
RTSNet: Learning to Smooth in Partially Known
State-Space Models

Guy Revach, Xiaoyong Ni, Nir Shlezinger, Ruud J. G. van Sloun, and Yonina C. Eldar

Abstract—The smoothing task, which considers recovery of
a sequence of hidden state variables from a sequence of noisy
observations, is core to many signal processing applications.
A widely popular smoother is the Rauch-Tung-Striebel (RTS)
algorithm, which achieves minimal mean-squared error recovery
with low complexity in dynamic systems that are represented as
linear Gaussian state space (SS) models. However, this model-
based algorithm is limited in systems that are only partially
known, as well as non-linear and non-Gaussian. In this work we
propose RTSNet, a highly efficient model-based and data-driven
smoothing algorithm suitable for partially known SS models.
RTSNet integrates dedicated trainable models into the flow of
the classical RTS smoother, while iteratively refining its sequence
estimate via deep unfolding methodology. As a result, RTSNet
learns from data to reliably smooth when operating under model
mismatch and non-linearities while retaining the efficiency and
interpretability of the model-based RTS algorithm. Our empirical
study demonstrates that RTSNet overcomes non-linearities and
model mismatch, outperforming classic smoothers operating with
both mismatched and accurate domain knowledge. Moreover,
while RTSNet is based on compact neural networks, which leads
to faster training and inference times, it is shown to outperform
previously proposed deep smoothers in non-linear settings.

I. INTRODUCTION

A broad range of applications in signal processing and
control require estimation of the hidden state of a dynamical
system from noisy observations. Such tasks arise in localiza-
tion, tracking, and navigation [2]. State estimation by filtering
and smoothing date back to the work of Wiener from 1949
[3]. Filtering (also known as real-time tracking) is the task of
estimating the current state from past and current observations,
while smoothing deals with simultaneous state estimation
across the entire time horizon using all available data.

Arguably the most common and celebrated filtering al-
gorithm is the Kalman filter (KF) proposed in the early
1960s [4]. The KF is a low-complexity implementation of
the minimum mean-squared error (MMSE) estimator for time-
varying systems in discrete-time that are characterized by a
linear state space (SS) model with additive white Gaussian
noise (AWGN). The Rauch-Tung-Striebel (RTS) smoother [5],
also referred to here as the Kalman smoother (KS), adapts
the KF for smoothing in discrete-time. The KS implements
MMSE estimation for linear Gaussian SS models by applying
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a recursive forward pass, i.e., from the past to the future
by directly applying the KF, followed by a recursive update
backward pass.

While the classical KF and KS both assume linear SS
models, many problems encountered in practice are governed
by non-linear dynamical equations. Therefore, shortly after the
introduction of the original KF and KS, non-linear variations
of them were proposed [2, Ch. 10]. Since the KS extends the
KF, its non-linear variations are based on the corresponding
non-linear variations of the KF. These include the extended
KS (EKS), which is an adaptation of the extended KF (EKF)
to smoothing [6], [7], and the unscented KS (UKS) that is
based on the unscented KF (UKF) [8]. An alternative family
of methods, for state estimation in non-linear, non-Gaussian
SS models, are these based on sequential sampling, such as
the family of particle smoothers (PSs) [9]–[11].

The KS and its variants are model-based (MB) algorithms;
namely, they rely on accurate characterization of the under-
lying dynamics as a SS model and full knowledge of it.
Real world systems in many practical use cases are complex,
non-linear, and may be difficult to characterize faithfully
with a fully known tractable SS model. Consequently, despite
its low complexity and theoretical soundness, applying the
KS in practical scenarios may be limited due to its critical
dependence on accurate knowledge of the underlying SS
model. A common approach to deal with partially known SS
models is to impose a parametric model and then estimate
its parameters. This can be achieved by jointly learning the
parameters and state sequence using expectation maximization
[12], [13] and Bayesian probabilistic algorithms [14], [15], or
by selecting from a set of a priori known models [16]. When
training data is available, it is commonly used to tune the
missing parameters in advance [17], [18]. These strategies are
restricted to an imposed parametric model on the underlying
dynamics (e.g., linear models with Gaussian noises), and
thus may still lead to mismatched operation. MB algorithms
designed to cope with some degree of uncertainty in the SS
models, e.g., [19], [20], are typically designed for the worst
case deviation between the postulated model and the ground
truth, rarely approaching the performance achievable with full
domain knowledge. Furthermore, the non-linear variants of the
KS do not share its MMSE optimality, and their performance
degrades under strong non-linearities.

Data-driven (DD) approaches are an alternative to MB
algorithms, relaxing the requirement for explicit and accurate
knowledge of the underlying model. Many of these strategies
are now based on deep neural networks (DNNs), which
have shown remarkable success in capturing the subtleties of
complex processes [21]. When there is no characterization of
the dynamics, one can train deep learning systems designed
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for processing time sequences, e.g., recurrent neural networks
(RNNs) [22] and attention mechanisms [23], for state estima-
tion in intractable environments [24]. Yet, they do not incor-
porate domain knowledge such as structured SS models in a
principled manner, while requiring many trainable parameters
and large data sets even for simple sequence models [25] and
lack the interpretability of MB methods. It is also possible
to combine DNNs with variational inference in the context of
state space models, as in [26]–[30]. This is done by casting the
Bayesian inference task as the optimization of a parameterized
posterior and maximizing an objective. However, the learning
procedure tends to be complex and prone to approximation
errors since these methods often rely on highly parameterized
models. Furthermore, their applicability to use cases with a
bounded delay on hardware-limited devices is limited.

An alternative DD approach for state estimation in SS
models uses DNNs to encode the observations into some
latent space that is assumed to obey a simple SS model,
typically a linear Gaussian one. State estimation is then carried
out based on the extracted features [31]–[35], and can be
followed by another DNN decoder [30]. This form of DNN-
aided state estimation is intended to cope with complex and
intractable observations models, e.g., when processing visual
observations, while one should still know (or estimate) the
state evolution. When the SS model is known, DNNs can
be applied to improve upon MB inference, as done in [36],
where graph neural networks are used in parallel with MB
smoothing. However, this approach requires full knowledge
of the SS model, as in MB smoothers.

Real world smoothing applications often involve partially
known dynamics, where one has access to an approximation
of some parts of the SS model based on, e.g., understanding
of the underlying physics or established motion models. In
such scenarios, both MB smoothing and DD methods based
on DNNs may be limited in their performance and suitability.
In our previous work [37] we derived a hybrid MB/DD
implementation of the KF following the emerging MB deep
learning methodology [38], [39]. The augmentation of the KF
with a dedicated DNN was shown to result in a filter that
approaches MMSE performance in partially known dynamics,
while being operable at high rates on limited hardware [40].
Further, the interpretable nature of the resulting architectures
was leveraged to provide reliable measures of uncertainty
[41] and support unsupervised training [42]. These findings,
which all considered a filtering task, motivate deriving a hybrid
MB/DD smoothing algorithm.

