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Abstract

We propose a robust transceiver design for a covert integrated sensing and communications (ISAC)

system with imperfect channel state information (CSI). Considering both bounded and probabilistic CSI

error models, we formulate worst-case and outage-constrained robust optimization problems of joint trasceiver

beamforming and radar waveform design to balance the radar performance of multiple targets while ensuring

communications performance and covertness of the system. The optimization problems are challenging due to

the non-convexity arising from the semi-infinite constraints (SICs) and the coupled transceiver variables. In an

effort to tackle the former difficulty, S-procedure and Bernstein-type inequality are introduced for converting

the SICs into finite convex linear matrix inequalities (LMIs) and second-order cone constraints. A robust

alternating optimization framework referred to alternating double-checking is developed for decoupling the

transceiver design problem into feasibility-checking transmitter- and receiver-side subproblems, transforming

the rank-one constraints into a set of LMIs, and verifying the feasibility of beamforming by invoking the

matrix-lifting scheme. Numerical results are provided to demonstrate the effectiveness and robustness of the

proposed algorithm in improving the performance of covert ISAC systems.
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I. INTRODUCTION

Due to its endogenous dual-functional property, integrated sensing and communications (ISAC),

envisioned as a key enabler for next-generation wireless networks, is attracting intensive research

efforts from both industry and academia [1]–[3]. Compared with traditional radar-communications

coexistence, which addresses the spectrum sharing between the two separate systems, ISAC aims

to unify the radar and communications functions in one platform. The integration of previously

independently designed radar and communications systems can not only improve the efficiency of

utilizing increasingly scarce spectrum resource, but also reduce hardware cost through platform reuse

[1], [4]. These benefits are continuously stimulating the practical deployment of ISAC techniques

such as Wi-Fi sensing [5], [6] and cellular networks-based environmental monitoring [7].

The challenge of designing an ISAC system is how to make full use of the degrees of freedom

(DoFs) at both ends of the transceiver, so as to achieve a better trade-off between radar and

communications performance. As a straightforward paradigm, ISAC can be simply realized by

orthogonally allocating the temporal, spectral, and spatial resources between existed radar and

communications waveforms. However, due to the loose coupling of the two systems, the design

DoFs cannot be fully exploited. This gives rise to the study of closely-coupled ISAC wherein a

dual-functional waveform achieves the radar and communications functions simultaneously. Thus, in

this paper, we focus on the transceiver design of a closely-coupled ISAC system.

A. Related Works

One key issue in ISAC is waveform design, which involves designing a waveform that meets the

requirements of both radar and communications. This design philosophy can be categorized into

three approaches: radar-centric design, communications-centric design, and joint design. The radar-

centric design considers radar as the primary function and incorporates communications information

into well-designed radar waveforms [8]–[10]. On the other hand, communications-centric design

exploits existing communications waveforms such as orthogonal frequency division multiplexing

waveform to provide radar services [11]–[13]. However, the random fluctuations in communications

waveforms can adversely affect radar performance reliability. To strike a flexible balance between

radar and communications performance, joint design has emerged, leveraging optimization techniques

for waveform design. A widely-adopted design criterion is to mimic a promising multiple-input-

multiple-output (MIMO) radar beampattern subject to the communications performance requirement

by jointly optimizing the MIMO radar and MIMO communications waveforms [14]–[18]. As a step
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further, the authors in [19] and [20] leveraged Cramér-Rao bound to measure the radar performance,

thereby enabling more accurate characterization of the radar-communications performance trade-off

in ISAC systems.

The majority of studies have primarily focused on transmitter-side waveform design, with less

emphasis on receiver-side filtering/beamforming. Recent research efforts have emerged to explore

the untapped potential of radar receivers in enhancing system performance [21]–[29]. Different

from heuristic metric such as beampattern error adopted in transmitter-side waveform design [14]–

[18], signal-to-interference-plus-noise ratio (SINR) was usually served as a direct radar performance

indicator in the literature of ISAC transceiver design. The authors in [21]–[23] proposed transceiver

beamforming designs for multiple-target single-user, single-target multiple-user, and multple-target

multiple-user ISAC systems, respectively. Specifically, to enhance the radar SINR, a Capon filter

was employed in [21] and [22] for receiver-side beamforming while steering vector of the receive

antenna array was matched in [23]. Following works extended the transceiver beamforming designs

to various scenarios, e.g., cooperative ISAC network [24] and two-cell interfering ISAC network

[25]. The aforementioned designs on ISAC transceiver were based on random waveforms such that

the designed statistic such as beamforming vector only reflects the average performance. However, in

some circumstances, deterministic waveform design which accounts for the whole space-time block is

necessary given the instantaneous waveform requirements such as constant modulus and low peak-to-

average power ratio. With the pursuit of these KPIs, the authors in [26]–[29] studied ISAC transceiver

designs under the deterministic waveform regime. In particular, symbol-level precoding, jamming

integration, and radar performance balance between multiple targets were further investigated in

[27]–[29], respectively.

Due to the potential for the radar targets to be malicious and the broadcasting nature of wireless

signals, it is imperative to prioritize the issue of security within the realm of ISAC systems. Along

with the aforementioned efforts either utilizing the dual-functional benefit or improving the overall

performance of ISAC systems, a growing body of research has started to shift its focus towards ad-

dressing security concerns. Physical layer security (PLS) aims to prevent the transmitted information

from being decoded by the eavesdropper [30]. From the perspective of PLS, there have been various

works trying to secure the ISAC systems through designing secure dual-functional waveforms [31],

[32], exploiting the artificial noise or interference [33]–[38], and leveraging the hopping frequencies

permutations of a frequency hopping MIMO radar [39].



4

TABLE I

CONTRIBUTIONS IN CONTRAST TO THE STATE-OF-THE-ART

[14]–[18] [22], [25]–[28] [24] [21] [23], [29] [40] Proposed

Multiple radar targets ✓ ✓ ✓ ✓

Imperfect radar channel ✓

Multiple communications users ✓ ✓ ✓ ✓ ✓

Imperfect communications channel ✓ ✓

Transceiver design ✓ ✓ ✓ ✓ ✓

Overt communications ✓ ✓ ✓ ✓ ✓ ✓

Covert communications ✓ ✓

Multiple wardens ✓

B. Motivations and Contributions

While previous studies have shed some light on the benefits of receiver-side processing in en-

hancing the performance of ISAC systems, these works typically assume either perfect channel state

information (CSI) or scenarios with only erroneous communications CSI. Consequently, their designs

are not applicable to scenarios where both the radar and communications CSIs are imperfect, leading

to a lack of robust performance. Furthermore, certain scenarios, such as military reconnaissance

signaling in battlefields and private e-health signal transmission in public, require not only the

protection of transmitted information but also the concealment of the signal’s existence in the first

place. However, traditional PLS is insufficient to provide such a service. This highlights the need

of covert communications whose goal is to safeguard the signal from being detected by a warden

[41], [42]. The study of covert communications within the scope of the increasingly prevailing

ISAC systems is still in its infancy. Although recent work [40] has investigated covert beamforming

schemes for ISAC systems, its focus has been limited to transmitter-side design, overlooking crucial

aspects related to receiver-side considerations. Furthermore, the study only considered a simplified

scenario involving a single covert user and radar target. However, the generalization to a more

practical scenario, where multiple covert users coexist with multiple overt/regular users and various

radar targets, introduces significant challenges.

We consider transceiver design for a covert ISAC system, and propose robust schemes with

imperfect radar and communications CSI. The contributions of this paper are summarized as follows

and are explicitly compared to the state-of-the-art schemes in Table I.

• The covert ISAC system we investigated accommodates both overt and covert users, making
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it more versatile than previous systems which only considered one type of user. Additionally,

this work represents an early attempt at transceiver design, which is a promising approach to

fully exploiting both the transmitter and receiver capabilities. To account for channel uncertainty

in both the radar and communications channels, we consider two types of CSI error models:

bounded and probabilistic. These models enable us to conduct a comprehensive study of worst-

case and outage-constrained robust ISAC transceiver designs, while also catering to scenarios

with different availability of the historical statistic for the CSI error.

