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Abstract— Grant-free random access is an effective technology
for enabling low-overhead and low-latency massive access, where
joint activity detection and channel estimation (JADCE) is a
critical issue. Although existing compressed sensing algorithms
can be applied for JADCE, they usually fail to simultaneously
harvest the following properties: effective sparsity inducing, fast
convergence, robust to different pilot sequences, and adaptive
to time-varying networks. To this end, we propose an unfolding
framework for JADCE based on the proximal gradient method.
Specifically, we formulate the JADCE problem as a group-
row-sparse matrix recovery problem and leverage a minimax
concave penalty rather than the widely-used ℓ1-norm to induce
sparsity. We then develop a proximal gradient-based unfolding
neural network that parameterizes the algorithmic iterations.
To improve convergence rate, we incorporate momentum into the
unfolding neural network, and prove the accelerated convergence
theoretically. Based on the convergence analysis, we further
develop an adaptive-tuning algorithm, which adjusts its param-
eters to different signal-to-noise ratio settings. Simulations show
that the proposed unfolding neural network achieves better
recovery performance, convergence rate, and adaptivity than
current baselines.

Index Terms— Massive random access, compressed sensing,
proximal gradient unfolding, joint activity detection and channel
estimation.

I. INTRODUCTION

MASSIVE machine-type communications (mMTC) is
expected to connect a massive number of Internet of

Things (IoT) devices [2]. Because of the sporadic short-
packet communication and massive connectivity, adopting
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the conventional grant-based random access strategy to sup-
port mMTC may lead to overwhelming signaling overhead,
thereby introducing significant access latency. Grant-free ran-
dom access has received extensive attention, given its potential
to enable low-latency and low-overhead massive access [3].
Specifically, without waiting for the grant, each IoT device
directly transmits its data to the base station (BS) after sending
a pilot sequence, which significantly reduces the signaling
overhead. To fully exploit the advantages of grant-free random
access, it is essential to achieve joint activity detection and
channel estimation (JADCE) according to the pilot sequences
received at the BS.

Because of the sporadic traffic of IoT devices and large
antenna array at the BS, JADCE is usually modeled as
different multiple measurement vector (MMV) compressed
sensing (CS) problems [4], [5], [6] and then tackled by
applying sparse signal processing methods. In particular, the
JADCE problem can be formulated as group least abso-
lute shrinkage and selection operator (LASSO), which can
be solved by the iterative shrinkage thresholding algorithm
(ISTA) [7], [8]. Apart from ISTA, other optimization-based
algorithms [9], [10], [11], [12] have also been developed
for JADCE. The authors in [13] proposed an approximate
message passing (AMP)-based algorithm for JADCE in mas-
sive multiple-input multiple-output (MIMO) systems. AMP
was further extended for activity detection in multi-cell net-
works [14]. In addition, the use of AMP for reconfigurable
intelligent surface (RIS)-assisted massive access systems
was studied in [15]. Despite the aforementioned studies,
AMP-based algorithms may not converge in scenarios with
either ill-conditioned or non-Gaussian pilot sequences [16],
[17]. Moreover, optimization-based methods often have slow
convergence and high computation complexity, and obtain
sub-optimal solutions in practice, leading to non-negligible
performance gap to the optimal solution.

Deep learning (DL) was emerged as a disruptive tech-
nique to tackle different optimization problems in wireless
networks [18], including sparse signal recovery. In order
to enable model-driven learning design for sparse signal
recovery, unfolding iterative algorithms as recurrent neural
networks (RNN) [19], [20] is an effective strategy. Differ-
ent from the optimization-based methods that manually fix
the parameters throughout the iterations, RNN adaptively
tunes the parameters in each unfolding layer according to
the training data, which accelerates convergence and leads
to performance improvement. The authors in [21] and [22]
proposed to unfold the generic ISTA and AMP into learned
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ISTA (LISTA) and learned AMP (LAMP), respectively. The
authors in [23] and [24] simplified the LISTA structure by
studying its theoretical properties and proved its linear conver-
gence. In [25], a LISTA framework was developed for group
sparsity. To improve recovery performance, [26] considered
an auto-encoder neural network to jointly design the pilot
sequence matrix and recover sparse signal. By exploiting the
domain knowledge and channel structure, the authors in [27]
proposed DL-based approaches to aid the message passing
algorithm. An asynchronous grant-free random access system
was studied in [28], where different LAMP-based structures
were designed to balance the tradeoff between performance
and complexity. These studies [25], [26], [27] leveraged the
widely-used ℓ1-norm as the sparsity-inducing penalty (SIP).

To further promote sparse solutions, a proximal operator
method was unfolded as an RNN for non-convex SIP-
regularized problems in [29]. Though the scalar operator-based
unfolding structure in [29] is effective for single measurement
vector (SMV) problems, it does not consider the group-sparse
structure that exists in the JADCE problem. Furthermore, these
DL-based methods [25], [26], [27], [28], [29], [30] are devel-
oped based on a common assumption that the training and test
datasets share the same distribution, i.e., signal-to-noise ratio
(SNR) and device active ratio remain unchanged in the training
and test stages. However, in many practical IoT networks,
SNR and device active ratio are time-varying, which leads to
a discrepancy between the training and test datasets. Hence,
existing DL-based algorithms cannot be directly applied in
such dynamic environments. An intuitive method to tackle this
issue is to collect a new training dataset and re-train the neural
network, which, however, incurs excessive communication and
computation overhead for data collection and training. The
authors in [31] proposed an adaptive scheme based on LISTA.
However, how to develop an adaptive method for JADCE
problems with group-sparse channel matrix and non-convex
SIP has not been studied.

In this paper, we propose an adaptive unfolding neural net-
work framework for JADCE based on a non-convex regularizer
for group-sparsity, which ensures robustness to non-Gaussian
pilot sequences, achieves fast convergence with theoretical
guarantees, and adapts to time-varying device active ratio and
SNR. The exist works [13], [25], [29], [31], however, only
achieve some of these properties. As an effective approach to
restrain oscillation and accelerate convergence, we incorpo-
rate momentum into the unfolding neural network. Though
we do not analyze the spectral efficiency in this paper,
our proposed unfolding framework significantly reduces the
JADCE error and adapts to time-varying wireless networks,
which facilitates the subsequent data transmission [32], [33],
[34]. The main contributions of this paper are summarized
as follows:

• We formulate the JADCE problem as a minimax con-
cave penalty (MCP) regularized group-row-sparse matrix
recovery problem. To efficiently solve this challenging
problem, we propose a light-weight unfolding neural net-
work, termed analytic learned proximal gradient method
(ALPGM).

• To further improve convergence rate, we incorporate
momentum into ALPGM and propose an accelerated
variant of ALPGM, termed ALPGM with momen-
tum (ALPGM-MM). Theoretical analysis is conducted
to characterize the convergence of ALPGM-MM. The
theoretical result shows that ALPGM-MM has the no-
false-positive property and enjoys a better convergence
rate than analytic LSITA for group sparsity (ALISTA-
GS) in [25] under certain parameter settings.

• Based on the convergence analysis, we further propose an
adaptive-tuning scheme, termed learned proximal gradi-
ent method with adaptive-tuning parameters (LPGM-AT),
which adapts to the variation of the device active
ratio and SNR. The hyperparameters in LPGM-AT are
optimized by grid search rather than back-propagation,
which significantly reduces the computational complex-
ity. The proposed LPGM-AT adaptively adjusts the
network parameters according to the input data, and hence
facilitates JADCE in time-varying IoT networks.

• Simulations show that the proposed ALPGM and
ALPGM-MM achieve better recovery performance than
the baselines. Moreover, benefiting from the momentum
acceleration, the proposed ALPGM-MM exhibits faster
convergence rate than ALPGM. LPGM-AT significantly
outperforms ALPGM and ALPGM-MM on the test
dataset that differs from the training dataset in terms of
device active ratio and SNR.

The remainder of this paper is organized as follows. System
model and problem formulation are described in Section II.
In Section III, we propose three unfolding neural networks for
tackling the JADCE problem. We present simulation results in
Section IV. Finally, the paper is concluded in Section V.

