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Abstract— We investigate signal detection in multiple-input-
multiple-output (MIMO) communication systems with hardware
impairments, such as power amplifier nonlinearity and in-phase/
quadrature imbalance. To deal with the complex combined effects
of hardware imperfections, neural network (NN) techniques,
in particular deep neural networks (DNNs), have been studied
to directly compensate for the impact of hardware impairments.
However, it is difficult to train a DNN with limited pilot signals,
hindering its practical application. In this work, we investigate
how to achieve efficient Bayesian signal detection in MIMO
systems with hardware imperfections. Characterizing combined
hardware imperfections often leads to complicated signal models,
making Bayesian signal detection challenging. To address this
issue, we first train an NN to ‘model’ the MIMO system with
hardware imperfections and then perform Bayesian inference
based on the trained NN. Modelling the MIMO system with NN
enables the design of NN architectures based on the signal flow
of the MIMO system, minimizing the number of NN layers and
parameters, which is crucial to achieving efficient training with
limited pilot signals. We then represent the trained NN with
a factor graph, and design an efficient message passing based
Bayesian signal detector, leveraging the unitary approximate
message passing (UAMP) algorithm. The implementation of
a turbo receiver with the proposed Bayesian detector is also

Manuscript received 7 October 2022; revised 6 April 2023; accepted
22 May 2023. Date of publication 12 June 2023; date of current version
9 January 2024. The work of Dawei Gao was supported by the Proof-of-
Concept Foundation of Xidian University Hangzhou Institute of Technology
under Grant GNYZ2023QC0405 and in part by the Fundamental Research
Funds for the Central Universities under Grant XJS222601. The work of
Branka Vucetic was supported in part by the Australian Research Council
Laureate Fellowship under Grant FL160100032 and in part by the Discovery
Project under Grant DP210103410. The associate editor coordinating the
review of this article and approving it for publication was A. Zappone.
(Corresponding author: Qinghua Guo.)

Dawei Gao and Guisheng Liao are with the Hangzhou Institute of Technol-
ogy, Xidian University, Hangzhou 311200, China, and also with the National
Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071,
China (e-mail: gaodawei@xidian.edu.cn; liaogs @xidian.edu.cn).

Qinghua Guo and Yanguang Yu are with the School of Electrical,
Computer and Telecommunications Engineering, University of Wollongong,
Wollongong, NSW 2522, Australia (e-mail: qguo@uow.edu.au; yanguang@
uow.edu.au).

Yonina C. Eldar is with the Faculty of Mathematics and Computer
Science, Weizmann Institute of Science, Rehovot 7610001, Israel (e-mail:
yonina.eldar @weizmann.ac.il).

Yonghui Li and Branka Vucetic are with the School of Electrical and
Information Engineering, The University of Sydney, Sydney, NSW 2006,
Australia (e-mail: yonghui.li@sydney.edu.au; branka.vucetic @sydney.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3283275.

Digital Object Identifier 10.1109/TWC.2023.3283275

investigated. Extensive simulation results demonstrate that the
proposed technique delivers remarkably better performance than
state-of-the-art methods.

Index Terms— Hardware imperfections, 1/Q imbalance, power
amplifier nonlinearity, multiple-input-multiple-output (MIMO),
neural networks (NNs), factor graphs, approximate message
passing (AMP), Bayesian inference.

I. INTRODUCTION

E consider signal detection for multiple-input multi-
Woutput (MIMO) communications in the presence of
hardware impairments, which arise, e.g., in millimeter wave
(mm-wave) communications, where mm-wave front ends
suffer from significant hardware imperfections, compromis-
ing signal transmission quality and degrading system per-
formance [1], [2], [3], [4]. A pronounced impairment is
in-phase/quadrature (I/Q) imbalance, i.e., the mismatch of
amplitude, phase and frequency response between the I and
Q branches, which impairs their orthogonality [5]. Power
amplifier (PA) nonlinearity leads to nonlinear distortions to
transmitted signals, which cannot be overlooked, especially in
mm-wave communications [2]. The hardware imperfections
need to be handled properly to avoid inducing significant
system performance loss.

