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RDA: An Accelerated Collision Free Motion
Planner for Autonomous Navigation in
Cluttered Environments
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Abstract—Autonomous motion planning is challenging in multi-
obstacle environments due to nonconvex collision avoidance con-
straints. Directly applying numerical solvers to these nonconvex
formulations fails to exploit the constraint structures, resulting in
excessive computation time. In this letter, we present an accelerated
collision-free motion planner, namely regularized dual alternating
direction method of multipliers (RDADMM or RDA for short),
for the model predictive control (MPC) based motion planning
problem. The proposed RDA addresses nonconvex motion planning
via solving a smooth biconvex reformulation via duality and allows
the collision avoidance constraints to be computed in parallel for
each obstacle to reduce computation time significantly. We vali-
date the performance of the RDA planner through path-tracking
experiments with car-like robots in both simulation and real-world
settings. Experimental results show that the proposed method
generates smooth collision-free trajectories with less computation
time compared with other benchmarks and performs robustly in
cluttered environments.
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I. INTRODUCTION

OTION planning has drawn rising interest in many

practical applications, such as self-driving cars and un-
manned logistic vehicles [1], [2]. Its main idea is to compute
a trajectory, defined as a sequence of control commands or
states, from the current state to the desired state. Motion plan-
ners can be classified into four categories [3]: graph search
based, sampling based, interpolation based, and optimization
based. Graph search based techniques, e.g., state lattice and A
star [4], [5], treat the configuration space as a graph of vertices
and edges and search the minimum cost path. Sampling based
techniques, e.g., the rapidly-exploring random tree (RRT) [6],
probe the configuration space with a sampling scheme and
have been widely used in real-world applications. Interpola-
tion based techniques construct a new group of data among
known reference points through interpolation models, resulting
in a feasible, smooth trajectory in structured environments [7].
Compared with other methods, optimization based techniques
are advantageous in generating optimized and robust trajectories
in complex scenarios through minimizing cost functions under
physical constraints, such as dynamics, kinematics, and collision
avoidance. For instance, the model predictive control (MPC)
approach adopts the vehicle dynamics model to predict future
states and produce feasible trajectories dynamically within a set
of constraints [8].

Despite its promising features, there are two challenges hin-
dering the development of optimization based techniques in
real-world applications. First, the motion planning optimiza-
tion problem is usually nonconvex due to collision avoidance
constraints. Numerous approaches have been proposed to re-
solve this issue, such as linearizing the constraints by Taylor
expansion [9], [10], relaxing the constraints to formulate an
unconstrained problem [11], and reformulating the constraints
via strong duality [12], [13]. However, most of these approaches
consider the point-mass object model, or involve large approx-
imation errors, or fail to exploit the problem structure. The
effectiveness of optimization methods under the non-point-mass
model requires further investigation (i.e., accounting for the
object shape). Second, the computation cost grows significantly
with the number of obstacles. While several parallel algo-
rithms [14] have been developed to split multi-agent planning
problems into smaller subproblems for each agent, they cannot
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be directly extended to the parallelization of obstacles. On the
other hand, the primal dual alternating optimization (PDAO)
in [15] is able to update different collision avoidance constraints
in parallel. However, PDAO may diverge due to the nonlinear
coupling among primal and dual variables in collision avoidance
constraints. Additionally, PDAO ignores the different impor-
tance of upcoming and future states due to the same safety dis-
tance for all time slots. Hence, developing a parallel and adaptive
computing framework to effectively reduce the computation cost
becomes imperative.

This paper proposes an accelerated collision-free motion plan-
ner that realizes accurate, real-time, and robust navigation under
real-world obstacle shapes, computation constraints, and envi-
ronmental uncertainties. The main contributions are summarized
as follows.

1) We formulate an optimization based navigation problem
with the non-point-mass obstacle model. The nonconvex
constraints are reformulated into bi-convex counterparts
by joint linearization and strong duality. The safety dis-
tance in the collision avoidance constraints is automati-
cally tuned via [; regularization.

