Deep Learning Based Successive Interference Cancellation for the Non-Orthogonal Downlink

Thien Van Luong, Nir Shlezinger, Chao Xu, Tiep M. Hoang, Yonina C. Eldar, and Lajos Hanzo

Abstract—Non-orthogonal communications are expected to play a key role in future wireless systems. In downlink transmissions, the data symbols are broadcast from a base station to different users, which are superimposed with different power to facilitate high-integrity detection using successive interference cancellation (SIC). However, SIC requires accurate knowledge of both the channel model and channel state information (CSI), which may be difficult to acquire. We propose a deep learning-aided SIC detector termed SICNet, which replaces the interference cancellation blocks of SIC by deep neural networks (DNNs). Explicitly, SICNet jointly trains its internal DNN-aided blocks for inferring the soft information representing the interfering symbols in a data-driven fashion, rather than using hard-decision decoders as in classical SIC. As a result, SICNet reliably detects the superimposed symbols in the downlink of non-orthogonal systems without requiring any prior knowledge of the channel model, while being less sensitive to CSI uncertainty than its model-based counterpart. SICNet is also robust to changes in the number of users and to their power allocation. Furthermore, SICNet learns to produce accurate soft outputs, which facilitates improved soft-input error correction decoding compared to model-based SIC. Finally, we propose an online training method for SICNet under block fading, which exploits the channel decoding for accurately recovering online data labels for retraining, hence, allowing it to smoothly track the fading envelope without requiring dedicated pilots. Our numerical results show that SICNet approaches the performance of classical SIC under perfect CSI, while outperforming it under realistic CSI uncertainty.

I. INTRODUCTION

Wireless communications are facing escalating throughput, connectivity and scalability specifications. To meet these demanding requirements, wireless systems may be expected to evolve from conventional orthogonal to non-orthogonal solutions [1], [2]. Non-orthogonal multiple access (NOMA) techniques allow users to simultaneously share the wireless channel resources for supporting heterogeneous end-devices, which inevitably imposes interference.

Sophisticated methods have been proposed for symbol detection in the presence of interference [3]. In the context of downlink (DL) non-orthogonal systems, where a base station (BS) transmits a set of superimposed messages to different users over a shared channel, the successive interference cancellation (SIC) algorithm has been shown to be particularly suitable. This is due to its ability to approach the achievable rate region of such channels, when combined with superposition coding at the BS [1], [2], whilst its complexity only grows linearly with the number of users.

The conventional SIC algorithm is model-based, i.e. it relies on knowledge of the underlying statistical model. In particular, implementing SIC detection requires each user to have accurate knowledge of the channels between the BS and each of the users; its performance, however, is degraded in the presence of realistic imperfect channel state information (CSI) [4]. Accurate estimation of CSI may be challenging, especially in rapidly fluctuating high-Doppler frequency division duplexing scenarios, where the DL channels cannot be estimated at the BS based on channel-reciprocity. Furthermore, the conventional SIC algorithm assumes that the interference can be cancelled by subtraction. However, this may not be the case in the presence of non-linearities due to hardware impairments of low-resolution analog-to-digital converters [5] and non-linear amplifiers [6]. Finally, when the symbol detector has to produce log-likelihood ratios (LLRs) for channel decoding, the SIC algorithm typically suffers from model mismatch, since for simplicity it assumes Gaussian distributed residual interference, which has limited accuracy [7].

An alternative approach to symbol detection, which does not rely on any knowledge of the underlying channel model, is based on learning the detection rule in a data-driven manner. There has been growing interest in the application of machine learning in digital communication tasks, including symbol detection [8]–[10]. Deep neural networks (DNNs) are known to reliably infer knowledge in complex environments [11], while relying solely on data to learn their mapping. DNN-aided receivers can thus operate accurately without requiring any knowledge of the underlying channel model and its parameters. Nonetheless, previous contributions on DNN-based transceivers designed for the non-orthogonal DL, including [12]–[15], jointly learned the overall transmission path as an end-to-end autoencoder (AE). For example, a multiclass autoencoder (MC-AE) was proposed in [12], which was shown to provide enhanced frequency diversity gain for both coherent single-user and multi-user uplink (UL)/DL communications, outperforming its subcarrier index modulation based counterparts [16], [17]. A similar MC-AE concept was introduced for energy detection-based non-coherent systems in [15]. These previous contributions assume an equal power...
allocation scheme applied to all users, therefore, limiting their suitability for exploiting the established benefits of SIC detection combined with superposition coding. In [14], a precoder and an SIC-based decoder were jointly optimized as an AE in the multi-input multi-output NOMA (MIMO-NOMA) DL, assuming the availability of perfect CSI at the transmitter side. Finally, the constellation of a two-user NOMA DL was designed by training an AE in [13]. However, all these AE-based schemes require knowledge of the channel model for jointly training both the transmitter and receiver, and - similarly to the classic model-based techniques - require accurate CSI.

Conventional DNNs require massive amounts of data for training, and lack the clear physical interpretation of model-based approaches. It was recently proposed to integrate DNNs into model-based symbol detection algorithms [18]–[20], resulting in hybrid model-based/data-driven receivers, which learn to carry out established detection algorithms from relatively small data sets without requiring any knowledge of the channel model. In particular, the authors of [18], [19] introduced data-driven implementations of both the Viterbi algorithm and the BCJR scheme, which are applicable for finite-memory channels. Furthermore, the authors of [20] presented a receiver that learns to carry out soft interference cancellation. This receiver operation is designed for the UL of non-orthogonal systems, where the task is to detect all transmitted symbols. By contrast, in the non-orthogonal downlink of this treatise, the receiver only has to recover its corresponding symbol that is corrupted by interference. These previously proposed DNN-aided symbol detectors motivate the design of a hybrid model-based/data-driven implementation of the SIC algorithm for the DL of non-orthogonal systems, which is our focus here.

In this contribution, we present SICNet, which is a DNN-aided receiver architecture that learns to implement the SIC algorithm from labeled data. SICNet is derived by representing the SIC algorithm as an interconnection of basic building blocks, each trained to cancel the interference imposed by a given user. Despite the similar acronym, SICNet is fundamentally different from DeepSIC [20]. Although both receivers belong to the class of hybrid model-aided networks [21], they differ both in their objective and in their operation. Specifically, SICNet is designed for the non-orthogonal DL, where the task is to recover a single desired symbol in the presence of both interference as well as noise, and does so by learning to implement the SIC algorithm, which is known to be eminently suitable for such scenarios. By contrast, DeepSIC focuses on the joint recovery of multiple interfering symbols, representing an UL setup, while relying on the classic parallel soft interference cancellation method [22]. Thus, the scheme in [20] relies on a larger number of detection and interference cancellation steps compared to SIC, since the goal of SIC is to detect a single symbol [3]. As a result, the overall architecture of SICNet is different from that of DeepSIC, and it harnesses a much lower number of neural building blocks, making it more suitable for mobile DL receivers.

Once trained, SICNet implements SIC detection, without requiring any knowledge of the underlying channel model, e.g., without restricting the operation to linear channels. We demonstrate that SICNet trained on data from a channel with a given signal-to-noise ratio (SNR) approaches the performance of the model-based SIC algorithm used for symbol detection, which relies on accurate SNR-dependent CSI. Furthermore, SICNet substantially outperforms its model-based counterpart in the presence of CSI uncertainty, under both linear and non-linear channels, indicating its potential to facilitate accurate symbol detection in non-orthogonal DL systems. Additionally, SICNet can readily adapt to time-variant DL scenarios, such as adding a new user and changing the order of the power assignment among the users, at the cost of low-complexity retraining and without requiring to rebuild its DNN structure.