• Our work explores the problem of multiple radar targets coexisting with downlink communica-

tions users and signal-dependent clutters. For the purpose of balancing radar performance among

each target while satisfying communication SINR and covertness of the system, we adopt a max-

min optimization technique that maximizes the minimum radar SINR for each target through

jointly designing the transceiver beamforming vectors and the covariance of the dedicated radar

waveform. The presence of semi-infinite constraints (SICs) and coupled transceiver variables

makes the optimization problems non-convex and difficult to solve directly. To overcome the

SICs arising from the bounded and probabilistic CSI errors, we utilize the S-procedure and a

Bernstein-type inequality to transform them into finite convex linear matrix inequalities (LMIs)

and second-order cone constraints (SOCs). Furthermore, we develop an alternating optimization

(AO) framework to decouple transceiver designs into feasibility-checking subproblems with

respect to (w.r.t.) transmitter and receiver variables, respectively. These subproblems are recast

into semi-definite programming (SDP) problems with additional rank-one constraints. Moreover,

we lift the rank-one constraints into equivalent LMIs, which facilitates checking for the existence

of rank-one solutions. Based on this, we propose a robust scheme called alternating double-

checking (ADC) which is effective in optimizing the transceiver variables for both worst-case

and outage-constrained transceiver designs.

• We present extensive numerical results that confirm the efficacy of our proposed schemes and

provide insights that shed light on robust designs for practical systems. In particular, we demon-

strate the existence of a tripartite trade-off between radar, overt and covert communications

performances. We show that the transmit beampattern under radar-SINR-oriented transceiver

design may not approximate the ideal radar transmit beampattern. This finding reveals the

limitations of the widely-used beampattern-oriented transmitter-side design paradigm.
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C. Organization and Notations

The remaining of the paper is organized as follows. The system model is described in Section II.

In Sections III and IV, we propose the worst-case and outage-constrained robust transceiver designs

with bounded and probabilistic CSI errors, respectively. The convergences and complexities of the

proposed schemes are also analyzed at the end of Section IV. Numerical results are presented in

Section V. Finally, Section VI concludes the paper.

The main notations throughout this paper are clarified as follows. Lowercase, bold lowercase,

and bold uppercase letters, e.g., a, a, and A, denote a scalar, vector, and matrix, respectively. |a|

means the absolute value of a scalar a while ∥a∥ means the 2-norm of a vector a. The superscripts

T , H , and ∗ denote the transpose, Hermitian transpose, and conjugate transformation of a vector

or matrix, respectively. Diag(A1,A2, . . . ,AN) denotes the matrix which is composed diagonally of

matrice A1,A2, . . . ,AN . Tr(A), Rank(A), and Vec(A) mean the trace, rank, and vectorization of a

matrix A, respectively, while A ⪰ 0 means the matrix A is Hermitian and positive semi-definite. 0N

and IN denotes N -dimensional zero and identity matrix, respectively. E[·] denotes the mathematical

expectation. CN (µ,C) denotes the circularly symmetric complex Gaussian (CSCG) distribution

with mean µ and covariance matrix C.

II. SYSTEM MODEL

A. Transmission Model

As shown in Fig. 1, we consider an ISAC base station (BS) equipped with Mt transmit antennas.

The BS is constantly tracking T targets which may be adversarial wardens while communicating with

Ko overt single-antenna users. Occasionally, in order to convey messages or commands covertly, the

BS intends to communicate with other Kc single-antenna users simultaneously while preventing the

communications behaviour from being detected by the wardens. Let ck[n], ∀k ∈ Ko
∆
= {1, . . . , Ko},

and ck[n],∀k ∈ Kc
∆
= {Ko + 1, . . . , Ko + Kc}, denote the overt and covert data streams at time

index n,∀n ∈ N ∆
= {1, . . . , N}, respectively, where N denote the blocklength. Denote H1 and H0

the hypotheses that the BS transmits covert signals or not, respectively. The two-phase transmitted

waveform x[n] ∈ CMt×1 is given byH1 : x [n] = Woco [n] +Wccc [n] + s [n] ,

H0 : x [n] = Woco [n] + s [n] ,
(1)

where Wo = [w1, . . . ,wKo ] ∈ CMt×Ko and Wc = [wKo+1, . . . ,wKo+Kc ] ∈ CMt×Kc consist of the

transmit beamforming vectors for overt data streams co[n] = [c1[n], . . . , cKo [n]]
T ∈ CKo×1 and covert
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Fig. 1. Illustration of the covert ISAC system with T radar targets, Ko overt communications users, Kc covert communications

users, and C signal-dependent clutters.

data streams cc[n] = [cKo+1[n], . . . , cKo+Kc [n]]
T ∈ CKc×1, respectively. In particular, s[n] ∈ CMt×1

is a dedicated radar signal which can be exploited to improve the performance of the ISAC system

[16], [19], [23]. Let K ∆
= Ko ∪ Kc. We assume that ck[n],∀k ∈ K, and s[n] are independently

Gaussian distributed with ck[n] ∼ CN (0, 1) and s[n] ∼ CN (0Mt ,R), where R ∈ CMt×Mt is the

positive semidefinite covariance matrix of s[n].

B. Communications and Radar Performances

Let hC,k ∈ CMt×1 denote the communications channel from the BS to the k-th user. Similar to

[16], [33], the received signal at the k-th user under H1 is given by

rC,k [n] = hH
C,kWoco [n] + hH

C,kWccc [n] + hH
C,ks [n] + zC,k [n]

= hH
C,kwkck [n] +

Ko+Kc∑
i=1,i ̸=k

hH
C,kwici [n]︸ ︷︷ ︸

Muti-user interference

+ hH
C,ks [n]︸ ︷︷ ︸

Radar interference

+zC,k [n] ,
(2)
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where zC,k [n] ∼ CN (0, σ2
C,k) is the additive white Gaussian noise (AWGN). The communications

performance of the k-th user is determined by the SINR, which is given by [33]

γC
1,k =

E
[∣∣hH

C,kwkck [n]
∣∣2]∑Ko+Kc

i=1,i ̸=k E
[∣∣hH

C,kwici [n]
∣∣2]+ E

[∣∣hH
C,ks [n]

∣∣2]+ σ2
C,k

=
hH
C,kwkw

H
k hC,k∑Ko+Kc

i=1,i ̸=k h
H
C,kwiwH

i hC,k + hH
C,kRhC,k + σ2

C,k

.

(3)

Similarly, under H0, the communications SINR at the k-th user is given by

γC
0,k =

hH
C,kwkw

H
k hC,k∑Ko

i=1,i ̸=k h
H
C,kwiwH

i hC,k + hH
C,kRhC,k + σ2

C,k

. (4)

In MIMO radar systems, the BS emits the signal and receives the echoes from the targets and

clutters. Let θi, ∀i ∈ T ∆
= {1, . . . , T}, denote the angles of the targets and θi,∀i ∈ C ∆

= {T +

1, . . . , T + C}, denote the angles of the C clutters. Both the communications and radar signals can

be exploited as probing signals since they are perfectly known by the BS. Similar to [21], [22], the

signal received by the colocated array with Mr receive antennas is expressed as

rR [n] =
T∑
i=1

αia
∗
r (θi) a

H
t (θi)x [n]︸ ︷︷ ︸

Target echo

+
T+C∑
i=T+1

αia
∗
r (θi) a

H
t (θi)x [n]︸ ︷︷ ︸

Clutter echo

+zR [n] ,
(5)

where αi represents the complex reflection coefficient that contains both the round-trip path loss and

the radar cross-section, and zR [n] ∼ CN (0, σ2
RIMr) is the AWGN at the radar receiver. In addition,

at (θi) = [1, . . . , e2π(Mt−1)d cos θi/λ]T ∈ CMt×1 and ar (θi) = [1, . . . , e2π(Mr−1)d cos θi/λ]T ∈ CMr×1 are

the steering vectors of the transmit and receive antenna arrays, respectively, where d is the antenna

interval and λ is the wavelength.