Notations: We denote [N ] = [1, . . . , N ]. We use RN and
CN to denote the real and complex domains of dimension N ,
respectively, |S| denotes the cardinality of set S and supp(x)
is the support of vector x = [x1, . . . , xN ] ∈ RN . We denote
the sign function and the generalized inverse of a matrix as
sign(·) and X†, respectively. For matrix X ∈ RN×M and
index sets I = {i1, . . . , in} ⊂ [N ], J = {j1, . . . , jm} ⊂ [M ],
we denote XI,J as the (sub)matrix that includes the entries
from the rows of X indicated by I and the columns indicated
by J . When I = [N ] (or J = [M ]), we denote X :,J (or
XI,:) as the submatrix that contains the entries from all the
rows (or all the columns) of X specified by the index set.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we consider a single-cell IoT network, which
consists of N single-antenna IoT devices and one M -antenna
BS. Compared to the number of BS antennas, the number
of IoT devices is generally much larger, i.e., N ≫ M .
According to the principle of grant-free random access, each
IoT device with sporadic traffic independently makes the
transmission decision, and a small number of IoT devices
decide to transmit in each transmission block. Specifically, the
active devices, without the need to obtain a scheduling grant
from the BS, send their pre-allocated pilot sequences along
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Fig. 1. An illustration of an IoT network that consists of massive devices
with sporadic traffic.

with their short-length data, while the inactive devices keep
silent. In any transmission block, we denote an = 1 if device
n is active, and an = 0 otherwise. The uplink channel response
between IoT device n and the BS is denoted as hn ∈ CM ,
which remains unchanged in each transmission block and
varies independently across different blocks and devices [35].
With synchronized pilot transmissions from active devices, the
signal y(ℓ) ∈ CM received at the BS is

y(ℓ) =
N∑

n=1

hnansn(ℓ) + z(ℓ), ℓ = 1, . . . , L, (1)

where sn(ℓ) is the ℓ-th pilot symbol transmitted by device
n, L denotes the pilot length, and z(ℓ) ∈ CM denotes the
additive white Gaussian noise (AWGN) vector with each entry
following distribution CN (0, σ2). Compared to the device
number, the pilot sequence length is generally much smaller,
i.e., L≪ N , which makes it impractical for all devices to have
orthogonal sequences. As a result, each device is assigned a
non-orthogonal but unique sequence.

By denoting Y = [y(1), . . . ,y(L)]T ∈ CL×M , A =
Diag(a1, . . . , aN ) ∈ RN×N , S = [s(1), . . . , s(L)]T ∈
CL×N with s(ℓ) = [s1(ℓ), . . . , sN (ℓ)]T ∈ CN , H =
[h1, . . . ,hN ]T ∈ CN×M , and Z = [z(1), . . . ,z(L)]T ∈
CL×M , the received signal at the BS is rewritten in matrix
form as

Y = SAH + Z. (2)

Before decoding data, the BS conducts JADCE (i.e., recover-
ing matrices A and H) based on the received pilot signals.
Denoting X = AH ∈ CN×M , we rewrite (2) as

Y = SX + Z. (3)

B. Problem Formulation

Since the device activity matrix A is diagonal, we have
X = [a1h1, . . . , aNhN ]T. If device n is inactive, then all
entries of the n-th row of matrix X are zero. Thus, matrix
X has the structure of group-sparsity in rows and all columns
share the same support. Achieving JADCE is equivalent to
recovering the row support of X and the elements of nonzero
rows based on the noisy observation Y at the BS. Such a
matrix recovery problem is given by

P : minimize
X∈CN×M

1
2
∥Y − SX∥2F + λG(X), (4)

where λ > 0 is the regularization parameter, and G(X) is
an SIP term introduced to induce the group-row-sparsity of
matrix X .

In the following, (3) is rewritten as its real-valued counter-
part

Ỹ = S̃X̃ + Z̃ =
[
R{S} −I {S}
I {S} R{S}

] [
R{X}
I {X}

]
+

[
R{Z}
I {Z}

]
,

(5)

where R{·} and I{·} denote the real and imaginary parts of
a complex matrix. Hence, problem P is rewritten as

Pr : minimize
X̃∈R2N×M

1
2
∥Ỹ − S̃X̃∥2F + λG(X̃). (6)

To induce a group-sparse solution, the authors in [25] and [36]
adopted a convex SIP in the form of G(X̃) =

∑2N
i=1 ∥X̃i,:∥2

(i.e., mixed ℓ1/ℓ2-norm), and reformulated problem Pr as
group LASSO [8]. Since MCP [37] induces further sparsity
than the ℓ1-norm, we choose MCP as the SIP and rewrite
problem Pr as the following group MCP problem [38]

Group MCP : minimize
X̃∈R2N×M

1
2
∥Ỹ − S̃X̃∥2F + λ

2N∑
i=1

gη(∥X̃i,:∥2),

(7)

where

gη(z) =


|z| − ηz2, if |z| ≤ 1

2η
,

1
4η
, if |z| > 1

2η
.

(8)

C. Conventional Proximal Gradient Method

For group MCP, we apply the following iterative proximal
gradient method (PGM) to recover real-valued matrix X̃

X̃
k+1

= Pλγk,fηk

(
X̃

k
+ γkS̃

T
(Ỹ − S̃X̃

k
)
)
, (9)

where γk denotes the step-size and X̃
k

is an estimation of
X̃ at iteration k. The iterative proximal gradient method (9)
originates from [38], which first extends nonconvex penalty
MCP to a group selection problem, and then modifies ISTA
to fit group MCP by replacing the soft-thresholding operator
with the proximal operator with MCP.

The multivariate proximal operator Pλγk,fηk
(·) is given by

Pθk,fηk
(X̃i,:) = arg min

Ũi,:

1
2
∥Ũ i,: − X̃i,:∥22 + fηk

(Ũ i,:),

(10)

with fηk
(Ũ i,:) = θkgηk

(∥Ũ i,:∥2) and θk = λγk. The uni-
variate proximal operator can be written as P̂θk,fηk

(x) =
arg minu

1
2 (u−x)2 + f̂ηk

(u), where f̂ηk
(u) = θkgηk

(u) [39].
To have a well-defined minimum, we should have ηk <

1
2θk

,
which yields

P̂θk,fηk
(x) =


0, if |x| ≤ θk,
x− θksign(x)

1− 2θkηk
, if θk < |x| ≤ 1

2ηk
,

x, if |x| > 1
2ηk

.

(11)
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Based on [40, Theorem 6.18] and (11), we obtain

Pθk,fηk
(X̃i,:) =

 P̂θk,fηk
(∥X̃i,:∥2)

X̃i,:

∥X̃i,:∥2
, if X̃i,: ̸= 0,

0, otherwise.

(12)

The resulting PGM can solve problem (7) [41]. However,
it has several limitations. First, PGM achieves sublinear con-
vergence rate and usually takes many iterations to converge.
In time-varying IoT networks, the variations of device active
ratio and SNR cause PGM to re-execute, which incurs a high
computational complexity. Second, an inappropriate choice of
the regularization parameter λ may severely degrade perfor-
mance of PGM. Third, the values of the step-size γk and
parameter ηk influence the convergence rate, and are generally
tricky to choose. To tackle these limitations, we propose
an unfolding neural network framework to improve recovery
performance and accelerate the convergence by learning key
parameters λ, γk, and ηk.

III. PROPOSED UNFOLDING FRAMEWORK

This section proposes an unfolding framework that tackles
the matrix recovery problem by unfolding the conventional
PGM discussed in Section II-C.

A. ALPGM

Following the idea of algorithm unfolding, we unfold the
iteration in (9) as an RNN. By treating X̃

k
and X̃

k+1
as

the input and output of the activation function Pλγk,fηk
(·),

respectively, (9) can be mapped to a one-layer neural network.
Therefore, the K iterations are implemented by a K-layer
RNN, where each neural network layer corresponds to a
specific iteration of PGM. As using a measurement matrix
with lower coherence yields a better performance in recovering
sparse signals, we solve the following optimization problem
to obtain matrix BT that has a small ‘generalized coherence’
[24] with S̃

minimize
B∈R2N×2L

∥BS̃∥2F (13)

subject to Bi,:S̃:,i = 1, ∀i ∈ [2N ]. (14)

We utilize the projected gradient descent (PGD) method
to solve problem (13) [24]. We plot the histograms of
off-diagonal elements of matrices BS̃ and S̃

T
S̃ in Fig. 2.

It can be observed that the maximum absolute value of the
off-diagonal elements of matrix BS̃ is smaller than that of
matrix S̃

T
S̃, which indicates that the ‘generalized coherence’

between BT and S̃ is smaller than the mutual coherence of S̃.
We replace S̃

T
by matrix B, and obtain the unfolding neural

network termed ALPGM

X̃
k+1

=Pθk,fηk

(
X̃

k
+γkB(Ỹ −S̃X̃

k
)
)
, k = 0, . . . ,K − 1,

(15)

where θk = λγk is the thresholding parameter of layer k. The
trainable parameters are Θ = {γk, θk, ηk}K−1

k=0 . The proposed
ALPGM is shown in Fig. 3.