We also show that, when SICNet is used for producing soft symbols provided for a forward error correction (FEC) decoder, it yields improved decoding accuracy compared to using the model-based SIC with full CSI for the same purpose. This is a benefit of the fact that SICNet, which operates in a model-agnostic manner, learns to compute more accurate bit-wise LLRs compared to SIC, which assumes a Gaussian distributed interference recovery error. Finally, we design an FEC coding-aided online training method for SICNet in order to make its DNNs adapt to the variations of block fading channels without requiring new training data. In particular, we exploit the presence of FEC codes as indication for the correctness in detecting a block of symbols, as done in [18], [23], [24], in order to accurately form a relatively small number of labels, which are sufficient for retraining SICNet with a few epochs. Table I summarizes the main contributions of this work and explicitly compares them to the literature of learning-aided DL detection in non-orthogonal systems.

The rest of this paper is organized as follows. Section II details the system model and briefly reviews the SIC algorithm. Section III presents the proposed SICNet. Section IV discusses how SICNet can be combined with FEC decoding and FEC-aided online training. Our numerical evaluations are provided in Section V. Finally, Section VI concludes the paper.

Throughout the paper, \mathbb{R} denotes the set of real numbers, and \mathbb{R}^n stands for the n Cartesian product of \mathbb{R}. We use $\mathbb{E} (\cdot)$, $p (\cdot)$, and $\Pr (\cdot)$ for the stochastic expectation, probability density function (PDF), and probability mass function, respectively, while $\mathcal{N} (0, \sigma^2)$ is the Gaussian distribution with zero mean and variance σ^2.

II. SYSTEM MODEL

We begin by describing the system model for which we derive SICNet. With that aim, we first present the channel model in Subsection II-A and then formulate the symbol detection problem in Subsection II-B. We then review the model-based SIC algorithm in Subsection II-C.

A. Non-orthogonal DL Channel Model

Consider a non-orthogonal DL, where a BS transmits data simultaneously to K users within the same time- and frequency- resources, as illustrated in Fig. 1. For simplicity, we focus on scenarios where both the BS and the users are equipped with a single antenna. The BS transmits a set of symbols $\{x_k\}_{k=1}^K$, each intended for a different user, via
superposition coding, as in the power-domain non-orthogonal DL [2]. In particular, the symbol x_k intended to user k is amplified with transmitted power P_k for $k = 1, ..., K$. These signals are superimposed at the BS, resulting in the channel input x which is given by:

$$x = \sum_{k=1}^{K} \sqrt{P_k} x_k. \tag{1}$$

We assume that the symbols are mutually independent, and that each symbol $x_k \in \mathbb{R}$ is drawn from an M-point constellation \mathcal{S}, having unit mean power, i.e., $|\mathcal{S}| = M$, and $\mathbb{E}[|x_k|^2] = 1$. While the digital constellation is assumed to have unit power regardless of its order M, the superposition coding utilized in the downlink scales the power of each transmitted symbol via the coefficients $\{P_k\}$, to facilitate decoding, as detailed in [1], [2]. For the sake of simplicity, we assume that the symbols have the same modulation order M, although it is straightforward to extend our work to a generalized scenario, where different modulation orders are used for different users. Our work can also be easily adapted to complex-valued signals, by representing them using real vectors of extended dimension.

While we do not impose a specific model on the DL channel, we assume that it is memoryless and that the channel outputs at the K users, denoted $\{y_k\}_{k=1}^{K}$, are mutually independent conditioned on x, i.e. the joint conditional PDF of the channel outputs satisfies

$$p(y_1, \ldots, y_K | x) = \prod_{k=1}^{K} p(y_k | x). \tag{2}$$

A commonly used DL model which obeys (2) is the linear Gaussian broadcast channel. Here, the channel output observed by user k is given by

$$y_k = h_k x + w_k = h_k \left(\sum_{i=1}^{K} \sqrt{P_i} x_i \right) + w_k, \tag{3}$$

where $h_k \in \mathbb{R}$ is the channel coefficient between the BS and user k, and $w_k \in \mathbb{R}$ is additive white Gaussian noise (AWGN).

B. Problem Formulation

Our goal is to design a symbol detection mechanism for each user of index $k = 1, ..., K$, namely, a mapping $\hat{x}_k : \mathbb{R} \mapsto \mathcal{S}$, so that \hat{x}_k is an estimate of x_k from the observed channel output y_k. As detailed in the previous subsection, we do not assume any prior knowledge of the channel model at the receiver, except that its input–output relationship takes the generic form in (2). Furthermore, we do not require the users to know their power allocation coefficients $\{P_k\}_{k=1}^{K}$, but we assume that they know their order, which is written henceforth as $P_1 \geq P_2 \geq \ldots \geq P_K$ without loss of generality. Note that the conventional SIC requires that each user knows both the power of all users and their power order, in addition to accurate channel knowledge. Each user of index k has access to a labeled data set of T samples, denoted by $\{y_k^{(t)}, x_1^{(t)}, \ldots, x_K^{(t)}\}_{t=1}^{T}$. In practice, such data typically corresponds to preamble and pilot transmissions. We assume that the number of pilots is limited to be on the order of a few several thousands of samples, which is the length of a typical LTE preamble [25, Ch. 17].

The lack of channel model knowledge combined with the presence of labeled data motivates a data-driven design based on DNNs. However, the fact that the dataset is limited, indicates that it is preferable to incorporate some domain knowledge in our design, rather than directly applying a black-box DNN. In particular, the relevant domain knowledge here is that in the downlink, the symbols are mutually independent, take values in \mathcal{S} and are superimposed with power allocations satisfying $P_1 \geq P_2 \geq \ldots \geq P_K$. For such scenarios, it is preferable for the k-th user to successively detect the interfering symbols x_1, \ldots, x_{k-1} before recovering its desired x_k, rather than detecting it directly. This recovery mechanism is the SIC algorithm, detailed in the following.

C. Successive Interference Cancellation

The SIC algorithm is commonly adopted in the NOMA literature, due to its simplicity and its ability to approach the achievable rate region of linear Gaussian non-orthogonal broadcast channels (3), when combined with superposition coding. The channel output y_k is given by

$$y_k = h_k x + w_k = h_k \left(\sum_{i=1}^{K} \sqrt{P_i} x_i \right) + w_k, \tag{3}$$

where $h_k \in \mathbb{R}$ is the channel coefficient between the BS and user k, and $w_k \in \mathbb{R}$ is additive white Gaussian noise (AWGN).
coding [1]. A superposition code determines the power assigned to the symbol intended for each user. A common approach to select these codes is to allocate more power to users having poorer channel gains [1], [2], [26]. Such a formulation, which is intended to facilitate detection at each user and boost fairness, requires some assessment of the quality-based ordering of the individual channels at each receiver. Alternatively, one can determine the superposition code based on the application layer requirements and priorities. Regardless of how the superposition code is determined, it controls the power levels \(\{ P_k \}_{k=1}^K \), and we henceforth assume that \(P_1 \geq P_2 \geq \cdots \geq P_K \).