At the BS, the received signal is filtered by a set of receive beamforming vectors to extract the

information of the targets such as location and velocity. Two groups of T receive beamforming

vectors should be designed to match the two-phase waveforms in (1). Each vector in one of the

two groups is dedicated to enhance the radar SINR w.r.t. a specific target while treating the signal

echoed from other targets and clutters as interference. Similar to [21]–[27], radar SINR is adopted

as the radar performance metric in the design of the ISAC transceiver. In contrast to the indirect

metric used in the transmitter-side waveform design such as the beampattern error [14]–[18], SINR

more directly determines radar detection and estimation performance of the target [22]. Under H1,
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the i-th unit-power receive beamforming vector w.r.t. the target at θi is denoted by f1,i ∈ CMr×1.

Then, the corresponding radar SINR is given by [21]

γR
1,i =

E
[∣∣fH1,iHR,i (Woco [n] +Wccc [n] + s [n])

∣∣2]∑T+C
j=1,j ̸=i E

[∣∣fH1,iHR,j (Woco [n] +Wccc [n] + s [n])
∣∣2]+ σ2

R

=
fH1,iHR,i

(∑Ko+Kc

k=1 wkw
H
k +R

)
HH

R,if1,i∑T+C
j=1,j ̸=i f

H
1,iHR,j

(∑Ko+Kc

k=1 wkwH
k +R

)
HH

R,jf1,i + σ2
R

,

(6)

where HR,j
∆
= αia

∗
r (θi) a

H
t (θi) ∈ CMr×Mt is the radar round-trip channel. Likewise, the radar SINR

under H0 can be expressed as

γR
0,i =

fH0,iHR,i

(∑Ko

k=1 wkw
H
k +R

)
HH

R,if0,i∑T+C
j=1,j ̸=i f

H
0,iHR,j

(∑Ko

k=1 wkwH
k +R

)
HH

R,jf0,i + σ2
R

, (7)

where f0,i ∈ CMr×1 is the i-th unit-power receive beamforming vector w.r.t. the target at θi.

C. Detection Performance and Covertness Constraint

To analyze the covertness of the system, we first investigate the detection performance at the

potential wardens. In addition, we consider the non-colluding scenario where the wardens cannot

cooperate with each other. Thus each warden has independent detection performance. Let rW,i =

[rW,i[1], rW,i[2], . . . , rW,i[N ]]T be the received signal at the i-th warden. The hypothesis test at time

index n is expressed asH1 : rW,i [n] = βia
H
t (θi) (Woco [n] +Wccc [n] + s [n]) + zW,i [n] ,

H0 : rW,i [n] = βia
H
t (θi) (Woco [n] + s [n]) + zW,i [n] ,

(8)

where βi and zW,i [n] ∼ CN (0, σ2
W,i) denote the corresponding path loss and AWGN, respectively.

Since rW,i[n], ∀n, are independently identical distributed, the probability distribution functions (PDFs)

of rW,i under H1 and H0 can be easily derived as

P1,i
∆
= P (rW,i|H1) =

exp

(
− |rW,i|2

hH
W,i(

∑Ko+Kc
k=1 wkw

H
k +R)hW,i+σ2

W,i

)
πN
(
hH
W,i

(∑Ko+Kc

k=1 wkwH
k +R

)
hW,i + σ2

W,i

)N , (9)

and

P0,i
∆
= P (rW,i|H0) =

exp

(
− |rW,i|2

hH
W,i(

∑Ko
k=1 wkw

H
k +R)hW,i+σ2

W,i

)
πN
(
hH
W,i

(∑Ko

k=1wkwH
k +R

)
hW,i + σ2

W,i

)N , (10)
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respectively, where hW,i
∆
= βiat (θi) ∈ CMt×1 denotes the detection channel.

Let D1 and D0 represent the decisions in support of H1 and H0, respectively. The false alarm

probability is defined as PFA
∆
= P(D1|H0) while the missed detection probability is defined as

PMD
∆
= P(D0|H1). Adopting equal prior probabilities for H1 and H0 as in [43], the detection error

probability (DEP) is 1
2
(PFA+PMD). For simplicity, we use ξ = PFA+PMD to denote DEP and drop

the factor 1
2
. Under optimal detection, the warden minimizes DEP with the minimum denoted by ξ∗.

The covertness constraint of the system is expressed as ξ∗
∆
= PFA + PMD ≥ 1 − ϵ, with a smaller

covertness constant ϵ ∈ [0, 1] corresponding to more stringent covertness requirement. In particular,

ξ∗ = 1 when ϵ = 0, which renders the warden’s detection a blind guess.

The expression of ξ∗ involves complicated gamma functions which leads to a mathematically

intractable optimization problem. To circumvent this difficulty, we surrogate ξ∗ by its lower bound

via leveraging the Kullback-Leibler divergence defined as D(P1,i ||P0,i)
∆
=
∫
rW,i|H1

P1,i ln(
P1,i

P0,i
)drW,i.

Based on Pinsker’s inequality [44], we have ξ∗ ≥ 1 −
√

D(P1,i||P0,i)

2
. It is straightforward to verify

that the original covertness constraint is fulfilled provided D(P1,i||P0,i) ≤ 2ϵ2. Furthermore, by

substituting (9) and (10) into the expression of D(P1,i||P0,i), we have

D (P1,i||P0,i) = Nf

 hH
W,i

(∑Ko+Kc

k=Ko+1wkw
H
k

)
hW,i

hH
W,i

(∑Ko

k=1 wkwH
k +R

)
hW,i + σ2

W,i

 , (11)

where the function f (x) = x−ln (1 + x) is monotonically increasing for x ≥ 0. Then, the covertness

constraint D(P1,i||P0,i) ≤ 2ϵ2 can be simplified as

hH
W,i


Ko+Kc∑
k=Ko+1

wkw
H
k − η

(
Ko∑
k=1

wkw
H
k +R

)
︸ ︷︷ ︸

Ξ∈CMt×Mt

hW,i ≤ ησ2
W,i, (12)

where η ≥ 0 is the solution of f (x) = 2ϵ2

N
. Specifically, when ϵ = 0, η = 0.

D. Channel Error Model

The considered covert ISAC system involves three types of channels including the communications

channels hC,k,∀k ∈ K, detection channels hW,i,∀i ∈ T , and radar round-trip channel HR,j,∀j ∈

S ∆
= T ∪C. In practice, due to inevitable errors arising from estimation or quantization, the CSI of the

communications channel cannot be perfectly known at the BS [45], [46]. Additionally, the directions

of the targets are unlikely to be perfectly known, introducing certain degree of ambiguities in the

angles [33], [36]. Moreover, the RCSs of the targets are also unlikely to be perfectly estimated. Both
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factors lead to imperfect radar CSI. Therefore, instead of assuming perfect CSI or solely considering

imperfect communications CSI as studies summarized in Table I, we aim to investigate the scenario

where both the radar and communications channels are imperfectly known at the BS. The CSIs of

the three kinds of channels are expressed as the sum of the estimated value and estimation error, i.e.,

hC,k = h̃C,k +∆hC,k, hW,i = h̃W,i +∆hW,i, and HR,j = H̃R,j +∆HR,j , respectively. The accuracy

of the CSI has a significant impact on the performance of the system. In the following, we introduce

two types of the CSI error model.

• Bounded CSI error: The norms of the CSI errors are bounded by known constants e2C,k, e2W,i,

and e2R,j , respectively, i.e.,

∆hC,k ∈ Ck,∀k ∈ K, (13a)

∆hW,i ∈ Wi,∀i ∈ T , (13b)

Vec (∆HR,j) ∈ Rj,∀j ∈ S, (13c)

where Ck
∆
= {∆hC,k| ∥∆hC,k∥2 ≤ e2C,k}, Wi

∆
= {∆hW,i| ∥∆hW,i∥2 ≤ e2W,i}, and Rj

∆
=

{Vec(∆HR,j)| ∥Vec(∆HR,j)∥2 ≤ e2R,j}.

• Probabilistic CSI error: The CSI error vectors are characterized by a CSCG distribution with a

known covariance matrix, i.e.,

∆hC,k ∼ CN (0,EC,k) ,∀k ∈ K, (14a)

∆hW,i ∼ CN (0,EW,i) ,∀i ∈ T , (14b)

Vec (∆HR,j) ∼ CN (0,ER,j) ,∀j ∈ S, (14c)

where EC,k ∈ CMt×Mt , EW,i ∈ CMt×Mt , and ER,j ∈ CMtMr×MtMr are positive semidefinite error

covariance matrices.