In this work we propose RTSNet, which combines trainable
RNNs with the flow of the KS. We design RTSNet for
partially known SS models, where estimates of the evolution
and observation models of the underlying system are given,
which can be obtained based on knowledge of the setup or
approximated from data. Yet, the distribution of the process
and observation noise signals, which capture the uncertainty
of the SS model, are unknown. These model parameters are
the main ingredients for deriving the filtering and smoothing
operators of the KS, and are encapsulated in the computation
of the forward and backward Kalman gains (KGs). Thus, in
RTSNet we circumvent the need to learn the noise distribution

by designing it to learn the filtering and smoothing operations
directly from data. Furthermore, as the model-based KS, which
is comprised of a single forward-backward iteration, is not
MMSE optimal for non-linear models, we design RTSNet to
carry out multiple iterations via deep unfolding [43]. In the
resulting architecture, the given (or approximated) evolution
and observation models are plugged into the RTSNet smoother
architecture. The forward and backward KGs in each iteration
are replaced by dedicated compact RNNs. RTSNet thus con-
verts a fixed number of KS iterations into a discriminative
model [44] that is trained end-to-end.

In addition to the ability of the RTSNet to learn the smooth-
ing task from data, its hybrid MB/DD architecture also retains
the interpretability and other desired properties of the KS. By
preserving the KS flow, RTSNet is invariant to the length of the
sequence and to the initial conditions. In particular, RTSNet
is shown to achieve the MMSE for linear models in the same
way as the KS with full information, while only having access
to partial information, and notably outperforms it with model
mismatch. For non-linear SS models, RTSNet is shown to
outperform MB variants of the KS, that are no longer optimal
even with full domain knowledge. We also show that RTSNet
outperforms leading DD smoothers, while using less trainable
parameters, and being more efficient in terms of training and
inference times. This improved performance follows from the
ability of RTSNet to follow the principled KS operation, while
circumventing its dependency on knowledge of the underlying
noise statistics. In particular, by training the RTSNet smoother
to directly compute the posterior distribution using learned
KGs, we overcome the need to approximate the propagation
of the noise statistics through the non-linearity. Moreover,
doing so also bypasses the need for numerically costly matrix
inversions and linearizations required in the KS equations.

The rest of this paper is organized as follows: Section II
reviews the SS model and its associated tasks, and discusses
relevant preliminaries. Section III details the discriminative
architecture of RTSNet. Section IV presents the empirical
study. Section V provides concluding remarks.

Throughout the paper, we use boldface lower-case letters
for vectors and boldface upper-case letters for matrices. The
transpose, `2 norm, and stochastic expectation are denoted by
{·}>, ‖·‖, and E [·], respectively. The Gaussian distribution
with mean µ and covariance Σ is denoted byN (µ,Σ). Finally,
R and Z are the sets of real and integer numbers, respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. Problem Formulation

SS Models: Dynamical systems in discrete-time describe
the relationship between a sequence of observations yt and a
sequence of unknown latent state variables xt, where t ∈ Z is
the time index. SS models are a common characterization of
dynamic systems [45], which in the (possibly) non-linear and
Gaussian case, take the form

xt = f (xt−1) + et, et ∼ N (0,Q) , xt ∈ Rm, (1a)
yt = h (xt) + vt, vt ∼ N (0,R) , yt ∈ Rn. (1b)
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In (1a), the state vector xt evolves from the previous state
xt−1, by a (possibly) non-linear, state-evolution function f (·)
and by an AWGN et with covariance matrix Q. The obser-
vations yt in (1b) are related to the current latent state vector
by a (possibly) non-linear observation mapping h (·) corrupted
by AWGN vt with covariance R. A common special case of
(1) is that of linear Gaussian SS models, where there exist
matrices F,H such that

f (xt−1) = F · xt−1, h (xt) = H · xt. (2)

Smoothing Task: SS models as in (1) are studied in the
context of several different tasks, which can be roughly classi-
fied into two main categories: observation recovery and hidden
state estimation. The first category deals with recovering parts
of the observed signal yt. This can correspond, for example,
to prediction and imputation. The second category lies at
the core of the family of tracking problems, considering the
estimation of xt. These include online (real-time) recovery,
typically referred to as filtering, which is the task considered
in [37], and offline estimation, i.e., smoothing, which is the
main focus of this paper. More specifically, smoothing involves
the joint computation the state estimates x̂t|T in a given
timer horizon T mode, i.e., jointly estimating {xt} for each
t ∈ {1, 2, . . . , T} , T , given the corresponding block of noisy
observations {y1,y1, . . . ,yT }.

Data-Aided Smoothing for Partially Known SS Models:
In practice, the SS model parameters may be partially known,
and one is likely to only have access to an approximated
characterization of the underlying dynamics. We thus focus
on such scenarios where the state-evolution function f (·) and
the state-observation function h (·) can be reasonably approx-
imated (possibly with mismatch) from our understating of the
system dynamics and its physical design, or learned from data
(as discussed in Subsection III-D). Regardless of how these
functions are obtained, they can be used for smoothing. As
opposed to the classical assumptions of the KS algorithms,
the statistics of noises et and vt are completely unknown,
and may be non-Gaussian.

To deal with the partial modelling of the dynamics, we
assume access to a labeled data set containing a sequence
of observations and their corresponding states. Such data
can be acquired, e.g., from field experiments, or using com-
putationally intensive physically-compliant simulations [39].
The data set is comprised of N time sequence pairs, i.e.,
D =

{
(Y(i),X(i))

}N
i=1

, each of length Ti, namely,

Y(i) =
[
y
(i)
1 , . . . ,y

(i)
Ti

]
∈ Rn×Ti (3)

are the noisy observations, and the corresponding states are

X(i) =
[
x
(i)
0 ,x

(i)
1 , . . . ,x

(i)
Ti

]
∈ Rm×Ti+1. (4)

Given D and the (approximated) f (·) ,h (·), our objective is
to design a smoothing function which maps the observations
{yt}t∈T into a state estimate {x̂t}t∈T , where the accuracy of
the smoother is evaluated as the mean-squared error (MSE)
with respect to the true state {xt}t∈T .

B. Model-Based Kalman Smoothing

We next recall the MB RTS smoother [5], which is the basis
for our proposed RTSNet, detailed in Section III. We describe
the original algorithm for linear SS models, as in (2), and then
discuss how to extend it for non-linear SS models.

The RTS smoother recovers the latent state variables using
two linear recursive steps, referred to as the forward and
backward passes. The forward pass is a standard KF, while the
backward pass recursively computes corrections to the forward
estimate, based on future observations.

Forward Pass: The KF produces a new estimate x̂t|t using
its previous estimate x̂t−1|t−1 and the observation yt. For each
t ∈ T , the KF operates in two steps: prediction and update.

The first step predicts the current a priori statistical mo-
ments based on the previous a posteriori moments. The
moments of xt are computed using the knowledge of the
evolution matrix F as

x̂t|t−1 = F · x̂t−1|t−1 , (5a)

Σt|t−1 = F ·Σt−1|t−1 · F> + Q, (5b)

and the moments of the observations yt are computed based
on the knowledge of the observation matrix H as

ŷt|t−1 = H · x̂t|t−1 , (6a)

St|t−1 = H ·Σt|t−1 ·H> + R. (6b)

In the update step, the a posteriori state moments are
computed based on the a priori moments as

x̂t|t = x̂t|t−1 + Kt ·∆yt, (7a)

Σt|t = Σt|t−1 −Kt · St|t−1 ·K>t . (7b)

Here, Kt is the KG, and it is given by

Kt = Σt|t−1 ·H> · S−1t|t−1 , (8)

while ∆yt = yt − ŷt|t−1 is the innovation, and is the only
term that depends on the observed data.

