A. et al. Performing Mathematical Operations with Metamaterials. Science 
343, 160–163 (2014). 

14. Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed 
metastructures that solve equations. Science 363, 1333–1338 (2019). 

15. Esfahani, S., Cotrufo, M. & Alù, A. Tailoring Space-Time Nonlocality for Event-
Based Image Processing Metasurfaces. Phys. Rev. Lett. 133, 063801 (2024). 

16. Tzarouchis, D. C., Edwards, B. & Engheta, N. Programmable wave-based analog 
computing machine: a metastructure that designs metastructures. Nat. Commun. 
16, 908 (2025). 

17. del Hougne, P. & Lerosey, G. Leveraging Chaos for Wave-Based Analog 
Computation: Demonstration with Indoor Wireless Communication Signals. Phys. 
Rev. X 8, 041037 (2018). 



Page 22 of 28 
 

18. Sol, J., Smith, D. R. & del Hougne, P. Meta-programmable analog differentiator. Nat. 
Commun. 13, 1713 (2022). 

19. Momeni, A., Rahmani, B., Malléjac, M., del Hougne, P. & Fleury, R. 
Backpropagation-free training of deep physical neural networks. Science 382, 
1297–1303 (2023). 

20. Giridhar, A. & Kumar, P. R. Computing and communicating functions over sensor 
networks. IEEE J. Select. Areas Commun. 23, 755–764 (2005). 

21. Garcia Sanchez, S. et al. AirNN: Over-the-Air Computation for Neural Networks via 
Reconfigurable Intelligent Surfaces. IEEE/ACM Trans. Networking 31, 2470–2482 
(2023). 

22. Zhang, X., Molisch, A. F. & Kung, S.-Y. Variable-phase-shift-based RF-baseband 
codesign for MIMO antenna selection. IEEE Trans. Signal Process. 53, 4091–4103 
(2005). 

23. Shlezinger, N., Alexandropoulos, G. C., Imani, M. F., Eldar, Y. C. & Smith, D. R. 
Dynamic Metasurface Antennas for 6G Extreme Massive MIMO Communications. 
IEEE Wirel. Commun. 28, 106–113 (2021). 

24. An, J. et al. Stacked Intelligent Metasurface-Aided MIMO Transceiver Design. IEEE 
Wirel. Commun. 31, 123–131 (2024). 

25. Hunt, J. et al. Metamaterial Apertures for Computational Imaging. Science 339, 
310–313 (2013). 

26. Sleasman, T., F. Imani, M., Gollub, J. N. & Smith, D. R. Dynamic metamaterial 
aperture for microwave imaging. Appl. Phys. Lett. 107, 204104 (2015). 

27. del Hougne, P., Imani, M. F., Diebold, A. V., Horstmeyer, R. & Smith, D. R. Learned 
Integrated Sensing Pipeline: Reconfigurable Metasurface Transceivers as 
Trainable Physical Layer in an Artificial Neural Network. Adv. Sci. 7, 1901913 
(2019). 

28. Momeni, A. & Fleury, R. Electromagnetic wave-based extreme deep learning with 
nonlinear time-Floquet entanglement. Nat. Commun. 13, 2651 (2022). 

29. Eliezer, Y., Rührmair, U., Wisiol, N., Bittner, S. & Cao, H. Tunable nonlinear optical 
mapping in a multiple-scattering cavity. Proc. Natl. Acad. Sci. U.S.A. 120, 
e2305027120 (2023). 

30. Xia, F. et al. Nonlinear optical encoding enabled by recurrent linear scattering. Nat. 
Photonics 18, 1067–1075 (2024). 

31. Yildirim, M., Dinc, N. U., Oguz, I., Psaltis, D. & Moser, C. Nonlinear processing with 
linear optics. Nat. Photonics 18, 1076–1082 (2024). 

32. Wanjura, C. C. & Marquardt, F. Fully nonlinear neuromorphic computing with linear 
wave scattering. Nat. Phys. 20, 1434–1440 (2024). 