Fig. 2. Histograms of off-diagonal elements of matrices BS̃ and S̃
T
S̃ when

S is a complex Gaussian matrix with L = 50 and N = 100.

Fig. 3. An illustration of the proposed ALPGM, where {γk, θk, ηk}K−1
k=0

are trainable parameters.

We note that an intuitive method to unfold (9) is to fix
S̃

T
and then directly learn {γk, θk, ηk}. Another method is

to replace γkS̃
T

by Bk and then learn {Bk, θk, ηk}. These
two methods achieve poorer recovery performance than our
proposed ALPGM, as will be shown in Section IV-A.

B. ALPGM-MM

For vanilla gradient descent, the gradient may not always
point towards the minimum, which results in an oscillat-
ing update path and slow convergence. One solution is to
utilize momentum to mitigate oscillations and speed up con-
vergence [42]. Hence, we propose ALGPM-MM where we
introduce a momentum term relating to X̃

k−1
into the update

of X̃
k+1

in ALGPM, i.e.,

X̃
k+1

=



Pθk,fηk

(
X̃

k
+ γkB(Ỹ − S̃X̃

k
)
)
,

if k = 0,

Pθk,fηk

(
X̃

k
+γkB(Ỹ −S̃X̃

k
)+βk(X̃

k−X̃
k−1

)
)
,

if k = 1, . . . ,K − 1,
(16)

where βk is the momentum parameter. The trainable param-
eters are {γk, θk, ηk}K−1

k=0 and {βk}K−1
k=1 . The proposed

ALPGM-MM is shown in Fig. 4.
Since the update of X̃

k+1
is dependent upon X̃

k
and

X̃
k−1

, it is difficult to directly analyze the convergence of
ALPGM-MM. Besides, the multivariate proximal operator
with respect to MCP also brings a critical challenge for
convergence analysis. For tractability of the convergence anal-
ysis of ALPGM-MM, the following problem replaces (13) to
ensure that the matrix BS̃ is symmetric. By defining B =
((GTG)S̃)T ∈ R2N×2L with G ∈ R2L×2L, problem (13) can
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Fig. 4. An illustration of the proposed ALPGM-MM, where
{γk, θk, ηk}K−1

k=0 and {βk}K−1
k=1 are trainable parameters.

Fig. 5. Histograms of off-diagonal elements of matrices DTD and S̃
T
S̃

when S is a complex Gaussian matrix with L = 50 and N = 100.

be written as

minimize
G∈R2L×2L

∥S̃T
GTGS̃ − I∥2F (17)

subject to (S̃
T
GTGS̃)i,i = 1, ∀i ∈ [2N ]. (18)

However, constraint (18) is difficult to be tackled. G and
S̃ are closely coupled in constraint (18), i.e., matrix GTG

is surrounded by matrices S̃
T

and S̃. It is hard to directly
use projected gradient descent to design a projection operator
to satisfy constraint (S̃

T
GTGS̃)i,i = 1. Hence, we define

an auxiliary matrix D = GS̃ ∈ R2L×2N and reformulate
problem (17) as

minimize
G∈R2L×2L,

D∈R2L×2N

∥DTD − I∥2F (19)

subject to (DTD)i,i = 1, ∀i ∈ [2N ], (20)

D = GS̃. (21)

Then, we convert the equality constraint D = GS̃ into penalty
term ∥D − GS̃∥2F in the objective function. Therefore, we
reformulate problem (19) as

minimize
G∈R2L×2L,

D∈R2L×2N

∥DTD − I∥2F + τ∥D −GS̃∥2F (22)

subject to (DTD)i,i = 1, ∀i ∈ [2N ], (23)

where τ > 0 denotes the regularization parameter. We can
also adopt the PGD method to solve this problem [31], [43].
According to theorem on convergence of penalty method
[44, Chapter 13], as the regularization parameter approaches
infinity, the solution of the penalty problem converges to the
solution of the original problem.

We plot the histograms of off-diagonal elements of matrices
DTD and S̃

T
S̃. As shown in Fig. 5, the maximum absolute

value of the off-diagonal elements of DTD is smaller than
that of S̃

T
S̃, which indicates that the mutual coherence of

matrix D is smaller than the mutual coherence of S̃ and
thus matrix D satisfies the coherence property. Through the
above reformulation, matrix BS̃ is guaranteed to be a positive
semidefinite matrix. In summary, before the training phase of
ALPGM-MM, we solve problem (22) to obtain G, and then
obtain B = ((GTG)S̃)T.

In Theorem 1, we show that ALPGM-MM has the
no-false-positive property and achieves a faster conver-
gence rate than ALISTA-GS in [25]. We denote ψ(X̃) =
[∥X̃1,:∥2, . . . , ∥X̃2N,:∥2]T and define the mutual coherence of
D as ϕ ≜ maxi ̸=j |DT

:,iD:,j |. As in [23], [24], [25], [31], and
[29], signal X̃

∗
and noise Z̃ are assumed to belong to the set

X (µx, µx, s, ϵ) ≜ {(X̃∗
, Z̃) | 0 < µx ≤ ∥X̃∗

i,:∥2 ≤ µx,∀ i ∈
S, |S| ≤ s, ∥Z̃∥F ≤ ϵ}, where supp(ψ(X̃

∗
)) is denoted as S.

Theorem 1: For ALPGM-MM, we denote the input as
Ỹ = S̃X̃

∗
+ Z̃ and X̃

0
= 0, the output as {X̃k}∞k=1,

and ∥X∥2,1 =
∑

n ∥Xn,:∥2. If cϕs ≜ (2s − 1)ϕ < 1,
∥B∥2,1 ≤ µB , and the parameters {θk, ηk, γk, βk} satisfy

ϕ sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k − X̃
∗∥2,1 + µBϵ = θk ≤

1
2ηk

, ∀ k,

(24)
γk = 1, ∀ k, (25)

βk →
1
2s

(
1−

√
1− cϕs

)2

, as k →∞, (26)

ηk →
1

2θk
, as k →∞, (27)

then the sequence of iterations in (16) satisfies

supp(ψ(X̃
k
)) ⊆ S, ∀ k, (28)

and

∥X̃k − X̃
∗∥F ≤ C0

k∏
t=1

ct +
(1 + s)µBϵ

1− cϕs
, ∀ k, (29)

where C0 > 0 is a constant and ck satisfies

0 < ck ≤ cϕs < 1, ∀ k, (30)

0 < ck ≤ 1−
√

1− cϕs, ∀ k >
⌈

log(µx)− log(6C0)
log(cϕs)

⌉
+ 2.

(31)

Proof: See Appendix A. □
According to Theorem 1, as long as the parameters

satisfy (24)-(27), the no-false-positive property is satisfied,
meaning that the index set of the rows containing non-zero
elements of ψ(X̃

k
) belongs to that of the ground truth.

In other words, if the device is actually inactive, then it
will not be detected as active. Based on the no-false-positive
property, we prove that X̃

k
converges to the vicinity of

the ground truth X̃
∗
, i.e., X̃

k
is close to X̃

∗
, implying

that the JADCE error can be fairly small. Theorem 1 also
demonstrates that ALPGM-MM achieves a linear convergence
rate in a noisy scenario. Although the convergence rate is
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linear, the convergence rate of ALPGM-MM (i.e., cϕs) is better
than the convergence rate in [1] (i.e., ϕs(

√
M + 1) − ϕ).

This is because the multivariate proximal operator exploits
the group-row-sparsity property, which accelerates the conver-
gence. In addition, since 1−

√
1− cϕs < cϕs when cϕs < 1,

the convergence performance of ALPGM-MM is better than
that of ALISTA-GS in [25] under the same setting because
the momentum term provides convergent acceleration.

As ALPGM shares a similar network with ALPGM-MM
except the momentum part, the convergence analysis of
ALPGM-MM can be reduced to that of ALPGM by removing
the momentum part. Through some modifications of the proof
of Theorem 1, one prove that ALPGM also achieves linear
convergence rate.

From a theoretical perspective, Theorem 1 verifies the
validity of ALPGM-MM under certain conditions of param-
eters {θk, ηk, γk, βk}. This assumption is only made for
tractability of the analysis. Although the parameters learned
by back-propagation may not necessarily satisfy the condi-
tions in Theorem 1, ALPGM-MM with learned parameters
still exhibits excellent performance and fast convergence in
practice, as we show in Section IV-B.