Backward pass: The backward pass is similar in its struc-
ture to the update step in the KF. For each t ∈ {T − 1, . . . , 1},
the forward belief is corrected with future estimates via

x̂t|T = x̂t|t + Gt ·
←−
∆xt+1, (9a)

Σt|T = Σt|t − Gt ·∆Σt+1|T · G>t . (9b)

Here, Gt is the backward KG, computed based on second-
order statistical moments from the forward pass as

Gt = Σt|t · F> ·Σ−1t+1|t . (10)

The difference terms are given by
←−
∆xt+1 = x̂t+1|T − x̂t+1|t

and ∆Σt+1 = Σt+1−Σt+1|t . The KS is MMSE optimal for
linear Gaussian SS models.

Extension to Non-Linear Dynamics: For non-linear SS
models as in (1), the first-order statistical moments (5a) and
(6a) are replaced with

x̂t|t−1 = f (x̂t−1) , (11a)

ŷt|t−1 = h
(
x̂t|t−1

)
, (11b)
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respectively. Unfortunately, the second-order moments cannot
be propagated directly through the non-linearity, and thus must
be approximated, resulting in methods that no longer share the
MSE optimilaity achieved in linear models.

Among the methods proposed to approximate the second-
order moments are the unscented RTS, that is based on
unscented transformations [46], and PSs which use sequential
sampling [9]. Arguably the most common non-linear smoother
is the EKS, which uses straight forward linearization. Specifi-
cally, when f (·) and h (·) are differentiable, the EKS linearizes
them in a time-dependent manner. This is done using their
partial derivative matrices (Jacobians), evaluated at x̂t−1|t−1
and x̂t|t−1 , namely,

F̂t = Jf
(
x̂t−1|t−1

)
, (12a)

Ĥt = Jh
(
x̂t|t−1

)
. (12b)

The Jabobians in (12) are then substituted into equations (5b),
(10), (6b), and (8) of the KS.

The forward and backward KGs are pivot terms, that are
used as tuning factors for updating our current belief, and
they depend on the second-order moments. For linear SS
models, the covarince computation is purely MB, i.e., based
solely on the noise statistics, while for non-linear systems the
covariance depends on the specific trajectory. Furthermore,
these covariance computations require full knowledge of the
underlying model, and performance notably degrades in the
presence of model mismatch. This motivates the derivation
of a data-aided smoothing algorithm that estimates the KGs
directly as a form of discriminative learning [44], and by that
circumvents the need to estimate the second-order moments.

III. RTSNET

Here, we present RTSNet. We begin by describing our de-
sign rationale and high level architecture in Subsection III-A,
after which we detail the micro architecture in Subsec-
tion III-B. We then describe the training procedure in Sub-
section III-C, and provide a discussion in Subsection III-D.

A. High Level Design

Rationale: The basic design idea behind the proposed
RTSNet is to utilize the skeleton of the MB RTS smoother,
hence the name RTSNet, and to replace modules depending
on unavailable domain knowledge, with trainable DNNs. By
doing so, we convert the KS into a discriminative algorithm,
that can be trained in a supervised end-to-end manner.

Our design is based on two main guiding properties:
P1 The RTS operation, comprised of a single forward-

backward pass, is not necessarily MMSE optimal when
the SS model is not linear Gaussian.

P2 The RTS smoother requires the missing domain knowl-
edge (i.e., the noise statistics) and linearization operations
solely for computing the KGs in (8) and (10).

Unfolded Architecture (by P1): Property P1 indicates that
one can possibly improve performance by carrying out multi-
ple forward-backward passes, iteratively refining the estimated
sequence. Following the deep unfolding methodology [39], we

design RTSNet to carry out K forward-backward passes, for
some fixed K ≥ 1.

Each pass of index k ∈ {1, . . . ,K} involves a single
forward-backward smoothing. The input and output of this
pass are the sequences Yk = [yk,1,yk,2, . . . ,yk,T ] and
X̂k =

[
x̂k,1|T , x̂k,2|T , . . . x̂k,T |T

]
, respectively, and its oper-

ation is based on an SS model of the form

xk,t = f (xk,t−1) + ek,t, xk,t ∈ Rm, (13a)
yk,t = hk (xk,t) + vk,t, yk,t ∈ Rnk . (13b)

For the first pass, the inputs are y1,t = yt, i.e., the obser-
vations, and thus h1(·) ≡ h(·) and n1 = n in (13b). For
the following passes where k > 1, the input is the estimate
produced by the subsequent pass, i.e., yk,t = x̂k−1,t|T . This
input is treated as noisy state observations, and thus hk(·)
is the identity mapping and nk = m. The noise signals in
(13) obey an unknown distribution, following the problem
formulation in Subsection II-A.

Deep Augmenting RTS (by P2): We choose the RTS
smoother as our MB backbone based on P2. Specifically,
as opposed to other alternatives, e.g., MBF [47], [48] and
BIFM [49], in RTS all the unknown domain knowledge is
encapsulated in the forward and backward KGs, Kt, and Gt,
respectively. Consequently, for each pass k, we employ an RTS
smoother, while replacing the KGs computation with DNNs.

Since both KGs involve tracking time-evolving second-
order moments, they are replaced by RNNs in each pass
of RTSNet, with input features encapsulating the missing
statistics. The resulting operation of the kth pass commences
with a forward pass, that is based upon KalmanNet [37]: For
each t from 1 to T a prediction and update steps are applied.
In the prediction step, we the prior estimates for the current
state and for the current observation using (11), namely,

x̂k,t|t−1 = g(x̂k,t−1), ŷk,t|t−1 = hk(x̂k,t|t−1).

In the update step, we compute x̂k,t|k,t , the current forward
posterior, using (7a), i.e.,

x̂k,t|t = x̂k,t|t−1 + Kk,t ·
(
yk,t − ŷk,t|t−1

)
.

As opposed to the KS, here the filtering (forward) KG Kk,t

is computed using an RNN.
The forward pass if followed by a backward pass, which

updates our state estimates using information from future
estimates. As in (9a), this procedure is given by

x̂k,t|T = x̂k,t|t + Gk,t ·
(
x̂k,t+1|T − x̂k,t+1|t

)
.

where the resulting estimate is x̂k,t = x̂k,t|T for each t.
As in the forward pass, the smoothing (backward) KG Gt
is computed using an RNN. The high-level architecture of
RTSNet is depicted in Fig. 1.
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(a) kth forward pass.
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(b) kth backward pass.
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Backward 1







Forward 2
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Backward 







Forward 




Backward 




Forward 




Fig. 1: RTSNet high level architecture block diagram.

B. Micro Architecture

RTSNet includes 2K RNNs, as each kth pass utilizes
one RNN to compute the forward KG and another RNN to
compute the backward KG. In this subsection, we focus on a
single pass of index k and formulate the micro architecture its
forward and backward RNNs, as well as which features the
RNNs use to compute the KGs.