2) We develop a parallel local planner, termed regularized
dual alternating direction method of multipliers (RDA),
to solve the bi-convex problem in parallel while bringing
robustness to the algorithm convergence.

3) We implement the RDA algorithm in a high-fidelity
Gazebo simulator and an Ackermann autonomous vehicle,
respectively, and compare its performance with several
benchmark schemes in terms of computation cost and
success rate.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III introduces the
distance based collision avoidance constraint and optimization
problem statement. Then, Section IV describes the proposed
RDA collision-free motion planner. Section V describes the
simulation and real-world experiments. Section VI presents the
conclusion.

II. RELATED WORK

Optimization based collision-free motion planners aim to
minimize or maximize a utility function w.r.t. a set of con-
strained state and control variables. For instance, in [16], an
MPC scheme is proposed to accomplish the path tracking task by
using the varied length time in the prediction horizon, where the
collision avoidance constraint is modeled by the environmental
envelope [17]. In fact, the time elastic bands (TEB) approach,
which is the most popular method in robotics navigation, is
also optimization based, which realizes motion planning by
solving a multi-objective optimization problem [18]. To guar-
antee collision avoidance, a formulation of the constraint based
on the minimum distance between robots and obstacles has
been proposed, which, however, is nonconvex [19], [20]. Du-
ality based approaches have been studied recently to handle
nonconvexity, where the distance functions are reformulated
to be smooth, differentiable counterparts via strong duality.
The “least-intrusive” trajectory method is proposed in [12] for
non-point-mass objects. However, its final formulation involves
bi-linear terms and needs to be solved via nonconvex numerical
solvers. The work [13] linearizes the bi-linear terms through
duality and develops a sequential convex programming method.
Nevertheless, only point-mass objects are considered in [13],
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Fig. 1. Illustration of the Ackerman kinetic model and the distance between
the robot and the obstacle.

which is inappropriate for practical polygonal robots such as
self-driving cars. Furthermore, the complexity of sequential
convex programming is exceedingly high when the number of
obstacles is large.

There are many ways to reduce the computation cost for
solving the large-scale motion planning problem. Specifically,
we could consider only the adjacent agents and obstacles within
a pre-defined range of interest such that the number of agents
and obstacles is significantly reduced. However, the range of
interest increases with the velocity of the vehicle, and collisions
may occur if some out-of-range obstacles suddenly appear or
accelerate. Distributed optimization has been leveraged to solve
the problem in parallel, e.g., collision avoidance in multi-robot
systems [15]. However, the algorithm in [15] is not compatible
with the real-time robot operation system (ROS). Thus, the
performance of parallel computing under practical sensor and
actuator uncertainties requires further investigation.

As a promising distributed optimization framework, the alter-
nating direction method of multipliers (ADMM) [21] has been
adopted in multi-agent systems [9], [10], [14], which decompose
a large centralized problem into several subproblems solved
for each agent. However, for the cluttered environment with
multiple obstacles, decomposing the problem w.r.t each obstacle
via ADMM has not yet been investigated. The method adopted in
multi-agent systems cannot be applied directly to multi-obstacle
systems, since different agents have their own motion dynamics.
The collision avoidance constraints are nonlinearly coupled with
each other by a single motion dynamic constraint. Here, we
tackle this coupling issue via joint linearization and duality
and then leverage regularization and ADMM to enhance the
robustness of the algorithm.

III. PROBLEM STATEMENT

A. Non-Point-Mass Collision Avoidance Constraint

The point-mass object is not a good model for some specific
robots. For instance, for a robot with Ackermann kinematic
model, as shown in Fig. 1. It is vital to take the rectangle
shape into account when navigating in the corridor. Thus, a
non-point-mass (i.e. arbitrary convex shape) representation is

necessary.
1) Obstacle Model: The environment consists of M non-
point-mass obstacles. The mth obstacle (m =1,..., M) is

modeled as a compact convex set Q,, that is represented by
the conic inequality [22]:

Oy, = {0 € R"

Dmoj(’)mbm}7 (1)
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where D,,, € Rim*°m b, € Rl and O,, is a proper cone. The
partial ordering w.r.t. a cone K is defined by x<xy &y —x €
K. Each geometric object can be represented with a proper cone
through this formula. For example, if O,,,=R , the obstacle is a
polyhedron; if O,,, = {(x,t) € Rl=*1|||x||2 < t}, the obstacle
is an ellipsoid. For static obstacles, the set O is a constant; for
dynamic obstacles, the set Q,, can be denoted as Q! , which
changes over time.