To formulate the model-based SIC algorithm, consider a linear Gaussian channel (3). Based on this, the SIC detector of user \(k \) operates in the following iterative fashion. First, user \(k \) detects the signal of the user having the highest power, i.e., user 1, while treating the interference as noise, using the maximum likelihood (ML) criterion, which here is given by \(\hat{x}_1 = \arg \min_{x_1 \in \mathcal{S}} |y_k - \sqrt{P_1 h_k x_1}| \). Then, the contribution of user 1 to \(y_k \) is eliminated for decoding the signal of user 2. Explicitly, the symbol of user 2 is recovered using the ML estimate in which the interfering signal of user 1 is estimated by \(\hat{x}_1 \), yielding

\[
\hat{x}_2 = \arg \min_{x_2 \in \mathcal{S}} \left| y_k - \sqrt{P_1 h_k \hat{x}_1} - \sqrt{P_2 h_k x_2} \right|. \tag{4}
\]

This SIC process continues in this manner recursively, until the symbol of user \(k \) is detected. This can be achieved by hard decision, i.e., providing an estimate of the transmit \(x_k \) via

\[
\hat{x}_k = \arg \min_{x_k \in \mathcal{S}} \left| y_k - \sum_{i=1}^{k-1} \sqrt{P_i h_k \hat{x}_i} - \sqrt{P_k h_k x_k} \right|. \tag{5}
\]

The usage of different power assigned to different users allows user \(k \) to detect the symbols of its preceding users, namely \(x_1, \ldots, x_{k-1} \), with high accuracy. This makes the SIC procedure particularly suitable for its symbol detection in the non-orthogonal downlink at a low complexity and high reliability. For comparison, if user \(k \) directly detects its own symbol while treating the signals of other users as interference, it is likely to achieve degraded detection performance due to the presence of severe interference from other users, which SIC cancels by its iterative procedure.

Alternatively, SIC can be used to provide soft outputs represented by the LLR for each bit embedded in the symbol \(x_k \). These outputs are particularly useful when combined with soft-input FEC decoders. In particular, letting \(\beta_n \) be the \(n \)-th bit of symbol \(x_k \), we partition \(\mathcal{S} \) into two subsets \(\mathcal{S}_n^{(0)} \) and \(\mathcal{S}_n^{(1)} \) which satisfy \(\beta_n = 0 \) and \(\beta_n = 1 \), respectively, i.e., \(\mathcal{S}_n^{(0)} \cup \mathcal{S}_n^{(1)} = \mathcal{S} \). Here, we assume that user \(k \) does not know the coding schemes of other users, i.e. its FEC decoder does not decode the transmitted bits of other users for SIC operation, but directly decodes its own bits only. As such, upon denoting \(z = y_k - \sum_{i=1}^{k-1} \sqrt{P_i h_k \hat{x}_i} \), when the constellation symbols are equiprobable, the LLR of \(\beta_n \) can be expressed from (5) as

\[
L_n = \log \frac{\Pr (\beta_n = 0 | z)}{\Pr (\beta_n = 1 | z)} = \log \frac{\sum_{x_k \in \mathcal{S}_n^{(0)}} p(z|x_k)}{\sum_{x_k \in \mathcal{S}_n^{(1)}} p(z|x_k)}, \tag{6}
\]

where \(p(z|x_k) \) is the PDF of \(z \) conditioned on \(x_k \). Note that it is difficult to exactly determine \(p(z|x_k) \). Therefore, in order to estimate the LLR \(L_n \), the interference-detection-error-plus-noise term \(z - \sqrt{P_k h_k x_k} \) is often approximated by Gaussian noise \(u_k \) in (3) with zero mean and variance \(\sigma^2 \), resulting in [26]

\[
p(z|x_k) \approx \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{(z - \sqrt{P_k h_k x_k})^2}{2\sigma^2} \right). \tag{7}
\]

The combination of superimposed coding and SIC detection allows the BS to simultaneously serve multiple users with the same resources, while achieving significantly improved bandwidth efficiency over orthogonal architectures. However, in order to implement SIC in the non-orthogonal DL, the receiver must have exact CSI for each user, i.e. evaluating (5) requires accurate knowledge of \(h_k \). In particular, the detection performance of SIC strongly depends on the accuracy of recovering the interfering symbols in the preceding iterations. There is a significant performance loss, when the CSI of the users is imperfect, as shown in [4]. In some important wireless scenarios, including rapidly fluctuating high-Doppler frequency division duplexing scenarios and the family of systems aided by reconfigurable intelligent surfaces [27], obtaining accurate CSI may be challenging. Another limitation is that the channel has to obey the linear form in (3), for which the detector can cancel the interference by demodulation, remodulation and subtraction, making it suitable only for linear channels. Such models may not hold when using low-resolution receivers [5] and non-linear amplifiers [6]. Each user is also required to know the power allocation coefficients assigned to each of the users in the network for reliable symbol detection. Moreover, when soft outputs are required, the SIC may be unable to provide an accurate estimate of the LLRs to be used by a soft FEC decoder due to the approximation of the conditional PDF in (7) as being Gaussian.

Such fundamental limitations of the SIC, combined with the feasibility of integrating DNNs into model-based receiver algorithms for learning-aided computation of specific model-based steps [18], [19] including interference cancellation [20] motivates the use of DNNs to replace the interference cancellation blocks of SIC. This allows continued operation, when the knowledge of accurate CSI, the channel model, the power coefficients and even M-ary modulation type are no longer required at the user side, as presented in the next sections.

III. SICNet

To address the aforementioned issues of the conventional SIC receiver, we propose a DNN-based SIC detector called SICNet. Explicitly, SICNet uses deep learning to recover a soft estimate of the interference of each user rather than applying the hard-decision ML detector used in the conventional scheme. In the following, we present the architecture of our SICNet in Subsection III-A, followed by its training procedure and a discussion in Subsections III-B-III-C.

A. SICNet Architecture

The architecture of SICNet is illustrated in Fig. 2. For the sake of simplicity, we consider a non-orthogonal DL supporting \(K = 3 \) users, and focus our description of the
architecture on user $k = 3$. A SICNet architecture designed for K users can be devised based on Fig. 2 described as follows.

Our design of SICNet builds upon the insight that the SIC method is comprised of multiple basic building blocks, each corresponding to the recovery of the symbol of a different user. Inspired by [20], we implement SIC in a data-driven fashion by preserving its overall flow as an interconnection of building blocks, while replacing each block by a dedicated DNN. In particular, each building block implements symbol recovery, and can thus be treated as a classification task, which is capable of learning from data in a model-agnostic manner using deep classifiers. As a result, SICNet of user k consists of k different DNN blocks, where DNN block i is used to detect the soft information p_i of user i for $i = 1, \ldots, k$.

More particularly, $p_i \in \mathbb{R}^M$ represents an estimate of the conditional distribution of the corresponding symbol, given the past estimates, formulated as:

$$p_i = \begin{bmatrix} \hat{p}(x_1 = \alpha_1|y_k, p_1, \ldots, p_{i-1}) \\ \vdots \\ \hat{p}(x_1 = \alpha_M|y_k, p_1, \ldots, p_{i-1}) \end{bmatrix}, \quad (8)$$

where α_j is the j-th constellation symbol of \mathcal{S} and $\hat{p}(x_1 = \alpha_j|y_k, p_1, \ldots, p_{i-1})$ is a parametric estimate of the probability of x_1 decoded as α_j conditioned on y_k and the previous soft estimates p_1, \ldots, p_{i-1}, for $j = 1, \ldots, M$.