Forward Gain: The forward pass is built on KalmanNet,
where architecture 2 of [37] is particularly utilized to compute
the forward KG, i.e., Kk,t, using separate gated recurrent unit
(GRU) cells for each of the tracked second-order statistical
moments. The division of the architecture into separate GRU
cells and fully connected (FC) layers and their interconnection
is illustrated in Fig. 2. As shown in the figure, the network
composes three GRU layers, connected in a cascade with
dedicated input and output FC layers. This architecture, which
is composed of a non-standard interconnection between GRUs
and FC layers, is directly tailored towards the formulation of
the SS model and the operation of the MB KF, as detailed in
[37].

The input features are designed to capture differences in
the state and the observation model, as these differences are
mostly affected by unknown noise statistics. As in [37], the
following features are used to compute Kk,t (see Fig. 2):
F1 Observation difference ∆ỹk,t = yk,t − yk,t−1.
F2 Innovation difference ∆yk,t = yk,t − ŷk,t|t−1 .
F3 Forward evolution difference ∆x̃k,t = x̂k,t|t−x̂k,t−1|t−1 .
F4 Forward update difference ∆x̂k,t = x̂k,t|t − x̂k,t|t−1 .

Backward Gain: To compute Gk,t in a learned manner, we
again design an architecture based on how the KS computes
the backward gain. To that aim, we again use separate GRU
cells for each of the tracked second-order statistical moments,
as illustrated in Fig. 3. The first GRU layer tracks the unknown
state noise covariance Q, thus tracking m2 variables. Simi-

GRU 1
Q̂

GRU 2
Σ̂

GRU 3
Ŝ

t > 0

t = 0

t > 0

t = 0

Σ̂t|t

∆x̂t = x̂t|t − x̂t|t−1
∆x̃t = x̂t|t − x̂t−1|t−1
∆yt = yt − ŷt|t−1
∆ỹt = yt − yt−1

∆x̃t−1

∆yt

∆ỹt

Z−1

Z−1

∆x̂t−1

Kt

t > 0

t = 0R̂0

Z−1

Σ̂0

Q̂0

Σ̂t|t−1

Ŝt

Qt

Fig. 2: Forward gain RNN block diagram. The input features
are used to update three GRUs with dedicated FC layers, and
the overall interconnection between the blocks is based on the
flow of the Forward KG Kt computation in the MB KF.

larly, the second GRUs tracks the predicted moment Σ̂t|T (9b)
and Ŝt (6b), thus having m2 hidden state variables. The GRUs
are interconnected such that the learned Q is used to compute
Σ̂t|T , while FC layers are utilized for input and output shaping.

We utilize the following features, which are related to the
unknown underlying statistics:

B1 Update difference
←−
∆xk,t+1 = x̂k,t+1|T − x̂k,t+1|t .

B2 Backward forward difference
←−
∆x̂k,t+1 = x̂k,t+1|T −

x̂k,t+1|t+1 .
B3 Evolution difference

←−
∆x̃k,t+1 = x̂k,t+2|T − x̂k,t+1|T .
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GRU
Q̂

GRU
Σ̂

t < T

t = T

t < T

t = T

←−
∆x̂t+1←−
∆x̃t+1

Z+1

Z+1 Σ̂t|T

←−
∆xt+1

Gt

Σ̂T

Q̂T

←−
∆xt+1 = x̂t+1|T −x̂t+1|t←−
∆x̂t+1 = x̂t+1|T −x̂t+1|t+1←−
∆x̃t+1 = x̂t+2|T −x̂t+1|T

Fig. 3: Backward gain RNN block diagram. The input features
are used to update two GRUs with dedicated FC layers, and
the overall interconnection between the blocks is based on the
flow of the Backward KG Gt computation in the KS.

The first two features capture the uncertainty in the state
estimate, where the differences remove predictable compo-
nents such that they are mostly affected by the unknown
noise statistics. The third feature is related to the evolution
of the predicted state, and thus reflects on its statistics that are
tracked by the KS. The features are utilized by the proposed
architecture, as illustrated in Fig. 3.

C. Training Algorithm

Loss Function: We train RTSNet in a supervised manner.
To formulate the loss function used for training, let Θk denote
the trainable parameters of the RNNs of the kth pass. The loss
measure used to tune these parameters is the regularized `2
loss; for a labeled pair (Yk(i),X(i)) of length Ti, this loss is
given by

L(i)
k (Θk) =

1

Ti
·
Ti∑

t=1

∥∥∥x̂k,t|T
(
Y

(i)
k ,Θk

)
− x

(i)
t

∥∥∥
2

+ γk · ‖Θk‖2 . (14)

In (14), x̂k,t|T (Yk,Θk) denotes the tth output of the kth pass
with input Yk and RNN parameters Θk. While the loss in (14)
refers to a single trajectory i, we use it to optimize RTSNet
using variants of mini-batch stochastic gradient descent. Here
for every batch indexed by j, we choose B < N trajectories
indexed by ij1, . . . , i

j
B , and compute the mini-batch loss of the

kth pass as

L̄k,j (Θk) =
1

B

B∑

b=1

L(ijb)

k (Θk) . (15)

Gradient Computation: RTSNet uses the RNNs for com-
puting the KGs rather than for directly producing the estimate
x̂k,t|T . The loss function (14) enables to evaluate the overall
system without having to externally provide ground truth val-
ues of the KGs for training purposes. Training RTSNet in end-
to-end manner thus builds upon the ability to backpropagate
the loss to the computation of the KGs. One can obtain the loss

gradient with respect to the KGs from the output of RTSNet
since by combing (7a) and (9a) we get that

x̂k,t|T = x̂k,t|t−1 + Kk,t ·∆yk,t + Gk,t ·
←−
∆xk,t+1. (16)

Consequently, the gradients of the `2 loss terms with respect
to the KGs obey

∂

∂Kk,t

∥∥x̂k,t|T − xt
∥∥2 ∝

(
xk,t|T − xt

)
·∆y>k,t (17a)

∂

∂Gk,t
∥∥x̂k,t|T − xt

∥∥2 ∝
(
xk,t|T − xt

)
· ←−∆x>k,t+1, (17b)

which in turn allows to compute the gradient of the `2 loss with
respect to Θk via the chain rule. The gradient computation
indicates that one can learn the computation of the KGs by
training RTSNet end-to-end.

End-to-End Training: The differentiable loss function in
(14) allows end-to-end training of a single forward-backward
pass of index k. To train the overall unfolded RTSNet, we
consider the following loss measures:

Joint learning, where the RNNs of all the passes are
simultaneously using the labeled dataset D. Here, we stack the
trainable parameters as Θ = {Θk}, and set the loss function
for the ith trajectory to

L(i) (Θ) =

K∑

k=1

αkL(i)
k (Θk) , (18)

where each L(i)
k (·) is evaluated via (14) with Y

(i)
1 = Y(i)

and Y
(i)
k = X̂

(i)
k−1 for k > 1. The coefficients {αk}Kk=1 in

(18) balance the contribution of each pass to the loss – setting
αk = 0 for k < K evaluates RTSNet based solely on its
output, while setting αk 6= 0 for k < K encourages also
the intermediate passes to provide accurate estimates. The
latter exploits the fact that the interpretable architecture of
RTSNet allows to associate its internal features with operations
meanings in order to facilitate training; a candidate setting is
αk = log(1 + k), see, e.g., [50].