2) Robot Model: The state of each robot at time ¢ is repre-
sented by its center point and denoted as s; € R"". The value
of n,- depends on the working space dimension. When the robot
moves in a plane, we have n,, = 3 and s; = (2, y¢, 0 ), where
(z¢,y:) represents the position and 6, the orientation. Given
a certain state, the robot can be modeled as a compact set Z,
changing with state variable s;:

Zt(St) = R(st)z + p(St), Vz € (C,
C={z € R"|Gz=k, h}, 2)

m?

where R(s;) € R™ " is the rotation matrix representing the
orientation of the robot and p(s;) € R" is the transition matrix
representing the position of the robot. The vector z € R"" is the
initial pose vector, and C is a convex set representing the robot
shape at the initial position, with G € R"*" and h € R". We
assume R(s;) and p(s;) are linear functions of s. Any nonlinear
function is represented by a linear approximation. For instance,
the rotation matrix can be linearized by its Taylor expansion [23].

3) Collision Avoidance: The minimum distance between a
robot and an obstacle dist(Z(s;), Q) satisfies:

dist(Z(s¢), 0) = min{ [le]l] (Zi(s:) +€) N O # 0}, (3)

where ) denotes the empty set. Substituting the expressions of
Z+(st) and O into (3), we can find dist(Z:(s¢), O) by solving
the following convex problem:

min [R(s.)z + p(s.) — ol

s.t. Do=k b, Gz=, h 4

with variable z and o. Thus, to guarantee the collision avoidance,
we have the following constraint:

diSt(Zt(St), @) 2 dsafea (5)

where dgp is a positive real number representing the safe
distance. Constraint (5) is nonconvex as the convex distance
function is at the left hand side of operator >.

B. State Evolution

The robot state evolution can be described as follows:
Si+1 =S¢ + [(s¢,ur)At, (6)

where the initial state sq is the current state, u; € R™ is the
control vector, and At is the time length of each slot. When
the robot moves in a plane, we have n,, = 2 and u; = (v, zﬂ,)
where (v, ;) represents the linear and angular velocities.!

The linear and angular velocities (v, ¥4 ) may also be added to the state space
model, where we have n,- = 5 and accelerations become the control vector. Note
that this would lead to an equivalent optimization problem, and the proposed
RDA is still applicable.
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Fig. 2. Accuracy of the adopted linear approximation.

For linear robot dynamics (e.g., omni wheels), we have
f(St, ut) = [(At — I)St + Btut —+ Ct)/At], and

St+1=Aysg +Biug + ¢4, £ =0,...,N -1, (7

where (A4, By, ¢;) are the coefficient matrices. For nonlinear
robot dynamics (e.g., Ackerman wheels [24]), we have

v tan iy T

f(staut) = 7

vy cos(0;), vy sin(6y),
By leveraging the first-order Taylor polynomial, the nonlinear
dynamics function can be linearized into the same structure as
(7), where the associated coefficients (A, By, ¢;) at time ¢ in
(7) are given by:

— Uy sin(0y) At

0 (6
A= 1 cos(0 VAL |, 3)
0

OO}—!'

cos(6y)At 0
sin(,)At 0
tan i, At v At
L L Lcos2;
[ 0,7, sm(é)t)At
—et’Ut cos(@t)At

Y0 AL
L Lcos2y

; ©)

Cr = (10)

where v; and ¢, are the nominal linear speed and steering angle
of the control vector U, at time ¢, respectively. The constant
L denotes the distance between the front and rear axles. To
evaluate the accuracy of the adopted linerization, the trajectories
generated by the original dynamics function (green line) and
linearized dynamics function (blue line) are shown in Fig. 2. It
can be seen that the two trajectories are very close to each other.
Moreover, as seen in Fig. 2, the approximation error fluctuates
between 0 and 0.03, which is negligible. This is because we can
set 0, U¢, U4 as the robot states from the last navigation step, and
the robot states have a slight change between consecutive steps.