Many techniques have been considered to mitigate the
impact of hardware imperfections. To handle PA nonlinearity,
Volterra series based techniques were proposed for nonlin-
earity compensation at either transmitter or receiver [6], [7].
However, these methods often need to determine a large
number of Volterra series coefficients, which is a difficult task.
To address this, some simplified approaches such as those
based on memory polynomials [8], Hammerstein model [9]
and Wiener model [10] were proposed [8]. Addressing 1/Q
imbalance has also attracted much attention [11], [12], [13],
[14]. In [13], a dual-input nonlinear model based on a
real-valued Volterra series was proposed to model the I/Q
imbalance, and its inverse model was employed at the transmit-
ter to pre-compensate the I/Q imbalance. In [14], a single-user
point-to-point mm-wave hybrid beamforming system with I/Q
imbalance at the transmitter and its pre-compensation were
considered. The pre-compensation technique [14] assumes
availability of instantaneous channel state information at

1536-1276 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 11,2024 at 14:55:26 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-9165-5007
https://orcid.org/0000-0002-5180-7854
https://orcid.org/0000-0002-5919-0713
https://orcid.org/0000-0003-4358-5304
https://orcid.org/0000-0001-7702-1123
https://orcid.org/0000-0002-1541-9061
https://orcid.org/0000-0002-2700-2001

GAO et al.: SIGNAL DETECTION IN MIMO SYSTEMS WITH HARDWARE IMPERFECTIONS: MESSAGE PASSING ON NNs 821

the transmitter, which can be difficult to achieve in prac-
tical scenarios. With higher orders, polynomial-based meth-
ods have potential to handle severer nonlinear distortions,
which, however, are more prone to numerical instability in
determining their coefficients [15], [16], [17]. Most of the
polynomial-based algorithms in the literature deal with a single
type of hardware imperfection, i.e., either PA nonlinearity or
I/Q imbalance. However, hardware imperfections may occur
at the same time, leading to combined effects.

Recently, machine learning has been used in mmWave
MIMO systems, e.g., the works in [18], [19], and [20]. Neural
networks (NNs) have emerged as a promising technique to
deal with nonlinear effects in communication systems [21],
[22], [23]. In [24], a real-valued time-delay neural network
(RVTDNN) was proposed to model PA behaviors. Various
variants of RVTDNN were proposed [25], [26] to address
the combined effects of hardware impairments. In [25], high-
order signal components are applied to the RVTDNN to
pre-compensate both the PA nonlinearity and I/Q imbalance.
In [26], a deep NN (DNN) based technique was proposed to
mitigate combined PA nonlinearity and I/Q imbalance at the
transmitter of a MIMO system. In [27], a residual NN was
proposed for digital predistortion, where shortcut connections
are added between the input and output layer to improve the
performance of PA nonlinearity mitigation. These predistortion
based methods require feedback from the receiver, which can
be inconvenient or difficult to implement, especially in the
case of time-variant environments. Post-compensation tech-
niques at the receiver have also been investigated [28], [29].
A recurrent NN (RNN) was proposed in [28] to compensate
PA nonlinearity in a fiber-optic link. In [29], a deep-learning
(DL) framework that integrates feedforward NN (FNN) and
RNN was proposed to combat both the nonlinear distortion
and linear interference. However, these works do not consider
the impact of I/Q imbalance. Moreover, a significant problem
with the DNN based techniques is that a large number of pilot
symbols are required to train them properly, leading to unac-
ceptable overhead and hindering their application especially in
time-varying environments.

In this work, we investigate signal detection in an uplink
multi-user mm-wave MIMO system, where transmitters (at
users) suffer from combined distortions of PA nonlinearity
and I/Q imbalance due to the use of low-cost mobile devices.
To combat the combined effects of hardware imperfections
and multi-user interference, the conventional approach is to
design a DNN based detector with received signal as input
and predicted symbols as output (shown in Fig. 1), which
we call direct detection. However, it is difficult to train the
DNN with limited pilot symbols. In this work, we investigate
how to achieve efficient Bayesian detection in the presence
of combined hardware imperfections. To this end, we require
a signal model. However, characterizing combined hardware
imperfections in a MIMO system leads to a complicated
signal model (which may also be subject to modelling errors),
making Bayesian signal detection challenging. We propose
using an NN to ‘model’ the MIMO system (i.e., the NN
serves as a substitute for the signal model), which captures
combined effects of hardware imperfections and multi-user
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Fig. 1. Tllustration of DNN based direct detector.

interference. Then we perform Bayesian inference based on
the trained NN. This indirect detection strategy enables us to
design the NN architecture based on the signal flow of the
MIMO system and minimize the number of its layers and
parameters, making it possible to achieve efficient training
with limited pilot symbols.