Sequential learning repeats the training procedure K times,
training each pass of index k after its preceding passes have
been trained using the same dataset. Here, the dataset D is first
used to train only Θ1 using (14) with k = 1; then, Θ1 is frozen
and Θ2 is trained using (14) with k = 2 and Y

(i)
2 = X̂

(i)
1 ,

and the procedure repeats until ΘK is trained. This form of
training, proposed in [51], exploits the modular structure of the
unfolded architecture and tends to be data efficient and simpler
to train compared with joint learning, and is also the form of
training used in our empirical study presented in Section IV.

D. Discussion

RTSNet is designed to operate in a hybrid DD/MB manner,
combining deep learning with the classical KS. By identifying
the specific noise-model-dependent computations of the KS
and replacing them with a dedicated RNNs integrated in the
MB flow, RTSNet benefits from the individual strengths of
both DD and MB approaches. We particularly note several core
differences between RTSNet and its MB counterpart. Unlike
the KS, RTSNet does not attempt to linearize the SS model,
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and does not impose a statistical model on the noise signals,
while avoiding the need to compute a Jacobian and invert
a matrix at each iteration. In addition, RTSNet filters in a
non-linear manner, as, e.g., its forward KG matrix depends
on the input yt. Moreover, RTSNet supports multiple learned
forward-backward passes in order to improve accuracy in non-
linear settings where the single pass KS is not optimal. Due to
these differences, RTSNet is more robust to model mismatch
and can infer more efficiently compared with the KS, as shown
in Section IV.

Compared to purely DD state estimation, RTSNet benefits
from its model awareness, as it supports systematic inclusion
of the available state evolution and observation functions,
and does not have to learn its complete operation from data.
As empirically observed in Section IV, RTSNet achieves
improved MSE compared to utilizing RNNs for end-to-end
state estimation, and also approaches the MMSE performance
achieved by the KS in linear Gaussian SS models.

Furthermore, the operation of KalmanNet follows the flow
of KS rather than being utilized as a black-box. This implies
that the intermediate features exchanged between its modules
have a specific operation meaning, providing interpretability
that is often scarce in end-to-end, deep learning systems.
Finally, the fact that RTSNet learns to compute the KGs
indicates the possibility of providing not only estimates of
the state xt, but also a measure of confidence in this estimate,
as the KGs can be related to the covariance of the estimate,
as initially explored for KalmanNet in [41].

While we train RTSNet in a supervised manner using
labeled data, the fact that it preserves the operation of the
KS indicates the possibility of training it in an unsupervised
manner using a loss function measuring consistency between
its estimates and observations, e.g.,

∥∥h
(
x̂t|T

)
− yt

∥∥2. One
can thus envision RTSNet being trained offline in a supervised
manner, while tracking variations in the underlying SS model
at run-time by online self supervision, as was initially explored
for KalmanNet in [42] and we leave its extension to future
work. The ability to train in an unsupervised manner opens
the door to use the backbone of RTSNet in more SS related
tasks other than smoothing, e.g., signal de-noising, imputation,
and prediction. Nonetheless, we leave the exploration of these
extensions of RTSNet for future work.

IV. EXPERIMENTS AND RESULTS

In this section we present an extensive empirical study of
RTSNet1, evaluating its performance in multiple setups and
comparing it with both MB and DD benchmark algorithms. We
consider both linear Gaussian SS models, where we identify
the ability of RTSNet to coincide with the KS (which is MSE
optimal in such settings), as well as challenging non-linear
models.

A. Experimental Setup

Smoothers: Our empirical study compares RTSNet with
MB and DD counterparts. We use the KS (RTS smoother) as

1The source code used in our empirical study along with the complete set of
hyperparameters can be found at https://github.com/KalmanNet/RTSNet TSP.
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Fig. 4: Linear SS model - full information.

the MB benchmark for linear models. For non-linear models,
we use the EKS and the PS [52], where the latter is based on
forward-filter backward simulator of [53] with 100 particles
and 10 backward trajectories. The benchmark algorithms were
optimized for performance by manually tuning the covariance
matrices. This tuning is often essential to avoid divergence
under model uncertainty as well as under dominant non-
linearities.

Our main DD benchmark is the hybrid graph neural
network-aided belief propagation smoother of [36] (referred
to as GNN-BP), which incorporates knowledge of the SS
model. We also compare with a black-box architecture using
a Bi-directional RNN (BRNN), which is comprised of bi-
directional GRU with input and output FC layers designed
to have a similar number of trainable parameters as RTSNet.
Both DNN-aided benchmarks are empirically optimized and
cross validated to achieve their best training performance.

We use the term full information to describe cases where
f (·) and h (·) are accurately known. The term partial in-
formation refers to the case where RTSNet and benchmark
algorithms operate with some level of model mismatch in their
available knowledge of the SS model parameters. RTSNet and
the DD BRNN operate without access to the noise covariance
matrices (i.e., Q and R), while their MB counterparts operate
with an accurate knowledge of the noise covariance matrices
from which the data was generated.

Evaluation: The metric used to evaluate the performance
is the empirical mean and standard deviation of squared error,
denoted,µ̂ and σ̂, respectively. Unless stated otherwise, we
evaluate using a Ntest = 200 test trajectories.

Throughout the empirical study and unless stated otherwise,
in the experiments involving synthetic data, the SS model is
generated using diagonal noise covariance matrices; i.e.,

Q = q2 · I, R = r2 · I, ν ,
q2

r2
. (19)

By (19), setting ν to be 0 dB implies that both the state noise
and the observation noise have the same variance.

B. Linear State Space Models with Full Information

We first focus on comparing RTSNet with the KS for
synthetically generated linear Gaussian dynamics with full in-
formation. Since the KS is MSE optimal here, we show that the

7
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TABLE I: Linear SS model - Full Information - MSE [dB]

(a) ν = 0 [dB]
r2 [dB] 10 0 −10 −20 −30
Noise 10.023 0.054 -10.003 -19.947 -29.962

± 0.424 ± 0.448 ± 0.427 ± 0.411 ± 0.430
KF 8.085 -1.827 -11.880 -21.903 -31.886

± 0.502 ± 0.525 ± 0.464 ± 0.419 ± 0.514
KS 6.215 -3.710 -13.776 -23.751 -33.749

± 0.487 ± 0.535 ± 0.466 ± 0.519 ± 0.508
RTSNet 6.225 -3.695 -13.738 -23.732 -33.698

± 0.487 ± 0.537 ± 0.463 ± 0.512 ± 0.506

(b) ν = −10 [dB]
r2 [dB] 10 0 −10 −20 −30
Noise 10.004 0.000 -10.029 -19.982 -29.969

± 0.419 ± 0.392 ± 0.431 ± 0.404 ± 0.435
KF 5.299 -4.703 -14.756 -24.680 -34.731

± 0.710 ± 0.663 ± 0.675 ± 0.596 ± 0.696
KS 1.834 -8.220 -18.179 -28.098 -38.236

± 0.794 ± 0.721 ± 0.778 ± 0.726 ± 0.837
RTSNet 1.881 -8.169 -18.092 -27.875 -38.183

± 0.796 ± 0.720 ± 0.797 ± 0.746 ± 0.836

(c) ν = −20 [dB]
r2 [dB] 10 0 −10 −20 −30
Noise 10.012 -0.008 -10.004 -19.977 -30.003

± 0.398 ± 0.434 ± 0.448 ± 0.416 ± 0.429
KF 2.756 -7.254 -17.339 -27.194 -37.324

± 1.086 ± 1.012 ± 0.967 ± 1.011 ± 0.963
KS -1.790 -11.847 -21.738 -31.620 -41.831

± 1.242 ± 1.190 ± 1.281 ± 1.107 ± 1.289
RTSNet -1.640 -11.712 -21.543 -31.817 -41.505

± 1.199 ± 1.173 ± 1.279 ± 1.152 ± 1.229

performance of both algorithms coincides, demonstrating that
RTSNet with K = 1 can learn to be optimal. Then, we show
that the learning capabilities of RTSNet are scalable, namely,
that they hold for different SS dimensions, and transferable,
i.e., that it can be trained and evaluated with different trajectory
lengths and initial conditions.