In SICNet, each conditional distribution estimate p_i is the output vector of the DNN block i, which satisfies $\sum_{j=1}^M \hat{p}(x_1 = \alpha_j|y_k, p_1, \ldots, p_{i-1}) = 1$. This can be naturally implemented by using a softmax activation [15] at the output layer of each DNN block. The input data of DNN block i includes both y_k and the outputs from $i - 1$ former blocks, namely p_1, \ldots, p_{i-1}. More specifically, those elements are concatenated to form an input vector of the size $[1 + (i - 1)M]$ for DNN block i, which can be reduced to length $[1 + (i - 1)(M - 1)]$, since the sum of the entries of each p_i always equals one. Thus its last entry is determined by its first $M - 1$ entries. An illustration of an implementation of the i-th building block DNN using a fully-connected network having two hidden layers, as used in our numerical study in Section V, is depicted in Fig. 3. As seen in Fig. 2, the input to SICNet, which is the input of the first DNN block ($i = 1$), is y_k. As such, the input of SICNet for user k is only its received signal y_k, i.e., no CSI information and no prior knowledge of the power allocation $\{P_k\}$ is required at each user.

Finally, following (5), a hard estimate of the symbol of interest x_k is obtained by taking to the largest element of p_k, which is the output vector of DNN block k, i.e.,

$$\hat{x}_k = \arg \max_{\alpha \in \mathcal{S}} \hat{p}(x_k = \alpha|y_k, p_1, \ldots, p_{k-1}). \quad (9)$$

Furthermore, SICNet can also be used to provide bit-wise LLR estimates, as we will discuss in Section IV.

While the design of SICNet is inspired by DeepSIC, proposed in [20] for multi-user detection in the non-orthogonal uplink, the resultant model-aided networks are notably different. In particular, the number of neural building blocks in SICNet is determined by the order of the specific user in the superposition code, as illustrated in Fig. 2. For instance, the architecture of the receiver of user 2 is comprised of 2 DNNs blocks, while user 3 utilizes 3 such blocks. Nonetheless, SICNet can also cope with perturbations of the order of the users in the superposition code without having to change its architecture, as we numerically demonstrate in Subsection V-B. DeepSIC requires a much larger number of building blocks, which is set to the number of users in the UL, multiplied by a fixed number of iterations, typically 5. Furthermore, the successive operation of SICNet implies that each constituent DNN has a different number of inputs, as illustrated in Fig. 3, while in DeepSIC the architecture of all constituent DNNs is identical, since each building block takes the soft-detection representation of all interfering symbols as its inputs. Consequently, SICNet uses a small number of neural building blocks compared to DeepSIC, and each DNN block differs from that used by DeepSIC.

In contrast to the conventional SIC, SICNet uses a soft estimate of the interfering symbols, which is not hard-cancelled by subtraction, hence it is not restricted to channels of the form (3). Furthermore, the model-agnostic nature of DNN classifiers and their ability to operate reliably in complex and analytically intractable settings imply that SICNet does not require the knowledge of the channel model in its detection process. Hence, our scheme can work for arbitrary channel models in a data-driven manner, which is not the case for its classical counterpart. Finally, SICNet does not require its users to know the power coefficients of other users and their modulation schemes, while classical SIC relies on this information in its detection process, as shown in (4)-(5). In fact, SICNet only has to know the rank-order of user powers and the modulation alphabet size M, which decide the number of DNN blocks and the output dimension of each DNN block, respectively.

B. Training SICNet

Next, we describe the training procedure of SICNet, focusing on an arbitrary user of index k. First, we represent the training data as $\{y_k^{(i)}, q_i^{(i)}, \ldots, q_i^{(t)}\}$, where y_k is the received signal of user k, and $q_i \in \mathbb{R}^M$ is the one-hot encoding of x_i, for $i = 1, \ldots, k$, representing the true label of p_i, i.e., the output of DNN block i. As q_i is a one-hot vector, its elements are all zeros, except for a unique element being one. The index of this unit element is the index of the constellation symbol

![Fig. 2. Proposed SICNet detector of user 3 in a non-orthogonal downlink channel shared by $K = 3$ users.](image)

![Fig. 3. An illustration of the i-th DNN of SICNet.](image)
of user i, which is m for $x_i = \alpha_m \in S$. Using the softmax activation as the output layer of each DNN block in SICNet produces a soft probabilistic estimate of the corresponding symbol. Consequently, the loss measure is based on the cross entropy function, which is a well-established loss function for training deep classifiers amongst others, because it facilitates gradient based training [28]. The resulting loss is computed over each batch of T data samples as follows:

$$\mathcal{L}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} \varphi_i \sum_{j=1}^{M} q_{i,j}^{(t)} \log p_{i,j}^{(t)},$$

where θ denotes the trainable parameters of SICNet including the weights and biases of all DNN blocks, $q_{i,j}^{(t)}$ and $p_{i,j}^{(t)}$ are the j-th elements of $q_i^{(t)}$ and $p_i^{(t)}$, respectively, where $p_i^{(t)}$ is the output of DNN block i corresponding to the label $q_i^{(t)}$. The coefficients $\{\varphi_i\}$ are non-negative weighting hyperparameters, which enable balancing the loss in recovering the interference terms and that in recovering the soft estimate of the symbol of interest x_k. In particular, for $\varphi_k = 1$ and $\varphi_i = 0$ for $i \neq k$, the loss accounts only for the recovery of the symbol of interest, thus, it is henceforth termed the local loss, where only the data corresponding to the user of interest, i.e., $\{q_k^{(t)}, q_i^{(t)}\}$, is used for training. Alternatively, for $\varphi_i = 1$ for every $i \in \{1, \ldots, k\}$, the resultant loss referred to as the combined loss, equally accounts for the interference terms and the symbol of interest. Using the combined loss obviously requires training data corresponding to both the user of interest and to the preceding users, i.e., $\{q_k^{(t)}, q_1^{(t)}, \ldots, q_k^{(t)}\}$. As such, the combined loss explicitly encourages each DNN block to detect its corresponding symbol, while the local loss accounts only for the ability of the final DNN block to detect the user’s symbol.

To update the parameters of SICNet, the stochastic gradient descent (SGD) optimizer is used based on the loss function (10). The SGD update rule at the n-th iteration is given by

$$\theta_{n+1} := \theta_n - \eta \nabla \mathcal{L}(\theta_n),$$

where η denotes the learning rate and $\nabla \mathcal{L}(\cdot)$ is the gradient of the loss function evaluated at a randomly sampled mini-batch of the training data. The loss function in (10) is taken over all the DNNs in the SICNet architecture, allowing us to jointly update the parameters of all k DNN blocks.

In our numerical study we train SICNet relying on a specific SNR and then test it at different SNRs. This means that the training overhead can be reduced, since we do not have to retrain the DNN model for different SNRs. Moreover, SICNet requires only a small dataset for training to achieve the desired performance. Details of the training SNR, data size and other hyperparameters are provided for our simulations in Section V.