In practice, there are boundary constraints on the control
vector ug:

(1)

where Uiy, Umax € R™ are the minimum and maximum val-
ues of the control vector, respectively. The minimum and maxi-
mum values of the acceleration vector are denoted by a;;,.x and
Qmin, respectively.

Umin j uy j Umax; Amin j ut+1 — Uy j Amax,

C. Problem Formulation

We consider the MPC formulation for autonomous plan-
ning, where the future state is predicted by the robot dynamics
within a receding horizon consisting of N time steps. The goal
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Algorithm 1: RDA Motion Planner.

1 Initialize the given points of the robot state s and
control vector u;

2 for iteration k =1,2,--- do
Update the variables s, u, d by solving (20a) with
CVXPY;

4 Update the dual collision variables A, u, z by
solving (20b) with accelerated gradient projection
in a parallel manner;
5 Update the Lagrangian multipliers ¢ and £ by
(20c)-(20d) in a parallel manner;
if (21) and (22) are satisfied then
‘ break
end

L -JE-IEN B

end
Apply the first receding step control vector to the robot

[
>

of MPC is to minimize a convex and smooth cost function
Co({st,us }vt) under collision avoidance, state evolution, and
boundary constraints. The explicit form of C depends on the
type of navigation task. For instance, the cost function of path
tracking is given by

=

Co({st,u}) = Z [Qt St — S}) 2y Py(ve — U?)Q} . (12)

t=0

where s7 and vy are the reference state and speed. A larger value
of the weighting coefficients {Q;, P; } leads to the robot moving
with the reference path.

The MPC optimization problem over a finite future horizon

(t=1,---N) with M obstacles is obtained by combining the
constraints in (5), (7), (11):

Po: min  Co({st,us}) (13a)

St7ut}

S.t. St41 = AtSt + Btut + Cy, Vt, (13b)

Umin = u = Umax; Vt7 (130)

Amin j ut+1 — Uy j Amax, Vta (13d)

dist (Z (s¢) , On) > dage, VE, m. (13e)

The challenges of solving Py in cluttered environments are
twofold:
1) (13e) is a sufficient but not necessary condition for colli-
sion avoidance, making it difficult to be satisfied;
2) the number of obstacles M in (13e) could be large.
Below, an effective method will be presented to tackle these
challenges.

IV. RDA COLLISION-FREE MOTION PLANNER

In this section, the RDA approach for solving Py is presented.
The overall algorithm is summarized in Algorithm 1.

A. l1-Regularization

To address the first challenge, we need to reformulate the
constraint (13e). Intuitively, an ideal strategy is to generate a
larger dgp for the upcoming time steps and a smaller dgyg
for the future time steps. To this end, this paper proposes a
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dynamic safety distance approach, where dg,. is replaced by
a vector variable d = [dy, ..., dy]T € RY, and equation (13e)
is converted into dist(Z:(s;), Q,,) > d;. Each d; is upper
bounded by dy,ax and lower bounded by d.,;,,- However, such
a formulation ignores the different importance of upcoming
and future states, which leads to a solution with d; = dpin
for all ¢. Consequently, the [;-regularization method is further
proposed to generate uneven values of {d; } among different time
steps by imposing sparsity upon d. This would automatically
allocate different attention to different states. Mathematically,
l1-regularization is realized by adding a penalty function of d
to Cy. The penalty function is set as the negative [;-norm of
d,ie.,Ci(d) = —n|d]1 = —n Ztlio d;,wheren € R > 0Oisa
weight factor to adjust the collision avoidance ability in different
scenarios:

{ mir; 4 Co({st,us}) + C1(d) (14a)
s.t. (13b) — (13d), (14b)

dt S [drnina drnax]a Vtv (14C)

dist (Zt (St) 5 @m) Z dt, Vt, m. (14d)

Note that a larger value of 1 encourages d; to reach dy,,x and
vice versa.

