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STAR-RIS Integrated Nonorthogonal Multiple
Access and Over-the-Air Federated Learning:
Framework, Analysis, and Optimization

Wanli Ni

and Hui Tian

Abstract—This article integrates nonorthogonal multiple access
(NOMA) and over-the-air federated learning (AirFL) into a
unified framework using one simultaneous transmitting and
reflecting reconfigurable intelligent surface (STAR-RIS). The
STAR-RIS plays an important role in adjusting the decoding
order of hybrid users for efficient interference mitigation and
omnidirectional coverage extension. To capture the impact of
nonideal wireless channels on AirFL, a closed-form expression
for the optimality gap (also known as the convergence upper
bound) between the actual loss and the optimal loss is derived.
This analysis reveals that the learning performance is significantly
affected by the active and passive beamforming schemes, as well
as wireless noise. Furthermore, when the learning rate diminishes
as the training proceeds, the optimality gap is explicitly shown
to converge with a linear rate. To accelerate convergence while
satisfying quality-of-service requirements, a mixed-integer non-
linear programming (MINLP) problem is formulated by jointly
designing the transmit power at users and the configuration
mode of STAR-RIS. Next, a trust-region-based successive convex
approximation method and a penalty-based semidefinite relax-
ation approach are proposed to handle the decoupled nonconvex
subproblems iteratively. An alternating optimization algorithm
is then developed to find a suboptimal solution for the orig-
inal MINLP problem. Extensive simulation results show that:
1) the proposed framework can efficiently support NOMA and
AirFL users via concurrent uplink communications; 2) our algo-
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rithms achieve a faster convergence rate on independent and
identically distributed (IID) and non-IID settings compared to
the existing baselines; and 3) both the spectrum efficiency and
learning performance are significantly improved with the aid of
the well-tuned STAR-RIS.

Index Terms—Convergence analysis, nonorthogonal multiple
access (NOMA), over-the-air federated learning (AirFL), recon-
figurable intelligent surface (RIS), resource allocation.

I. INTRODUCTION

EYOND transmitting bits, the next-generation wireless
B networks are expected to support diverse services (from
sensing and communication to edge intelligence) in different
application scenarios, such as smart cities, metaverse, intelli-
gent manufacturing, and autonomous driving [2], [3]. In order
to support ubiquitous connectivity and pervasive intelligence at
the network edge [4], [S], future sixth-generation (6G) wireless
networks require a new multiple access paradigm to provide
guaranteed communication quality and learning performance
for stable and customized services by effectively coordinating
limited wireless resources in distributed facilities. One major
challenge is that of supporting data-intensive applications and
privacy-sensitive services with nonideal noisy links and lim-
ited communication resources, so that the diverse requirements
of future intelligent 6G networks can be satisfied [6], [7].

The rapid development of the Internet of Things (IoT)
has led to an exponential growth in the number of termi-
nals (e.g., sensors, cameras, and smart phones), some of
which are sensing-oriented monitoring devices while others
are likely to be computing-oriented learning devices. For the
former, nonorthogonal multiple access (NOMA) can be used
to improve spectral efficiency by serving multiple devices over
the same time—frequency resource [8], [9]. Such a spectrum-
sharing scheme has attracted significant interest due to its
ability to break orthogonality and meet stringent networking
requirements of future 6G networks, especially for massive
connectivity [9] and low-latency communication [10]. For the
latter, a promising distributed machine learning method, called
federated learning (FL), has be conceived to making full use of
decentralized data while protecting user privacy. Although FL
can effectively exploit the substantial computational resources
of geo-distributed smart devices, the communication bottle-
neck problem has attracted a lot of attention due to the
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ever-increasing high-dimensional model parameters of deep
neural networks [11], [12]. Compared with most existing FL
proposals based on conventional orthogonal multiple access
(OMA) [12]-[17], over-the-air FL (AirFL) allows all users
to aggregate a shared model by utilizing the superposition
property of the uplink wireless channel [18]-[23]. Different
from the interference-combating OMA schemes, AirFL is a
customized scheme that enjoys the improved throughput and
reduced latency by harnessing the interference of multiple
access channels. Despite recent growing efforts on the joint
design of sensing- and computing-oriented applications, there
are still many open issues yet to be addressed in this entirely
new area, exploring the interplay between communication and
learning [4], [5]. In particular, network architectures fulfill-
ing 6G’s vision of agile sensing and ubiquitous intelligence
remain largely undefined, which motivates the exploration of
practical techniques that can efficiently integrate wireless com-
munication and distributed learning into a unified framework.
For example, an potential solution is to combine the state-
of-the-art networking and learning technologies (e.g., NOMA
and AirFL) for satisfying the diverse demands in 6G networks.
However, this combination may make the design, optimization,
and analysis of such an integrated network totally distinct from
that of conventional networks consisting of only NOMA or
AirFL users.

Distinctly different from conventional wireless networks
where the environment is uncontrollable, reconfigurable intelli-
gent surface (RIS, also known as, intelligent reflecting surface)
suggest a new communication paradigm that can tune the
phase shifts of incident signals flexibly to create favorable
propagation conditions [24]-[26]. However, due to its limited
physical implementation, a key issue is that both transmitters
and receivers have to be at the same side of the RIS, which
inherently results in incomplete wireless coverage [26]-[28].
In contrast to existing reflecting-only RIS [29]-[33], a simul-
taneous transmitting and reflecting (STAR) RIS was recently
developed in [27] to realize a full-space smart radio environ-
ment, where the source and the destination can be located
in either side of the STAR reconfigurable intelligent surface
(STAR-RIS) [34]-[36]. By reaping its benefits, introducing
STAR-RIS into existing wireless networks is beneficial to
adjust the multiple access channel on demand. Furthermore,
compared to traditional AirFL schemes that only optimize
the transceiver, the STAR-RIS introduces additional control
dimensions to better match the function computation require-
ments of AirFL, which can combat the aggregation error
caused by signal distortion and further improve the learn-
ing performance of AirFL. In order to support heterogeneous
services (e.g., ubiquitous connectivity and pervasive intelli-
gence) and guarantee their respective performance, we suggest
to integrate STAR-RIS into the considered network for flex-
ible signal processing and enhanced coverage. However, the
introduction of STAR-RIS increases the complexity of channel
estimation and resource optimization due to the newly estab-
lished reflective/transmissive links. Besides, such an integra-
tion also raises more stringent signal processing requirements
for the receiver to decode individual information and aggregate
model updates in an efficient manner.
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A. Motivations and Challenges

The goal of this work is to consider how to efficiently inte-
grate wireless communication and FL with limited wireless
resources at the network edge to provide ubiquitous connec-
tivity and pervasive intelligence for future 6G networks, while
still guaranteeing convergence and Quality-of-Service (QoS)
requirements. Toward this end, the following critical issues
and potential challenges in an integrated network should be
addressed.

1) Constrained Resources and Limited Coverage:
Simultaneously supporting communication and com-
putation/learning services at the network edge suffer
from shortage in the available resources [7], [37].
Dedicated bandwidth allocation will inevitably decrease
the spectrum and energy efficiency [14], so that
properly sharing spectrum resource among users is
essential. Furthermore, the battery capacity is usu-
ally insufficient for these low-cost end devices [5].
Therefore, it is important to perform power con-
trol at energy-constrained users for long-term utility
maximization [29]. Finally, wireless channels may be
blocked by unfavorable propagation conditions and,
thus, the effective coverage area of the base station (BS)
is limited. Though the channel gains can be enhanced
by the carefully designed STAR-RIS, the number of
reflecting/transmitting elements is finite, namely, its
ability to adjust the wireless environment is limited as
well, in particular when the phase shifts and amplitudes
are selected from a finite number of discrete values in
practice [24].

2) Different Effects of Interference: Although both NOMA
users and AirFL users can be supported simultane-
ously by sharing spectrum skillfully and orchestrat-
ing resource elaborately, the co-channel interference
between communication signals and learning signals
has totally different effects on the performance of
these heterogeneous users with different transmission
goals [33], [38]. Concretely, for communication-centric
NOMA users, the individual signal is expected to be
separated from the received superposition signal. Thus,
co-channel interference is an obstacle to guarantee QoS
requirements for communication signals [39]. In con-
trast, for learning-centric AirFL users, the co-channel
interference can be well exploited to complete the gra-
dient/model aggregation via concurrent uplink commu-
nications, which is proved to be beneficial for bandwidth
saving and latency reduction [19]. However, most prior
works only consider the interference from single-type
users, which results in existing solutions not being
applicable to integrated networks of communication and
learning.

B. Contributions and Organization

This article advocates a unified framework serving NOMA
and AirFL users simultaneously via STAR-RIS aided concur-
rent communications, which aims to overcome the scarcity
of system bandwidth and to support various on-demand
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applications. We address the problem of interference miti-
gation by developing a successive interference cancelation
(SIC)-based signal processing scheme with the aid of the
STAR-RIS. It is worth pointing out that the STAR-RIS in
this framework plays an indispensable role to coordinate the
decoding order between two types of users and is also an
essential component to extend the efficient coverage area of
wireless networks as compared to conventional reflecting-only
RIS. Accordingly, theoretical analysis is performed to confirm
the convergence guarantee of our framework. Then, subject
to the power budget, binary mode switching and unit modu-
lus constraints, performance optimization is applied to achieve
a faster convergence speed while satisfying the QoS require-
ments with limited resources. To the best of our knowledge,
this is the first effort to provide a compatible uplink framework
by integrating NOMA and AirFL seamlessly with the aid of
the STAR-RIS. The main contributions of this work can be
summarized as follows.