C. Discussion

We next discuss some of the advantages and challenges which arise from the design of SICNet. Firstly, we note that SICNet is specifically tailored for detecting superimposed signals in non-orthogonal DL communications, given its SIC structure. Consequently, when trained using data corresponding to the same channel for which it is tested, SICNet is expected to approach the performance of the model-based SIC detector, as numerically demonstrated in Section V. Moreover, our scheme is less sensitive to CSI uncertainty, since it does not rely on the explicit formulation of the channel’s input-output relationship, but rather learns it implicitly from data. This allows SICNet to achieve superior performance over the classical detector, when relying on realistic imperfect CSI. In particular, SICNet can be trained without knowing the channel model or requiring the noise to be additive, which makes it particularly suitable for non-orthogonal systems, where the channel model is complex, as it is commonly the case in the presence of hardware impairments. Furthermore, in contrast to the model-based SIC detector, SICNet only requires the users to know the order of the superposition code, rather than the actual power allocation coefficients of each user in the network. While this partial knowledge is exploited by SICNet, we numerically show in Section V that it is robust to perturbations in the superposition code.

An additional benefit of SICNet, discussed in the following section, follows from its ability to produce soft estimates in a model-agnostic fashion. In particular, when the model-based SIC is used for producing soft outputs, it typically relies on approximations of the distribution of the error term, as in (7), due to the difficulty in explicitly characterizing its PDF. SICNet, which relies on deep learning to produce its conditional distribution estimates, does not have to know the model of the interference and its estimation error, rather it learns solely from data. Consequently, once properly trained, SICNet is capable of implicitly learning to accurately produce bit-wise LLRs for improving the overall decoding performance when combined with soft-input FEC decoders, as detailed in Section IV.

Several challenges are associated with SICNet in its current form. Being a data-driven implementation of the SIC algorithm, it recovers the symbols based on the rank-order dictated by the superposition code. This implies that changing the coding scheme would require adapting SICNet. Nonetheless, the change in the order of the users or the introduction of a new user in the DL does not necessarily imply that the architecture of SICNet has to be modified, since SICNet is still able to maintain high-integrity detection with mismatched architecture by retraining it with the local loss objective, as we numerically demonstrate in Subsection V-B. An additional scenario in which SICNet has to be retrained is when the underlying statistical model of the channel changes. In particular, SICNet is designed for stationary channels, where the same mapping can be reliably applied over multiple time instances, and the channel conditions remain static during both the training and testing periods. SICNet can be applied reliably even when trained using channel conditions and SNRs which are different from those used for testing, as we will numerically demonstrate in Section V. However, when the channel conditions change considerably over time, one would eventually have to retrain SICNet to maintain reliable operation. A compelling

1The implementation of our SICNet on Python/Tensorflow can be found at https://github.com/ThienVanLuong/SICNet.
technique of online training due to changes in either the channel conditions or the superposition code is to train from coded transmissions in a self-supervised manner, as proposed in [18], which we carefully adapt for SICNet in Section IV.

Finally, when the number of users increases, the complexity of the conventional SIC escalates due to the need to carry out more interference cancellation steps. Accordingly, the complexity of SICNet - which is reminiscent of the model-based SIC - also scales with the number of users. In such scenarios, one may have to carefully fine-tune the DNN hyperparameters for achieving the desired performance, and utilize DNNs having a large number of inputs, when cancelling the interference of users having lower power. This task is likely to be feasible even for large non-orthogonal networks, since DNNs are inherently compliant with high-dimensional data. In fact, the amalgamation of the SIC algorithm with DNNs in SICNet may allow it to carry out detection more promptly than model-based techniques due to the fact that DNNs conveniently lend themselves to parallelization. Therefore, this drawback - which SICNet inherits from the model-based algorithm - is expected to be less severe for a data-driven implementation than for the classical SIC algorithm.

IV. SICNet RELYING ON FEC DECODING

In this section, we integrate SICNet with FEC decoding for coded downlink non-orthogonal systems. In particular, we first discuss how SICNet can produce LLRs to be used for FEC decoding in Subsection IV-A. Then, in Subsection IV-B we design an FEC-aided online training strategy for SICNet in the presence of block fading, where the proposed FEC-coded receiver can adapt to the variations of block fading channels without requiring dedicated pilot transmissions.

A. SICNet with Soft-Decoding

For coded non-orthogonal DL, the message intended for user k, denoted by the bit vector b_k, $k = 1, ..., K$, is encoded by a FEC encoder at the transmitter before being mapped into M-ary symbols x_k. These symbols are then superimposed onto those of other users via (1). It is straightforward to employ hard FEC decoding to both SIC and SICNet, where information bits, which are estimated from decoded M-ary symbols, are fed directly to a hard FEC decoder for decoding b_k. Note that these two detectors decode M-ary symbols based on hard decisions, as shown in (5) for SIC and in (9) for SICNet. Therefore, we now focus on soft decoding relying on bitwise LLRs. Moreover, akin to the soft decoder of the classical SIC presented in Subsection II-C, we assume that user k only knows his/her coding scheme, but does not know the codes used by other users. Thus we allow each user to decode only his/her corresponding message.

As noted in Subsection II-C, using the model-based SIC to produce soft outputs often results in an inaccurate estimate of the LLRs, since the errors in recovering the preceding symbols are not accounted for in the postulated PDF (7). As a result, the coded performance of SIC relying on soft decoding degrades significantly, as analyzed in Subsection V-C. To address this fundamental issue, we propose a soft decoder for SICNet, which directly computes the LLR of each message bit $\{\beta_n\}$ based on the soft output vector p_k produced by SICNet. In particular, the fact that SICNet produces p_k given in (8), whose entries are conditional distribution estimates, allows the LLRs in (6) to be computed via:

$$L_n = \log \frac{\Pr(\beta_n = 0|x_k)}{\Pr(\beta_n = 1|x_k)} \approx \log \frac{\sum_{\alpha_j \in S_k(0)} p_{k,j}}{\sum_{\alpha_j \in S_k(1)} p_{k,j}},$$

where $p_{k,j} = \hat{p}(x_k = \alpha_j|y_k, p_1, ..., p_{k-1})$ is the j-th entry of p_k and $j = 1, ..., M$. The LLRs are then fed to a soft FEC decoder for decoding b_k.

Using SICNet for computing the LLRs builds upon the ability of DNNs to learn conditional distributions in a model-agnostic manner from data. Interestingly, this simple extension allows SICNet to provide higher-accuracy LLRs than the soft decoder of SIC, which is based on the inaccurate Gaussian approximation, leading to better coded performance, as demonstrated in Subsection V-C.

B. FEC-Aided Online Training

The combination of SICNet with coded communications can be exploited to learn to adapt to block fading channel conditions without requiring dedicated pilot transmissions. Here, we follow the guidelines proposed in [18] to enable online training of SICNet from decoded codewords in a self-supervised manner. This strategy exploits the capability of FEC codes to correct detection errors and to provide feedback on the accuracy of the outputs of SICNet.

In block fading channels, the channel input-output distribution (2) remains unchanged within a transmission block, while varying from one block to another. We assume that those variations are gradual, i.e. that while the channel can change dramatically over multiple blocks, the variations between consecutive blocks are limited in the sense that a symbol detector applicable for one channel block is also expected to operate adequately under the statistical model of the following block. Our goal is to allow SICNet adapt to the changes of block fading over time, where FEC codes are exploited for recovering data labels used for retraining of SICNet online.