Approaching Optimality: We consider a 2 × 2 SS model
(1)-(2), where F takes a canonical form and H is set to be
the identity matrix, namely,

F =

(
1 1
0 1

)
, H = I. (20)

We use multiple noise levels, in [dB] scale, of r2 ∈
{10, 0,−10,−20,−30}, and ν ∈ {−20,−10, 0}. The results
provided in Table I, and in Fig. 4, shows that RTSNet
converges to the MMSE estimate produced by the KS in the
first two moments. This indicates that RTSNet successfully
learns to implement the KS when it is MMSE optimal.

Scaling up Model Size: Next, we empirically show that
RTSNet is a scalable smoothing architecture that is not limited
to a small dimensions SS models. In this experiment F and
H in their canonical form were considered, q2 = −20 [dB],
r2 = 0 [dB], and T = 20. It is clearly observed in Table IIa
that RTSNet retains its optimality also for high dimensional
models, outperforming its DD benchmarks: BRNN is far from
optimal, and the performance of GNN-BP degrades when the
model dimensions increase.

Trajectory Length: To show generalization in T , the SS
model in (20) is again considered, where q2 = −20 [dB],
and r2 = 0 [dB]. Here, we first train RTSNet and its DD
benchmarks on one trajectory length and then testing it on
a longer one. The results reported in Table IIb show that

(a) Scaling SS Model Dimensions
Dimensions 2× 2 5× 5 10× 10 20× 20

KF -7.791 -10.931 -11.062 -11.540
± 2.204 ± 1.411 ± 0.951 ± 0.771

KS -11.732 -12.350 -12.436 -12.762
± 2.489 ± 1.561 ± 1.058 ± 0.808

BRNN 3.289 4.261 5.581 3.742
± 4.495 ± 4.724 ± 4.553 ± 4.416

GNN-BP -10.016 -9.028 -8.674 -8.557
± 2.331 ± 1.312 ± 0.803 ± 0.603

RTSNet -11.208 -11.9725 -12.0231 -12.2755
± 2.438 ± 1.597 ± 1.055 ± 0.828

(b) Scalability for Trajectory Length
Ttraining, Ttesting 20, 20 100, 100 100, 1000 100,U [100, 1000]

Noise 0.025 -0.008 0.011 0.015
±0.919 ± 0.434 ± 0.132 ± 0.227

KF -7.791 -7.254 -7.162 -7.241
± 2.204 ± 1.012 ± 0.335 ± 0.543

KS -11.732 -11.847 -11.810 -11.853
± 2.489 ± 1.190 ± 0.450 ± 0.687

BRNN 3.289 22.277 54.955 48.390
± 4.495 ± 5.190 4.419 5.436

GNN-BP -10.016 -11.433 -11.662 -11.687
± 2.331 ± 1.166 ± 0.448 ± 1.740

RTSNet -11.208 -11.753 -11.753 -11.773
± 2.438 ± 1.182 ± 0.449 ± 0.685

(c) Initial Conditions
Training, Testing Fixed, Fixed Fixed, Random Random, Random

Noise -0.008 NA -0.019
± 0.434 NA ± 0.360

KF -7.254 NA -7.426
± 1.012 NA ± 0.963

KS -11.847 NA -12.025
± 1.190 NA ± 1.238

BRNN 22.277 37.281 26.606
± 5.190 ± 2.003 ± 3.547

GNN-BP -11.433 -10.655 -11.382
± 1.166 ± 1.219 ± 1.164

RTSNet -11.753 -11.757 -11.701
± 1.182 ± 1.187 ± 1.214

while RTSNet retains optimally for various trajectory lengths,
BRNN completely diverges. We can also see the superiority of
RTSNet over GNN-BP which demonstrates slightly degraded
performance.

Initial Conditions: The operation of all smoothing al-
gorithms depends on their initial state. We next train the
DD benchmarks on trajectories with a different initial state
compared to that used in test for the the SS model in (20)
with q2 = −20 [dB], r2 = 0 [dB], and T = 100. The
results provided in Table IIc demonstrates that while BRNN
completely diverges, and GNN-BP is with slightly degraded
performance when trained and then tested on different initial
conditions, RTSNet still retains its optimally, which again
demonstrates that it learns the smoothing task, rather than to
overfit to trajectories presented during training.

C. Linear SS Models with Partial Information

Next, we demonstrate the merits of using RTSNet in linear
settings with partial information where the KS is degraded due
to the missing information. We consider mismatches in both
the observation model as well as in the state evolution model.
In particular, a mismatch in a model, e.g., the observation
model, refers to a case in which a wrong setting of h(·) is used,
while the MB smoothers have access to the noise distribution.
We also consider the case in which the corresponding model
is unknown, e.g., both h(·) and the noise distribution are
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TABLE III: Linear SS - Observation mismatch: ν = −20 [dB]

r2 [dB] 10 0 −10 −20 −30
KF Full 2.702 -7.394 -17.367 -27.293 -37.273

± 0.885 ± 0.901 ± 0.957 ± 0.966 ± 1.029
KS Full -1.875 -11.880 -21.812 -31.961 -41.810

± 1.285 ± 1.272 ± 1.149 ± 1.265 ± 1.156
BRNN Opt 33.490 22.120 13.523 4.058 -5.876

± 4.490 ± 4.808 ± 5.334 ± 4.543 ± 4.421
GNN-BP Full -1.417 -11.397 -21.383 -31.545 -41.395

± 1.244 ± 1.248 ± 1.148 ± 1.252 ± 1.200
RTSNet Full -1.790 -11.847 -21.738 -31.620 -41.831

± 1.242 ± 1.190 ± 1.281 ± 1.107 ± 1.289
KF Partial 11.154 0.926 -9.160 -18.428 -28.786

± 3.023 ± 3.064 ± 3.651 ± 3.253 ± 3.301
KS Partial 5.502 -4.825 -15.062 -24.198 -34.592

± 2.942 ± 3.205 ± 3.440 ± 3.119 ± 3.133
GNN-BP Partial -0.989 -11.123 -20.865 -30.080 -38.174

± 1.223 ± 1.243 ± 1.587 ± 1.354 ± 2.624
RTSNet Partial -0.774 -10.852 -21.104 -29.667 -38.066

± 1.243 ± 1.158 ± 1.216 ± 1.215 ± 1.136
RTSNet Ĥ -1.743 -11.697 -21.721 -31.186 -40.301

± 1.269 ± 1.241 ± 1.153 ± 1.220 ± 1.169

unknown for the observation model; In such cases, since unlike
GNN-BP and the MB benchmarks, RTSNet does not require
prior knowledge of the noise distribution, we also evaluate
it when it uses its data also to estimate the missing design
parameter, e.g., h(·), using least squares (LS).