1) Framework Design and Interference Cancelation: We
design a STAR-RIS-assisted heterogeneous fusion
framework by supporting communication-centric
NOMA users and learning-centric AirFL users in a
nonorthogonal manner. Since the complete tempo-
ral and spectral resources are utilized by all users
simultaneously, an efficient co-channel interference
cancelation technique is exploited to guarantee the
quality of the communication signal while harnessing
the superposition property of multiple-access channels
for the computation signal. The key advantage of
the developed signal processing scheme is that it can
skillfully separate the individual signal of NOMA users
while preserving the aggregated signal of AirFL users,
which provides the best of both worlds.

2) Convergence Analysis and Problem Formulation: We
derive a closed-form expression for the optimality gap
between the actual loss and the optimal loss to quantify
the impact of constrained resources and wireless noise
on the learning performance of AirFL users. We prove
that, using a diminishing learning rate, the optimality
gap is guaranteed to converge linearly with a rate of
O(1/t), where t is the index of communication rounds.
Based on the theoretical analysis results, we formulate a
resource allocation problem in the heterogeneous fusion
network to improve the learning performance of AirFL
users while satisfying the QoS requirements of NOMA
users. The problem captures a joint design of active
and passive beamforming over training rounds, which
is a mixed-integer nonlinear programming (MINLP)
problem.

3) Performance Optimization and Experimental Validation:
To tackle the resulting NP-hard problem, we first
decompose it into two tractable subproblems, and then
an alternating optimization technique is adopted to
find a suboptimal solution. Specifically, for the power
allocation (active beamforming) problem, we develop
a trust region-based successive convex approximation
(SCA) method. For the STAR-RIS configuration (pas-
sive beamforming) problem, we propose a penalty-based
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TABLE I
SUMMARY OF KEY SYMBOLS AND MAIN NOTATIONS

N, K, U, M Sets of NOMA users, AirFL users, hy-
brid users, and STAR-RIS elements
0, & s, Diagonal reflection/transmission matrix

~ and mode switching vector of STAR-RIS
hyy T, Ty hy BS-User link, RIS-User link, BS-RIS
link, and the combined channel

T & A Set of training rounds, and the learning
rate adopted by the BS
Fr() & F() Local loss function at the k-th user and

global loss function at the BS
g,(:) & g(t) Local gradient at the k-th user and

global gradient in the ¢-th round

w® & w* Global model in the t-th round, and the
optimal model that minimizes F'(w)

sy & sy, Transmit symbol at the n-th (k-th) user

pn & pr Power scalar at the n-th (k-th) user

diag{-} A diagonal matrix with each diagonal
element being the element in a vector

Diag{-} A vector with each element being the
main diagonal elements in a matrix

OF & ()T The conjugate transpose and transpose
of a vector or matrix

-1 & |- ]l2 The magnitude of a complex scalar and
the Euclidean norm of a vector

V & E[] The gradient of a function and the ex-

pectation of a random variable
The trace and the rank of a matrix

semidefinite relaxation (SDR) approach to address the
issues with rank-one constraints and binary variables.
Finally, we conduct comprehensive experiments to val-
idate the effectiveness of our theoretical analysis and
algorithm design by training linear regression models on
a synthetic data set as well as building image classifica-
tion models on real data sets. Compared to benchmarks,
simulation results demonstrate that our solution yields
better performance in terms of communication capacity
and learning behavior, even if the data is not identically
distributed.

The remainder of this article is organized as follows. The
system model of the STAR-RIS integrated NOMA and AirFL
framework is given in Section II where the concurrent commu-
nication mechanism is designed and an efficient signal process-
ing scheme is developed to mitigate the interference among
hybrid users. Convergence analysis is provided in Section III
where a nonconvex resource allocation problem is formu-
lated. Next, Section IV proposes an alternating optimization
algorithm to control uplink transmit power and STAR-RIS
configuration. Finally, simulation results are presented in
Section V, followed by conclusions in Section VI. The key
symbols and main notations are listed in Table I.
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& NOMA user ‘ User 1 User Ny User N+1
SN2
AirFL user Sead .
Fig. 1. Tllustration of the STAR-RIS-integrated NOMA and AirFL framework.

II. SYSTEM MODEL
A. Network and Channel Model

We consider a STAR-RIS-assisted heterogeneous network,
consisting of one BS and N + K hybrid users, as illustrated
in Fig. 1. Specifically, both the BS and users are equipped
with one single antenna each. The STAR-RIS is assumed to
be equipped with M passive reflecting/transmitting elements.
The randomly distributed users are classified into two types:
NOMA users (communication-centric) and AirFL users (learn-
ing centric). The set of hybrid users is denoted by U = N UK,
where the sets of NOMA users and AirFL users are indexed by
N={1,2,...,N}and K = {N+1,N+2, ..., N+K]}, respec-
tively. The full space of signal propagation is divided into
two parts by the STAR-RIS, namely, the reflection space (left
half space) and the transmission space (right half space) [27].
The location of each user determines that its uplink sig-
nal is reflected or transmitted by the STAR-RIS [34]-[36].
More precisely, the set of NOMA users located in the reflec-
tion space is denoted by Ng = {1,2,...,Ng}, and other
NOMA users located in the transmission space are indexed
by Nr = {Np+1,Ng+2,...,N}, while N' = Nz UN7 and
NrNN7 = @. Similarly, the set of AirFL users located in the
reflection space is denoted by Kg = {N+1,N+2, ..., N+Kg},
while 7 = KC\Kg denotes AirFL users located in the trans-
mission space. In practice, the sets of Nk, N7, Kg, and Kr
can be easily obtained, as long as the number of users is given
and the locations of all users are fixed.

Different from the conventional reflection-only RIS, the
STAR-RIS enables omnidirectional radiation by introducing
the equivalent electric and magnetic currents into the hardware
implementation of each element [34]. On the whole, STAR-
RIS has three protocols for operating in wireless networks:
1) energy splitting; 2) mode switching; and 3) time switch-
ing [27], [35]. In this article, we focus on the mode-switching
protocol! where each element of the STAR-RIS can operate

1Although the other two protocols (i.e., energy splitting and time switch-
ing) have their respective advantages, the mode-switching protocol is more
applicable to the implementation of concurrent uplink communications in our
designed framework.
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in the reflection mode (referred to as R mode) or trans-
mission mode (referred to as T mode). The set of passive
elements is indexed by M = {1,2,...,M}. We denote
Bn € {0,1} Vm € M as the mode indicator of the mth
element, where B8, = 1 for R mode and B, = 0 for
T mode. The users in reflection space (i.e., Nx U Kg) are
served by these R-mode elements, while users in transmission
space (i.e., N7 U Kr) are served by these T-mode elements.
Then, the M x M diagonal reflection matrix is denoted by
0, = diag{B1e?', pre®2, ..., Bue™} VYu € Ni UK, where
6 € [0,27] Vm € M represents the reflection phase
shift of the mth element operating in R mode. Likewise, the
diagonal transmission matrix is denoted by ®, = diag{(1 —
B, (1—B)e®2, ..., (1—Bu)é®™} Yu € NyUK7, where
&m € [0,27] Vm € M represents the transmission phase shift
of the mth element operating in 7" mode.

Let h, € C>X1 r, € CMX1 and F € CM*1 denote the
channel from the uth user to the BS, from the uth user to the
STAR-RIS, and from the STAR-RIS to the BS, respectively.
The large-scale path loss is modeled as L(d) = ¢o(d) ™%, where
Go is the path loss at the reference distance of one meter, d
is the individual link distance, and « is the path-loss expo-
nent. Similar to [39] and [40], we assume that all user-related
links follow Rayleigh fading due to the extensive scattering,
while the BS-RIS link obeys Rician fading due to the high
altitude of the BS and STAR-RIS. Similar to [39] and [40], we
assume that all user-related links follow Rayleigh fading due to
the extensive scattering, while the BS—RIS link obeys Rician
fading due to the high altitude of the BS and STAR-RIS. Thus,
the channel coefficient of the BS—RIS link is given by

- /L(do ([ LoS rNLoS) )

where dy is the distance between the BS and the STAR-RIS,
« is the Rician factor, and r-°5 and rNL°S are the deterministic
Line-of-Sight (LoS) and Rayleigh fading components, respec-

tively. In specific, the LoS component r°S is %wen by rkoS =
[1, l@rd)/AsinoAP  j1Qrd) /MM =1)sin0APIT - wpore 7 g

the element separatlon dlstance, A is the wavelength, and 9A°P
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is the angle of departure that follows equal distribution within
[0, 27 ]. For simplicity, we set c_i/): = 1/2 [30].

We assume that all channels follow the quasistatic flat-
fading model, and that the perfect channel state information
(CS]) of all channels is available at the BS [39]-[42]. The com-
bined channel from the uth user to the BS via the STAR-RIS
can be written as

hy = hy + 71 O,r, Yucl. )

B. Training Process of Federated Learning

Let T = {1,2,...,T} denote the set of time slots for
training rounds (also known as communication rounds). Each
training round is composed of four main steps, including
global model broadcast, local gradient calculation, local gradi-
ent upload, and global model update [18], [43]. For example,
at the rth training round, the BS first broadcasts the latest
global model w® ¢ R2 to all AirFL users, and then they cal-
culate the local gradients based on the their individual data set.
Specifically, the kth AirFL user obtains its local gradient as

g = VFk<w<’>) Vk e K 3)

where V is the gradient operator, and Fk(w(t)) is the local
loss function of the kth user that can be one of the typical
loss quantification methods, such as mean square error and
cross-entropy loss [15], [44].