In coded non-orthogonal DL operating over block fading channels, each fading block corresponds to the transmission of a superimposed message. In particular, for every fading block, the data bit vectors b_k, $k = 1, ..., K$ are encoded by an FEC encoder prior to being modulated into M-ary symbols x_k, which are then superimposed for transmissions. To characterize the ability of SICNet to adapt to the block-wise variations in the underlying statistical model, consider the k-th user employing SICNet for symbol detection, as illustrated in Fig. 4. For simplicity, we focus on the usage of hard estimates.
Here, the symbols of the \(k \) users \(\hat{x}_1, \ldots, \hat{x}_k \) estimated from the soft outputs \(p_1, \ldots, p_k \) of SICNet are demodulated into uncoded bits, which are then decoded by a FEC decoder to obtain \(k \) estimates of the users’ information bits, denoted by \(b_1, \ldots, b_k \). The FEC decoding procedure implies that successful decoding is achievable, i.e. that \(\{b_i\} \) are equal to the transmitted messages, even when \(\{\hat{x}_i\} \) are different from the transmitted \(\{x_i\} \). This property can be exploited for generating the postulated transmitted symbols as proposed in [18], which can be used to train SICNet. Specifically, the estimated bits are re-encoded and re-modulated to obtain \(M \)-ary symbols \(\hat{x}_1', \ldots, \hat{x}_k' \), which represent the postulated transmitted symbols. As a result, by mapping \(\hat{x}_1', \ldots, \hat{x}_k' \) into one-hot vectors, we can generate online labels \(q_1, \ldots, q_k \) corresponding to the current channel output \(y_k \) for retraining SICNet without requiring dedicated pilot transmissions, making it adaptable to the variations of block fading channels.

In general, the proposed online training mechanism requires user \(k \) to know the channel coding schemes of its preceding users indexed by \(1, \ldots, k-1 \), as it must decode their corresponding messages in order to provide the labels required for evaluating the loss function (10). When this knowledge is not available, e.g., as in the scenario discussed in Subsection IV-A, the \(k \)-th user can still retrain SICNet using only his/her own decoded message by setting the loss measure not to account for the recovery of the interference. This can be done by setting \(\varphi_i = 0 \) for \(i \neq k \) in (10), i.e., the local loss is used. Furthermore, while the proposed online training mechanism is detailed for SICNet using hard FEC decoders, it can also be applied when SICNet is combined with soft FEC decoders. In that case, one should simply replace the demodulation block of Fig. 4 with the LLR calculation block. Here, the soft outputs of SICNet, namely, \(p_1, \ldots, p_k \), are used for computing the LLRs of \(k \) users as presented in the previous subsection. The proposed online training SICNet based on both hard and soft FEC decoding can track the variations of block fading without any CSI estimation, whilst this cannot be achieved by the conventional SIC, as numerically demonstrated in Subsection V-C.

Finally, we note that the proposed online training scheme builds upon successful FEC decoding following [18]. Nonetheless, SICNet can also be combined with alternative techniques to allow a DNN-aided receiver to track time-varying channel conditions at a modest overhead. These include the application of meta-learning for optimizing the hyperparameters of the training algorithm [29]; the pre-training of multiple receivers as a deep ensemble [30]; and the usage of soft symbol-level outputs, rather than FEC decoding, as a measure of confidence for producing labels from data, as proposed in [31], [32]. We leave the study of the combination of SICNet with these methods to facilitate online training for future investigations.

V. Numerical Evaluations

In this section, we numerically evaluate the performance of SICNet, comparing it to the model-based SIC algorithm. Both perfect and imperfect CSI are considered. In addition to a linear Gaussian channel, we also consider a non-linear quantized Gaussian channel. In the following, we introduce the parameters used for evaluating SICNet, followed by its symbol error rate (SER) when used for symbol detection, as well as the coded bit error rate (BER), when combined with FEC decoding.

A. Implementation Setting

1) Simulation Parameters: The parameters used in our simulations of SICNet are summarized in Table II. We consider a non-orthogonal DL system supporting \(K = 3 \) users, focusing on user \(k = 3 \), which involves the highest amount of interference cancellation steps. The BS sends BPSK symbols to all users, i.e., \(M = 2 \). The power coefficients for user 1, 2, and 3 are \(P_1 = P_2 = 1 \), \(P_3 = 4 \), and \(P_k = 1 \), respectively. The power coefficients remain unchanged during the training and testing phases unless otherwise stated. Each DNN block of SICNet is comprised of two fully-connected hidden layers as illustrated in Fig. 3, whose dimensions are provided in Table II. SICNet is trained in an end-to-end fashion using the Adam optimizer [34] with a learning rate of \(\eta = 0.001 \). The training set is comprised of as few as 5000 symbols generated from a channel at an SNR of 6 dB, which was empirically shown to offer a good performance, when testing over channels having various SNR levels. Both loss types presented in Subsection III-B, namely, local loss and combined loss, are considered. Finally, the remaining hyperparameters, such as, the testing data size, epochs, and batch size, are detailed in Table II. The hyperparameters in Table II have been selected using the grid-search method in order to provide the best performance, while minimizing complexity and training time. For example, we have tentatively trained our SICNet at different training SNRs, namely 3, 4, \ldots, 10 dB, and found that 6 dB provides the best BER performance in a range of testing SNRs of interest.

2) Channel Models: We consider two channel models: a linear Gaussian channel as in (3), and a non-linear quantized Gaussian channel. For both channels, we assume that the channel coefficient of user 3 is static by simply setting \(h_3 = 1 \) over both the training and testing phases. As such, for the linear Gaussian channel, the received signal of user 3 is written as \(y_3 = x + w_3 \), where \(x = \sum_{i=1}^{3} \sqrt{P_i} x_i \), while for the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SICNet for non-orthogonal DL user (k = K)</td>
<td>3</td>
</tr>
<tr>
<td>Modulation order (M)</td>
<td>2</td>
</tr>
<tr>
<td>Power coefficients of three users (P_1, P_2, P_3)</td>
<td>16-4-1</td>
</tr>
<tr>
<td>Hidden nodes of DNN block 1</td>
<td>24-12</td>
</tr>
<tr>
<td>Hidden nodes of DNN block 2</td>
<td>32-16</td>
</tr>
<tr>
<td>Hidden nodes of DNN block 3</td>
<td>48-32</td>
</tr>
<tr>
<td>Activation function for hidden layers</td>
<td>ReLU [33]</td>
</tr>
<tr>
<td>Activation function for output layers</td>
<td>Softmax [12]</td>
</tr>
<tr>
<td>Training SNR (1/\sigma^2)</td>
<td>6 dB</td>
</tr>
<tr>
<td>Learning rate (\eta)</td>
<td>0.001</td>
</tr>
<tr>
<td>Batch size</td>
<td>100</td>
</tr>
<tr>
<td>Number of training epochs</td>
<td>200</td>
</tr>
<tr>
<td>Training data size</td>
<td>5000</td>
</tr>
<tr>
<td>Testing data size</td>
<td>10^9</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam [34]</td>
</tr>
</tbody>
</table>

Here, we set the channel to satisfy \(\mathbb{E}[|h_k|^2] = 1 \). As a result, the SNR is defined for the user of interest (i.e., user \(k = 3 \)) as \(1/\sigma^2 \), where \(\sigma^2 \) is the variance of the Gaussian noise.
quantized Gaussian channel, it is given by \(y_3 = Q(x + w_3) \) [35], where \(Q(\cdot) \) represents a 3-bit quantization, given by

\[
Q(u) = \begin{cases}
\text{sign}(u) & |u| < 2, \\
3 \times \text{sign}(u) & 2 < |u| < 4, \\
5 \times \text{sign}(u) & 4 < |u| < 6, \\
7 \times \text{sign}(u) & |u| \geq 6.
\end{cases}
\] (13)

To model different levels of CSI, the channel known to the model-based receiver, and used to generate training for SICNet, is given by a noisy estimate \(h_3 = h_3 + \epsilon \), where \(h_3 = 1 \) is the actual channel used during testing, and \(\epsilon \sim \mathcal{N}(0, \epsilon^2) \) is the channel estimation error. In particular, the conventional SIC uses \(h_3 \) for decoding instead of \(h_3 \), while SICNet is trained using samples generated from the erroneous channel, with \(\hat{y}_3 = h_3 x + w_3 \) or \(\hat{y}_3 = Q(h_3 x + w_3) \) for linear and quantized Gaussian channels, respectively. We set \(\epsilon^2 = 0 \) for perfect CSI, and \(\epsilon^2 = 0.01 \) for imperfect CSI.