C. LPGM-AT

Most DL-based approaches including the proposed ALPGM
and ALPGM-MM rely on the assumption that the SNR and
the device active ratio remain the same during the training and
test stages. As a result, they may not work well in dynamic
IoT networks, where the SNR and device active ratio are
time-varying. To tackle this problem, we further develop an
adaptive-tuning algorithm, termed LPGM-AT, for dynamic IoT
networks.

In ALPGM-MM, {γk, θk, ηk, βk} are regarded as the train-
able parameters, and optimized by back-propagation on the
training dataset. Thus, the optimized parameters entirely
depend on training data and are applicable for test data that
follows the same distribution as training data. The drawback is
that a minor discrepancy between training and test data distri-
butions may incur severe performance degradation. To address
this issue and achieve algorithmic robustness, we turn our
attention to optimize the parameters according to X̃

k
and Ỹ .

Since Ỹ = S̃X̃
∗

+ Z̃, we obtain S̃
†
Ỹ = S̃

†
S̃X̃

∗
+

S̃
†
Z̃, where S̃

†
is the generalized inverse of S̃. Through

adding S̃
†
S̃X̃

k
and taking the norm on both sides, we

obtain ∥S̃†S̃X̃
k − S̃

†
Ỹ ∥2,1 = ∥S̃†S̃(X̃

k − X̃
∗
)− S̃

†
Z̃∥2,1.

We use ∥S̃†(S̃X̃
k − Ỹ )∥2,1 to approximate (24) because

∥S̃†S̃(X̃
k − X̃

∗
) − S̃

†
Z̃∥2,1 ≈ O(∥X̃k − X̃

∗∥2,1) + O(ϵ).
Therefore, the adaptive-tuning of thresholding parameter θk is
designed as follows

θk = cθ∥S̃
†
(S̃X̃

k − Ỹ )∥2,1, k = 0, . . . ,K − 1, (32)

where cθ > 0 is a tunable hyperparameter. According to (32),
we observe that the thresholding parameter θk only depends
on X̃

k
and Y , and does not need the prior knowledge of X̃

∗
.

According to (25), we set step-size parameter γk as

γk = 1, k = 0, . . . ,K − 1. (33)

In (26), the momentum parameter βk approaches 1
2s (1 −√

1− cϕs)2 with cϕs = (2s−1)ϕ when k approaches infinity.
Note that 1

2s (1 −
√

1− cϕs)2 is a monotonic increasing
function of s when s > 1. By following the same idea of
getting rid of the dependence on X̃

∗
, we utilize ∥ψ(X̃

k
)∥0 to

approximate 1
2s (1 −

√
1− cϕs)2, because X̃

k
converges to

X̃
∗

while ∥ψ(X̃
k
)∥0 approaches ∥ψ(X̃

∗
)∥0. Therefore, the

adaptive-tuning of momentum parameter βk is designed as
follows

βk = cβ∥ψ(X̃
k
)∥0, k = 1, . . . ,K − 1, (34)

where cβ > 0 is a tunable hyperparameter.
By considering the coupling relationship between ηk and

θk (i.e., 2θkηk < 1), the adaptive-tuning of parameter ηk is
designed as follows

ηk =
1

cη∥ψ(X̃
k
)∥0θk

, k = 0, . . . ,K − 1, (35)

where cη > 0 is a tunable hyperparameter.
We use grid search to find the best hyperparameters (i.e.,

cθ, cβ , and cη) instead of back-propagation in the training
phase. Specifically, we execute the algorithm on the training
dataset with a series of hyperparameter combinations and
choose the hyperparameter combination that achieves the
best performance. LPGM-AT only needs to optimize three
hyperparameters, which significantly reduces the training com-
plexity. Although DL can also be leveraged for optimizing the
three hyperparameters, it entails a much higher computational
complexity than grid search.

The values of hyperparameters {cθ, cβ , cη} are determined
in the training phase. Once the training phase ends, the
hyperparameters are fixed, and directly applied to the test
datasets. According to (32)-(35), parameters {θk, βk, ηk} rely
on hyperparameters {cθ, cβ , cη}, X̃

k
, and Ỹ . As the hyper-

parameters are fixed in the test phase, parameters {θk, βk, ηk}
only depend on X̃

k
and Ỹ . For different distributions of the

test dataset, parameters {θk, βk, ηk} vary with X̃
k

and Ỹ .
Thus, our proposed LPGM-AT is self-adaptive for different test
datasets. If the test dataset shares the same distribution with
the training dataset, LPGM-AT achieves the same performance
on both datasets. If the distribution of the test dataset differs
from that of the training dataset, then LPGM-AT adapts to the
unknown distribution of the test dataset.

D. Training and Testing Strategies

1) ALPGM and ALPGM-MM: For these two neural net-
works, we adopt supervised learning based on training set
{X̃∗

i , Ỹ i}T
i=1, where Ỹ i is the data, X̃

∗
i is the corresponding

label, and T is the size of the training set. We denote the
output of K-layer RNN as X̃

K
(Θ, Ỹ i, X̃

0
), where Ỹ i and

X̃
0

are the inputs of the K-layer RNN. Given {X̃∗
i , Ỹ i}T

i=1,
we obtain the parameters of K-layer RNN via solving the
following problem

Θ∗ = arg min
Θ

T∑
i=1

∥∥∥X̃
K

(Θ, Ỹ i, X̃
0
)− X̃

∗
i

∥∥∥2

F
. (36)
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To avoid converging to a local minimum, the network
parameters are trained layer-by-layer [22]. We take the training
of the parameters of layer k, denoted as Θk−1, as an example,
which is performed after the parameters of the first (k − 1)
layers, denoted as Θ0:k−2, are trained. To optimize Θk−1,
we need to solve problem

min
Θk−1

T∑
i=1

∥X̃k
(Θ0:k−1, Ỹ i, X̃

0
)− X̃

∗
i ∥2F (37)

with learning rate α0. After that, we further solve problem

min
Θ0:k−1

T∑
i=1

∥X̃k
(Θ0:k−1, Ỹ i, X̃

0
)− X̃

∗
i ∥2F (38)

to optimize parameters Θ0:k−1 with learning rates α1 and α2.
Through the above process, the first k layers’ parameters can
be obtained. After learning these parameters, the BS performs
JADCE in the test stage by applying the proposed unfolding
networks.

2) LPGM-AT: For LPGM-AT, we only need to find the
appropriate hyperparameters (i.e. cθ, cβ , and cη) by using grid
search in the training stage, which significantly reduces the
training cost.

IV. SIMULATION RESULTS

In the simulations, the channels between the BS and IoT
devices follow independent Rayleigh fading. The activity of
each device follows an independent Bernoulli distribution.
We set P(an = 0) = 0.9 and P(an = 1) = 0.1, ∀ n ∈ [N ].
We set the regularization parameter λ as 0.1 and define the
transmit SNR as E[∥SX∥2F ]/E[∥Z∥2F ]. The neural networks
have K = 16 layers. The sizes of training dataset, validation
dataset, and test dataset are 51200, 2048, and 2048, respec-
tively. The learning rates are set to α0 = 1×10−3, α1 = 0.2α0,
and α2 = 0.02α0. In the test phase, the group-sparse-matrix
recovery performance is measured by using the normalized
mean square error (NMSE), defined as NMSE(X̃k, X̃

∗
) =

10log10

(
E∥X̃k − X̃

∗∥2F /E∥X̃
∗∥2F

)
.

A. Performance Comparison

In the first part of the simulation, ALPGM is compared with
the following two unfolding PGM:

• Step-LPGM: By fixing S̃
T

in (9) and denoting θk = λγk,
we learn the step-size γk, thresholding parameter θk, and
parameter ηk. The trainable parameters are the same as
that of ALPGM. The neural network is given by

X̃
k+1

=Pθk,fηk

(
X̃

k
+γkS̃

T
(Ỹ −S̃X̃

k
)
)
,

k = 0, . . . ,K − 1.

• LPGM-CP: We replace γkS̃
T

in (9) by Bk and obtain
the following neural network

X̃
k+1

=Pθk,fηk

(
X̃

k
+Bk(Ỹ −S̃X̃

k
)
)
,

k = 0, . . . ,K − 1,

where {Bk, θk, ηk} are trainable parameters.

Fig. 6. NMSE versus device active ratio for different proximal gradient
methods when L = 45, N = 90, M = 4, and SNR = 30 dB.