Next, all AirFL users upload their local gradients {g(t)} to
the BS for global synchronization. After receiving all local
gradients, the global model is updated by

WD = ® 360 with g® = —

Zg“) @)

keIC

where g” is the global gradient and 1 is the learning rate (also
known as step size) adopted by the BS.?> The above commu-
nication round continues until preset convergence accuracy is
satisfied or the maximum number of iterations 7 is reached.

C. Concurrent Uplink Communication

To perform concurrent uplink communication at the rth
training round, the local data dfz’) of the nth NOMA user are
encoded into the information-bearing signal (i.e., communica-
tion symbol s(t)) the local gradient g,it) of the kth AirFL user
is similarly transformed into the transmit signal (i.e., computa-
tion symbol s](:)). With the aid of the STAR-RIS, both NOMA
users and AirFL users transmit simultaneously over the same
time—frequency resource and, thus, the superposition signal
received at the BS is given by

N+K

\/-/

k=N+1
noise

NOMA users AirFL users

2In the proposed framework, AirFL users are allowed to train local models
with different numbers of data samples, thus the sample differences among
users are ignored in (3). The global model aggregation rule defined in (4)
holds for both cases of balanced and imbalanced samples. Additionally, the
uplink communications of all users are assumed to be synchronized.
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where pf,’) (p,(:) ) is the power scalar at the nth (kth) user, and
20 ~ CN(0, 02) is the additive white Gaussian noise (AWGN)
received at the BS.

For ease of power control and without loss of general-
ity, the symbols are assumed to be statistically independent
and are normalized to have umt variance [38], [45], i.e
Ells?1 =1 Yu e U and E[(s{)?5]1 = 0 Vu # v. Then,
the transmit power of the uth user at the fth communication
round is constrained by

i

where P, is the maximum transmit budget at the uth user.
Additionally, over the all 7 communication rounds, an average
power constraint P, is imposed at the uth user and, thus, we
should have
| 27 1
T Z ]E|: Dy’ S i| T Z
=1 1=
Although the STAR-RIS can 51multaneously provide con-
current communication for both the reflection signals and
the transmission signals by allowing hybrid users share
the same orthogonal (time—frequency) wireless resources, it
also leads to severe co-channel interference, especially in
the case of massive connectivity. However, as mentioned
before, the co-channel interference has different effects on the
performance of the communication-centric NOMA users and
the learning-centric AirFL users. On the one hand, the co-
channel interference is harmful to the NOMA users, whose
individual signals should be decoded from the received super-
posed signal. On the other hand, the co-channel interference is
conducive to improving the aggregation performance of AirFL
users by turning the wireless channel into a computer with
the functionality of a weighted sum. Hence, an efficient sig-
nal processing scheme is needed to coordinate the co-channel
interference in heterogeneous fusion networks, which plays a
pivotal role in enhancing the overall system performance in
terms of communication throughput and learning behavior.

iy

} = \pif)‘z <P, Yuel 6)

pfﬁ <P, Yuel. ()

D. Successive Signal Processing

By taking advantage of the SIC technique at the BS side,
the signals from strong users can be decoded one by one
to remove the co-channel interference for weak users [8],
[9]. In the sequel, the residual interference composed of
signals from weak users can be harnessed for function
computation [46]-[48]. To actualize this design, we propose a
successive signal processing (SSP) scheme taking full advan-
tage of the superposition property of multiple access channels.
The block diagram of the proposed SSP scheme is shown in
Fig. 2, where there are two key stages at the BS. The first stage
is devised to mitigate interference for NOMA users. The sec-
ond stage exploits interference for AirFL users. The premise
of this scheme is that all NOMA users are anticipated to be
strong users with larger channel gains and all AirFL users are
expected to become weak users having smaller channel gains.
Fortunately, by virtue of its flexible configuration ability, the
STAR-RIS is capable of creating a controllable signal propaga-
tion environment over the full space. Therefore, the STAR-RIS
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Fig. 2. Block diagram of the designed signal processing scheme for the STAR-RIS-integrated NOMA and AirFL framework.

is particularly well suited for tackling the challenging issue of
dynamically adjusting the channel conditions of hybrid users
throughout the network.

To obtain the desired signal processing order,’ the following
channel conditions should be met by jointly optimizing the
mode switching and phase shifts of the STAR-RIS:

—n |2 ) —nl2 _n 2
RO = [RY =W 2 [ vkex. ®
strong users weak users

Based on the SIC decoding order in (8), if we have v =
n+ 1 < N, the BS first decodes the nth strong user’s
signal and then subtracts it from the superposed signal to
decode the desired signal of the vth strong user, and so on.
Therefore, the received signal-to-interference-plus-noise ratio
(SINR) of the nth NOMA user at the BS is given by

- 2 2
(1) ’hg) ‘pg) N
y O = VneN. )
u=n

After successfully eliminating all signals from NOMA users,
the residual signal is only composed of the co-channel
interference from AirFL users and the wireless noise, which
is expressed as

5 (t)

Z h(t)p](gt)sl((t) (t) . (10)

kekC

Upon reconstructing the signal 3® in (10), the BS applies
an arithmetic mean to compute the estimation of s@ =

(1/K) Zke,cs The average gradient message of interest
received at the BS is given by
o _ 30 _ 1 0 0.0, 0
0= S’ +2 ) (11)
kelC

31n this article, the SIC decoding order of NOMA users is considered to be
fixed for simplicity, which can be further optimized for different utilities, such
as throughput maximization, fairness guarantee, or physical-layer security.

The computation distortion (also known as aggregation error)
of the recovered average gradient message with respect to
(w.r.t.) the ideal average message s can be measured by the
instantaneous MSE defined as MSE®) £ E[|5®) — s®|2], i.e.,

_ 2
S [i0p 1] +0?

kekC

1
o _
MSEY = el (12)

In light of the design above, through leveraging the STAR-
RIS to tune channel conditions of hybrid users, one main
advantage of our SSP scheme is its capability of separat-
ing the individual signal of NOMA users while preserving
the aggregated signal of AirFL users. As such, both NOMA
users and AirFL users can be simultaneously served via
concurrent communications in our framework. However, it
can be observed from (9) that the achievable communication
rate of NOMA users is interfered by the signal from AirFL
users. Furthermore, the aggregation error in (12) may lead
to a notable drop of AirFL users’ prediction accuracy in the
inference process [18]-[20]. In this context, despite the fact
that different effects of interference can be exploited by our
SSP scheme, a more elaborate resource management solu-
tion is desired to enhance the overall system performance.
Therefore, we jointly design the power scalar of hybrid users
and the configuration mode of STAR-RIS to improve the
communication-learning efficiency with MSE tolerance for
fast model aggregation and with QoS requirements for reli-
able data transmission. Toward this end, our next sections are
to theoretically confirm the convergence of our framework and
answer two fundamental questions: 1) how nonideal wireless
channels affect the convergence behavior of AirFL users and
2) how to accelerate convergence while satisfying minimum
data rate demands of NOMA users.

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

A. Basic Assumption

To theoretically characterize the convergence performance
of AirFL, similar to the works in [21], [42], [49], [50], we
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make the following standard assumptions on the global loss
function and gradient estimations.

Assumption 1 (L-Smooth): The global loss function F(w) is
L-smooth. Namely, for any model parameters w and v, there
exists a nonnegative constant L, such that

F(w) — F(v) < VF() T (w

L 2
—+glw=viz A3

Assumption 2 (u-Strongly Convex): The global loss func-
tion F(w) is strongly convex with a positive parameter p such
that for any w and v, we have

Fw) —F(v) > VF») (w —v) + %Ilw -3 (14)

Assumption 3 (Variance Bound): The expectation of the
local gradients g, at the kth AirFL user is assumed to be
independent and an unbiased estimation of the global gradient
g = VF(w) with coordinate bounded variance, i.e.,

E[(gk,i - gi)z] <8 Vk,i

where gr; and g; represent the ith element of g, and g,
respectively, and 8 = [§1, 82, ..., §p] is a nonnegative vector.

The above assumptions make the convergence analysis of
AirFL tractable. Assumption 1 on the Lipschitz smoothness
holds for a broad range of typical loss functions, such as
the linear regression, cross entropy, logistic regression, and
softmax classifier [21], [42], [48]-[50]. Assumption 2 on
the strong convexity can be easily extended to the Polyak—
Lojasiewicz (PL) condition given in Appendix B. Similar
to [20], the specific values of parameters L and pu in
Assumptions 1 and 2 can be obtained by calculating the maxi-
mum and minimum eigenvalues of V2F(w). Assumption 3 on
the bounded variance is standard in the stochastic optimization
literature [51]. As an aside, these assumptions are made for
analytical tractability [48]. In practice, many more compli-
cated learning models that do not satisfy these assumptions
can also perform well in practice, as shown by the experiments
in Section V.