33. Rahman, M. S. S., Li, Y., Yang, X., Chen, S. & Ozcan, A. Massively parallel and 
universal approximation of nonlinear functions using diffractive processors. eLight 
5, 32 (2025). 

34. Sievenpiper, D. et al. A tunable impedance surface performing as a reconfigurable 
beam steering reflector. IEEE Trans. Antennas Propag. 50, 384–390 (2002). 



Page 23 of 28 
 

35. Kamoda, H., Iwasaki, T., Tsumochi, J., Kuki, T. & Hashimoto, O. 60-GHz 
Electronically Reconfigurable Large Reflectarray Using Single-Bit Phase Shifters. 
IEEE Trans. Antennas Propagat. 59, 2524–2531 (2011). 

36. Clemente, A., Dussopt, L., Sauleau, R., Potier, P. & Pouliguen, P. 1-Bit 
Reconfigurable Unit Cell Based on PIN Diodes for Transmit-Array Applications in 
$X$-Band. IEEE Trans. Antennas Propagat. 60, 2260–2269 (2012). 

37. Kaina, N., Dupré, M., Fink, M. & Lerosey, G. Hybridized resonances to design 
tunable binary phase metasurface unit cells. Opt. Express 22, 18881 (2014). 

38. Liaskos, C. et al. A New Wireless Communication Paradigm through Software-
Controlled Metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018). 

39. Basar, E. et al. Wireless Communications Through Reconfigurable Intelligent 
Surfaces. IEEE Access 7, 116753–116773 (2019). 

40. Shen, S., Clerckx, B. & Murch, R. Modeling and Architecture Design of 
Reconfigurable Intelligent Surfaces Using Scattering Parameter Network Analysis. 
IEEE Trans. Wirel. Commun. 21, 1229–1243 (2022). 

41. An, J. et al. Stacked Intelligent Metasurfaces for Efficient Holographic MIMO 
Communications in 6G. IEEE J. Select. Areas Commun. 41, 2380–2396 (2023). 

42. Goodman, J. W., Dias, A. R. & Woody, L. M. Fully parallel, high-speed incoherent 
optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1 (1978). 

43. Sanghadasa, M., Erbach, P. S., Sung, C. C., Gregory, D. A. & Friday, W. A. 
Application of wavelet transform to synthetic aperture radar and its optical 
implementation. in (ed. Szu, H. H.) 346 (Orlando, FL, 1994). 
doi:10.1117/12.170038. 

44. Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal Metasurfaces for 
Optical Signal Processing. Phys. Rev. Lett. 121, 173004 (2018). 

45. Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical synthesis of an arbitrary 
linear transformation using diffractive surfaces. Light Sci. Appl. 10, 196 (2021). 

46. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics 
11, 441–446 (2017). 

47. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020). 
48. Nikkhah, V. et al. Inverse-designed low-index-contrast structures on a silicon 

photonics platform for vector–matrix multiplication. Nat. Photon. 18, 501–508 
(2024). 

49. Nazer, B. & Gastpar, M. Computation Over Multiple-Access Channels. IEEE Trans. 
Inform. Theory 53, 3498–3516 (2007). 

50. Goldenbaum, M., Boche, H. & Stanczak, S. Harnessing Interference for Analog 
Function Computation in Wireless Sensor Networks. IEEE Trans. Signal Process. 
61, 4893–4906 (2013). 

51. Goldenbaum, M. & Stanczak, S. Robust Analog Function Computation via Wireless 
Multiple-Access Channels. IEEE Trans. Commun. 61, 3863–3877 (2013). 



Page 24 of 28 
 

52. Han, S., I, C., Xu, Z. & Rowell, C. Large-scale antenna systems with hybrid analog 
and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 53, 186–194 
(2015). 

53. Venkateswaran, V. & Van Der Veen, A.-J. Analog Beamforming in MIMO 
Communications With Phase Shift Networks and Online Channel Estimation. IEEE 
Trans. Signal Process. 58, 4131–4143 (2010). 

54. Roh, W. et al. Millimeter-wave beamforming as an enabling technology for 5G 
cellular communications: theoretical feasibility and prototype results. IEEE 
Commun. Mag. 52, 106–113 (2014). 