Observation Model Mismatch: We first consider the case
where the design observation model is mismatched. We again
use the canonical model in (20) with the observation matrix
being either unknown, or assumed to be H0 = I, while the
observation model is

Hα◦ = Rx,y (α) ·H0, Rx,y (α) =




cosα − sinα 0
sinα cosα 0

0 0 1


 ,

with H0 = I. The data is generated with α◦ = 10. Such
scenarios represent a setup where the true observed values are
rotated by α◦, e.g., a slight misalignment of the sensors exists.

We compare the performance of RTSNet and the KS
when their design observation model is either Hα=10 (full
information) or Hα=0 (mismatch). We also consider the case
where the matrix is estimated from the data set via LS,
denoting Ĥα=10. The empirical results reported in Table III
and in Fig. 5 demonstrate that while KS experienced a severe
performance degradation, RTSNet is able to compensate for
mismatches using the learned KG. When assuming a mis-
matched model H0, RTSNet converges to within a minor gap
from the MMSE, which is further reduced when the data
is also used to estimate the observation model. The latter
indicates that even when the SS model is completely unknown,
yet can be postulated as being linear, RTSNet can reliably
smooth by using its data to both estimate the state evolution
matrix as well as learn to smooth, while bypassing the need
to impose a model on the noise.

State Evolution Mismatch: We next consider a similar, but
more challenging use case. Here, the design evolution model
is either unknown, or assumed to be F0 = I, while the true
evolution model is

Fα◦ = Rx,y (α) · F0, α◦ = 10. (21)

The empirical results reported in Table IV demonstrate that
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Fig. 5: Linear SS model - Observation mismatch.

TABLE IV: Linear SS - Evolution mismatch: ν = −20 [dB]

r2 [dB] 10 0 −10 −20 −30
KF Full 3.450 -6.594 -16.562 -26.601 -36.565

± 1.846 ± 1.883 ± 1.876 ± 1.907 ± 1.831
KS Full -3.843 -13.913 -23.592 -33.861 -43.593

± 2.655 ± 2.709 ± 2.751 ± 2.753 ± 2.746
BRNN Opt 40.915 30.714 20.796 12.593 2.411

± 5.033 ± 5.317 ± 4.955 ± 4.281 ± 4.069
GNN-BP Full -1.975 -11.850 -21.403 -30.579 -41.016

± 2.549 ± 3.369 ± 2.564 ± 2.548 ± 2.682
RTSNet Full -3.351 -13.585 -23.333 -33.126 -43.160

± 2.699 ± 2.673 ± 2.671 ± 2.628 ± 2.649
KF Partial 33.961 23.833 13.848 4.199 -6.434

± 3.933 ± 3.857 ± 3.683 ± 3.850 ± 3.812
KS Partial 32.963 22.838 12.853 3.201 -7.431

± 3.933 ± 3.859 ± 3.685 ± 3.851 ± 3.809
GNN-BP Partial 12.150 -1.152 -5.042 -10.950 -26.154

± 4.215 ± 6.240 ± 4.272 ± 2.790 ± 3.968
RTSNet Partial 10.553 -2.011 -10.689 -21.683 -31.887

± 3.151 ± 1.945 ± 1.934 ± 1.643 ± 1.244
RTSNet F̂ -3.433 -12.945 -23.013 -32.932 -41.864

± 2.633 ± 2.682 ± 2.798 ± 2.471 ± 2.657

while KS experienced a severe performance degradation, RT-
SNet is able to compensate for unknown model information,
by pre-estimating the evolution model via LS, and achieve
the lower-bound. We can again clearly notice the performance
superiority of our RTSNet over its DD counterparts, both for
full and unknown information.

D. Kinematic Linear Differential Equations

As a concluding experiment in a setting of linear SS
models, we consider smoothing in dynamics obtained from a
stochastic differential equation (SDE) with a model mismatch.
The state here represents a moving object obeying the constant
acceleration (CA) model [45] for one dimensional kinematics.
Here, xt = (pt, vt, at)

> ∈ R3, where pt, vt, and at are
the position, velocity, and acceleration, respectively, at time
t. We observe noisy position measurements sampled at time
intervals ∆t = 10−2, yielding a linear Gaussian SS model
with H = (1, 0, 0) and

F=




1 ∆τ 1
2∆τ2

0 1 ∆τ
0 0 1


 ; Q=q2·




1
20∆τ5 1

8∆τ4 1
6∆τ3

1
8∆τ4 1

3∆τ3 1
2∆τ2

1
6∆τ3 1

2∆τ2 ∆τ


 .

While for the synthetic linear models considered in the
previous subsections we used RTSNet with a single forward-
backward pass, here we evaluate it with K = 2 unfolded pass,
comparing it to both the KS and to GNN-BP when recovering
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TABLE V: Linear kinematic SS model
Model Error KF KS GNN-BP RTSNet-2

CA Full State -7.631 -8.791 14.351 -8.432
± 2.891 ± 3.054 ± 2.011 ± 2.974

CA Position -22.074 -23.221 -11.456 -22.241
± 3.694 ± 4.081 ± 2.037 ± 3.676

CV Position -7.657 -14.752 -10.732 -15.900
± 3.145 ± 3.308 ± 1.661 ± 2.542

the entire state vector, as well as when recovering only the
position (which is often the case in positioning applications).
For the latter, we also consider the case where the smoothers
assume a more simplified constant velocity (CV) model [45]
state evolution for state evolution. The CV model captures
in its state vector the position and velocity (without the
acceleration), and is a popular model for kinematics due to its
simplicity. Yet, for the current setting, it induces an inherent
model mismatch.

The results are reported in Table V. For the GNN-BP
smoother of [36], which is DD yet also requires knowledge
of the SS model, we optimized Q via grid search to achieve
the best performance, as it was shown to be unstable when
substituting the true Q. We observe in Table V that RTSNet
comes within am minor gap of the KS in estimating both the
full state as well as only the positions when it is known that the
state obeys the CA model; When it is postulated that the state
obeys the CV model, RTSNet outperforms all benchmarks.

E. Non-Linear Lorenz Attractor
We proceed to evaluating RTSNet in a non-linear SS model

following the Lorenz attractor, which is a three-dimensional
chaotic solution to the Lorenz system of ordinary differential
equations. This synthetically generated chaotic system ex-
emplifies dynamics formulated with SDEs, that demonstrates
the task of smoothing a highly non-linear trajectory and a
real world practical challenge of handling mismatches due
to sampling a continuous-time signal into discrete-time [54].
As the dynamics are non-linear, here we use RTSNet with
both K = 1 and K = 2 forward-backward passes, denoted
RTSNet-1 and RTSNet-2, respectively.