(15)
(16)

B. Convergence Analysis
According to the reconstructed signal obtained in (10), the
BS can recover local gradients {g,(f)} from wireless signals

{s(t)} Then, the received signal vector of interest at the BS
can be equivalently given by

"(t) Zh(t) ® (t)+z(t)
kekC

a7

g) € RZ is the receiver noise vector distributed as

where z,
zg) ~ CN(0, o2I). Similarly, the aggregated global gradient

defined in (11) is equivalent to

¢ =2 =L (T 2

kelkC

(18)

The global gradient estimation in (18) highly depends on the
communication factors (including transmit power, STAR-RIS
configuration, the wireless channel, and noise). To reveal their
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impact on the one-round convergence behavior of AirFL, we
develop a concrete metric to capture the contribution of each
training round on the convergence rate, as presented in the
following lemma.

Lemma 1 (One-Round Convergence): Consider an FL task
satisfying Assumptions 1 and 3, and suppose that F(w*) is
the minimum value of the global loss function. Then, the one-
round convergence behavior at the rth communication round
is bounded by

E[F(wD)] = Fw*) < F(w®) — F(w*)
- [Z(%;},ﬁ’)pi’) ng (H"n") )}ngmu%

k IC
2 LO) %02
Z(h(” O) 80+ = (19)
2K
kekC
Proof: See Appendix A. |
The expected performance gap of E[F w DY — F(w*) is

affected by four terms. The first term on the right-hand-side
of (19) characterizes the learning gap of the previous round.
The second term is negatively related to the squared norm
of the global gradient. The third term is determined by the
bound on the norm of local gradients. The last term comes
from the noisy channel and includes learning-related parame-
ters. Note that the first and last items are independent of the
transmit power (active beamforming) and STAR-RIS configu-
ration (passive beamforming) so that they can be regarded as
two constants. The middle two terms depend on the active and
passive beamforming schemes and, thus, need to be optimized.

Based on the result in Lemma 1, we now investigate the total
optimality gap (also known as convergence upper bound) of
AirFL. Specifically, we provide a theoretical analysis of the
learning performance of AirFL after 7 communication rounds
in the following theorem.

Theorem 1 (Optimality Gap): When Assumptions 1-3 hold
and the learning rate is fixed, in the case with arbitrary trans-
mit power at AirFL users and random configuration design
at the STAR-RIS, the total optimality gap for AirFL after T
communication rounds is given by

E[F(wT0)] - F(w)
T T-1 T
= [TA9(F(w®) - Fow)) + Z( I1 Ag‘>) AP+ AP
=1 t=1 \i=t+1

2 ([} fe0]) (20)
where
AW (t) 2
2uAh’p uLr= /- 2

AP L Z[ - =5 (R90) } 1)

keIC
LO) %62
® A @ (1) 2

AP 2 25 Z(h ) 1813 + =5 22)
kelC

Proof: See Appendix B. |

The optimality gap in Theorem 1 can guarantee the con-
vergence for any learning rate A satisfying Agt) < 1 such that
lim7_s o0 ]_[,T: 1 Agt) = 0. The first term on the right-hand-side
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of (20) shows that the effect of initial optimality gap vanishes
as training proceeds. To explicitly evaluate the convergence
performance with a decayed learning rate 1), we replace the
constant learning rate with a diminishing one such that the
optimality gap can be given as follows.

Corollary 1 (Gap With a Diminishing Learning Rate):
Suppose that the diminishing learning rate A is designed
as A0 = [T/¢ + »] < [QKY,ech’p —
K)/LY e (hp")2)] where T' > 1/p and v > 0. Then,
the expected optimality gap at the rth communication round
is given by

E[F(w““))] —F(w*) < Hfﬁ (23)
where
£ = max{(t + v)(F(w(”) - F(w*)), é} (24a)
N LF2<Zke;c (p) 1813 + Q02>
0= 2K2(ul — 1) (245)
Proof: See Appendix C. |

From Corollary 1, one can observe that when the learn-
ing rate is diminishing, the expected optimality gap declines
linearly as the communication round increases. Namely, the
asymptotic convergence rate is O(1/t). Thus far, we conclude
that the designed framework is guaranteed to converge. In
the following, we would like to formulate a resource allo-
cation problem of training acceleration by jointly optimizing
the active and passive beamforming schemes.

Corollary 2 (Impact of Gradient Aggregation Error): To
analysis the impact of aggregation error on the learning
performance of AirFL, we denote 6@ = g — g as the gra-
dient aggregation error. Let A < [1/2+L)] and i = 1 — Ap.
Then, the optimality gap (20) is rewritten as

E[F(W(T“))] — F(w")

2
1 T
< ﬂ,T(F<W(l)> _ F(W*)) + E ZﬁT—t E[s(l)]
t=1 ——
bias 2
2
LA 2
g (] o]
=1 5\/-’
bias  I2 gradient MSE
(25
Proof: See Appendix D. |

From Corollary 2, it can be observed that, in the nonideal
case where the bias E[¢"] and the gradient MSE E[||e||5]
are not zero, the aggregation error will have a significant
impact on the learning behavior of AirFL. Specifically:

1) for E[e®] # 0, the optimality gap in (25) will not
approach to zero as T increases, even if under a
sufficiently small learning rate (A — 0);

2) for ]E[||€(’)||%] # 0, the gradient aggregation error at
the later communication rounds has more impact on the
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optimality gap than that at initial rounds, due to the
monotonically increasing coefficient 17 ~;

3) in contrast, for the ideal case of E[¢(] = E[Ile(’)H%] =0
with zero gradient variance, the considered AirFL model
is able to reach the optimal performance without any
gaps as long as T is large enough.

C. Problem Formulation

Given the insights above, we are now interested in speed-
ing up the convergence rate by minimizing the optimality
gap obtained in Theorem 1. To this end, we aim to jointly
optimize the transmit power at users and the configuration
design of STAR-RIS for convergence acceleration while guar-
anteeing communication quality. Accordingly, subject to the
transmit power constraints, the QoS requirements of NOMA
users and the MSE tolerance of AirFL users in the considered
network, the optimization problem toward minimizing (20) can
be formulated as

min *((p{), (0}) (26a)
st. logy(1+yP) >R Vne N (26b)
MSE® < g (26¢)

B e{0,1} Vme M (26d)

0\ €[0,27] Yme M (26e)

D e [0,27] Vme M, (26f)

(6), (7), and (8) (26g)

where R;lni“ is the QoS requirement at the nth NOMA user,
and g9 > 0 is the maximum MSE error allowed by the AirFL
users. The main challenge in solving problem (26) comes from
the close coupling between the multiple continuous variables
{pu, Om, dm} and the discrete variables {8,,} in both objective
function and constraints.

Note that problem (26) is an MINLP problem. In gen-
eral, no existing method is applicable for solving such an
NP-hard problem optimally. More specifically, due to the tem-
poral coupling in the objective function (26a), problem (26)
is still difficult to solve even when we only consider the
transmit power allocation or STAR-RIS configuration design.
Compared to the conventional case with reflecting-only RIS,
more optimization variables are involved in (26) as the element
mode can also be optimized and the reflection/transmission
phase shifts will have a joint effect on the system performance.
Besides, the mode optimization results in integer variables,
which is more challenging compared with the reflecting-only
RIS.

To address this intractable issue, an alternating optimization
technique is resorted to solve this problem in an efficient man-
ner, i.e., first fix the configuration mode of the STAR-RIS and
optimize the transmit power at users, then repeat this in turn
until the termination conditions are satisfied. To be specific,
we propose to decouple (26) into two subproblems.

1) Subproblem of Transmit Power Allocation: Given the
configuration mode of the STAR-RIS, our first subprob-
lem is to minimize the optimality gap by dynamically
controlling the transmit power at users. As a result,
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subject to the transmit power constraints, the QoS
requirements of NOMA users, and the MSE tolerance of
AirFL users, the nonconvex and nonlinear subproblem
of the power allocation can be written as

min Y({pfp}) (27a)
st (6), (7). (26b), and (26¢).  (27b)

2) Subproblem of STAR-RIS Configuration: Given the trans-
mit power at users, our second subproblem is to speed
up the convergence rate by judiciously adjusting the con-
figuration mode of the STAR-RIS. Therefore, subject to
the channel quality order, the throughput- and distortion-
related constraints, as well as the STAR-RIS characteris-
tics, the mixed-integer programming subproblem of the
configuration design is given by

min T({@fp}) (28a)
st (8) and (26b)—(261). (28b)

Although the decoupled subproblems are simpler than (26),
it is still extremely difficult to derive globally optimal solu-
tions in the considered framework. For example, the transmit
power scalars are coupled over communication rounds and
users in subproblem (27), which makes it highly nonconvex.
Additionally, solving the configuration design subproblem (28)
may result in exponential complexity due to the combinatorial
feature of binary mode switching. To obtain low-complexity
solutions for the original MINLP problem (26), the subprob-
lems are transformed to convex ones, as described next.

IV. ALTERNATING OPTIMIZATION
A. Transmit Power Allocation

When the configuration mode of the STAR-RIS is given,
we introduce an auxiliary variable T > 0 to rewrite the power
allocation subproblem (27) as follows:

min T (29a)
]
st. Y(pP) <1, (29b)
6), (7), (26b), and (26c). (29¢)
To overcome the nonconvexity of constraints (26b)

and (26c), we introduce auxiliary variables p, = |pu|2

and 1 = |lpx — 11>, Then, we rewrite (26b) and (26¢) as

o, NHK

050 = a3 1000 +02| wen co
u=n+1

an)—l—azfeolfz (31)

kelkC

where ¢, = 2™ _ 1 V¥n e N are constant parameters.