B. Parallel Computation Via ADMM

To address the second challenge, we first transform the con-
straint dist(Z(s;), O,,) > d into its linearized dual form:

dist (Z; (s¢) , O,,) > dy &
Aim =05, 0, py.m=x: 0,
ktT,mDmpt(st) — szbm
BG4+ AL, DnRi(sy) =0,

- I'I'Z?mh 2 dt7

IDiAeml, < 1. (15)
where A, ,,, € Rl and Him € R" are the dual variables. The
symbol K* is the dual cone of K and ||-||.. is the dual norm. The
dual norm of the Euclidean norm is equal to itself. Note that the
above transformation is different from that in [12]. Specifically,
the method in [12] does not involve linearization of translation
and rotation matrices, resulting in a smooth nonconvex dual
problem. In contrast, by leveraging joint linearization and duality
transformation, (15) has a smooth bi-convex dual form, which
facilitates the subsequent parallelization procedure.

Plugging (15) into (14), the problem (14) is converted into be
a bi-convex problem:

{StI,IlllitI,ldt} Co({st,u:}) + Ci(d) (16a)
Pt omobbemozem}

s.t. syr1 = Aysy + Bouy + ¢4, VA, (16b)
Umin = Wt X Umax, Vi, (16¢)

Amin = A =X Amax, Vi, (16d)

di € [dmin, dmax], Vt, (16e)

Zt,m > 0, Vt, m, (16f)

Aiom =0, 0, pym=x: 0, Vt,m, (16g)
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DI, <1, Vt,m, (16h)
Hy o (St, Ay Bt.m) = 0, VE, m, (16i)
Lt (St Mtoms Bt Aty 26,m) = 0, VE,m, (16j)
where, the nonlinear functions in (16i) and (16j) are
Hy (S, Moy em) = 147 G + AL, DR (s1),
a7
T (86, Mems mos dis Zem) = Af Dmpi(se) — AL, b,
— b —di =z . (18)

Existing methods approximate these bi-linear terms by Taylor
polynomial [13] and solve a sequence of convex problems
using the interior point method (IPM). The associated com-
putation complexity is O((N (1, + ny, +1) + NN 1 +
Mh))3®), which is exceedingly high for large M.

In contrast, we solve this bi-convex optimization problem by
ADMM, where each iteration includes smaller convex subprob-
lems, and the dual variables associated with different obstacles
are updated in parallel to accelerate the computation speed. In
particular, the augmented Lagrangian (scaled form) of (16) can
be formulated as

L ({St, Ui, dt}, {)Vt,m7 Ht,m, Zt,m}, {ft,m, Ctm})
= Co({st,us}) + Ci(d) + J({s¢, us, ds })
N M

+ Qt,m(}‘t,ma “’t,mv Zt,m,)
t=0 1

3
Il

HIt,m (Sta A-15,7717 Ht.m, dta zt,m) + Ct,mHg

-
] =
NE

(

N
iy
S
I
S

+ [ Hm (86, Mty Btm) + Eemll5 (19)

M=

t 0

]
o
3
I

where {&; m,Cm} are dual variables corresponding to the
equality constraints (161) and (16j), p is the penalty parameter
chosen as a large value. Here J({s¢, us,d;}) is the indicator
function of the constraints (16b)—(16e), i.e., J ({s¢, ut,d; }) =0
if (16b)—(16e) are satisfied and J({s¢, us, d:}) = oo otherwise.
Similarly, Q¢ (Atm, He,m, 2t,m) is the indicator function of
the (¢, m)th constraints in (16f)—(16h).