We utilize Zadoff-Chu pilot sequence matrix [45] and
generate it as in [46]. Each column of the pilot sequence
matrix is normalized. Fig. 6 shows that our proposed ALPGM
achieves a smaller NMSE than other methods. This is because,
in ALPGM, S̃ is replaced by matrix BT that has a small
‘generalized coherence’ with S̃, resulting in a performance
gain.

B. Convergence Performance

Unfolding PGM has shown its better performance than ISTA
and LISTA for solving SMV problems in [29]. Thus, we in
this paper do not compare the unfolding PGM with these
methods for regular sparse recovery. We focus on comparing
our proposed structures with the following methods for group
sparsity:
• PGM: PGM is an iterative algorithm to solve MMV

problems. The update formula of PGM is given in (9).
• ISTA-GS: ISTA-GS [8] is an extension of ISTA to solve

MMV problems by replacing the scalar soft-thresholding
function in ISTA with multidimensional shrinkage thresh-
olding operator. The update formula of ISTA-GS is given
by

X̃
k+1

= Tλ/C

(
X̃

k
+

1
C

S̃
T
(Ỹ − S̃X̃

k
)
)
, (39)

where Tλ/C is the multidimensional shrinkage threshold-
ing operator

Tθ(X̃i,:) = max{0, ∥X̃i,:∥2 − θ} X̃i,:

∥X̃i,:∥2
(40)

with θ = λ/C, λ = 0.1, and C denotes the largest
eigenvalue of S̃

T
S̃.

• Fast ISTA-GS (FISTA-GS): FISTA [47] is a Nesterov
momentum speed-up of ISTA. Correspondingly, FISTA-
GS is an accelerated variant of ISTA-GS to solve MMV
problems.

• ALISTA-GS: ALISTA-GS is an unfolding algorithm for
MMV problems proposed in [25]. The neural network is

X̃
k+1

= Tθk

(
X̃

k
+ γkB(Ỹ − S̃X̃

k
)
)
, (41)

where matrix B can be obtained by solving problem (13),
and {θk, γk} are trainable parameters. Other settings
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Fig. 7. NMSE versus number of layers or iterations for different pilot
sequence matrices when M = 6, N = 250, and L = 125.

of ALISTA-GS are the same as that of our proposed
algorithms.

• SPARROW: The authors in [48] formulated a ℓ2,1

minimization problem as a semidefinite program (SDP)
problem. According to Section VII in [48], we utilize
MOSEK solver with CVX MATLAB toolbox to solve
the SDP problem. We run SPARROW for 300 times and
take the average as its performance.

We evaluate these methods using three types of pilot
sequence matrices, i.e., complex Gaussian pilot sequence
matrix, binary pilot sequence matrix, and Zadoff-Chu pilot
sequence matrix. Specifically, we generate the complex Guas-
sian pilot sequence matrix by utilizing the complex Gaussian
distribution. For the binary pilot sequence matrix, each element
is selected uniformly at random on 1 or −1. In addition, each

Fig. 8. NMSE versus number of layers or iterations for different pilot
sequence matrices when M = 10, N = 300, and L = 175.

column of the pilot sequence matrix is normalized. The SNR
is set to 40 dB.

Fig. 7 and Fig. 8 depict the NMSE versus number of
layers or iterations for our proposed networks and the baseline
methods under different settings of M , N , and L. ALPGM
achieves much lower NMSE than PGM because the parameters
in ALPGM are learned to fit the target signals. Benefit-
ing from the MCP-based multivariate proximal operator, the
proposed networks (i.e., ALPGM, ALPGM-MM, and LPGM-
AT) achieve better performance and faster convergence rate
than the baseline methods under all three pilot sequence
matrices. Besides, ALPGM-MM achieves faster convergence
rate than ALPGM because the momentum term acceler-
ates convergence. In this experiment, the test data has the
same distribution as the training data, and thus the proposed
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Fig. 9. NMSE versus device active ratio.

Fig. 10. NMSE versus pilot length.

APGM-AT achieves almost the same performance as ALPGM
and ALPGM-MM.

C. Performance Comparison Under Different Settings

We compare our proposed three networks with the baselines
under various device active ratios, lengths of pilot, and SNRs.
As the Zadoff-Chu pilot sequence matrix outperforms other
practical pilot sequence matrices in Fig. 7 and Fig. 8, in the
following we adopt the Zadoff-Chu pilot sequence matrix.
In order to ensure the convergence of iterative methods (i.e.,
PGM, ISTA-GS, and FISTA-GS), the numbers of iterations of
iterative methods are set to 50. The number of layers of all
neural networks is 16. Other settings are same as Section IV-B.

In Figs. 9, 10, and 11, we observe that ISTA-GS and FISTA-
GS achieve similar performance after convergence. In addition,
PGM outperforms ISTA-GS because the MCP-based proximal
operator is more capable of inducing sparsity than ℓ1-norm.
The proposed three networks all achieve much lower NMSEs
than the baseline methods under different device active ratios,
lengths of pilot, and SNRs. In Fig. 10, the NMSE decreases
with the pilot length, as a longer pilot sequence generally
leads to a smaller level of non-orthogonality, making it easier
to recover the orginal sparse signal. The results in Fig. 11
demonstrate that by utilizing MCP, the proposed ALPGM-MM
reduces the NMSE 12% compared to ALISTA-GS when
SNR = 50 dB. Besides, when the test dataset shares the same
distribution with the training dataset, the proposed LPGM-AT
achieves comparable performance with ALPGM and ALPGM-
MM. Fig. 12 shows NMSE versus the number of devices with

Fig. 11. NMSE versus SNR.

Fig. 12. NMSE versus number of devices.

Fig. 13. AER versus pilot length.

L = 45, M = 6, and SNR = 40 dB. We observe that the
NMSE increases as the number of devices increases for all the
methods. Besides, the proposed networks obtain lower NMSE
compared to the baseline methods.

We evaluate the device activity detection performance by
using the activity error ratio (AER), which is defined as
AER(X̃k, X̃

∗
) = E∥ψ(X̃k)− ψ(X̃

∗
)∥0/2N . Fig. 13 shows

that the AER of our proposed unfolding neural networks is
smaller than 10−3, which is smaller than that of baseline
methods. The results imply that using non-convex penalty
MCP can significantly improve the performance of detecting
active devices.
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TABLE I
SPECTRAL EFFICIENCY COMPARISON

TABLE II
TRAINING TIME AND TEST TIME COMPARISON

D. Spectral Efficiency Comparison

We consider coherence time of length T consisting of two
phases: JADCE of length L, and uplink data transmission
of length T − L. Specifically, the active IoT devices send
pilot sequences to the BS during the first L symbols in the
JADCE phase. After JADCE, the active IoT devices send data
messages to the BS during the remaining T − L symbols.
We denote the set of active devices within a coherence block
as K. The received signal at the BS in the uplink data
transmission phase is given by

yu =
∑
n∈K

hn

√
pu

ns
u
n + zu, (42)

where su
n denotes the transmitted symbol of device n ∈ K

following Gaussian distribution with unit norm, pu
n denotes

the uplink transmit power, and zu denotes the AWGN vector
at the BS with each element following distribution CN (0, σ2).

The BS utilizes minimum mean squared error (MMSE)
beamforming based on the estimated channel ĥn on the
received signal to decode the transmitted symbol. The MMSE
beamformer [34] for device n is given by

vn =
( ∑

m∈K
pu

mĥmĥ
H
m + σ2I

)−1

ĥn. (43)

Then, the decoded symbol is given by

ŝu
n = vH

nhn

√
pu

ns
u
n +

∑
m∈K/k

vH
nhm

√
pu

ms
u
m + vH

nzu. (44)

Hence, the achievable rate is given by

ru
n =

T − L

T
log2(1 + γu

n), (45)

where γu
n denotes the signal-to-interference-plus-noise ratio

(SINR) defined as

γu
n =

pu
n|vH

nhn|2∑
m∈K/k p

u
m|vH

nhm|2 + σ2
. (46)

We set L = 35, N = 70, M = 6 and T = 200. The
uplink transmission power is set to 20 dBm and the number
of layers or iterations is set to 5. In Table I, we observe that
our proposed networks achieve better spectral efficiency than
the baseline methods due to lower channel estimation error
during JADCE phase.