The Lorenz attractor models the movement of a particle in
3D space, i.e., m = 3, which, when sampled at interval ∆τ ,
obeys a state evolution model with f (xt) = F (xt) ·xt, where

F (xτ ) = I +

J∑

j=1

(A (xτ ) ·∆τ)
j

j!
, (22)

with J denoting the order of the Taylor series approximation
used to obtain the model (where we use J = 5 when
generating the data), and

A (xτ ) =



−10 10 0
28 −1 −x1,τ
0 x1,τ − 8

3


 .

We first evaluate RTSNet under noisy rotated state observa-
tions, with and without observation model mismatch as well
as with sampling mismatches, after which we evaluate it with
non-linear observations.

Rotated State Observations: Here, we consider the
discrete-time state evolution with ∆τ = 0.02. The observa-

TABLE VI: Lorenz attractor - Observation Mismatch:
r2 [dB] 10 0 −10 −20 −30
Noise 10.017 0.005 -10.011 -19.942 -29.986

± 0.334 ± 0.376 ± 0.368 ± 0.347 ± 0.354
EKF Full -0.299 -10.533 -20.493 -30.348 -40.483

± 1.084 ± 1.016 ± 0.969 ± 1.016 ± 0.992
EKS Full -3.892 -13.752 -23.868 -33.743 -43.755

± 0.996 ± 1.161 ± 1.025 ± 1.013 ± 1.145
GNN-BP Full -2.263 -12.398 -22.413 -31.040 -42.368

± 1.113 ± 1.182 ± 1.076 ± 1.046 ± 1.256
RTSNet-2 Full -3.138 -13.330 -23.304 -33.311 -43.235

± 0.983 ± 1.195 ± 1.036 ± 0.999 ± 1.112
EKF Partial -0.258 -9.747 -15.945 -17.549 -17.752

± 1.073 ± 0.988 ± 0.769 ± 0.325 ± 0.109
EKS Partial -3.824 -12.932 -18.957 -20.363 -20.563

± 0.976 ± 1.122 ± 0.853 ± 0.366 ± 0.126
GNN-BP Partial -1.921 -11.959 -18.724 -23.076 -23.351

± 0.962 ± 1.308 ± 0.871 ± 0.743 ± 0.472
RTSNet-2 Partial -3.010 -13.290 -22.620 -31.789 -41.874

± 1.067 ± 1.175 ± 1.077 ± 1.207 ± 1.216
RTSNet-2 Ĥ -3.127 -13.315 -23.158 -32.581 -42.928

± 1.057 ± 1.194 ± 1.043 ± 1.119 ± 1.145
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Fig. 6: T = 2000, ν = −20 [dB], h (·) = I.

tions model h (·) is set to a rotation matrix with α = 1◦,
whereas T = 100 and ν = −20 [dB]. As in Subsection IV-C,
we consider the cases where the smoothers are aware of the
rotation (Full information); when the assumed state evolution
is the identity matrix instead of the slightly rotated one (Partial
information), as well as when it is estimated from the data set
via LS (Ĥ).

The results reported in Table VI and in Fig. 6 demonstrate
that although RTSNet does not have access to the true statistics
of the noise, for the case of full observation model information,
it still achieves the MSE lower-bound. It is also observed
that a mismatched state observation model obtained from a
seemingly minor rotation causes a severe performance degra-
dation for the KS, which is sensitive to model uncertainty,
while RTSNet is able to learn from data to overcome such
mismatches. Finally, it is observed that RTSNet consistently
and notably outperform the DD benchmark of [36], and that
its unfolding with K = 2 forward-backward passes indeed
achieves improved performance compared with a single pass.

Sampling Mismatch: Here, we demonstrate a practical case
where a physical process evolves in continuous-time, but the
smoother only has access to noisy observations in discrete-
time, which then results in an inherent mismatch in the SS
model. We generate data from an approximate continuous-
time noise-less state evolution F (xτ ), with high resolution
time interval ∆τ = 10−5. We then sub-sampled the process
by a ratio of 1

2000 and get a decimated process with ∆t =
0.02. Finally we generated noisy observations of the true state,

10



by using an identity observation matrix h (·) = I and non-
correlated observation noise with r2 = 0 [dB]. See an example
in Fig. 7: ground truth, and noisy observations, respectively.

The MSE values for smoothing sequences with length
T = 3000, reported in Table VII, demonstrate that RT-
SNet overcomes the mismatch induced by representing a
continuous-time SS model in discrete-time, achieving a sub-
stantial processing gain over it MB and DD counterparts due
to its learning capabilities. In Fig. 7, we visualize how this
gain is translated into clearly improved smoothing of a single
trajectory.

Noisy Non-Linear Observations: Finally, we consider the
case of the discrete-time Lorenz attractor, with non-linear
observations, which take the form of a transformation from a
cartesian coordinate system to spherical coordinates. In such
settings, the observations function is given by

h([x, y, z]T ) ,




√
x2 + y2 + z2

tan−1
(
y
x

)

cos−1
(

z√
x2+y2+z2

)


 .

We further set T = 20 and ν = 0 [dB].
The MSE achieved by RTSNet with K = 2 forward-

backward passes is compared with that of the KS, PS and
RTSNet with K = 1, reported in Table VIII and depicted in
Fig. 8. It is clearly observed here that in such non-linear setups,
RTSNet outperforms its MB counterparts which operate with
full knowledge of the underlying SS model, indicating on the
ability of its DNN augmentation and unfolded architecture to
improve performance in the presence of non-linearities.

F. Complexity Analysis

So far, we showed that RTSNet provides improved MSE
performance, outperfoming both its DD counterparts, and also
its MB counterparts operating with partial information or
under non-linear dynamics. We conclude our empirical study
by showing that these gains of RTSNet do not come at the
expense of computational complexity during inference and of
increased DNN size.

In Table IX we report the average inference time, for
all filters (without parallelism), on the Lorenz attractor state
estimation task . The stopwatch timings were measured on the
same platform – Google Colab with CPU: Intel(R) Xeon(R)
CPU @ 2.20GHz, GPU: Tesla P100-PCIE-16GB. We see that
RTSNet is very competitive comparing with classical methods,
and outperforms GNN-BP. This is mainly thanks to its highly
efficient neural network computations and the fact that, unlike
the MB filters, it does not involve linearization and matrix
inversions for each time step.

Next, we compare the DNN size, i.e., the number of train-
able parameters, of RTSNet with that of GNN-BP for a few
representative use cases. The resulting number of parameters
are reported in Fig. X, where we can see that RTSNet is more
compact and therefore also easier to train. In particular, it
noted that RTSNet repeated achieves improved performance
over the DD GNN-BP benchmark of [36] for the use cases
tested, while using a lower complexity architecture with less

trainable parameters, despite the fact that the architecture of
[36] is also specifically designed to be compact and efficient.
The reduced parameterization is translated into faster training
and inference.

V. CONCLUSION

In this work we presented RTSNet, a hybrid combination
of deep learning with the classic KS. Our design identifies
the SS-model-dependent computations of the KS, replacing
them with a dedicated RNNs operating on specific features
encapsulating the information needed for its operation, while
unfolding the algorithm to enable multiple trainable forward-
backward passes. Our empirical study shows that doing so en-
ables RTSNet to carry out offline state estimation in the same
manner as KS, while learning to overcome model mismatches
and non-linearities. RTSNet uses a relatively compact RNN
that can be trained with a relatively small data set and infers
a reduced complexity.
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