To perform Bayesian inference with the trained NN, we rep-
resent it with a factor graph and develop message passing
based Bayesian signal detection. The presence of densely
connected factors due to the NN weight matrices makes the
Bayesian inference difficult. Approximate message passing
(AMP) algorithm is promising in handling densely connected
factor graphs [30]. AMP works well for i.i.d (sub-) Gaussian
matrices, but suffers severe performance degradation or easily
diverges for a general matrix [30]. The work in [31] suggests
that AMP can still work well in the case of a general matrix
when a unitary transform of the original model is used. This
leads to unitary AMP (UAMP), also known as UTAMP [31],
[32], [33]. As NN weight matrices are normally not i.i.d. (sub-)
Gaussian, we adopt UAMP and show that it plays a crucial
role in achieving efficient message passing based Bayesian
inference.

The contributions of this work are summarized as follows:

e A new strategy to achieve Bayesian signal detection for
a communication system with complicated input-output
relationship: We use an NN to model the MIMO system,
followed by Bayesian inference based on the NN. This
indirect detection strategy is more efficient than direct
detection. Although this work focuses on MIMO systems
with I/Q imbalance and PA nonlinearity, the developed
method can be extended to deal with general systems
with complicated input-output relationships.

o Signal-flow-based NN architecture design: The architec-
ture of the NN is carefully designed based on the signal
flow of the MIMO system, so that the number of layers
and parameters of the NN is minimized, which is crucial
to achieving efficient training.

o Message passing based Bayesian inference on NNs:
To realize Bayesian signal detection based on an NN,
we represent the NN as a factor graph and an effi-
cient UAMP-based message passing inference algorithm
(called MP-NN) is developed.

o Iterative detection and decoding in coded systems:
Another advantage of the new strategy is that the
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proposed MP-NN Bayesian detector is able to work with
a soft-in-soft-out (SISO) decoder, leading to a powerful
turbo receiver. In contrast, it is unknown how to develop
a turbo receiver with existing DNN or polynomial based
direct detection techniques.

o Comparisons with existing techniques: We carry out
various comparisons with state-of-the-art methods and
demonstrate that the proposed approach delivers remark-
ably better performance.

The remainder of the paper is organized as follows.
In Section II, the signal model of MIMO communications
with combined hardware imperfections is given and existing
techniques are introduced. In Section III, with the new strategy,
we investigate the NN architecture design and training, and
develop a UAMP-based Bayesian detector by performing
message passing on the trained NN. The extension to turbo
receiver in a coded system is investigated in Section IV.
Simulation results are provided in Section V, followed by
conclusions in Section VI.

The notations used in this paper are as follows. Boldface
lower-case and upper-case letters denote vectors and matrices,
respectively. The superscript (-)* represents the conjugate

operation. The notations ()7 and ()7 represent the trans-
pose and conjugate transpose operations, respectively. The
notation ./ represents elementwise division of two vectors or
matrices. We use |z| and ||x|| to denote the amplitude of z
and the norm of x, and use R{-} and J{-} to represent the
real and imaginary parts of a complex number, respectively.
The notation (f(z)),(,) denotes the expectation of f(x) with
respect to distribution p(z).

II. SIGNAL MODEL AND EXISTING METHODS
A. Signal Model

We consider an uplink transmission of a multi-user
mm-wave MIMO system with K users. Considering the cost
of mobile devices, we assume that each user has a single
antenna,! where low-cost modulators and PAs are used, result-
ing in I/Q imbalance and PA nonlinear distortions during
transmission [34]. The base station (BS) is equipped with NV
antennas.

The mth symbol of user k is denoted by zx(m) € A, where
A denotes the symbol alphabet. The symbols of all users at
time instant m form a vector x(m). At the transmitter side, the
signal is up-converted to radio frequency through modulation,
and the mismatch between I and Q branches is characterized
as [26]

zi(m) = Erer(m) + Gy (m), (1
where
0 9
& = cos() + jAesin(5), 2)
) 9
G = Mk cos(?k) +jsin(§k) 3)

IThe extension of this work to the case of each user equipped with multiple
antennas is straightforward.

with real valued amplitude imbalance parameter \; and phase
imbalance parameter 6. The signal is then input to a PA.