In (19), the first three items are coupled across different ¢
due to the constraint (16b), while the latter three terms are
decomposable w.r.t. t and m. Consequently, we split the primal
variables into two groups: 1) {s;, w;, d; }; 2) {Xi.ms Btms Ze,m }-
Given the fact that the dual variables {&; ,,, (;,m } can be updated
in parallel, the ADMM method for minimizing the augmented
Lagrangian is

{Sk+1a k+17 dzltc+1} = arg min £ ({St7ut7 dt}7
{St;ut7dt}

{)‘t m> I’Lt m> zt;m}7 {ffmfw Ctk,m}) ’
(20a)

)‘k+1 k+1 _k+1 __

. k
tmwu’tm’ tm T arg min L({Shutvd}

At m Mt m2t,m

1719

{)‘t,maut,ma Zt,nL}v {ff,mv <f,m}) thv m,
(20b)

)TDm R, (Sf),
(20c)

k+1_§t ,m ( fm)TDmpt(sf)_(xf,m)Tbm

— (Wi m)"h—dy —

t =& m (B )T G

k
Zt,mavtv m,

(20d)

Problems (20a) and (20b) are convex, and (20c) and (20d)
are the subgradients to update the dual variables. Problem
(20a) can be efficiently solved via a convex solver, e.g.
CVXPY [25], whose computation cost is independent of M.
Problems (20b)—(20d) are all separable across (t,m), and
{Mtms ot.mos Ztms E.ms Geom } can all be updated in parallel.
Furthermore, each problem in (20b) is a conic constrained least
squares problem which can be solved with low-cost solvers. The
stopping criteria to terminate the iterative procedure is given by

Z Z [HHt,m(Sf? )“f,ma ""?,m)”%
t m
(S5 A e 1 e 2E ) 3] <
dual

SOSTIMER < AE 3 bt - k3] < e
t m

1)

(22)

where the first condition guarantees the primal residual being
small and the second condition guarantees the dual residual
being small. Constants ¢’ > 0 and €™ > (0 are the stop-
ping criterion values. To achieve the best tradeoff between the
solution quality and computational cost, e and €™ can be
chosen empirically. According to our experimental data [26],
the stopping criteria value can be set to €, % € [0.1, 1].

C. Complexity Analysis and Warm Starting

1) Complexity Analysis: The entire procedure of RDA is
summarized in Algorithm 1. In each iteration, the CVXPY
solver is first adopted to solve (20a) with a complexity of
O((N(n, + ny + 1))3?). Then, to optimize dual collision vari-
ables, we need to solve (20b), which involves N M subprob-
lems with the mth problem being solved at a computational
cost of O((l,, +h + 1)3®). Finally, the Lagrange multipli-
ers are updated via vector-matrix multiplications in (20c)—
(20d), which involve a complexity of O(N (2%71 LM +
Mhn,.)). Therefore, the total complexity of RDA is given
by O(K(N(n, +n,+ 1)+ NSM_ (1, +h+1)3° +
N(M Ly + Mhn,)), where K is the number iterations
for the RDA to converge.

2) Warm Starting: It can be seen from the above analysis
that the complexity of RDA is linear in M. This significantly
saves computation time compared with IPM whose complexity
is cubic in M. Furthermore, the value of K can be signifi-
cantly reduced by leveraging warm starting. Specifically, for
collision-avoidance autonomous driving, the odometry of the
ego-vehicle and the states of surrounding obstacles do not vary
significantly between two consecutive time steps, and therefore,
the current RDA solutions can be adopted as an initial guess of
both the primal and dual solutions to the subsequent RDA itera-
tive procedure. That is, setting {7, 49 1, 20 10 €0 s (o } =
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(a) RDA at time step 0 (b) RDA at time step 50

(f) OBCA trajectory

(e) RDA trajectory

Fig. 3.

AL o 7 > 28 > &4 m Coom } Tor (20a), where the solutions
with ¢ denote the cached values obtained from the previous RDA
outputs.