55. Gong, T. et al. RF Chain Reduction for MIMO Systems: A Hardware Prototype. IEEE 
Syst. J. 14, 5296–5307 (2020). 

56. Mendez-Rial, R., Rusu, C., Gonzalez-Prelcic, N., Alkhateeb, A. & Heath, R. W. 
Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters 
or Switches? IEEE Access 4, 247–267 (2016). 

57. Gollub, J. N. et al. Large Metasurface Aperture for Millimeter Wave Computational 
Imaging at the Human-Scale. Sci. Rep. 7, 42650 (2017). 

58. Wang, L., Li, L., Li, Y., Zhang, H. C. & Cui, T. J. Single-shot and single-sensor 
high/super-resolution microwave imaging based on metasurface. Sci. Rep. 6, 
26959 (2016). 

59. Sleasman, T. et al. Implementation and characterization of a two-dimensional 
printed circuit dynamic metasurface aperture for computational microwave 
imaging. IEEE Trans. Antennas Propag. 69, 2151 (2020). 

60. Li, H.-Y. et al. Intelligent Electromagnetic Sensing with Learnable Data Acquisition 
and Processing. Patterns 1, 100006 (2020). 

61. Qian, C. & del Hougne, P. Noise-Adaptive Intelligent Programmable Meta-Imager. 
Intell. Comput. 2022, 2022/9825738 (2022). 

62. Wang, H. et al. Dynamic Metasurface Antennas for MIMO-OFDM Receivers With 
Bit-Limited ADCs. IEEE Trans. Commun. 69, 2643–2659 (2021). 

63. Huang, Y., Zhu, L. & Zhang, R. Integrating Base Station with Intelligent Surface for 
6G Wireless Networks: Architectures, Design Issues, and Future Directions. IEEE 
Wireless Commun. 1–8 (2025) doi:10.1109/MWC.010.2400211. 

64. Subrt, L. & Pechac, P. Intelligent walls as autonomous parts of smart indoor 
environments. IET Commun. 6, 1004 (2012). 

65. del Hougne, P., Fink, M. & Lerosey, G. Optimally diverse communication channels 
in disordered environments with tuned randomness. Nat. Electron. 2, 36–41 
(2019). 

66. Li, Z. et al. Towards Programming the Radio Environment with Large Arrays of 
Inexpensive Antennas. Proc. USENIX NSDI 285–300 (2019). 

67. Di Renzo, M. et al. Smart Radio Environments Empowered by Reconfigurable 
Intelligent Surfaces: How It Works, State of Research, and The Road Ahead. IEEE J. 
Select. Areas Commun. 38, 2450–2525 (2020). 



Page 25 of 28 
 

68. Venneri, F., Costanzo, S. & Di Massa, G. Design and Validation of a Reconfigurable 
Single Varactor-Tuned Reflectarray. IEEE Trans. Antennas Propagat. 61, 635–645 
(2013). 

69. Gao, X. et al. Programmable surface plasmonic neural networks for microwave 
detection and processing. Nat. Electron. 6, 319–328 (2023). 

70. Prod’homme, H. & del Hougne, P. Beyond-Diagonal Dynamic Metasurface 
Antenna. IEEE Commun. Lett. (2025). 

71. del Hougne, P. A physics-compliant diagonal representation for wireless channels 
parametrized by beyond-diagonal reconfigurable intelligent surfaces. IEEE Trans. 
Wirel. Commun. 24, 5871–5884 (2025). 

72. Rahman, M. S. S., Yang, X., Li, J., Bai, B. & Ozcan, A. Universal linear intensity 
transformations using spatially incoherent diffractive processors. Light Sci Appl 
12, 195 (2023). 

73. Li, H., Nerini, M., Shen, S. & Clerckx, B. A Tutorial on Beyond-Diagonal 
Reconfigurable Intelligent Surfaces: Modeling, Architectures, System Design and 
Optimization, and Applications. IEEE Commun. Surv. Tutor. 28, 4086–4126 (2025). 