The nonlinear distortion of the PA is characterized by the
amplitude to amplitude conversion A(|z{(m)|) and amplitude
to phase conversion ¢(|zf(m)|) [35]:

. o|z(m)]
A(jzg (m)]) = Qal? -, )
B
a q1
o(laf(m)]) = el (I )

1+ (%)qz
where o, g, B3¢, Oar Tsa, q1 and go are model parameters.
The distorted signal can then be expressed as
sp(m) = f(z8(m)) = A(\xz(m)|)ej(angle(ac‘;(m))+¢(lr§é(m>\))7
(6)
where angle(x{) denotes the phase of the complex signal zf.
The received signal at time instant m is represented as
y(m) = Hs(m) + w(m), (7)

where H € CV*X is the MIMO channel matrix, y(m) =
2 (m), ya(m), ..., yn ()], s(m) = f(x*(m)) with
x%(m) = [2¢(m),x3(m),...,2%(m)]T being the length-K
vector, and w(m) denotes a white Gaussian noise vector. Note
that the vectors and matrix in (7) are all complex-valued,
which can be rewritten as the following real model:

- B ] ) i)

y’(m) H' s’(m) w’(m)

®)

Due to the combined effects of I/Q imbalance and PA non-
linearity, the input-output relationship of the MIMO system is
complex, and is denoted as

y'(m) = S(x(m)) + w'(m), 9

where S(-) is the system transfer function.

We assume that the channel matrix and the parameters of
I/Q imbalance and PA nonlinearity models are unknown. Each
user transmits a pilot signal followed by data. The aim of the
receiver at the BS is to detect the transmitted data symbols of
all users. To achieve this, there are two approaches.

o Direct detection: A symbol detector is trained directly
using pilot symbols, where the input is the received signal
and the output is the predicated symbols. As the system
transfer function S(-) is complicated, direct detection
seems sensible. To deal with the nonlinearity, polyno-
mial and DNN based techniques have been used in the
literature. However, low order polynomials have limited
capability to combat the nonlinearity. Although, high
order polynomials have better capability, it is difficult to
determine the polynomial coefficients due to numerical
instability. DNN techniques are more effective in dealing
with the nonlinearity, but are difficult to train with limited
pilot symbols.

o Indirect detection: With the pilot symbols, the system
function S(-) is first identified, then a symbol detector
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is developed based on the system function. This strategy
allows the design of powerful Bayesian detectors, but
the implementation of indirect detection is challenging.
First, to identify S(-) with pilot symbols, we need to
estimate the parameters of the I/Q imbalance and PA
nonlinearity models and the MIMO channel at the same
time, which is a difficult task due to the nonlinearity.
Second, even if we assume that S(-) is known, it is still
difficult to develop a detector, especially a Bayesian one,
due to the nonlinearity of S(-). The aim of this work is to
develop a Bayesian detector by using NN and factor graph
techniques, which is more powerful than direct detection
in the literature.

B. Existing Detection Methods

1) Polynomial Based Direct Detection: A real-valued mem-
ory polynomial (RMP) model was developed in [13], where
the 1/Q branches after modulation are applied to the RMP
model in order to compensate the I/Q imbalance. The work
was extended to MIMO systems to address the joint effect of
I/Q imbalance and PA nonlinearity in [34].

RMP can be used to directly compensate the hardware
imperfections and deal with multi-user interference. The detec-
tor (for the kth user) is expressed as

Tr(m) = argminy ¢ 4|Zr(m) — Mg (10)
with
&r(m) = &2 (m) + j}(m). (11
Here,
N P L
jg(m) = z Z Z ag,p,l,k%{yn(m =0}
n=1p=1 1=0
+ 00 S{yn(m = 1)), (12)
N P L
j}c(m) = Z Z Z Cﬂn,p,l,k%{yn(m =0}
n=1p=1[=0
+ b1k S{yn(m = 1)}, (13)

where P is the order of the polynomial, L is the memory
length, and {a?, . al, ,} and {63, 0L, .} are the coeffi-
cients of the polynomial with respect to the real and imaginary
parts of the received signals, respectively. In the case of
memoryless distortions (considered in this work), the memory
of the RMP can be set to 0.

The RMP based detector is obtained by determining
its polynomial coefficients {ag,lﬁk,a;l’k} and {bg,uk»b;;,l,k}
using pilot signals. The models (12) and (13) are linear
with respect to the polynomial coefficients. With the squared
error between {Z;(m)} and {zy(m)} as the cost function,
the coefficients can be determined using least squares (LS).
However, the determination of the coefficients suffers from
numerical instability due to the involved matrix inversion,
especially when the polynomial order is high [15].