III. WORST-CASE ROBUST DESIGN UNDER BOUNDED ERROR MODEL

In this section, we investigate the worst-case robust transceiver design under bounded error model.

To be specific, in the two-phase transmission, we aim to maximize the minimal radar SINR among

all targets subject to fulfilling the communications rate requirement and covertness constraint over

all possible channel realizations. The formulated problem is non-convex, which is recast into a

SDP problem with additional rank-one constraints. Then, we present a matrix-lifting approach to

reformulate the rank-one constraints, and propose an AO-based algorithm to solve this problem.
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A. Problem Formulation

For the two-phase transmission, we aim to maximize the minimal radar SINR among all targets

subject to fulfilling the communications SINR requirement over all possible channel realizations.

We can verify that γC
1,k ≤ γC

0,k from (3) and (4). The communications SINR and transmit power are

limited by those under H1. Therefore, the optimization problem w.r.t. the transceiver beamforming

vectors and the radar covariance matrix is formulated as

max
wk,R,f1,i,f0,i

min
i∈T

min
Vec(∆HR,j)∈Rj

{
γR
1,i, γ

R
0,i

}
(15a)

s.t. γC
1,k ≥ Γk,∀∆hC,k ∈ Ck, k ∈ K, (15b)

hH
W,iΞhW,i ≤ ησ2

W,i,∀∆hW,i ∈ Wi, i ∈ T , (15c)

Tr

(
Ko+Kc∑
k=1

wkw
H
k +R

)
≤ P, (15d)

Tr
(
f1,if

H
1,i

)
= 1,Tr

(
f0,if

H
0,i

)
= 1, ∀i ∈ T , (15e)

R ⪰ 0, (15f)

where Γ1, . . . ,ΓKo and ΓKo+1, . . . ,ΓKo+Kc denote the targeted SINRs for the overt and covert

communications, respectively, and P is the power budget. Note that when both the radar and

communications CSIs are perfectly known and the receive beamforming is fixed to match the steering

vector of each of the targets, (15) is similar to the radar SINR balance problem in [23], which

is readily solved by designing the transmitter-side waveform in an iterative manner. However, the

approach in [23] cannot be applied to (15) due to the non-convex SICs induced by CSI errors and the

covertness constraint. Moreover, since the receive beamforming is not determined straightforwardly,

the coupled nature of the transmit and receive variables in the expressions of radar SINR further

complicates the transceiver design.

B. Problem Reformulation

To tackle the SICs (15b) and (15c), we introduce the following lemma.

Lemma 1. (S-Procedure [47]): Define the quadratic functions w.r.t. x ∈ CM×1 as

fm (x) = xHAmx+ 2Re
{
bH
mx
}
+ cm,m = 1, 2, (16)
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where Am ∈ CM×M , bm ∈ CM×1, and cm ∈ R. The condition f1 ≤ 0 ⇒ f2 ≤ 0 holds if and only

if there exists a variable ω ≥ 0 such that

ω

A1 b1

bH
1 c1

−

A2 b2

bH
2 c2

 ⪰ 0M+1. (17)

Note that ∆hC,k ∈ Ck leads to ∆hH
C,k∆hC,k ≤ e2C,k. By substituting hC,k = h̃C,k + ∆hC,k into

(15b), γC
1,k ≥ Γk can be transformed into

∆hH
C,kΨk∆hC,k + 2Ψkh̃C,k − Γkσ

2
C,k + h̃H

C,kΨkh̃C,k ≥ 0, (18)

where Ψk
∆
= Wk −

∑Ko+Kc

q=1,q ̸=k ΓkWq − ΓkR ∈ CMt×Mt with Wk
∆
= wkw

H
k ∈ CMt×Mt . According to

Lemma 1, (15b) is equivalent toµkI+Ψk Ψkh̃C,k

h̃H
C,kΨk h̃H

C,kΨkh̃C,k − Γkσ
2
C,k − µke

2
C,k

 ⪰ 0, µk ≥ 0,∀k ∈ K, (19)

where µk is the introduced auxiliary variable.

Similarly, the constraint (15c) can be transformed intoϕiI−Ξ −Ξh̃W,i

−h̃H
W,iΞ ησ2

W,i − h̃H
W,iΞh̃W,i − ϕie

2
W,i

 ⪰ 0, ϕi ≥ 0,∀i ∈ T , (20)

where ϕi is the introduced auxiliary variable.

Next, in order to handle the complicated max-min objective function, we introduce an auxiliary

variable t
∆
= min

i∈T
min

Vec(∆HR,j)∈Rj

{γR
1,i, γ

R
0,i} as the lower bound of radar SINR. Define F1,i

∆
= f1,if

H
1,i ∈

CMr×Mr and F0,i
∆
= f0,if

H
0,i ∈ CMr×Mr . The objective function (15a) can be reformulated as

max
Wk,R,F1,i,F0,i,t

t (21a)

s.t. γR
1,i ≥ t, γR

0,i ≥ t,Vec (∆HR,j) ∈ Rj,∀i ∈ T , j ∈ S. (21b)

By applying linear manipulations, the radar SINRs under H1 and H0 can be transformed into

γR
1,i =

VecH (HR,i)
((∑Ko+Kc

k=1 Wk +R
)∗

⊗ F1,i

)
Vec (HR,i)∑T+C

j=1,j ̸=i VecH (HR,j)
((∑Ko+Kc

k=1 Wk +R
)∗

⊗ F1,i

)
Vec (HR,j) + σ2

R

, (22)

and

γR
0,i =

VecH (HR,i)
((∑Ko

k=1Wk +R
)∗

⊗ F0,i

)
Vec (HR,i)∑T+C

j=1,j ̸=i VecH (HR,j)
((∑Ko

k=1 Wk +R
)∗

⊗ F0,i

)
Vec (HR,j) + σ2

R

, (23)
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respectively. Moreover, we define g̃R
∆
= [Vec(H̃R,1), . . . ,Vec(H̃R,T+C)]

T ∈ C(T+C)MtMr×1, ∆gR
∆
=

[Vec(∆HR,1), . . . ,Vec(∆HR,T+C)]
T ∈ C(T+C)MtMr×1, and

R
∆
= {∆gR| ∥∆gR∥2 =

T+C∑
j=1

∥Vec(∆HR,j)∥ ≤ e2R
∆
=

T+C∑
j=1

e2R,j}. (24)

Then, (21b) is recast as the quadratic forms

∆gH
RX1,i∆gR + 2Re

{
(X1,ig̃R)

H ∆gR

}
+ g̃H

RX1,ig̃R + σ2
R ≤ 0,

∆gH
RX0,i∆gR + 2Re

{
(X0,ig̃R)

H ∆gR

}
+ g̃H

RX0,ig̃R + σ2
R ≤ 0,∆gR ∈ R, ∀i ∈ T ,

(25)

where

X1,i
∆
= Diag

((
Ko+Kc∑
k=1

Wk +R

)∗

⊗ F1,i, . . . ,D1,i, . . . ,

(
Ko+Kc∑
k=1

Wk +R

)∗

⊗ F1,i

)
(26)

and

X0,i
∆
= Diag

((
Ko∑
k=1

Wk +R

)∗

⊗ F0,i, . . . ,D0,i, . . . ,

(
Ko∑
k=1

Wk +R

)∗

⊗ F0,i

)
. (27)

Additionally, the i-th matrices of X1,i and X0,i are given by D1,i
∆
= −(

∑Ko+Kc

k=1 Wk+R)∗⊗F1,i/t ∈

CMtMr×MtMr and D0,i
∆
= −(

∑Ko

k=1Wk +R)∗⊗F0,i/t ∈ CMtMr×MtMr , respectively. Again, based on

the above formulations, we can leverage Lemma 1 to transform (25) into LMIs asϖ1,iI−X1,i −X1,ig̃R