In order to obtain the data used for training SICNet, we first randomly generate the data symbols sent to the \(K \) users, \(\{x_k\}_{k=1}^K \), which are then used to obtain the superimposed code \(x \) based on (1). Through the channel of user \(k \), we obtain the corresponding received signal \(y_k \), which is combined with the symbols sent from the BS to users to create the training data set, here for user \(k \).

B. SER Performance

We first numerically evaluate the SER of SICNet compared to the model-based SIC, when used for symbol detection, i.e. to produce hard decisions of the transmitted symbols. Fig. 5 depicts our SER comparison between the proposed SICNet trained with both loss measures, and the conventional SIC under the linear Gaussian channel, for both perfect and imperfect CSI conditions. We observe in Fig. 5 that when trained and tested for the same channel, SICNet achieves a SER performance approaching that of the conventional SIC operating with perfect knowledge of the channel model and its parameters. This indicates that our DNN-aided detector learns to implement the model-based SIC algorithm from data, while being trained for a single SNR level. Furthermore, under CSI uncertainty, the SER of the conventional SIC is notably degraded, while our SICNet still achieves accurate detection, where its SER is within a minor gap of its performance with perfect CSI. For example, at a SER of \(10^{-3} \), the channel imperfection causes an SNR loss of less than 0.5 dB for SICNet compared to the perfect CSI condition. Finally, despite only using the local data for training, the local loss achieves SER values within a minor gap to that of the combined loss under both CSI scenarios.

Fig. 6 compares the SER of the proposed SICNet using the two losses with the model-based SIC under the quantized Gaussian channel, for both perfect and imperfect CSI conditions. Again, it is observed in Fig. 6 that our SICNet achieves similar SER values as the model-based scheme, when the CSI is perfect. Although the channel is non-linear, the quantization resolution is sufficient to allow the interference to be approximately canceled by subtraction, and thus the model-based SIC algorithm still achieves accurate recovery here. However, when the CSI is imperfect, our scheme significantly outperforms its conventional counterpart, which suffers from a relatively high error floor, i.e., \(> 10^{-2} \). In particular, SICNet is hardly affected here by the imperfect CSI. This is likely to be due to the fact that the presence of quantization results in the training data under imperfect CSI being quite similar to that generated from the true channel. This validates the efficiency of SICNet under quantized Gaussian channels, even with imperfect CSI, where the model-based SIC achieves poor SER performance. These observed gains follow from the usage of DNNs for decoding soft-information for each symbol, which allows SICNet to learn to implement SIC without relying on channel modelling. Again, it is observed via Fig. 6 that using the local loss, the proposed SICNet achieves SER values, which are similar to the combined loss under quantized Gaussian channels.

In the numerical results presented in Figs. 5-6, SICNet is trained using merely 5000 labeled samples, representing, e.g. pilots and preamble sequences routinely used in wireless schemes. In order to numerically quantify the number of samples required for training SICNet corresponding to dif-
different users having different order in the superposition code, we next compare the training of user 3 to that of user 2. We depict in Fig. 7 the accuracy of SICNet when trained using different numbers of training samples at the SNRs of 9 dB and 12 dB. It is observed from Fig. 7 that for both users, SICNet can in fact be accurately trained with much less than 5000 samples, and often as few as 1000 samples are sufficient. For example, at the SNRs of 9dB and 12 dB, SICNet requires only 200 samples and 1000 samples, respectively, for achieving a SER performance which is very close to that trained using 5000 samples. This is due to the fact that SICNet is a hybrid model-based and data-driven scheme, which incorporates the SIC structure into its design, allowing us to significantly reduce the amount of training, which can be translated into using less pilots and hence improved spectral efficiency. Furthermore, the results reported in Fig. 7 indicate that although different users may require different numbers of DNN blocks, using a relatively small amount of pilots for training SICNet is sufficient for different users achieving their desired performance.

We proceed by numerically evaluating the robustness of SICNet to perturbations in the superposition coding scheme, focusing on linear Gaussian channels, trained with the local loss objective. Since the architecture of SICNet is dictated by the order of the power assignment among the users, our aim here is to study the ability of SICNet to handle modifications in this order by retraining. In Fig. 8 we depict the SER performance of the SICNet of user 3, i.e. of the user of interest, when adding the new user 4 to the existing system of three users. In particular, this user has a power coefficient of $P_4 = 1/9$, which is lower than that of all the existing users, hence resulting in the new order of $P_1 > P_2 > P_3 > P_4$. In this context, the architecture of SICNet detailed in Table II still matches the superposition coding, since the power coefficient of user 3 is still the third lowest in the new system, i.e., the majority of interference emanates from users 1 and 2. In Fig. 8, we investigate the associated SER performance both with and without retraining using the local loss in the new 4-user system. For retraining, a new dataset of 5000 samples is used that also takes the impact of the added user into account. Observe in Fig. 8 that the new source of interference results in some SER degradation compared to the scenario without this user seen in Fig. 5. However, SICNet succeeds in maintaining an accurate detection both with and without retraining, while exhibiting improved robustness to imperfect CSI compared to the model-based SIC.

In the scenario considered in Fig. 8, the introduction of the new user 4 does not affect the power assignment order of users 1-3, mainly resulting in lightly increased interference treated as additional effective noise. Fig. 9 illustrates the SER performance of SICNet for user 3 when changing the rank-order of users in the existing non-orthogonal DL system of three users, under linear Gaussian channels with both perfect and imperfect CSI. Here, conventional SIC is also included for comparison, while SICNet is trained only with the local loss.
In this simulation, we investigate the SER of user 3, both with and without retraining, when its SICNet architecture remains that detailed in Table II, i.e. it does not match the new downlink systems. In order to make conventional SIC adapt to such a change of the users’ power allocation in this scenario, user 3 has to know its new power order, which is now $P_2 > P_3 > P_1$. Then, it would detect and cancel the symbol of user 2 first before detecting its own symbol using the ML detection of (5). As such, compared to the original power order, user 3 does not have to detect the signal of user 1, who previously had the highest power. Similar to the scenario of adding a new user in Fig. 8, we do not have to change the architecture of SICNet. However, here we observe that retraining with the aid of both perfect and imperfect data using the local loss allows SICNet to continue approaching the performance of the model-based SIC operating with the aid of perfect CSI. In particular, the usage of the local loss, which accounts solely for the desired local symbol results in SICNet learning from data to overcome its mismatched interconnection of building blocks, without enforcing its first DNN block to recover the interfering symbol of user 1.