E. Adaptation Comparison

We compare the adaptivity of the proposed three networks
the baseline methods for the scenario with mismatch between
the training and test datasets. In this subsection, the number
of iterations of iterative methods (i.e., PGM, ISTA-GS, and
FISTA-GS) is set to 50, while the number of the layers
of the DL-based methods (i.e., ALPGM, ALPGM-MM, and
ALISTA-GS) and LPGM-AT is set to 16. ALPGM, ALPGM-
MM, and ALISTA-GS are trained by back-propagation under
the settings of Fig. 7(c). LPGM-AT is trained by grid search to
find the best hyperparameter combination on the same training
dataset as ALPGM, ALPGM-MM, and ALISTA-GS. Then we
directly apply them to the test dataset with different device
active ratios and SNRs.

Fig. 14(a) shows the NMSE versus the device active ratio
of the test dataset when SNR = 15 dB for the test dataset.
The performance of the DL-based methods (i.e., ALPGM,
ALPGM-MM, and ALISTA-GS) degrades because they are
sensitive to the mismatch between the training and test
datasets. However, the results clearly show that LPGM-AT out-
performs the DL-based methods and iterative methods because
LPGM-AT can adapt its parameters to different distributions
of the test dataset. In Fig. 14(b), we change the device active
ratio of the test dataset to 0.15 with lower SNRs than that
of the training dataset. The results indicate that LPGM-AT is
able to adapt to time-varying IoT networks and outperforms
other methods.

F. Computation Complexity Comparison

In this subsection, the training and test time of the proposed
three networks are compared with the baseline methods.
Table II shows that the training time of the DL-based meth-
ods (i.e., ALPGM, ALPGM-MM, and ALISTA-GS) need
several hours. This is because DL-based methods optimize
parameters by back-propagation on a large volume of train-
ing data, and the training procedures are time-consuming.
Since the momentum term provides convergence acceleration,
ALPGM-MM has the least training time among the DL-based
methods. In contrast, the grid search for LPGM-AT is quite
computation-efficient, because it only need to search three
hyperparameters. LPGM-AT only needs less than 10 minutes
to find the best hyperparameters by grid search, which dramat-
ically reduces the computation overhead. Moreover, the test
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Fig. 14. All models except iterative methods are trained when S is
Zadoff-Chu pilot sequence matrix and the device active ratio is 0.1 with
SNR = 40 dB.

time of the proposed network is much smaller than the iterative
methods, which demonstrates that the proposed network is
more practical for JADCE in IoT networks.

V. CONCLUSION

In this paper, we proposed an unfolding framework that is
based on PGM for massive random access. We first mapped
PGM as an unfolding neural network to reduce the computa-
tional complexity. In order to further improve the convergence
rate, we embedded momentum into the unfolding neural
network, and proved accelerated convergence theoretically.
Based on the convergence analysis, we developed an adap-
tive network that generalizes well to different device active
ratios and SNRs by adjusting its network parameters. Simula-
tion results showed that the proposed unfolding framework
achieves greater recovery performance, faster convergence,
and better adaptivity than the baselines. For further studies,
we will extend this work to investigate the impact of the
antenna correlation on the JADCE performance and evaluate
the impact of the proposed unfolding algorithms on the spec-
tral efficiency of the subsequent data transmission.

APPENDIX

A. Proof of Theorem 1

We assume that the noise level ϵ satisfies

ϵ ≤ min
(
µx

3µB
,
µx(1− cϕs)
6µB(1 + s)

,

√
sµx(1− cϕs)(cϕs)K0

(1 + s+
√
s)µB

)
,

(47)

where β̂, C0, and K0 are defined as

β̂ ≜
1
2s

(
1−

√
1− cϕs

)2

, (48)

C0 ≜ max
(
sµx,

8µxs
√
s(1 + β̂)

cϕs

√
4β̂ − (β̂ + ϕs− ϕ)2

)
, (49)

K0 ≜

⌈
log(µx)− log(6C0)

log(cϕs)

⌉
+ 1. (50)

Then, we set the specific conditions of parameters {βk, ηk} as
follows

βk =

{
0, if k ≤ K0,

β̂, if k ≥ K0 + 1,
(51)

ηk


<

1
2θk

, if k ≤ K0 − 1,

=
1

2θk
, if k ≥ K0.

(52)

1) Proof of No-False-Positive Property: When k = 0 and
X̃

0
= 0, we have supp(ψ(X̃

0
)) = ∅ ⊆ S. We fix k ≥ 0 and

assume Xt
i,: = 0,∀ i /∈ S, 0 ≤ t ≤ k. For ∀ i /∈ S, we have

∥−Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:)∥2

=∥−
∑
l∈S

Bi,:S̃:,l(X̃
k

l,: − X̃
∗
l,:)∥2

≤
∑
l∈S

∥Bi,:S̃:,l(X̃
k

l,: − X̃
∗
l,:)∥2≤

∑
l∈S

|Bi,:S̃:,l|∥X̃
k

l,: − X̃
∗
l,:∥2

(a)

≤
∑
l∈S

ϕ∥X̃k

l,: − X̃
∗
l,:∥2 ≤ ϕ∥X̃k − X̃

∗∥2,1, (53)

where (a) is due to ϕ ≥ |(DTD)i,l| = |Bi,:S̃:,l|. Since
∥B∥F ≤ ∥B∥2,1 ≤ µB and ∥Z̃∥F ≤ ϵ, we have

∥Bi,:Z̃∥2 ≤ ∥Bi,:∥2∥Z̃∥F ≤ ∥B∥F ∥Z̃∥F ≤ µBϵ. (54)

By combining (53) and (54), we obtain the lower bound for
the threshold parameter θk

1
2ηk

> θk ≥ ϕ∥X̃k − X̃
∗∥2,1 + µBϵ

≥ ∥ −Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:)∥2 + ∥Bi,:Z̃∥2

≥ ∥ −Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:) + Bi,:Z̃∥2. (55)

From the update formula of ALPGM-MM, for ∀ i /∈ S,
we have

X̃
k+1

i,: =Pθk,fηk

(
X̃

k

i,:−Bi,:(S̃X̃
k − Ỹ )+βk(X̃

k

i,: − X̃
k−1

i,: )
)

= Pθk,fηk

(
X̃

k

i,: −Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:)

+ Bi,:Z̃ + βk(X̃
k

i,: − X̃
k−1

i,: )
)
. (56)

As Xt
i,: = 0,∀ i /∈ S, 0 ≤ t ≤ k, we obtain

X̃
k+1

i,: = Pθk,fηk

(
−Bi,:S̃:,S(X̃

k

S,: − X̃
∗
S,:) + Bi,:Z̃

)
= P̂θk,fηk

(∥v∥2)
v

∥v∥2
, (57)
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where v = −Bi,:S̃:,S(X̃
k

S,: − X∗
S,:) + Bi,:Z̃. According

to (55) and (11), we obtain X̃
k+1

i,: = 0,∀ i /∈ S. By induction,
we complete the proof.

2) Convergence Analysis: Firstly, we analyze the conver-
gence when βk = 0. When βk = 0 and k ≤ K0, ALPGM-MM
reduces to ALPGM. By the definition of multivariate proximal
operator, for ∀ i ∈ S, we have

X̃
k+1

i,: = Pθk,fηk

(
X̃

k

i,: −Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:)

+ Bi,:Z̃ + βk(X̃
k

i,: − X̃
k−1

i,: )
)

=arg min
Ũi,:

1
2
∥Ũ i,:−(X̃

k

i,:−Bi,:S̃:,S(X̃
k

S,:−X̃
∗
S,:)

+Bi,:Z̃+βk(X̃
k

i,: − X̃
k−1

i,: ))∥22 + θkgηk
(∥Ũ i,:∥2).