−g̃H
RX1,i −g̃H

RX1,ig̃R − σ2
R −ϖ1,i

∑T+C
j=1 e2R,j

 ⪰ 0, ϖ1,i ≥ 0,

ϖ0,iI−X0,i −X0,ig̃R

−g̃H
RX0,i −g̃H

RX0,ig̃R − σ2
R −ϖ0,i

∑T+C
j=1 e2R,j

 ⪰ 0, ϖ0,i ≥ 0,∀i ∈ T ,

(28)

where ϖ1,i and ϖ0,i are the introduced auxiliary variables. Now, we can rewrite (15) as

max
Wk,R,F1,i,F0,i,µk,ϕi,ϖ1,i,ϖ0,i,t

t (29a)

s.t. Tr

(
Ko+Kc∑
k=1

Wk +R

)
≤ P, (29b)

Tr (F1,i) = 1,Tr (F0,i) = 1,∀i ∈ T , (29c)

Wk ⪰ 0,∀k ∈ K,R ⪰ 0, (29d)

F1,i ⪰ 0,F0,i ⪰ 0,∀i ∈ T , (29e)

Rank (Wk) = 1, ∀k ∈ K, (29f)

Rank (F1,i) = 1,Rank (F0,i) = 1,∀i ∈ T , (29g)

(19), (20), (28). (29h)
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Omitting the non-convex rank-one constraints (29f) and (29g), the above problem is relaxed as

max
Wk,R,F1,i,F0,i,µk,ϕi,ϖ1,i,ϖ0,i,t

t

s.t. (19), (20), (28), (29b), (29c), (29d), (29e).
(30)

Problem (30) is still non-convex due to coupled transmit and receive variables, as well as the objective

value t in D1,i and D0,i. In the following, we propose an AO-based approach to solve this problem

efficiently.

C. Proposed Transceiver Design Framework

Given the transmit (receive) variables and t, the subproblem w.r.t. the receive (transmit) variables

is a convex feasibility-checking SDP problem. Based on this property, we employ the AO framework

to solve (30). Specifically, we optimize the transmit and receive variables in an alternate manner.

Define the lower and upper bound of t as t and t, respectively. In the l-th iteration, we first deal with

the subproblem w.r.t. the transmit variables while fixing the receive variables to the values of the

last iteration, i.e., F(l−1)
1,i and F

(l−1)
0,i , ∀i ∈ T . The convex feasibility-checking problem is formulated

as

find Wk,R, µk, ϕi, ϖ1,i, ϖ0,i (31a)

s.t. t = t
(l)
tx ,F1,i = F

(l−1)
1,i ,F0,i = F

(l−1)
0,i ,∀i ∈ T , (31b)

(19), (20), (28), (29b), (29d), (31c)

where t
(l)
tx is the given objective value. The initial lower and upper bounds for t

(l)
tx are given by

t
(l)
tx = t(l−1) and t

(l)
tx = t, respectively, where t(l−1) is the objective value of the last iteration. Then,

we try to improve t
(l)
tx by checking the feasibility of (31) iteratively. To be exact, in each inner loop,

we update the objective value by t
(l)
tx = t

(l)
tx +t

(l)
tx

2
. If feasible, we update the lower bound by t

(l)
tx = t

(l)
tx ,

and store W
(l)
k ,∀k ∈ K, and R(l). Otherwise, we update the upper bound by t

(l)
tx = t

(l)
tx . We repeat

this process until t(l)tx − t
(l)
tx ≤ δ, where δ is a predetermined tolerance. Then, we renew t(l) = t

(l)
tx .

Similarly, for the subproblem w.r.t. the receive variables, we initialize the lower and upper bounds

of the objective value as t
(l)
rx = t(l) and t

(l)
rx = t. The corresponding convex feasibility-checking

problem is given by

find F1,i,F0,i, ϖ1,i, ϖ0,i (32a)

s.t. t = t(l)rx ,Wk = W
(l)
k ,∀k ∈ K, (32b)

(28), (29c), (29e), (32c)
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where t
(l)
rx is the given objective value. Again, t(l)rx , t(l)rx , and t

(l)
rx are iteratively updated by the bisection

approach until the convergence condition t
(l)
rx − t

(l)
rx ≤ δ is met. Then, we renew t(l) = t

(l)
rx , t(l)tx = t(l),

and t
(l)
tx = t, and enter the (l + 1)-th iteration until the maximum iteration number L is reached.

Note that the convergence of the algorithm could be theoretically guaranteed given sufficiently large

L, as we analyze later. In fact, it usually takes no more than 4 outer iterations before the algorithm

saturates, as we show in the numerical results.

To achieve convexity, the rank-one constraints (29f) and (29g) are omitted. Hence the output Wk

and Fi from above steps may not be rank-one. To circumvent this problem, we integrate the rank-one

constraints into the subproblems and propose a double-checked AO framework, i.e., ADC to make

sure the rank-one property of corresponding transmit and receive variables in the following. To begin

with, we present the following lemma [48], [49] which can be used to lift the rank-one constraint

into a more tractable matrix form.

Lemma 2. For a positive semi-definite Hermitian matrix A ∈ CM×M , the condition Rank (A) = 1

is equivalent to the following conditions

Tr (AB)− 2v − Tr (V) ≥ 0,Tr (B) = 1, (33a)

V −A+ vIM ⪰ 0M ,B ⪰ 0M ,V ⪰ 0M , (33b)

where v and the Hermitian matrices B,V ∈ CM×M are the introduced auxiliary variables.

Incorporating constraint (29f) via Lemma 2, (31) is recast as

find Wk,R,Bk,Vk, µk, ϕi, ϖ1,i, ϖ0,i, vk (34a)

s.t. Tr (WkBk)− 2vk − Tr (Vk) ≥ 0,Tr (Bk) = 1, (34b)

Vk −Wk + vkI ⪰ 0,Bk ⪰ 0,Vk ⪰ 0,∀k ∈ K, (34c)

(19), (20), (28), (29b), (29d), (31b), (34d)

where vk and Bk, Vk ∈ CMt×Mt are the introduced auxiliary variables. During the inner loop w.r.t.

the transmit variables, whenever (31) is feasible with t
(l)
tx , it is necessary to double-check if feasible

transmit variables can also be found by (34) with the same t
(l)
tx . If not, we should not use t

(l)
tx to

update t
(l)
tx but t(l)tx , i.e., to reduce the upper bound. Because transmit variables with rank-one property

are not found even if (31) is feasible. Note that the only difficulty for double-checking is that (34)

is non-convex due to the coupled Wk and Bk in constraint (34b). Nevertheless, we can overcome

this difficulty in an iterative manner. Specifically, by fixing Wk in constraint (34b) to the value
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Fig. 2. The workflow of the proposed ADC framework.

of the last loop, (34) becomes convex and can be solved to update Wk iteratively. If the value of

Wk converges, i.e., the mean-square error of the values of two consecutive iterations is less than a

given threshold τ in J iterations, the double-checking procedure is successful, and the corresponding

rank-one transmit variables are found. Otherwise, the double-checking procedure fails, we should

use t
(l)
tx to update t

(l)
tx instead of t(l)tx . The initial value of Wk is determined by the feasible solutions

of (31) with t
(l)
tx .

Likewise, by incorporating constraint (29g), receiver-side problem (32) is transformed into

find F1,i,F0,i,U1,i,U0,i,Z1,i,Z0,i, ϖ1,i, ϖ0,i, u1,i, u0,i (35a)

s.t. Tr (F1,iU1,i)− 2u1,i − Tr (Z1,i) ≥ 0,Tr (U1,i) = 1, (35b)

Z1,i −U1,i + u1,iI ⪰ 0Mr ,U1,i ⪰ 0,Z1,i ⪰ 0, (35c)

Tr (F0,iU0,i)− 2u0,i − Tr (Z0,i) ≥ 0,Tr (U0,i) = 1, (35d)

Z0,i −U0,i + u0,iI ⪰ 0,U0,i ⪰ 0,Z0,i ⪰ 0,∀i ∈ T , (35e)

(28), (29c), (29e), (32b), (35f)

where u1,i, u0,i, and U1,i,U0,i,Z1,i,Z0,i ∈ CMr×Mr are the introduced auxiliary variables. The

receiver-side double-checking is similar to the transmitter-side one. We do not repeat it for brevity.