The constraints in (30) and (31) are convex, as are the
other two power-related constraints in (6) and (7). The main
difficulty of solving problem (29) lies in the nonconvex con-
straint (29b). To handle this, we adopt the SCA method

to approximate T({p,(f)}) by applying the first-order Taylor

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 18, 15 SEPTEMBER 2022

Algorithm 1 Trust-Region-Based SCA Algorithm

1: Initialize {pi [0}, {os”[01), (" [01}, 7[0], the trust region radius r[0] =
1, the threshold €, the maximum iteration number L{, and set £; = 0.
2: repeat
S o ) O] (O] )
With given {p,,"[£11}, {ou"[£11}, {n;"[£11} and z[£;], obtain {p,"[£; +
10, (o 1er + 113, {n[€1 + 11} and t[¢; + 1] by solving problem
(35).
Update r[€1 + 1] < r[£1]/2.
Update £1 < £1 + 1.
until 7{€£1] <ej or £ > L;.
: Output the converged transmit power solution.

[95]

A

expansion at a local point {pg) [£]} obtained in the fth iteration.
The approximated constraint is thus given by

T({p0]) =¥ ({p}) 2 x({p1a})
(0 - vr(fpia)) ek
u (32)

where V'Y"({p,(f) [£]}) denotes the first-order derivative at the
local point {p,(f) [€]}, and is given in (33), shown at the bot-
tom of the next page. The detailed derivations are given in
Appendix E.

To ensure that the linear approximation in (32) is accurate, a
series of trust region constraints are constructed over iterations

P _pgp[g]} <r[f] Yuel (34

where r[{] is the trust region radius at the fth iteration.
Based on the above approximations, the transmit power
allocation problem (29) can be approximated by

min T (35a)

oL )
S.t. ?({pfp]) <t Vuek (35b)
p» > ’p,(j) > Vueu (35¢)

n;’>z‘ﬁ,@pg)—1)2 Vke K (35d)
©). (7). (30), (31), and (34)(35¢)

which is convex w.r.t. {p,(f)}, {,0,5’)}, {n,(f)} and . Thus, it can

be directly solved using standard optimization toolbox such
as CVX [52]. The proposed trust-region-based SCA algorithm
for solving problem (27) is given in Algorithm 1, where the
radius of the trust region gradually decreases over iterations.
This algorithm terminates when r[€] is lower than the preset
threshold €; or the maximum iteration number L; is reached.

B. STAR-RIS Configuration

Given the transmit power at users, while replacing con-
straints (26b) and (26c) with (30) and (31), the subproblem
of STAR-RIS configuration can be rewritten as follows:

min T({@fﬂ}) (362)
st (8), (30), and (31) (36b)
0% eQ Vuel (36¢)



NI et al.: STAR-RIS INTEGRATED NONORTHOGONAL MULTIPLE ACCESS AND OVER-THE-AIR FEDERATED LEARNING

where Q = {(Bm, Om, dm) | Bm € {0, 1}, 0 € [0,27], ¢ €
[0, 2]} denotes the feasible set for the mode switching and
its corresponding phase shift per STAR-RIS element.

Let B,, = 1 — B,,. Then, the STAR-RIS configuration vector
is given by

[, B,
“ (B, a2, ...

Yu € Np UKg
Yu € N7 UKr.

g
pue™] 37
. Bue® |

As such, we can obtain 77 ©,r, = q’R, by changing vari-
ables from {®,} to {gq,}, while R, = diag{i‘H try. Next, the
combined channel gain can be expressed as

- 2 -
|ha|” = |hu +r”®uru| |ha +q'R |
—un Rl'q, +q/R.n + hRlq, + |h,|?
= §"Ruq, + Ih)? (38)
where
~ [R,RY R, - [au
R”_[huRg 0 and q, = e 39)

Since éfﬁu(}u = tr(ﬁutju(}{;]), we have

il = w(Rad,al!) + 1h? = 0(Ru@,) + I 40)

where Q, = éue}f . The new introduced variables Q, satisfy
0, = 0, rank(Q,) = 1 and Diag(Q,) = B,. Specifically,
Diag(Q,,) denotes a vector whose elements are extracted from
the main diagonal elements of matrix Q,, and 8, denotes the
mode-switching vector, i.e.,

8 z{[,B_l,,B_z,...,ﬁ_M]IZI Yu e Ng UKg
“ [ﬂ]’ﬂZa"'vﬁM] VMGNTUICT-

Based on the matrix lifting technique adopted in (40), the
constraints in (8) and (30) can be rewritten as

~(1) 2 0] 2
w(®0) + i = = Ry 0F) + |

(41)
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Lemma 2: Let Ry = Rypx, 71\]( = hgpr — 1 and

= [RRRY Rh!!
R, = [ T RH o | (44)
Then, we have
- 2 o~ —~ 2
e = 11" = (Rey) + [ (45)

Proof: See Appendix F. |
According to Lemma 2, the nonconvex constraint in (31)
can be rewritten as the following convex one:

A~ 2
3 |:tr (R,(f) Q,(f)) n ‘ﬁ,ﬁ’)

kelkC

(46)

i| + o? < eoKz.

Lemma 3: Let Ry = Ripx, hi = h — (K/L)) with by =
hipic

. RRY R A - RiRY  Ryh!
Ry = | VK% k d R, = k k.
k [hkRkH o | M T Rl o

Then, it holds that

ML)\.z T
VA3 Q) = SR (47)
LA2||8115 =T
VA4(Q) = 7Rk. (48)
Proof: See Appendix G. |

Based on Lemma 3, we can employ the first-order Taylor
expansion to tackle the nonconvexity of the objective func-
tion (36a). For a given point {Q,(j) [£]} in the fth iteration of
the SCA method, the objective (36a) can be approximated by

r({or]) =7({er}) = r(jeal)

.
+(e0 - ow1) vr(le@ial), uex

(49)

where explicit expressions of VY ({Q{[¢]

shown at the bottom of the next page.
As a result, by replacing the nonconvex terms (36a)

£]}) are given in (50),

FO 0 0
= “(Rk Oy ) + ‘hk Vke K (42) and (36b) with (42), (43), (46), and (49), problem (36) can
[tr (I»-éilr) Q;(f)) + ' B } P;(f) be transformed into the following one:
ik min ¥({e?]) (51a)
2 7200Y 4+ [no]*|[,0 {o}.{8}
> 0,0° + &y Z r(R, Q)0 )+ |h, pl| VnelN.
u=nt1 s.t. (42), (43), and (46) (51b)
43) Diag(Q{P) =BV vueld  (Slo)
)
To transform constraint (31) into a more tractable form, the Q,f >0 Yueld (51d)
following lemma is given to tackle its nonconvexity. rank(Q,S”) =1 Yueld (51e)
7 (O (1) < 70 (D) T
2urhy, (FD — F*) ALhy’p ) L21813 ~
0] — u _ u Fu U] 2 (7@ (z) 0]
T (ri1e) = % 1P ) TT A9+ R ()l T A
ieT\{t} i=t+1
7(0) (l) (t) (l)
2urh ALh [
- = “ (1 )Z AY f+(t) L uek, teT\(1} (33a)
2urh) (FD — F* AR p O\ T o LARISIE N2 T
v (pier) = - e (K ) (M [T129 + %(hf,”) P TTAY (33b)
i=2 i=2
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Algorithm 2 Penalty-Based SDR Algorithm

1: Initialize {Q(r) [O1}, {Bu o [0]}, the penalty parameter x, the scaling factor
0, the threshold €p, €., the maximum iteration number L, and set £, = 0.

2: repeat

3: Let the iteration index £o < 0.

4: repeat

5 With given{ 151} and {89 [£,1), solve (55) to obtain {Q[¢5+
11} and (B [¢ + 11).

6: Update £, < £p + 1.

7:  until \\1/[112] ULy — 11| <€ or £ > Ly.

8: Update {Q, [0] and ﬂ([) [0]} with the current solutions Qg,)[éz]}
and (811621},

9: Update x < ox.

10: until the constraint violation is below €.

11: Output the converged STAR-RIS configuration scheme.

BY €{0,1) Vme M. (51f)

At this point, the remaining nonconvexity of problem (51) lies
in the rank-one constraint (51e) and the binary constraint (51f).
To tackle these issues, the SDR method can be invoked to drop
the nonconvex rank-one constraint directly [39], [41]. Then,
the penalty method can be combined with the linear relax-
ation to solve the combinatorial optimization problem w.r.t.
the binary mode switching.

Specifically, the binary constraint (51f) can be equivalently
rewritten as

,6,(,?(1 - /3,510) =0 VmeM (52)

where the binary variables are relaxed into the continuous
ones, i.e., B € {0,1} - B € [0,1] Vm € M. Then, by
adding the equality (52) as a penalty term into the objective
function (51a), it can be obtained as

o(fo) fae]) = %(for]) S (-

where x > 0 denotes the positive penalty parameter that
penalizes the objective function if ﬁ,gf) e (0,1).