(58)

According to the optimality condition, we have

0 ∈ X̃
k+1

i,: −
(

X̃
k

i,: −Bi,:S̃:,S(X̃
k

S,: − X̃
∗
S,:)

+ Bi,:Z̃ + βk(X̃
k

i,: − X̃
k−1

i,: )
)

+ θk∂gηk
(∥X̃k+1

i,: ∥2),

(59)

where ∂gηk
(∥X̃k+1

i,: ∥2) is the subgradient of gηk
(∥X̃k+1

i,: ∥2).
Recalling the definition of gη(·), we have

gηk
(∥X̃k+1

i,: ∥2)

=
(
∥X̃k+1

i,: ∥2 − ηk∥X̃
k+1

i,: ∥22
)
1∥X̃k+1

i,: ∥2≤ 1
2ηk

(∥X̃k+1

i,: ∥2)

+
(

1
4ηk

)
1∥X̃k+1

i,: ∥2> 1
2ηk

(∥X̃k+1

i,: ∥2). (60)

One can easily check that

∂gηk
(∥X̃k+1

i,: ∥2)=
(
∂∥X̃k+1

i,: ∥2 − 2ηkX̃
k+1

i,:

)
1∥X̃k+1

i,: ∥2≤ 1
2ηk

,

(61)

where

∂∥X̃k+1

i,: ∥2 =


X̃

k+1

i,:

∥X̃k+1

i,: ∥2
, if X̃

k+1

i,: ̸= 0,

{h ∈ R1×M |∥h∥2 ≤ 1}, otherwise.
(62)

Hence, we obtain

∥∂gηk
(∥X̃k+1

i,: ∥2)∥22

=
(
∥h∥22

)
1∥X̃k+1

i,: ∥2=0
(∥X̃k+1

i,: ∥2)

+
(∥∥∥∥ X̃

k+1

i,:

∥X̃k+1

i,: ∥2
−2ηkX̃

k+1

i,:

∥∥∥∥2

2

)
1

0<∥X̃k+1
i,: ∥2≤ 1

2ηk

(∥X̃k+1

i,: ∥2)

≤1∥X̃k+1
i,: ∥2=0

(∥X̃k+1

i,: ∥2)+10<∥X̃k+1
i,: ∥2≤ 1

2ηk

(∥X̃k+1

i,: ∥2)=1.

(63)

From (59), we have

X̃
k+1

i,: − X̃
∗
i,:

=X̃
k

i,: − X̃
∗
i,:−Bi,:S̃:,S(X̃

k

S,: − X̃
∗
S,:)+Bi,:Z̃

− θk∂gηk
(∥X̃k+1

i,: ∥2) = −
∑

j∈S, j ̸=i

Bi,:S̃:,j(X̃
k

j,: − X̃
∗
j,:)

+ Bi,:Z̃ − θk∂gηk
(∥X̃k+1

i,: ∥2), (64)

where the last equality follows from the constraint
(DTD)i,i = Bi,:S̃:,i = 1.

We take norm on both sides of (64) and obtain

∥X̃k+1

i,: − X̃
∗
i,:∥2

≤
∑

j∈S, j ̸=i

|Bi,:S̃:,j |∥X̃
k

j,: − X̃
∗
j,:∥2 + ∥Bi,:Z̃∥2

+ θk∥∂gηk
(∥X̃k+1

i,: ∥2)∥2
≤ ϕ

∑
j∈S, j ̸=i

∥X̃k

j,: − X̃
∗
j,:∥2 + ∥Bi,:Z̃∥2 + θk. (65)

Due to the no-false-positive property, we obtain ∥X̃k+1 −
X̃
∗∥2,1 = ∥X̃k+1

S,: − X̃
∗
S,:∥2,1 and

∥X̃k+1 − X̃
∗∥2,1≤ϕ(|S| − 1)∥X̃k − X̃

∗∥2,1+µBϵ+|S|θk.

(66)

By taking supremum on both sides of inequality (66),
we obtain

sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k+1 − X̃
∗∥2,1

≤ ϕ(s− 1) sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k − X̃
∗∥2,1 + µBϵ+ sθk. (67)

By plugging the definition of θk into (67), we obtain

sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k+1 − X̃
∗∥2,1

≤ϕ(s− 1) sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k − X̃
∗∥2,1+µBϵ

+ ϕs sup
(X̃∗,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k − X̃
∗∥2,1 + sµBϵ

= (2ϕs− ϕ) sup
(X̃

∗
,Z̃)∈

X (µx,µx,s,ϵ)

∥X̃k − X̃
∗∥2,1 + (1 + s)µBϵ.

(68)

We denote ek = sup(X̃
∗
,Z̃)∈X (µx,µx,s,ϵ) ∥X̃

k − X̃
∗∥2,1. If

(2s− 1)ϕ < 1, we obtain

ek+1 ≤ (cϕs)ek + (1 + s)µBϵ

≤ (cϕs)k+1e0 +
( k∑

t=0

(cϕs)t

)
(1 + s)µBϵ
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≤ (cϕs)k+1e0 +
(1 + s)µBϵ

1− cϕs
. (69)

As X̃
0

= 0, we obtain

e0 = sup
(X̃

∗
,Z̃)∈X (µx,µx,s,ϵ)

∥X̃∗∥2,1 ≤ sµx ≤ C0. (70)

Since ∥X∥F ≤ ∥X∥2,1, we conclude with

∥X̃k − X̃
∗∥F ≤ C0(cϕs)k +

(1 + s)µBϵ

1− cϕs
, ∀ k ≤ K0 + 1.

(71)

Secondly, we analyze the convergence when βk = β̂.
We define X̄S,: = X̃

∗
S,: + δX̃S,:, where δX̃S,: =

(BS,:S̃:,S)−1BS,:Z̃. Then, we obtain

∥(BS,:S̃:,S)−1∥F

(a)

≤
√
|S|∥(BS,:S̃:,S)−1∥2

=

√
|S|

σmin(BS,:S̃:,S)

(b)

≤
√
|S|

1 + ϕ− ϕ|S|
≤

√
s

1 + ϕ− ϕs
, (72)

where (a) is due to ∥A∥2F =
∑n

i=1 σ
2
i (A) ≤ nσ2

max(A) =
n∥A∥22 with σi(A) denoting the singular value of the matrix
A ∈ Rn×n, and (b) follows by Gershgorin circle theorem [49,
Chapter 7]. Hence, we obtain

∥δX̃S,:∥F ≤ ∥(BS,:S̃:,S)−1∥F ∥BS,:Z̃∥F ≤
√
sµBϵ

1 + ϕ− ϕs
.

(73)

From (59), for k ≥ K̃0 + 1, we have

X̃
k+1

S,: = X̃
k

S,: −BS,:S̃:,S(X̃
k

S,: − X̄S,:)+βk(X̃
k

S,: − X̃
k−1

S,: )

− θk∂gηk
(∥X̃k+1

S,: ∥2), (74)

where ∂gηk
(∥X̃k+1

2N,:∥2) is defined as

∂gηk
(∥X̃k+1

2N,:∥2)=
[
∂gηk

(∥X̃k+1

1,: ∥2)T, . . . ,∂gηk
(∥X̃k+1

2N,:∥2)T
]T

.

(75)

By substracting X̄S,: from both sides of (74), we obtain

X̃
k+1

S,: − X̄S,:

=
(

(1 + βk)IS −BS,:S̃:,S

)
(X̃

k

S,: − X̄S,:)

−βk(X̃
k−1

S,: −X̄S,:)− θk∂gηk
(∥X̃k+1

S,: ∥2). (76)

By plugging βk = β̂ with k ≥ K0 + 1 into (76), we obtain[
X̃

k+1

S,: − X̄S,:

X̃
k

S,: − X̄S,:

]
︸ ︷︷ ︸

zk

=
[

(1 + β̂)IS −BS,:S̃:,S −β̂IS

IS 0

]
︸ ︷︷ ︸

M

×

[
X̃

k

S,: − X̄S,:

X̃
k−1

S,: − X̄S,:

]
︸ ︷︷ ︸

zk−1

− θk

[
∂gηk

(∥X̃k+1

S,: ∥2)
0

]
. (77)

There exist a nonsingular matrix T ∈ C2|S|×2|S| and a
diagonal matrix ΛM ∈ C2|S|×2|S| such that matrix M can
be factorized as M = TΛMT−1. The matrices T and ΛM

satisfy

∥ΛM∥F =
√

2|S|β̂ ≤
√

2sβ̂, (78)

∥T ∥F =
√
|S|(2 + 2β̂) ≤

√
2s(1 + β̂), (79)

∥T−1∥F ≤

√
|S|(2 + 2β̂)

4β̂ − (β̂ + ϕs− ϕ)2
≤

√
2s(1 + β̂)

4β̂ − (β̂ + ϕs− ϕ)2
.

(80)

The proof follows the idea in [31] with some modifications
according to the problem that we consider.

Before we estimate the recovery error ∥X̃k+1− X̃
∗∥F , we

use induction to prove ∂gηt
(∥X̃t+1

S,: ∥2)
= 0 for all t satisfying K0 ≤ t ≤ k (k ≥ K0).

(i) We prove that ∂gηK0
(∥X̃K0+1

S,: ∥2) = 0. According to
the definition of K0 (50), it holds that C0(cϕs)k < µx/6 for
∀ k ≥ K0. Based on the assumption of ϵ (47), it follows that
(1 + s)µBϵ/(1− cϕs) ≤ µx/6.