Algorithm 1 details the steps of double-checking for both transmitter and receiver in parallel. Based

on this, the robust scheme ADC for the worst-case transceiver design under bounded error model

is summarized in Algorithm 2. The output transmit and receive variables Wk, F1,i, and F0,i are

guaranteed to be rank-one. By simply using the eigenvalue decomposition (ED), we can get the
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Algorithm 1 Double-Checking for the Worst-Case Transmitter (Receiver) Design

1: Input: F(l−1)
1,i , F(l−1)

0,i , t(l)tx , t(l)tx (W(l−1)
k , t(l)rx , t(l)rx ), δ, τ , and J ;

2: while t
(l)
tx − t

(l)
tx > δ (t(l)rx − t

(l)
rx > δ) do

3: Set t(l)tx = (t
(l)
tx + t

(l)
tx )/2 (t(l)rx = (t

(l)
rx + t

(l)
rx )/2);

4: Let F1,i = F
(l−1)
1,i , F0,i = F

(l−1)
0,i , t = t

(l)
tx (Wk = W

(l−1)
k , R = R(l−1), t = t

(l)
rx ), and check

the feasibility of (31) (check (32)).

5: if feasible then

6: Set W(l,0)
k = W

(l)
k (F(l,0)

1,i = F
(l)
1,i and F

(l,0)
0,i = F

(l)
0,i);

7: for j = 1 : J do

8: Check the feasibility of (34) via setting Wk in (34b) as W
(l,j−1)
k ((35) via setting

F1,i in (35b) and F0,i in (35d) as F
(l,j−1)
1,i and F

(l,j−1)
0,i , respectively);

9: if feasible then

10: Store W
(l,j)
k (F(l,j)

1,i and F
(l,j)
0,i );

11: if ∥W(l,j)
k −W

(l,j−1)
k ∥ > τ (∥F(l,j)

1,i −F
(l,j−1)
1,i ∥ > τ or ∥F(l,j)

0,i −F
(l,j−1)
0,i ∥ > τ ) then

12: Go to line 19;

13: else

14: Set t(l)tx = t
(l)
tx (t(l)rx = t

(l)
rx ) and break;

15: end if

16: else

17: Set t(l)tx = t
(l)
tx (t(l)rx = t

(l)
rx );

18: end if

19: j = j + 1;

20: end for

21: Set t(l)tx = t
(l)
tx (t(l)rx = t

(l)
rx );

22: else

23: Set t(l)tx = t
(l)
tx (t(l)rx = t

(l)
rx );

24: end if

25: end while

26: Output Wk = W
(l)
k , R = R(l), t(l)tx (F1,i = F

(l)
1,i, F0,i = F

(l)
0,i, t

(l)
rx ).

corresponding optimized transmit and beamforming vectors. To facilitate understanding, we illustrate

the general structure of the proposed ADC framework in Fig. 2, in which the key steps of the
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Algorithm 2 ADC for the Worst-Case Transceiver Design

1: Input: Initial receive variables F
(0)
1,i and F

(0)
0,i , t, t, δ, L, τ , and J ;

2: Set l = 1 and t(0) = t;

3: for l ≤ L do

4: Set t(l)tx = t(l−1) and t
(l)
tx = t, optimize transmitter via the transmitter-side Algorithm 1;

5: Set t(l) = t
(l)
tx ;

6: Set t(l)rx = t(l) and t
(l)
rx = t, optimize receiver via the receiver-side Algorithm 1;

7: Set t(l) = t
(l)
rx and l = l + 1;

8: end for

9: Output Wk = W
(l)
k , R = R(L), F1,i = F

(L)
1,i , F0,i = F

(L)
0,i , t = t(L).

transmitter-side optimization are unrolled. The details of the receiver-side counterparts are omitted

for brevity.

We remark that the initial receive variables can be determined by F
(0)
1,i = IMr/Mr and F

(0)
0,i =

IMr/Mr. Besides, the lower bound t should be chosen as a sufficiently small value such that (30)

with F1,i = F
(0)
1,i , F1,i = F

(0)
1,i ,∀i ∈ T , and t = t is feasible. Otherwise, the optimization will fail

because no feasible solutions can be found even in the first iteration of the inner loop w.r.t. the

transmit variables. Meanwhile, the upper bound t should be chosen as a sufficiently large value

such that (30) is always infeasible at the first iteration of the inner loop w.r.t. both transmit and

receive variables. Otherwise, the algorithm will end before reaching the stationary point. We further

remark that although the feasible receive variables are not necessarily rank-one after the first check,

simulations show that it is almost always the case. This indicates that most of the time we could

obtain the rank-one F1,i and F0,i directly without undergoing the second check.

IV. OUTAGE-CONSTRAINED ROBUST DESIGN UNDER PROBABILISTIC ERROR MODEL

Generally speaking, the channel estimation error usually follows unbounded distribution such as

Gaussian distribution [45]. In practice, the worst-case design under bounded error model may be too

strict and fails to capture the historical statistic of the CSI error. To address this issue, this section

will focus on the probabilistic CSI error model and investigate the corresponding outage-constrained

robust transceiver design. Similar to the worst-case design, in the following, we first formulate the

problem and transform the SICs therein into convex LMIs and SOCs. Then, we leverage the AO

framework to solve this problem.
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A. Problem Formulation

The outage probabilities for radar SINR, communications SINR, and covertness constraint are

defined as ρR,i, ρC,k, and ρW,i, respectively. Besides, as in the worst-case design, we lift the transmit

and receive beamforming vectors as matrices. The optimization problem to maximize the minimal

outage-constrained radar SINR among all targets, denoted by t, is formulated as

max
Wk,R,F1,i,F0,i,t

t (36a)

s.t. Pr
{
γR
1,i ≥ t

}
≥ 1− ρR,i,Pr

{
γR
0,i ≥ t

}
≥ 1− ρR,i,∆gR ∼ CN (0,ER) ,∀i ∈ T , (36b)

Pr
{
γC
1,k ≥ Γk

}
≥ 1− ρC,k,∆hC,k ∼ CN (0,EC,k) ,∀k ∈ K, (36c)

Pr {(12)} ≥ 1− ρW,i,∆hW,i ∼ CN (0,EW,i) ,∀i ∈ T , (36d)

(29b), (29c), (29d), (29e), (29f), (29g), (36e)

where (36c) and (36d) denote the outage-constrained constraints for communications SINR and

covertness of the system, respectively, and ER
∆
= Diag(ER,1, . . . ,ER,T+C) ∈ C(T+C)MtMr×(T+C)MtMr .

Due to the probabilistic errors, constraints (36b)-(36d) have no simple close-form expressions, which

makes the above problem computationally prohibitive.

B. Problem Reformulation and Solving

To deal with constraints (36b)-(36d), we introduce the following useful lemma.

Lemma 3. (Bernstein-Type Inequality [45]): Given random variable x ∼ CN (0, IM), A ∈ CM×M ,

b ∈ CM×1, s ∈ R, and ρ ∈ [0, 1]. The sufficient conditions for

Pr
{
xHAx+ 2Re {bx}+ s ≥ 0

}
≥ 1− ρ, (37)

are presented in the following constraints

Tr (A)−

√
2 ln

(
1

ρ

)
x+ ln (ρ) y + s ≥ 0,

√
∥A∥2F + 2 ∥b∥2 ≤ x, yIM +A ⪰ 0M , y ≥ 0, (38)

where x and y are the introduced auxiliary variables.
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We first handle the radar SINR constraints. Define ∆ĝR
∆
= E

− 1
2

R ∆gR. Similar to the formulation

of (25), the events presented in the probabilistic constraint (36b) can be transformed into

∆ĝH
RE

1
2
RX1,iE

1
2
R∆ĝR + 2Re

{(
E

1
2
RX1,ig̃R

)H
∆ĝR

}
+ g̃H

RX1,ig̃R + σ2
R ≤ 0,

∆ĝH
RE

1
2
RX0,iE

1
2
R∆ĝR + 2Re

{(
E

1
2
RX0,ig̃R

)H
∆ĝR

}
+ g̃H

RX0,ig̃R + σ2
R ≤ 0,

∆ĝR ∼ CN (0, I) ,∀i ∈ T .