Note that (53) is still nonconvex w.r.t. {8 ,(f)}. To transform it
into a convex form, the penalty-based objective function (53)
is approximated by using the first-order Taylor expansion at
a given point ,8,51') [£] in the £th iteration of the SCA method,

¥({er)-for}) = 7 ({er})

v(ler) () =
+x fj[ﬂ,ﬁ?(l —28%101) + (B [e])z].
m=1

(0) (53)
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Step 1: With given 0, solve problem
(27) to obtain the power allocation
solution P* via Algorithm 1

Input a feasible solution
P[0] = {p.”[0]}
0[0]={0,”[0]}

No

Is converged or timed out ?
A
Output the converged solution
(P*, %)

Fig. 3.

A

Step 2: With given P, solve problem
t (28) to obtain the STAR-RIS design
scheme @* via Algorithm 2

Flowchart of the proposed alternating optimization algorithm.

Combining the above approximation with the SDR method,
we replace the objective function (51a) with its approximation
in (54) and drop constraint (51e) directly. Then, problem (51)
can be reformulated as

min E;({Ql(j)}, {/3;0}) (552)
st (42), (43), (46), (51c), and (51d)  (55b)
BY €[0,1] Vme M. (55¢)

Since problem (55) is convex, it can be efficiently solved by
existing optimization solvers such as CVX. In summary, we
can obtain a suboptimal solution to problem (36) by solving
its approximated problem (55) in the inner loop and gradually
increasing x in the outer loop. If the obtained solution fails
to be rank-one, the Gaussian randomization method can be
adopted to construct a rank-one solution [39]. The penalty-
based SDR algorithm for solving (36) is given in Algorithm 2,
where o is a scaling factor for the penalty parameter.

A final flowchart of the proposed alternating optimization
algorithm is given in Fig. 3. Owing to the iterative optimization
in steps 1 and 2, the expected learning gap is nonin-
creasing over iterations. Since the achievable optimality gap
is lower bounded by zero, the sequence {Y[{]} converges
to a locally optimal solution as long as the number of
iterations is sufficiently large. Furthermore, if the interior-
point method is considered in each optimization step, the
main complexity of Algorithm 1 is given by O(Q2NT +
3KT + T)3 max{log(1/€1), L1}). Similarly, the complexity of
Algorithm 2 is O((M?T + MT)3L,log(1/€.)), where L, =
max{log(1/€,), L} denotes the number of inner iterations
required for convergence and log(1l/e.) represents the outer
iterations required for satisfying the preset precision. Usually,
we have M > N and M > K; thus, the main complexity

(54) of the proposed alternating optimization algorithm is given
LA?(FD — F¥) L)\2||8
(Q(”[e]) I (K2 ( (t)) I A%+ [ |I2( (z)) 1—[ AD
ieT\{t} i=t+1
AD
LA2 fvon T I
+ B (R) ZA(’)$, wek, teT\(1) (50a)
j=1
LA2(FD — F*) 1 an T - L)2)58)3
W) o #4718 0 + 200 M (i)
T(Qu [@]) - = (Ru ) [Ty + =5 ( l_[A L uek (50b)

i
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by (’)(LaLpMéT3 log(1/€.)) where L, denotes the maximum
iteration number.

C. Extension to MIMO Setup

The proposed framework in the multiple-input—multiple-
output (MIMO) setup differs from its single-antenna coun-
terpart. Suppose that the BS has N, antennas and each user
has N; antennas. The BS—User link, RIS-User link, and BS—
RIS link are denoted by H, € CNNi R, € CM*N: and
R € CM*Nr_ respectively. The multiantenna BS applies the
receive beamforming m,, € CV*! to detect the individual sig-
nal of the nth NOMA user and applies a € CN*! to aggregate
the superposed signal of AirFL users. Let p, € CN*! Vu, be
the transmit beamforming at the uth user. Then, the received
signal at the BS for the nth NOMA user is given by

Yo = m” (Z Hyp,ysy + ZHkpksk +z0) Vn € N (56)

1 k=1

where H, = H, +I_€H®MRM Yu € U = N UK, denote
the combined channel coefficients, the receive beamforming
satisfies |lm,[|53 = 1 Vn € N and, zo ~ CN(0,0?]) is the
AWGN at the BS.

Similar to the decoding order (8) in the single antenna case,
the combined channel coefficients in the MIMO setup can be
ranked as

Y Y

[ = | ], =

F F

Jinfp = i} wer. o

strong users weak users

Using SIC, the achievable data rate (bps/Hz) of the nth
NOMA user is given by

- 2
H

‘mn H,p,
NAK i o |

Zu:n_q.l m, ,p,
After successfully removing NOMA communication sym-
bols {s,} from the superposition signal, we have y =
Zk_l\l,( 11 H kPrSk + 20. Then, the computat1on output is given

by § = (1/K)a"§. Next, the MSE of § with respect to
s = (l/K) > ke Sk can be written as

— . 2
MSE:F<Z}:C’aHHkpk—1‘ +02||aH||§). (59)
ke

Vn e N. (58)

Iy =log,| 1+
+ 02

Substituting the above new definitions and expressions into
problem (26), we can obtain the optimization problem for the
MIMO setup. Compared to problem (26) in the single-antenna
case, we need to optimize extra variables (i.e., the receive
beamforming {m.’} for NOMA users and {a(t)} for AirFL
users) in the MIMO setup. By using the problem decompo-
sition method of Section slowromancapiii@, the optimization
problem formulated for the MIMO setup can be decomposed
into three subproblems: 1) transmit beamforming; 2) STAR-
RIS configuration; and 3) receiving beamforming. For the
transmit beamforming subproblem, the zero-forcing precoding
and matrix lifting-based SDR technique can be adopted to
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Fig. 4. Topology setup for simulation (3-D view).

solve it heuristically [53]. For the STAR-RIS configura-
tion subproblem, the proposed penalty-based method can be
extended to solve it efficiently, due to the similar constraint
structure as problem (26). For the receiving beamforming sub-
problem, the minimum mean square error (MMSE) receivers
can be employed to balance system performance and design
complexity [38]. To avoid redundancy, the details of solving
the optimization problem for the MIMO setup are omitted here
for brevity.

V. SIMULATION SETTINGS AND RESULTS
A. Experimental Setup

Network and Topology Settings: The topology setup for the
simulations is shown in Fig. 4. We consider that there are
U = 6 users and one BS in the STAR-RIS-assisted hetero-
geneous network, where N = 3 NOMA users and K = 3
AirFL users are randomly and uniformly distributed in a cir-
cle centered at the STAR-RIS with a radius of 5 m. In the
three-dimensional (3-D) Cartesian coordinates, the BS and the
STAR-RIS are located at (0, 0, 0) and (0, 50, 0), respectively.
The settings of channel model are similar to [39], where the
reference path loss is set as gy = —30 dBm, the large-scale
path-loss exponent is &« = 2.2, and the Rician factor is k¥ = 2.
The power budget of the uth user is set as P, = 23 dBm and
P, = 20 dBm, the noise power is set to be > = —80 dBm.
The minimum data rate requirement of the nth NOMA user
is assumed to be Rgli“ = 1 bps/Hz, and the aggregation error
tolerance of the AirFL users is &g = 0.01. The number of
reflecting elements is set as M = 20, unless otherwise stated.

Data Sets and Learning Tasks: To evaluate the effectiveness
of our proposed algorithms for the STAR-RIS-assisted hetero-
geneous network, we use one synthetic data set and two real
data sets in our experiments. To be specific, for the synthetic
data set, we examine the proposed algorithm with one simple
regression task, where the optimality gap over the training pro-
cess is adopted as the performance metric by training a linear
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regression model with the MSE loss function [20], [44]. For
the real data sets, AirFL users are required to execute classifi-
cation tasks where they need to collaboratively train (machine
learning) ML models for image classification on the MINST
and CIFAR-10 data sets [15], [17]-[22]. Specifically, all data
sets are divided randomly into a training set with 75% sam-
ples and a testing set with 25% ones. The learning task is
to train a 6-layered convolutional neural network (CNN) for
handwritten digit identification on the MNIST data set, and
a 50-layered residual network (ResNet) for object recognition
on the CIFAR-10 data set. The cross-entropy error is adopted
as the loss function, unless otherwise indicated, the constant
learning rate is set to be A = 104, and the maximum com-
munication round is set as 7 = 200. At the end of each round,
we assess the learning performance of the aggregated model
in terms of the training loss and test accuracy.

Benchmark Schemes: For comparison, we consider the

following benchmark schemes in the experiments.

1) Noise-Free FL: This is an ideal case where there is
no communication noise in the considered wireless
networks and the signal from NOMA users can be per-
fectly decoded and removed, i.e., the BS and users can
interact the accurate information without any distortion.
This scheme can be viewed as the optimal performance
of AirFL users.

2) Conventional RIS: In this case, all users in full space are
served by one reflecting-only RIS and one transmitting-
only RIS. For fairness, the two conventional RISs are
placed at the same location as the STAR-RIS, but each
one is equipped with M/2 elements. Therefore, this
baseline can be treated as a special case of the con-
sidered STAR-RIS where the mode of all elements is
fixed.

3) Random STAR-RIS: In this case, we assume that the
phase shifts of all elements are randomly selected
from [0, 2] and only the mode-switching indicators of
the STAR-RIS need to be optimized by the proposed
Algorithm 2 at each round. This scheme degenerates
subproblem (28) into an element allocation problem.

4) Equal Power Allocation: This is also a simplified base-
line case where the transmit power of all users keeps
the same during different communication rounds under
the constraint of average power budget, i.e., p,(f) =
P,(f)/ T Vu,t, and the STAR-RIS is configured by
Algorithm 2.