V. EXPERIMENTS AND RESULTS

In this section, we adopt numerical simulations, high-fidelity
simulators, and hardware experiments to verify the performance
and efficiency of RDA. In particular, we consider the collision-
free path tracking task for autonomous vehicles. The task is
defined as moving as close as possible to a reference path while
avoiding collisions. In our experiments, we set = 10, p = 10.

Besides the proposed RDA planner, we also simulate the
following schemes for comparison: (1) Optimization based col-
lision avoidance (OBCA) planner [12], which directly solves
the dual-MPC problem via nonconvex optimization methods
such as sequential convex programming; (2) Time elastic band
(TEB) planner [18], which obtains a sequence of robot poses
via general graph optimization and sparsity regularization; (3)
Point-mass ADMM (PMA) [14], which models each obstacle
as a single point and determines the collision condition by
computing the distance between this point and the ego-robot
position; (4) OBCA-II, which adopts the OBCA planner but
with no safe-distance regularization; (5) RDA-II, which adopts
the RDA planner but with no safe-distance regularization.

A. Numerical Simulation

We verify the proposed RDA in our intelligent robot simulator
(ir-sim)?, which is a Python-based 2D numerical simulator for
robotic localization and navigation. The simulation scenario is
given in Fig. 3, where the obstacles are marked in black with
various shapes (e.g., rectangle, circle, etc.). The reference path
(i.e., the black line) in ir-sim is generated from a series of
directional waypoints and calculated by Dubins path [27].

2[Online]. Available: https://github.com/hanruihua/ir_sim.
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.....

(d) RDA at time step 200

(c) RDA at time step 100

(g) RDA-II trajectory (h) OBCA-II trajectory

Navigation process and trajectory comparison of RDA and OBCA in a simulated environment.

The resulting navigation process of RDA in a cluttered envi-
ronment with 8 obstacles is shown in Fig. 3(a)—(e). The actual
robot path is represented by a green line and the robot is marked
as a yellow box. The predicted trajectory within the receding
horizon is represented by a red curve. It can be seen that the
vehicle successfully avoids all obstacles while moving close to
the reference path in a smooth manner.

We compare the proposed RDA with OBCA, whose trajec-
tories and computation times are shown in Fig. 3(e), (f) and
Fig. 5(a), (b), respectively. It can be seen that both approaches
have the ability to find a proper collision-free trajectory. How-
ever, the required computation time of RDA is significantly
shorter than that of OBCA, i.e., 0.1 seconds for RDA versus
over 0.3 seconds for OBCA, as illustrated in Fig. 5(a). This
implies that the planning frequency of RDA is three times
as fast as that of OBCA, thus providing real-time potential
in high-speed scenarios. Furthermore, as shown in Fig. 5(b),
the computation time of RDA only has a slight change as the
number of obstacles increases, while that of OCBA grows dra-
matically. This corroborates the parallel computation capability
of RDA.

Here, we compare RDA with RDA-II and OBCA-II with the
safe distance dg, being fixed to 0.5m. It can be seen from
Fig. 3(g), (h) that the vehicle gets stuck at position (10, 20)
for RDA-II due to the dense obstacles residing within this local
region and position (31,32) for OBCA-II due to the 180-degree
turn at the right hand side of the reference path. In contrast, the
proposed RDA with distance regularization 7 € [5, 30] passes
these challenging points.

Finally, we compare RDA with PMA in another challenging
scenario, i.e., the corridor scenario as shown in Fig. 4. It can
be seen that the vehicle with RDA (yellow box) successfully
crosses the entire tunnel while that with PMA (red circle) gets
stuck at the first narrow gap. This is because PMA computes the
distance between the centers of the ego-vehicle and the nearby
obstacle, which works well only when both objects are circular.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 18,2023 at 05:51:41 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. RDA (yellow box) and PMA (red circle) trajectories in the corridor.
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Fig. 5. Comparison of computation cost of RDA and OBCA.

Fig. 6. RDA Simulation in the Gazebo.

However, in the considered scenario, both the vehicle and the
obstacle are rectangles, making the solution to PMA infeasible.