(39)

Subsequently, by Lemma 2, the sufficient conditions for constraint (36b) are given by

Tr
(
E

1
2
RX1,iE

1
2
R

)
+

√
2 ln

(
1

ρR,i

)
xR
1,i − ln (ρR,i) y

R
1,i + g̃H

RX1,ig̃R + σ2
R ≤ 0,√∥∥∥E 1

2
RX1,iE

1
2
R

∥∥∥2
F
+ 2

∥∥∥E 1
2
RX1,ig̃R

∥∥∥2 ≤ xR
1,i, y

R
1,iI+ E

1
2
RX1,iE

1
2
R ⪰ 0, yR1,i ≥ 0,

Tr
(
E

1
2
RX0,iE

1
2
R

)
+

√
2 ln

(
1

ρR,i

)
xR
0,i − ln (ρR,i) y

R
0,i + g̃H

RX0,ig̃R + σ2
R ≤ 0,√∥∥∥E 1

2
RX0,iE

1
2
R

∥∥∥2
F
+ 2

∥∥∥E 1
2
RX0,ig̃R

∥∥∥2 ≤ xR
0,i, y

R
0,iI+ E

1
2
RX0,iE

1
2
R ⪰ 0, yR0,i ≥ 0,∀i ∈ T ,

(40)

where xR
1,i, x

R
0,i, y

R
1,i, and yR0,i are the introduced auxiliary variables.

Likewise, let ∆ĝC,k
∆
= E

− 1
2

C,k∆gC,k. The sufficient conditions for the communications SINR con-

straint (36c) are expressed as

Tr
(
E

1
2
C,kΨkE

1
2
C,k

)
−

√
2 ln

(
1

ρC,k

)
xC
k + ln (ρC,k) y

C
k + h̃H

C,kΨkh̃C,k − Γkσ
2
C,k ≥ 0,√∥∥∥E 1

2
C,kΨkE

1
2
C,k

∥∥∥2
F
+ 2

∥∥∥E 1
2
C,kΨkh̃C,k

∥∥∥2 ≤ xC
k , y

C
k I+ E

1
2
C,kΨkE

1
2
C,k ⪰ 0, yCk ≥ 0,∀k ∈ K,

(41)

where xC
k and yCk are the introduced auxiliary variables.

For the probabilistic covertness constraint (36d), we define ∆ĥW,i
∆
= E

− 1
2

W,i∆hW,i,∀i ∈ T such

that ∆ĥW,i ∼ CN (0, IMt). Similarly, the sufficient conditions are presented as

Tr
(
−E

1
2
W,iΞE

1
2
W,i

)
−

√
2 ln

(
1

ρW,i

)
xi + ln (ρW,i) yi + ησ2

W,i − h̃H
W,iΞh̃W,i ≥ 0,√∥∥∥E 1

2
W,iΞE

1
2
W,i

∥∥∥2
F
+ 2

∥∥∥E 1
2
W,iΞh̃W,i

∥∥∥2 ≤ xi, yiI− E
1
2
W,iΞE

1
2
W,i ⪰ 0, yi ≥ 0,∀i ∈ T ,

(42)

where xi and yi are the introduced auxiliary variables.

Above all, by omitting the rank-one constraints (29f) and (29g), (36) is transformed into the

following problem

max
Wk,R,F1,i,F0,i,xC

k ,yCk ,xR
1,i,x

R
0,i,y

R
1,i,y

R
0,i,xi,yi,t

t

s.t. (40), (41), (42), (29b), (29c), (29d), (29e).
(43)
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TABLE II

ARITHMETIC COMPLEXITIES OF PROPOSED DESIGNS

Proposed ADC designs
Arithmetic complexity

Transmitter side Receiver side

Algorithm 2
First check O

((
(Ko +Kc + 1)M2

t +Ko +Kc + 4T
)3.5) O

((
2TM2

r + 2T
)3.5)

Second check O
((

(3Ko + 3Kc + 1)M2
t + 2Ko + 2Kc + 4T

)3.5) O
((

6TM2
r + 4T

)3.5)
Algorithm 3

First check O
((

(Ko +Kc + 1)M2
t + 2Ko + 2Kc + 8T

)3.5) O
((

2TM2
r + 4T

)3.5)
Second check O

((
(3Ko + 3Kc + 1)M2

t + 3Ko + 3Kc + 8T
)3.5) O

((
6TM2

r + 6T
)3.5)

Similar to (30), (43) is still non-convex due to the coupled transmit and receive variables as well

as the objective value t. Besides, (43) is also a convex feasibility-checking problem with given

transmit (receive) variables and t. By straightforwardly formulating the corresponding transmitter

and receiver-side feasibility-checking subproblems, the AO-based double-checking framework as in

Algorithm 2 can be readily used to solve the outage-constrained transceiver design under probabilistic

error model. To avoid redundancy, we do not repeat the detailed steps and directly refer to them as

Algorithm 3 which outputs the optimized radar covariance matrix R, and the rank-one transmit and

receive variables Wk, F1,i, and F0,i. Then, we further utilize ED to obtain high-quality transmit and

beamforming vectors.

The convergence of the proposed designs are determined by the AO-based algorithms. We only

need to show the convergence of Algorithm 2. The convergence of Algorithm 3 can be verified

in the same manner. For notational convenience, we denote the transmit and receive variables as

W
∆
= [W1, . . . ,Wk,R] and F

∆
= [F1,1, . . . ,F1,T ,F0,1, . . . ,F0,T ], respectively. Then, the objective

value t can be regarded as a function w.r.t. W and F, i.e., t(W,F). In each iteration of Algorithm 2,

the objective value is updated sequentially by the loops w.r.t. W(l) and F(l), respectively. In particular,

for a given F(l−1), any t(l) enumerated by bisection with double-checked feasible W(l) is greater than

the initial value of t(l) in this transmitter-side loop. For a given W(l), any t(l) enumerated by bisection

with double-checked feasible F(l) is greater than the initial value of t(l) in this receiver-side loop.

Hence we have t(W(l−1),F(l−1)) ≤ t(W(l),F(l−1)) ≤ t(W(l),F(l)). We notice that t(W(l),F(l)) is

upper-bounded by t. As a result, the convergence of Algorithm 2 can be guaranteed. Moreover, as

l → +∞, it can be shown that Algorithm 2 converges to a stationary point of (30) [50].

The arithmetic complexities of the proposed ADC designs consist of the complexities of the

first and second checks of the transmitter and receiver-side designs, respectively. We present the

component-wise complexities for both Algorithms 2 and 3 in Table II. Let C1,tx, C2,tx, C1,rx, and C2,rx
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denote the complexities of the first and second checks of the transmitter and receiver-side designs.

The worst-case overall complexity of each algorithm can be determined by ltx(C1,tx + JC2,tx) +

lrx(C1,rx + JC2,rx), where ltx and lrx denote the corresponding transmitter and receiver-side loop

numbers, respectively.

V. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate the performance of the proposed

algorithms for the covert ISAC system. Unless specified otherwise, the basic simulation parameters

are set as follows. The ISAC BS is equipped with Mt = 6 transmit antennas and Mr = 6 receive

antennas with half-wavelength interval. The power budget of the BS is set as P = 30dBm. There

are T = 2 targets located at 80◦ and 100◦, respectively, and C = 2 clutters located at 40◦ and

150◦, respectively. Each of the radar channel coefficients are given by αj = 0dB and βi = 0dB.

Besides, the BS serves Ko = 2 overt users and Kc = 2 covert users. Each communications channel is

assumed to be Rayleigh fading and hC,k ∼ CN (0Mt , IMt). The noise powers are set as σ2
W,i = 0dBm,

σ2
C,k = 0dBm, and σ2

R = 0dBm. The blocklength is set as N = 1000 while the covertness constant

is set as ϵ = 0.1. The overt and covert communications SINRs are set as Γ1 = Γ2 = 2dB and

Γ3 = Γ4 = 2dB, respectively. The outage probabilities are set as ρR,1 . . . = ρR,1 = ρR = 0.05,

ρW,i = 0.05, ρC,k = 0.05. The CSI uncertainty is controlled by a coefficient given by κ = 0.01.