B. Performance Evaluation

In Fig. 5, we compare the optimality gap of all the above
schemes versus the communication rounds in the training pro-
cess of the linear regression task. To prepare the synthetic
data set, we generate a total of 4 x 10* data pairs includ-
ing 3 x 10* samples for training and 10* ones for testing.
Following the independent and identically distributed (IID)
setting, the training set is distributed evenly to three AirFL
users. In each training round, only 50 samples are used to train
the local model at the local users, and another 50 samples are
used to test the aggregated model at the BS. The generated
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Fig. 5. Learning performance of training a linear regression model on the
synthetic data set. (a) Optimality gap under different schemes. (b) Optimality
gap under different M.

data pairs (x, y) follow the function y = ¢'x + 0.519 where
the input vector x € R!? follows the IID Gaussian distribu-
tion as V' (0, I) and the observation noise ng obeys A/(0, 1) as
wellasce=1[1,2,..., IO]T. From Fig. 5, we observe that the
convergence rate of the proposed algorithm is closest to that
of the ideal noise-free scheme compared to other benchmark
schemes. Moreover, it can be seen that the curve of all schemes
has a fast linear convergence rate when the communication
round ¢ is small. However, as ¢t grows larger, the optimality
gap decreases slower than that in the initial training process.
This is because the learning performance is suffered from the
limited size of the local data sets as the training goes on.
Fig. 5 demonstrates the optimality gap under different numbers
of STAR-RIS elements during the training process. From this
figure, one can see that increasing the number of STAR-RIS
elements is beneficial to achieve lower optimality gap though
the gains are not so significant. However, if the STAR-RIS is
removed from the integrated system (i.e., M = 0), the learn-
ing performance of AirFL users degrades significantly due
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Fig. 6. Impact of the obstacle on the optimality gap of AirFL users and the

achievable rate of NOMA users.

to the strong interference from NOMA users. This validates
the importance of interference management of nonorthogo-
nal transmissions, and also reveals that using STAR-RIS to
maintain the decoding order (8) is an effective design.

In Fig. 6, we demonstrate the impact of the obstacle on
the optimality gap of AirFL users and the achievable rate
of NOMA users. Specifically, when the obstacle is consid-
ered in the integrated network, the direct links between the
BS and all users are assumed to be blocked. Otherwise, the
LoS link is available to all NOMA and AirFL users. From
this figure, we can observe two phenomena in terms of the
convergence behavior and data transmission rate. First, com-
pared to the blocking case (i.e., AirFL with obstacle), a lower
optimality gap can be achieved by the unblocking case (i.e.,
AirFL without obstacle) at the early communication rounds if
the LoS links between the BS and AirFL users are available.
Howeyver, as the number of communication rounds increases,
the performance gap between the above two schemes is neg-
ligible. Second, the achievable uplink rate of NOMA users
would be compromised to some extent when the LoS links
between the BS and AirFL users are blocked. Furthermore,
it can be notice that the negative effects of link blocking are
not be eliminated as the number of RIS elements increases On
the whole, the blocking issue experienced by the considered
network affects the communication rate of NOMA users more
than the learning performance of AirFL users.

In Fig. 7, we show the impact of the STAR-RIS deployment
on the achievable communication rate of NOMA users when
yris € {40, 50, 60} and M e [10 30], respectively. In this fig-
ure, the achievable sum rate of NOMA users is used as the
performance metric, given by Rnoma = ZnN=l log, (1 4+ y).
For the cases of yris = 40 and 60 m in Fig. 7, the STAR-RIS
can only work in one mode (i.e., T mode for yris = 40 m and
R mode for yris = 60 m) to assist the communication from
users to the BS. From Fig. 7, it is observed that the achiev-
able rate of all schemes first increases and then decreases while
achieving their maximum spectrum efficiency at the case of
yris = 50 m. Namely, the system throughput can be greatly
improved when the STAR-RIS is deployed very close to the
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users. Furthermore, it is verified that when the direct links
from users to the BS are blocked by obstacles (this is equiv-
alent to the direct links experiencing rich scattering fading
with unfavorable propagation conditions), the performance
gain brought about by the STAR-IRS is deteriorated since
only the signal transmitted/reflected by the STAR-IRS can be
received at the BS compared to the case without obstacles.
In Fig. 7, we compare the achievable rate versus the number
of STAR-RIS elements. By comparing the proposed algorithm
with conventional RIS, we verify the performance gain of the
mode-switching design. Comparing our algorithm with ran-
dom STAR-RIS, one can verify the performance gain of the
transmitting/reflecting phase shifts design. It is clear that the
uplink throughput for all schemes increases with the number
of passive elements at the STAR-IRS, which reveals the effec-
tiveness of deploying more elements at the STAR-IRS before
the performance gain reaches a saturation point. It is evident
from Fig. 7 that the proposed algorithm outperforms the other
two benchmarks in term of spectrum efficiency, which vali-
dates the necessity for the elementwise optimization of mode
switching and phase shifts at the STAR-RIS.
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Fig. 9. Learning performance of training a ResNet on the CIFAR-10 data set with IID and non-IID settings.

In Fig. 8, we present the learning performance of training
a CNN on the MNIST data set. To conduct simulations under
different data distributions, we divide the MNIST data set into
two types of data partitions: 1) IID setting, where the full train-
ing samples are shuffled and then each local data set is evenly
assigned with 2 x 10* data samples covering all ten labels;
2) Non-IID setting, where all data samples are sorted by digit
label and then each local data set is randomly assigned with
three or four labels. For the latter setting, each AirFL user
only has images labeled by part of digital numbers. It is the
unbalanced partition that guarantees the non-IID distribution of
samples. Regardless of whether it is an IID setting or a non-IID
setting in Fig. 8, the noise-free FL scheme obtains the optimal
learning performance after 7 communication rounds are com-
pleted, while the equal power allocation scheme performs
worst with a remarkable gap. Among all benchmark schemes
in Fig. 8, the proposed algorithm is capable of achieving the
learning performance closest to the ideal noise-free FL scheme
in terms of training loss and test accuracy. This verifies again
the effectiveness of joint optimization of the transmit power
at the users and the configuration design at the STAR-RIS.
Moreover, we notice that if the phase shifts are not properly
tuned (i.e., random STAR-RIS), conventional RIS achieves
a better learning performance. The result implies that when
the number of reflecting and transmitting elements is limited,
optimizing the phase shifts dominates the performance. This
observation is also applicable to the results in Figs. 5 and 7.
Compared with the IID settings, one can see that the learn-
ing curves for all schemes in the non-IID settings become
noisier and suffer from poorer convergence behavior due to
the unbalanced data distribution. Additionally, Fig. 9 illus-
trates the learning performance of training a ResNet on the
CIFAR-10 data set with the IID and non-IID settings. Note

that the overall trends of all curves in Fig. 9 are similar to
that in Fig. 8. Thus, the discussions for Fig. 9 are omitted
here for brevity. Further comprehensive evaluation with more
common network topologies, more diverse data distributions,
and more realistic user mobility remain as future work.

VI. CONCLUSION AND FUTURE WORK

In this article, we advocated a STAR-RIS integrated NOMA
and AirFL framework to overcome the spectrum scarcity
and support heterogeneous services (e.g., communication- and
learning-centric tasks). Based on the SIC decoding technique,
a new design of SSP for concurrent uplink communication
was developed to coordinate interference among hybrid users
and, thus, enhance system performance. Then, we provided
a closed-form expression for the optimality gap to character-
ize the impact of unfavorable wireless communication on the
convergence rate of AirFL. Next, we investigated a nonconvex
resource allocation problem in the considered heterogeneous
network by jointly optimizing the transmit power at users
and the configuration design at the STAR-RIS to minimize
the optimality gap while guaranteeing QoS requirements. Due
to the nonconvex nature of this problem, we developed an
alternating optimization algorithm by devising a trust region-
based SCA approach and a penalty-based SDR method to
solve the decoupled subproblems iteratively. Finally, experi-
ments using synthetic and real data sets were conducted both
to corroborate our theoretical analysis and to demonstrate the
effectiveness of the proposed solution. Simulation results also
verified that our algorithms achieve better performance in
terms of learning behavior and communication capacity than
alternative benchmarks.
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This work is an initial step in forming a universal frame-
work for fulfilling 6G’s vision of ubiquitous connectivity and
pervasive intelligence. A number of interesting key problems
and several possible extensions in this active and ongoing area
are worthy of further investigation. We hereby conclude this
article by discussing a few promising research directions, and
highlighting several open problems.

1) Privacy and Security Issue: For one thing, in the wireless
network, there may exist eavesdroppers which attempt
to obtain the raw data uploaded by NOMA users or the
model parameters updated by AirFL users. For another,
some malicious NOMA users are likely to inject fake
data, while some untrustable AirFL users may launch
model inference attacks to obtain private information
of other users. Therefore, it is essential to enhance the
privacy and security of the proposed framework by tack-
ling the issues, such as illegal eavesdroppers, bogus data
injection, and model inference attacks.

2) Resilient and Robust Design: User mobility brings
challenging problems, such as time-varying channels,
dynamic node dropout/join, and inaccurate CSI. As a
result, one important future direction is to consider the
impact of user mobility on the achievable performance
of the proposed framework. For example, it is criti-
cal but remain unsolved to develop a resilient solution
that allows asynchronous model aggregation to adapt to
the dynamic node dropout/join of high-mobility users.
In addition, some pending problems are to study the
efficient channel acquisition method for the STAR-
RIS-aided system and design robust joint active and
passive beamforming schemes under time-varying chan-
nels and/or imperfect CSI, as well as analyze the impact
of channel estimation error on the convergence rate of
AirFL users and on the achievable throughput of NOMA
users.