B. Gazebo Simulation

To verify the effectiveness of the proposed RDA under prac-
tical sensor and motion constraints, we implement the RDA
and TEB methods in Gazebo [28], which is a high-fidelity
robotic simulator with close-to-reality sensory data and motion
dynamics. The scenario consists of an autonomous vehicle
and 10 obstacles (i.e., marked as blue cubes with the size of
0.35m x 0.35m x 0.35m). The receding horizon of RDA is
set to 20. Under the above setting, we execute 50 trials with
random goal points and positions of obstacles. Fig. 6 illustrates
the trajectory of RDA in one particular case when the robot
moves from the starting point (0,0) to the target point (5,4).
The odometry of the vehicle with the RDA planner is illustrated
by the red arrows. It can be seen that the proposed RDA generates
a smooth and collision-free trajectory in the dense-obstacle
scenario.

Performance comparison between RDA and TEB is shown
in Fig. 7. The success rates (a successful trail is defined as
no collision or stuck during the navigation) of both schemes
under the different number of obstacles are shown in Fig. 7(a).
The two simulated schemes achieve similar success rates in
environments with few obstacles. However, RDA significantly
outperforms TEB in environments with dense obstacles. The
average navigation time (i.e., the average time required by the
planner to move from the starting point to the goal) under
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Fig. 7. Performance comparison of RDA and TEB.

Fig. 8.

The hardware of the Ackermann robot.

the different number of obstacles is shown in Fig. 7(b). RDA
reduces the navigation time by up to 40%, which demonstrates
the necessity of predictive path optimization.

C. Hardware Experiment

To evaluate the performance of RDA in real-time operating
systems under limited hardware resources, we implement RDA
and TEB planners in an autonomous robot shown in Fig. 8. The
robot has four wheels and adopts Ackermann steering, which
can be viewed as a size-scaled road vehicle. Its sensor suite
consists of a 2D Lidar and multiple cameras (including RGB
and depth cameras). NVIDIA Jetson Nano is adopted as the
onboard computing platform for processing the sensor data and
executing the navigation package. The software architecture of
our implementation is shown in Fig. 9(a), which consists of
the RDA planner module and the robot module. Data sharing
between two modules is realized via ROS communications,
where master/slave nodes publish/subscribe topics carrying the
controller, map, and odometry information. Note that we convert
the obstacles in the costmap into non-point mass representation
via DBSCAN [29], and the experimental setting is the same as
Gazebo.

Based on the above implementation, the trajectories (red
arrows) of RDA and TEB planners of one trial are shown in
Fig. 9(a) and (b), respectively. It can be seen that the robot pow-
ered by RDA achieves the target point successfully with a smooth
curve. In contrast, the TEB planner fails to find a feasible route to
cross those narrow gaps, and the robot eventually gets stuck after
a sequence of replanning. This demonstrates the effectiveness
and robustness of RDA in real time systems and dense obstacle
environments. Note that we adopt the default parameters for
TEB. One may fine-tune these parameters to generate a feasible
path. However, TEB involves large-scale parameters without
interpretability, leading to a large amount of manual effort for
calibration whenever the robot enters a new complex scenario.
In contrast, RDA only involves several tuning parameters (e.g.,
n for regularization and p for ADMM augmentation), which
significantly facilitates practical deployment.
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(c) TEB trajectory
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Fig. 9. Framework and the trajectory comparison of RDA and TEB in a real-world experiment.

VI. CONCLUSION

In this letter, we have presented RDA, an accelerated opti-
mization based collision-free motion planner for autonomous
navigation. RDA can support Ackermann dynamics and enable
adaptive safety distances, non-point-mass representation of ob-
stacles, and parallel computing of optimal trajectories. Various
simulations and real-world experiments have shown that the
proposed RDA can achieve a significantly shorter execution time
compared to existing OBCA; the failure rate and the navigation
time of RDA can be reduced by 10 ~ 40% compared with
various benchmark schemes such as TEB and PMA. Future
directions include high-speed vehicle and multi-vehicle RDA,
as well as real-world verification.
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