Next, we consider the scenario in which the non-orthogonal downlink system changes in both the number of users and their power assignment order. In Fig. 10 we evaluate the case of adding user 4 with $P_4 = 64$, while P_1, P_2, and P_3 remain unchanged, as in Table II. Hence, the introduction of user 4 yields a new power assignment order of $P_4 > P_1 > P_2 > P_3$. In contrast to the previous order, P_3 is now assigned the fourth lowest power, i.e., it has interference from three users. The straight-forward application of SICNet here is to rebuild its structure by adding one more DNN block. However, as we are focused here on the robustness of SICNet to modifications in the downlink setup, we keep the existing structure of SICNet with three blocks, detailed in Table II. By observing Fig. 10, we note that SICNet trained for the original downlink setup with three users no longer reliably detects the desired symbols. However, the same SICNet architecture can still approach the accuracy of the model-based SIC with perfect

CSI by retraining it with data corresponding to the new DL configuration. These results demonstrate that while the architecture of SICNet is determined by the superposition code, it is robust to modifications in the code and the network setup, and can be utilized for different power assignments by retraining.

Finally, we demonstrate that while the preceding numerical evaluations focus on real-valued BPSK symbols, SICNet can be applied to arbitrary complex modulation schemes. To that aim, in Fig. 11, we investigate the SER performance of SICNet when detecting complex-valued M-ary symbols (QPSK modulation), in comparison to the conventional SIC detector under linear Gaussian channels. Here, a static complex channel $h_3 = 0.4472 + 0.8944j$ is employed instead of the unitary channel used in the aforementioned BPSK simulations. Moreover, in contrast to the BPSK case, the DNN blocks are now fed with the real and imaginary components of the complex received signal y_3. The training parameters of Table II are reused, except for the training SNR and the number of training epochs, which are now 8 dB and 250 epochs in this simulation. Both perfect and imperfect CSI scenarios are considered. Our SICNet is trained using both the combined and local loss. We observe in Fig. 11 that our scheme applied to complex-valued symbols still performs well under both perfect and imperfect CSI conditions. In particular, similar to the BPSK results of Fig. 5, SICNet approaches the model-based SIC under perfect CSI, while outperforming this baseline under imperfect CSI. Additionally, the performance of our scheme trained using the local loss is close to that trained employing the combined loss. These observations confirm that the proposed SICNet is also efficient for complex-valued modulated symbols.

C. Coded BER Performance

We numerically evaluate SICNet in a coded communications scenario, where its outputs are used by a FEC decoder to recover the transmitted bits. Here, we consider only a linear Gaussian channel, for which the model-based SIC algorithm is designed. We employ a 1/2-rate convolutional code using the octally represented generator polynomials $[7, 5]$, while utilizing both hard and soft FEC decoders. We also assume
that both SICNet and classical SIC are unaware of the coding schemes of the preceding users, i.e., the FEC decoder is used to decode the data bits of the user of interest only. Accordingly, we train SICNet with the \textit{local loss} measure, which was shown in the previous subsection to achieve similar performance to that of training with the \textit{combined loss}, without requiring any knowledge of the coding schemes of the other users sharing the channel resources.

Fig. 12 compares the coded BER performance of our proposed SICNet and that of the classical SIC. As user 3 only knows his/her coding scheme, he/she does not decode the interference, i.e., the FEC decoder is used for decoding his/her own data bits only in both SICNet and its model-based counterpart. It is observed via Fig. 12 that the power of FEC coding allows SICNet to achieve improved accuracy at sufficiently high SNRs over the uncoded scheme, where the soft decoder achieves a better BER than the hard decoder. Moreover, using a soft decoder, the proposed FEC-coded SICNet outperforms the conventional counterpart both for hard and soft decoders, while both schemes exhibit a similar BER, when a hard-decoder is used. These numerical observations demonstrate the ability of SICNet, which operates in a model-agnostic manner, while learning its mapping from data, to produce bit-wise LLRs of higher accuracy compared to those computed by the model-based SIC method, that relies on an approximation of the distribution of the decontaminated channel output.

Next, we demonstrate how the power of coded communications can be exploited to facilitate online retraining of SICNet in block fading channels. Fig 13 illustrates the coded BER comparison between our SICNet with FEC-aided online training and its baselines under block fading channels and Gaussian noise. Here, the channel of user 3 varies between 3 6 9 12 15 18 21 SNR (dB), where t = 0, 1, ..., 99 is the fading block index. As such, there is a total of 100 fading blocks, each of which contains 1000 data bits, which produce 2000 uncoded bits when the 1/2 convolutional code [7, 5] is used. The classical SIC employs a hard decoder to achieve better BER as shown in Fig. 12, while SICNet uses two decoder types. Here, SICNet is initially trained with 200 epochs over 5000 data samples of the first block with t = 0, and then the FEC-aided online training detailed in Subsection IV-B is performed using only 10 epochs over 2000 online-recovered samples each following block. We also include the BER of SICNet trained only with initial CSI, i.e., without online training, for comparison. It is shown in Fig. 13 that when the SNR is sufficiently high, i.e., > 12 dB, SICNet with online training approaches the performance of classical SIC, which relies on perfect instantaneous CSI, whose performance is degraded under imperfect CSI. Our SICNet using soft decoder even outperforms its baseline with perfect CSI at SNRs in excess of 13 dB. This benefit is substantial, since unlike the classical scheme, our scheme does not suffer from any channel estimation overhead, instead, it only involves a lightweight re-training process relying on a few epochs. Moreover, SICNet trained with the initial CSI achieves poor coded BER performance, indicating the importance of the proposed FEC-aided online training in order to accurately track block fading channels. However, observe from Fig. 13 that SICNet only performs well at relatively high SNRs. At low SNRs one can utilize alternative self-supervised learning strategies, such as the symbol-level confidence approach proposed in [31], or the online training based on syndrome codes [23]. We set aside the joint study of SICNet with such strategies for our future research. Additionally, the benefits of SICNet can be exploited in a range of emerging scenarios such as short-packet communications [36] and physical layer security [37]. We leave the study of such setups for our future work.

VI. CONCLUSIONS

In this paper, we proposed SICNet, which is a deep learning-aided receiver for the downlink of non-orthogonal systems. In particular, SICNet uses DNNs to replace the interference cancellation blocks of the model-based SIC, where the soft information of each symbol is decoded by DNNs, rather than by hard-decision ML detection. As a result, SICNet learns to implement the model-based SIC in a data-driven manner, without requiring any knowledge of channel models. Simulation results showed that SICNet approaches the performance of the model-based SIC scheme endowed with
perfect CSI, and substantially outperforms its model-based counterpart under CSI uncertainty, for both linear and non-linear channels. Additionally, SICNet is shown to be robust to variations in the superposition code, and can reliably detect without reconstructing its architecture, and often even without retraining. It was also demonstrated that SICNet learns to produce accurate LLRs, leading to an improved performance over the model-based SIC, when combined with soft FEC decoding. Finally, we designed a FEC-aided online training scheme for SICNet, which is capable of adapting to the changes of block fading channels, achieving a BER performance close to or even better than the model-based SIC employing perfect CSI at high SNRs, particularly when soft decoder is used.

REFERENCES