74. Tapie, J., Nerini, M., Clerckx, B. & del Hougne, P. Beyond-Diagonal RIS Prototype 
and Performance Evaluation. IEEE Wirel. Commun. Lett. (2025). 

75. Prod’homme, H. & del Hougne, P. Mutual Coupling in Dynamic Metasurface 
Antennas: Foe, but also Friend. IEEE Wirel. Commun. 32, 30–36 (2025). 

76. Prod’homme, H., Tapie, J., Le Magoarou, L. & del Hougne, P. Benefits of Mutual 
Coupling in Dynamic Metasurface Antennas. IEEE Trans. Antennas Propag. (2025). 

77. Semmler, D., Nossek, J. A., Joham, M., Böck, B. & Utschick, W. Decoupling 
Networks and Super-Quadratic Gains for RIS Systems with Mutual Coupling. IEEE 
Trans. Wirel. Commun. (2025). 

78. Nerini, M., Li, H. & Clerckx, B. Global Optimal Closed-Form Solutions for Intelligent 
Surfaces With Mutual Coupling: Is Mutual Coupling Detrimental or Beneficial? 
IEEE Trans. Wirel. Commun. (2025). 

79. Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 
(2018). 

80. Verde, F., Darsena, D. & Galdi, V. Rapidly Time-Varying Reconfigurable Intelligent 
Surfaces for Downlink Multiuser Transmissions. IEEE Trans. Commun. 72, 3227–
3243 (2024). 

81. Chen, X. Q. et al. Integrated sensing and communication based on space-time-
coding metasurfaces. Nat. Commun. 16, 1836 (2025). 

82. Wu, G.-B., Dai, J. Y., Cheng, Q., Cui, T. J. & Chan, C. H. Sideband-free space–time-
coding metasurface antennas. Nat. Electron. 5, 808–819 (2022). 

83. Kuznetsov, A. D., Holopainen, J. & Viikari, V. Multifrequency system model for 
multiport time-modulated scatterers. IEEE Trans. Antennas Propag. (2025). 

84. Mengu, D., Rivenson, Y. & Ozcan, A. Scale-, Shift-, and Rotation-Invariant 
Diffractive Optical Networks. ACS Photonics 8, 324–334 (2021). 



Page 26 of 28 
 

85. Mengu, D. et al. Misalignment resilient diffractive optical networks. 
Nanophotonics 9, 4207–4219 (2020). 

86. Shlezinger, N., Whang, J., Eldar, Y. C. & Dimakis, A. G. Model-Based Deep Learning. 
Proc. IEEE 111, 465–499 (2023). 

87. Tapie, J., Prod’homme, H., Imani, M. F. & del Hougne, P. Systematic Physics-
Compliant Analysis of Over-the-Air Channel Equalization in RIS-Parametrized 
Wireless Networks-on-Chip. IEEE J. Select. Areas Commun. 42, 2026–2038 (2024). 

88. Zheng, P., Wang, R., Shamim, A. & Al-Naffouri, T. Y. Mutual Coupling in RIS-Aided 
Communication: Model Training and Experimental Validation. IEEE Trans. Wireless 
Commun. 23, 17174–17188 (2024). 

89. Sol, J., Prod’homme, H., Le Magoarou, L. & del Hougne, P. Experimentally realized 
physical-model-based frugal wave control in metasurface-programmable 
complex media. Nat. Commun. 15, 2841 (2024). 

90. del Hougne, P. Experimental Multiport-Network Parameter Estimation and 
Optimization for Multi-Bit RIS. IEEE Wirel. Commun. Lett. (2025). 

91. Prod’homme, H. & del Hougne, P. Efficient Computation of Physics-Compliant 
Channel Realizations for (Rich-Scattering) RIS-Parametrized Radio Environments. 
IEEE Commun. Lett. 27, 3375–3379 (2023). 

92. Momeni, A. et al. Training of physical neural networks. Nature 645, 53–61 (2025). 
93. Li, Y., Chen, S., Gong, T. & Ozcan, A. Model-free optical processors using in situ 

reinforcement learning with proximal policy optimization. Light Sci Appl 15, 32 
(2026). 