According to (71), when k = K0 + 1, for ∀ i ∈ S, we have

∥X̃K0+1

i,: − X̃
∗
i,:∥2 ≤ ∥X̃

K0+1 − X̃
∗∥F ≤ C0(cϕs)K0+1

+
(1 + s)µBϵ

1− cϕs
<
µx

3
< µx. (81)

Then, we prove that ∥X̃K0+1

i,: ∥2 > 0,∀ i ∈ S. If

∥X̃K0+1

i,: ∥2 = 0, then we have X̃
K0+1

i,j = 0,∀j ∈ [M ].

Hence, we obtain ∥X̃K0+1

i,: − X̃
∗
i,:∥2 = ∥X̃∗

i,:∥2 < µx, which
contradicts with the assumption ∥X̃∗

i,:∥2 ≥ µx > 0. Therefore,

we obtain ∥X̃K0+1

i,: ∥2 > 0.
The definition of ηk in (52) implies that ηk = 1

2θk
when

k ≥ K0. Hence, the univariate proximal operator P̂θk,fηk
(·)

becomes a hard thresholding function, i.e.,

P̂θk,fηk
(x) =

{
0, if |x| ≤ θk,

x, if |x| > θk.
(82)

With (64), (82), and ∥X̃K0+1

i,: ∥2 > 0, we obtain

∂gηK0
(∥X̃K0+1

i,: ∥2) = 0. Hence, we prove that

∂gηK0
(∥X̃K0+1

S,: ∥2) = 0.

(ii) We assume that ∂gηt(∥X̃
t+1

S,: ∥2) = 0 for K0 ≤ t ≤ k.
According to (77) and M = TΛMT−1, we have

zt = TΛMT−1zt−1, K0 + 1 ≤ t ≤ k. (83)

Then, we obtain

zk = T (ΛM )k−K0T−1zK0 . (84)

By taking norm on both sides of (84), we have

∥zk∥F ≤ ∥T ∥F ∥ΛM∥k−K0
F ∥T−1∥F ∥zK0∥F

≤ 2s(1 + β̂)∥zK0∥F√
4β̂ − (β̂ + ϕs− ϕ)2

(√
2sβ̂

)k−K0

. (85)
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Next, we bound ∥zK0∥F . Based on (76), βK0 = 0 and
∂gηK0

(∥X̃K0+1

S,: ∥2) = 0, we have

X̃
K0+1

S,: − X̄S,: = (IS −BS,:S̃:,S)(X̃
K0

S,: − X̄S,:). (86)

Due to the definition of ϕ, we know that the elements of matrix
BS,:S̃:,S except the diagonal elements are not larger than ϕ,
and the diagonal elements are zero. Thus, we have ∥IS −
BS,:S̃:,S∥F ≤

√
|S|(|S| − 1)ϕ ≤

√
s(s− 1)ϕ.

By taking norm on both sides of (86), we have

∥X̃K0+1

S,: − X̄S,:∥F

≤ ∥IS −BS,:S̃:,S∥F ∥X̃
K0

S,: − X̄S,:∥F

≤
√
s(s− 1)ϕ∥X̃K0

S,: − X̄S,:∥F

≤ (2s− 1)ϕ∥X̃K0

S,: − X̄S,:∥F ≤ ∥X̃K0

S,: − X̄S,:∥F . (87)

Recalling that zK0 = [(X̃
K0+1

S,: − X̄S,:)T, (X̃
K0

S,: − X̄S,:)T]T,
we have

∥zK0∥F ≤ 2∥X̃K0

S,: − X̄S,:∥F

≤ 2∥X̃K0

S,: − X̃
∗
S,:∥F + 2∥δX̃S,:∥F

≤ 2
√
sµx(cϕs)K0 +

2(1 + s)µBϵ

1− cϕs
+

2
√
sµB

1 + ϕ− ϕs
ϵ

≤ 2
√
sµx(cϕs)K0 +

2(1 + s+
√
s)µBϵ

1− cϕs

≤2
√
sµx(cϕs)K0 +2

√
sµx(cϕs)K0 =4

√
sµx(cϕs)K0 ,

(88)

where the last inequality follows from (47).
Combining with (85), we obtain

∥X̃k+1

S,: − X̄S,:∥F ≤ ∥zk∥F

≤ 8µxs
√
s(1 + β̂)(cϕs)K0√

4β̂ − (β̂ + ϕs− ϕ)2

(√
2sβ̂

)k−K0

≤ C0(cϕs)K0+1

(√
2sβ̂

)k−K0

. (89)

Subsequently, by defining X̂
k+1

S,: = X̃
k+1

S,: −
BS,:S̃:,S(X̃

k+1

S,: − X̄S,:) + βk+1(X̃
k+1

S,: − X̃
k

S,:) and

ẑk = [(X̂
k+1

S,: − X̄S,:)T, (X̃
k+1

S,: − X̄S,:)T]T, we have

ẑk = Mzk and X̃
k+2

S,: = Pθk+1,fηk+1
(X̂

k+1

S,: ). Following the
same idea of proving (89), we obtain

∥X̂
k+1

S,: − X̄S,:∥F ≤∥ẑk∥F ≤C0(cϕs)K0+1

(√
2sβ̂

)k+1−K0

.

(90)

Since the inequality
√

2sβ̂ = 1−
√

1− cϕs ≤ cϕs holds when
cϕs < 1, we have

∥X̂
k+1

S,: − X̄S,:∥F ≤ C0(cϕs)k+2 < µx/6. (91)

Recalling that X̄S,: = X̃
∗
S,: + δX̃S,:, for ∀ i ∈ S, we obtain

∥X̂
k+1

i,: − X̃
∗
i,:∥2 ≤ ∥X̂

k+1

S,: − X̃
∗
S,:∥F ≤ ∥X̂

k+1

S,: − X̄S,:∥F

+ ∥δX̃S,:∥F < µx/6 + µx/6 = µx/3.

(92)

Hence, for ∀ i ∈ S, we have

∥X̂
k+1

i,: ∥2≥∥X̃
∗
i,:∥2−∥X̂

k+1

i,: − X̃
∗
i,:∥2>µx−µx/3=2µx/3.

(93)

With (73), we obtain

∥δX̃S,:∥F ≤
√
sµBϵ

1 + ϕ− ϕs
≤

√
sµBϵ

1 + ϕ− 2ϕs
≤
µx

6

√
s

s+ 1
≤
µx

6
.

(94)

By the definition of β̂, we have

∥X̃k+1

i,: − X̄
∗
i,:∥2 ≤ ∥X̃

k+1

S,: − X̄S,:∥F

≤ C0(cϕs)K0+1

(√
2sβ̂

)k−K0

≤ C0(cϕs)k+1 ≤ µx/6.

Thus, we obtain

∥X̃k+1

i,: − X̃
∗
i,:∥2 ≤ ∥X̃

k+1

i,: − X̄
∗
i,:∥2 + ∥δX̃k+1

i,: ∥2
≤ µx/6 + µx/6 = µx/3. (95)

On the other hand, according to the definition of θk, we have

θk+1 = ϕ sup
(X̃

∗
,Z̃)∈X (µx,µx,s,ϵ)

∥X̃k+1 − X̃
∗∥2,1 + µBϵ

= ϕ sup
(X̃

∗
,Z̃)∈X (µx,µx,s,ϵ)

|S|∑
i=1

∥X̃k+1

i,: − X̃
∗
i,:∥2 + µBϵ

≤ ϕsµx/3 + µBϵ ≤ µx/3 + µx/3 = 2µx/3. (96)

Because of X̃
k+2

S,: = Pθk+1,fηk+1
(X̂

k+1

S,: ) and the inequality

∥X̂
k+1

i,: ∥2 > 2µx/3 ≥ θk+1, we obtain X̃
k+2

i,: = X̂
k+1

i,: ,∀ i ∈
S. Thus, we prove that ∥X̃k+2

i,: ∥2 > 0. Finally, we can obtain

∂gηk+1(∥X̃
k+2

S,: ∥2) = 0.

We have proved ∂gηt(∥X̃
t+1

S,: ∥2) = 0 for all t satisfying
K0 ≤ t ≤ k (k ≥ K0) by induction. According to (89),
we have

∥X̃k+1 − X̃
∗∥F ≤ ∥X̃k+1

S,: − X̄S,:∥F + ∥δX̃S,:∥F

≤ C0(cϕs)K0+1

(
1−

√
1− cϕs

)k−K0

+
sµB

1 + ϕ− ϕs
ϵ,

∀ k ≥ K0 + 1. (97)
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