3) Other Open Problems: Other valuable problems are to
investigate the hybrid learning method at the BS by
using the raw data and local updates transmitted by
these local users, and to derive the theoretical analysis of
practical scenarios such as nonconvex loss functions and
noisy data labels. Also, extending the two-layer single-
cell framework shown in Fig. 1 to a multilayer and/or
multicell computing network is also of interest. Besides,
research problems such as hierarchical/personalized FL
and adaptive gradient coding in the integrated networks
are also important topics yet to be explored.

APPENDIX A
PROOF OF LEMMA 1

When synchronization is performed ¢ rounds, the loss dif-
ference between two consecutive rounds is given by A, =
Fow Dy — Fow®), Let w = w(*D and v = w. From
Assumption 1, it follows that:

A< VF(w(’))T<w(’+l) —w) + guw““) —w® z (60)
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According to the model update rule defined in (4), the global
model in the rth communication round is given by

(t+1) _ W )\g(t) 61)

where g(‘) is the aggregated global gradient obtained in (18).
Denoting g = VFw®), while plugging (18) and (61)
into (60), we have
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Let w* be the optimal global learning model and subtract
F(w*) from both sides of (62). Then

F(w(’+1)) —F(w*) < F(w(t)> —F(w) =AY + A (63)

where the last two terms are defined in (62).
Now, the expectation of Aﬁ') is given by

E[AY)] _ [ ( (z)) (Z h(t)pl(ct)gl(ct) +z(t)>:| (64a)
® Ao ol o0
= Eth 8], (64c)
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where (a) follows from E[z((f)] = 0 and (b) is because E[g(t)

g Vk € K, as defined in Assumption 3. Next, the expectation

of Ag) can be expressed as
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where (c) comes from E[Hz(t)llz] [(LOA?62)/(2K?)] = 4
and (d) is because E[llg” 131 = (Elg{"D? +Ellgy” — g 131.

Based on (64) and (65), by taking expectation at both sides
of (63) to average out the randomness, it holds that
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which completes the proof of the one-round convergence rate.

APPENDIX B
PROOF OF THEOREM 1

Since F(w) is a u-strongly convex function, we have

A > (g(t))T<w<t+1) —w

By minimizing both sides of (67) w.rt. w = wiFD it
follows that:
2
2]

min [F(W(H‘l)) — F(w(’))]
w
> min[(g(’))T<w(’+1) — w(t)) + EHW(zH) _w®

> mi >
(68)
Note that the left-hand side of (68) is minimized at w'*1) =
w* while the right-hand side of (68) is achieved when w(+1) =

w® — (1/u)g”. Thus, the inequality in (68) becomes the
following PL condition:

2u(F(w") - Pw)) < [

Combining (69) with the one-round convergence in (19), the
expected performance gap in the tth communication round is

bounded by
E[F(w)] = Fw) < AL (F(w®) = F(w")) + ]
(70)

where Ag) and Af‘t) are defined in (21) and (22), respectively.
By recursively applying (70), the cumulative optimality gap
after T communication rounds can be derived as

E[F(wTD)] = F(w")
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where A} = Fw) — F(w*), completing the proof.

APPENDIX C
PROOF OF COROLLARY 1

By replacing the constant learning rate with diminishing
ones and denoting w(t) h(’)p,(f), the one-round convergence
rate in Lemma 1 can be rewritten as
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(6) 1

< A0 20| L+ A a2
where (e) is because ZkEK([Z/K]w(I) —
LAY /K2 (@) > 1 when 0 < A0 <
(2K Sy 7 — KL Sy ).

Substltutmg the PL-condition (69) into (72), we have
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Subtracting F(w*) at both sides of (73), it yields
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Substituting the diminishing learning rate A?) = [T'/(t+v)]
and the inequality (75) into (74), it holds that [4]
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APPENDIX D

PROOF OF COROLLARY 2
Denote €@ = g — g as the aggregation error. Based

on (62), we have
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#{a0] = el L] £ 5 (fe )
s =126") o] £ 5o+ S el
2 2
(79)

where (f) comes from —a'b < (1/2)||a||% + (1/2)||b||§,
(9) is because E[Ig®13] = ElI/K) Y cxgl’ 3] =
(1/K>E[||g(”||%] - (1/K>{<E[g"> )2 + Elllgy’ — P13 <
Ig®@15 + 11815, and (k) is due to the Cauchy-Schwartz
inequality.

Now, by taking expectation at both sides of (78), we have

Br(ett) | = #(+)

2
= —2|g®| +E[aV] +E[aQ] +E[aV]
2
+ L E|:He(l) 2:|

< AHga) + qugm

+3E[e “)]H 2 lel;
L2

+ —||5||2 HE[S(’)]H2+ E|:H€(l) 2:|

—,\(1 S - —) Hg<’>

A 2
_2lg® H Z0
2 Hg 2 +

+50

—~

i)
<

(80)

where 0 = [(1 + L*22)/2]|E[“]|3 + [(LA%)/2]]18]13 +
[(LAZ)/2]E[||€(’)||%] and inequality (i) holds because A <
1/2+L).

Then, substituting (69) into (80) and subtracting F(w*) at
both sides, we obtain

E[F(w )] - Fw) < 3(F(w®) - Fw*)) + 52 81)

where ;@ = 1 — Au. Finally, similar to (70), the optimality gap
in (25) can be obtained by recursively applying (81) 7 rounds.

APPENDIX E
PROOF OF EQUATION (33)
For t # 1, by taking the first-order derivative of T({p,(f)})
w.I.t. p,(ct), we have

vr((p)) = [ T1 a9 | 9a(F(r) - )

i=1,it
T
(i) o
]_[ AY | VAS
(=2, it

T
CAING
[T AY |vaAS
i=3,it

+ Ay

2
+ Ay

T
M | gA®
[T A |vaAS
i=t—1,it

(1=2)
+ Ay
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T
0 0
[T A% |vAS
i=t,i#t
T
0 0
+ VAL T AS
i=t+1

(1=1)
+ Ay

(82)

Then, (82) can be equivalently rewritten as

vr((ei}) =

T

[T A9 |vaY (F(w®) = F(w))

i=1,it

t—1

® 0

+ VAY > A]
j=1

T
0 (0
+ VAL T AS
i=t+1

T
[

i=j+1,it

(83)

Similarly, for t = 1, we have

r({]) = (189 )t (6(s) - )
+ vzxi”(]‘[ Ag")). (84)

i=2

Finally, substituting VAgt) = [(ZMAE(Z))/K](I —

[(L)le([) (1)) K d VA(I) L2218 K2 h(l) 2@

© Py )/KD an 4 [(LAZ1813) /K1)y,
into (83) and (84), we can obtain (33).

APPENDIX F
PROOF OF LEMMA 2

According to the definition in (38), it holds that

= 2

fupr — 1> = | (e + af Ri)pic — 1° = [fu + g/ Ri|* (85)
where Ry = Ryp; and ’h\k = mpr — 1, and we ignore
the superscript (f) in the following proof for brevity. The

expression (85) can be written as

upe = 1[* = gl RRf g + g Rl + iRl g, + [

= g Reay + | (86)
where
~  [R(RY Rth - [
Rk_|:hkRH 0 and ¢q; = L (87)

Since éfﬁkék = tr(ﬁkék(}f ), we have

|hipi — 1\2 = U'(ﬁkakékH) + \/f;k|2 = tr@ka) + \/f;k|2 (33)

where O, = t}ktij satisfying @, > 0, rank(Q;) = 1, and
diag~'(Q,) = B, VkeK.
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APPENDIX G
PROOF OF LEMMA 3

To prove Lemma 3, we first define

20 L)?
a="" ana p=BEL (89)

KZ

Then, A3 in (21) can be rewritten as
- -\
Az=1-— Z[ahkpk — b(hkp) ]
kel

14b h ay:_ @ 90
SR (CEE = A

From (18), it can be noticed that h; should be a real
number due to the real-valued scalar p;. Then, we have
(hpx — [a/2b)? = |pr — [a/2b]|>. Combined with (38),
it follows that:

- a2 arz . 2
hupk — — =‘h HRpi — — =‘h HR‘
‘ Pk = 57 (k+qk k)Pk b &+ g Ky
. . )
= aReR{!q, + a Rif! + TRl qy -+ [T
gy - ) . )
= a Ry + || = u(Re@r) + e[ O
where
. RiR? Ry v a
R,=| "% k d hy = hypr — —. 92
[hkRkH o |2 A=l — o (92)
Plugging (91) into (90), we have
v v |2 a2
As=1 +b2[tr(Rka) + ‘hk‘ - @}. 93)
kel
By taking the derivative of (93) w.r.t. Q), we can obtain
wlr? . T
VA3 (@) = —7 R (94)
Similarly, A4 in (22) is given by
L2813 _ ,1  LOA%S?
Ao = T2 3 [o(ReQe) + Il | + =5 99)
ke
where
= [ReRY Rent _
R, = I:hka 0 and hy = hypy. (96)
By taking the derivative of (95) w.r.t. @, it holds that
L2813 =7

which completes the proof.
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