94. Skalli, A. et al. Model-free front-to-end training of a large high performance laser 
neural network. arXiv.2503.16943 (2025). 

95. Hughes, T. W., Minkov, M., Shi, Y. & Fan, S. Training of photonic neural networks 
through in situ backpropagation and gradient measurement. Optica 5, 864 (2018). 

96. Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in 
photonic neural networks. Science 380, 398–404 (2023). 

97. Oguz, I. et al. Forward–forward training of an optical neural network. Opt. Lett. 48, 
5249 (2023). 

98. Ma, Q. et al. Smart metasurface with self-adaptively reprogrammable functions. 
Light Sci. Appl. 8, 98 (2019). 

99. Hu, S. et al. Electromagnetic metamaterial agent. Light Sci. Appl. 14, 12 (2025). 
100. Miller, D. A. B. Self-configuring universal linear optical component [Invited]. 

Photonics Res. 1, 1 (2013). 
101. del Hougne, P., Fink, M. & Lerosey, G. Shaping Microwave Fields Using Nonlinear 

Unsolicited Feedback: Application to Enhance Energy Harvesting. Phys. Rev. Appl. 
8, 061001 (2017). 

102. Tradonsky, C. et al. Rapid laser solver for the phase retrieval problem. Sci. Adv. 5, 
eaax4530 (2019). 



Page 27 of 28 
 

103. Ra’di, Y., Nefedkin, N., Popovski, P. & Alù, A. Nonlinear, Active, and Time-Varying 
Metasurfaces for Wireless Communications: A perspective and opportunities. 
IEEE Antennas Propag. Mag. 66, 52–62 (2024). 

104. Leshno, M., Lin, V. Ya., Pinkus, A. & Schocken, S. Multilayer feedforward networks 
with a nonpolynomial activation function can approximate any function. Neural 
Netw. 6, 861–867 (1993). 

105. Ning, Y. M. et al. Multilayer nonlinear diffraction neural networks with 
programmable and fast ReLU activation function. Nat Commun 16, 10332 (2025). 

106. Brooker, G. & Gomez, J. Lev Termen’s Great Seal bug analyzed. IEEE Aerosp. 
Electron. Syst. Mag. 28, 4–11 (2013). 

107. Li, Y., Li, J. & Ozcan, A. Nonlinear encoding in diffractive information processing 
using linear optical materials. Light Sci. Appl. 13, 173 (2024). 

108. Nerini, M. & Clerckx, B. Analog Computing for Signal Processing and 
Communications – Part I: Computing With Microwave Networks. IEEE Trans. Signal 
Process. 73, 5183–5197 (2025). 

109. Laporte, F., Katumba, A., Dambre, J. & Bienstman, P. Numerical demonstration of 
neuromorphic computing with photonic crystal cavities. Opt. Express 26, 7955 
(2018). 

110. Tymchenko, M., Sounas, D., Nagulu, A., Krishnaswamy, H. & Alù, A. 
Quasielectrostatic Wave Propagation Beyond the Delay-Bandwidth Limit in 
Switched Networks. Phys. Rev. X 9, 031015 (2019). 

111. Liaskos, C., Katsalis, K., Triay, J. & Schmid, S. Resource Management for 
Programmable Metasurfaces: Concept, Prospects and Challenges. IEEE 
Commun. Mag. 61, 208–214 (2023). 

112. Ma, R., Qiu, L. & Hu, W. SurfOS: Towards an Operating System for Programmable 
Radio Environments. Proc. ACM HOTNETS 132–141 (2024). 

 
 
  



Page 28 of 28 
 

Acknowledgements 
 
P.d.H. acknowledges support from the Nokia Foundation (20260028) and the French 
National Agency for Research (ANR-22-PEFT-0005, ANR-22-CE93-0010). 

T.J.C. acknowledges support from the National Natural Science Foundation of China 
(62288101). 

A.O. acknowledges support from the U.S. Department of Energy (DOE), Office of Basic 
Energy Sciences, Division of Materials Sciences and Engineering (DE-SC0023088). 

 
 

 

 

 

 

 

 

 

 

 