To present a fair comparison between the worst-case and outage-constrained designs, we follow

the settings in [46]. For the probabilistic error model, we set EC,k = κ∥h̃C,k∥2IMt/Mt, EW,i =

κ∥h̃W,i∥2IMt/Mt, and ER = κ∥g̃R∥2I(T+C)MtMr/((T +C)MtMr), respectively. Accordingly, for the

bounded error model, we set e2C,k =
κ∥h̃C,k∥2

2
F−1
χ2
2Mt

(1 − ρC,k), e2W,i =
κ∥h̃W,i∥2

2
F−1
χ2
2Mt

(1 − ρW,i), and

e2R = κ∥g̃R∥2
2

F−1
χ2
2(T+C)MtMr

(1 − ρR), respectively. For conciseness, in the following figures, results

obtained via Algo. 2 under bounded error model and via Algo. 3 under probabilistic error model are

referred as results under BE and PE, respectively.

Figures 3(a)-(d) depict the convergence trends of the proposed algorithms compared to their radar-

only upper bounds for different uncertainty coefficients and transmit/receive antenna numbers. The

iteration number accumulates both the transmitter and receiver-side iteration. We can see that, all

of them under different parametric configurations converge very fast. Furthermore, for both results

under BE and PE, less than 3 transmitter-receiver cycles of the proposed ADC framework are needed

for the algorithms to converge to the stationary points regardless of the different antenna numbers

and channel uncertainties. The radar SINR can be boosted significantly within the first two iterations.
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(a) (b) (c) (d)

Fig. 3. Illustration of algorithmic convergence. (a) Comparison between the considered covert ISAC system and the radar-only upper

bound. (b) Different uncertainty coefficients. (c) Different transmit antenna numbers. (d) Different receive antenna numbers.

(a) (b)

(c) (d)

Fig. 4. Beampatterns. (a) Transmit beampattern under BE. (a) Receive beampattern under BE. (c) Transmit beampattern under PE.

(d) Receive beampattern under PE.

Meanwhile, higher radar SINR is obtained with less CSI uncertainty and more transmit and receive

antennas, i.e., less systematic inaccuracy and more spatial DoFs. As validated in Figs. 3(a)-(d) and

also in following simulations, owing to more conservative constraints, the worst-case design under

BE leads to lower radar SINR than the outage-constrained counterpart under PE.

Figures 4(a)-(d) illustrates the transmit and receive beampatterns under both H1 and H0. In these

subfigures, Figs. 4(a) and (b) are the transmit and receive beampatterns under BE, respectively,

while Figs. 4(c) and (d) are the transmit and receive beampatterns under PE, respectively. As can

be seen, in two phases, the transmit beampatterns do not necessarily have good resolutions towards

the directions of the targets. However, after the receive beamforming, the receive powers at the
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Fig. 5. Minimum radar SINR versus communications SINR requirement with perfect CSI. (a) Different overt user numbers. (b)

Different receive antenna numbers.

directions of the targets are substantially boosted while those of the clutters are deeply nulled. In

addition, for the receive beamforming w.r.t. target 1, the direction w.r.t. target 2 is also nulled and vice

versa. As a result, the radar SINRs for both targets can be significantly improved after the receive

beamforming of the proposed algorithms. The insight here is that it is not necessary to approximate

the ideal transmit beampattern, as in [14]–[18], [32], [33], to obtain desirable radar performance. This

is because transmit beampattern is just an transmitter-side intermediate result instead of the overall

measurement for radar performance. The transmitter-side-only designs fail to exploit the receiver-side

potentials to further enhance the radar performance.

To showcase the efficacy and versatility of the ISAC transceiver design framework, we evaluate

its performance in the overt communications-only scenario with perfect CSI. In Figs. 5(a) and 5(b),

we present the results of applying the proposed scheme and compare the minimal radar SINR with

two state-of-the-art baselines [16], [23], both designed specifically for scenarios with perfect CSI.

The design goals for [16] (Baseline I) and [23] (Baseline II) are summarized as minimizing the

mean square error of the MIMO radar beampattern and maximizing the minimal radar SINR with

receive beamforming matching the steering vector of the receive antenna array, respectively. Figures

5(a) and 5(b) demonstrate that our approach significantly outperforms the two baselines, especially

when the communications SINR is relatively high, the number of served users are relatively large,

and the receiver antenna numbers are relatively small. The reason for this is that our scheme fully

exploits the ISAC transceiver by alternately designing the transmitter and receiver while Baseline I

ignored the receiver-side design and Baseline II did not design the radar receiver adaptively.
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Fig. 6. Minimum radar SINR versus covert communications SINR requirement. (a) Different uncertainty coefficients. (b) Different

overt communications SINRs.
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Fig. 7. Minimum radar SINR versus covertness constant. (a) Different overt communications SINRs. (b) Different transmit antenna

numbers.

Figures 6(a) and 6(b) plot the minimum radar SINR versus the covert communications SINR for

different uncertainty coefficient κ and overt communications SINRs, respectively. In Fig. 6(a), we can

find that for a given covert communications SINR, the radar SINR decreases as κ becomes larger. The

is because as the CSI uncertainty increases, the BS needs to consume more resources to compensate

for this inaccuracy, so that the resources used for sensing the actual radar targets gradually decrease.

In Fig. 6(b), we can see that the radar SINR decreases as the the covert communications SINR

requirement increases for both type of designs. Besides, for a same level of radar SINR, the maximum

achievable covert communications SINR decreases with the overt communications SINR. These

clearly reveal the tripartite trade-off between the radar and overt/covert communications performances
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Fig. 8. Minimum radar SINR versus receive antenna numbers. (a) Different uncertainty coefficients. (b) Different transmit antenna

numbers.

in the covert ISAC system. Moreover, we can observe that when the covert communications SINR

is sufficiently small, the minimal radar SINR of the covert ISAC system can approach that of the

system which only serves as a MIMO radar. This is due to the transmitted waveform is consist

of not only the communications waveform but also the dedicated radar waveform which endows it

abundant DoFs to approximate the ideal radar-only covariance, especially when the communications

performance requirement is not critical. Figures 7(a) and 7(b) are presented to show the minimum

radar SINR versus covertness constant ϵ for different covert communications SINR and transmit

antenna number. We can observe that in both figures, for a given covert communications SINR, the

minimum radar SINR increases as ϵ becomes larger. This further highlight the trade-off between the

covertness and radar performance of the ISAC system.

Figures 8(a) and 8(b) show the minimal radar SINR versus the receive antenna number Mr with

different coefficient κ and the transmit antenna number Mt, respectively. In general, we can see

that the radar performance will improve with more receive antennas. Furthermore, as the number

of receive antennas increases, the radar SINR gain will diminish, as it will no longer serve as the

primary limiting factor for the radar performance. In practice, we should carefully decide the antenna

number to achieve a better trade-off between performance and hardware cost. From Fig. 8(a), we

can observe that the uncertainty worsens the radar performance. For a given Mr, the radar SINR

decreases as κ becomes larger, which is in line with the findings in Fig. 6(b). From Fig. 8(b), we

can see that for a given Mr, the radar SINR increases as Mt becomes larger. In addition, the radar

performance gap between the different transmit antenna numbers will shrink as Mr becomes larger.
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This is because the receiver-side DoFs can compensate for the insufficient transmitter-side DoFs,

which further highlights the importance to exploit the potentials of receiver-side design.

VI. CONCLUSION

In this paper, we presented a framework for robust transceiver design in a covert ISAC system

under imperfect CSI. Our approach balanced radar performance, communications requirements, and

covertness of the system in the face of challenging non-convex optimization problems involving

SICs and coupled beamforming vectors. To overcome these issues, we introduced the S-procedure,

Bernstein-type inequality, and ADC robust optimization framework to facilitate feasibility checking

and optimization of the transceiver beamforming vectors. Our numerical results demonstrated the

effectiveness of our approach. Overall, this study contributes to advancing the state-of-the-art in

robust transceiver design, with potential implications for covert ISAC systems in various domains,

such as defense and security.
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