2) DNN-Based Direct Detection: Another way to deal with
the complex nonlinear relationship described in Section II-A is
to use DNNs. As an example, a detector based on a real-valued
DNN with two hidden layers is shown in Fig. 1. Here the
received signal is input to the DNN and estimated symbols
are output, i.e.,

x(m) = DNN(y'(m)),

where the DNN deals with the combined distortions and multi-
user interference. A hard decision can be made based on x(m),
ie., Tx(m) = argminy  4|Tx(m) — Aal.

Depending on the number of layers and hidden nodes, the
number of parameters of the DNN can be large, leading to
difficulties in training as a large number of pilot symbols are
required. Furthermore, the training of DNN receivers is prone
to overfitting.

(14)

III. BAYESIAN SIGNAL DETECTION WITH MESSAGE
PASSING ON NEURAL NETWORKS

We adopt indirect detection and develop a Bayesian detector
with the aid of NN and factor graph techniques. The devel-
opment of the Bayesian detector relies on the signal model
(9), in particular the system transfer function S(-). However,
it is difficult to estimate the unknown parameters and MIMO
channel required in S(-). To circumvent this, we train an NN
(denoted by NN (+) ) to substitute S(-), i.e., we expect that

NN (x) = S(x), (15)

for any symbol vector x. The use of the substitute NA()
leads to the following benefits:

e Compared to estimating the parameters and MIMO
channel involved in S(-), training of the NN is much
easier, i.e., NN(-) is obtained using back-propagation.
Moreover, the use of NNs is able to capture hardware
imperfections that may not have explicit mathematical
expressions.

o Very different from the use of DNNs in the literature
(which are typically a black box), the NN in this work
is used to model S(-). Hence, the architecture of the NN
can be carefully designed based on the signal flow of the
MIMO system as detailed in Section III-A, so that the
number of parameters of the NN can be minimized, which
is crucial to achieving efficient training with limited
number of pilot symbols.

« Bayesian inference based on NA/(-) is easier than that
based on S(-) as the building blocks of NA(-) are
matrix-vector products and activation functions. We will
show in Section III-B that, leveraging UAMP, efficient
Bayesian inference for symbol detection can be imple-
mented with message passing.

A. Signal Flow Based NN Architecture Design and Training

As shown in Fig. 2, the NN consists of an input layer, two
non-fully connected hidden layers and an output layer. We
note that the NN is used to model the system characterized
by (1), (6) and (8). The symbols of all users are input to the
NN, and the outputs of the NN are the predicted received
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Fig. 2. Proposed NN to characterize hardware imperfections and multi-user
interference.

signals, where the real and imaginary parts of the signals are
separated to make the NN a real-valued one. The architecture
of the NN is designed based on the signal flow expressed with
(1), (6) and (8), i.e., the transmitted symbols are first distorted
due to I/Q imbalance and PA nonlinearity and then undergo
multi-user interference.

In Fig. 2, the input layer, the first hidden layer and the input
to the second hidden layer are essentially 2K sub-NNs, which
are used to model the I/Q imbalance and PA nonlinearity of the
K users. Each sub-NN has two input nodes corresponding to
the real and imaginary parts of a symbol, and a single hidden
layer with N’ hidden nodes, where the activation function
Tanh is employed. As shown in Fig. 2, the real and imaginary
parts of a symbol are shared by two sub-NNs, which are called
a sub-NN pair. There are K sub-NN pairs in total, and they
are indexed by (I, k), where [ = 1,2 and k = 1,..., K. The
pair of sub-NN (1, k) and sub-NN (2, k) models the combined
I/Q imbalance and PA nonlinearity of user £ shown in (1) and
(6), i.e., the output of one sub-NN is expected to be a good
approximation to ${sx(m)} and the output of the other one
is expected to be a good approximation to I{sx(m)}.

According to Fig. 2, the input to the kth sub-NN pair is
denoted as

cr(m) = [R{zr(m)}, Sk (m)}". (16)
Then, the output of the (I, k)th sub-NN is
dik(m) = g1 (Wi er(m) + by ), an

where W}, and b}, are the corresponding weight matrix and
: i ’ 1wl 1 T

bias Vecltor of the slub-NN 1(l, k), and VYUC —T[Wl,m, “il,m]

with Wi, = Wy 11, W g 190+ Wigne] and Wy o =

(W] o 91> W] 295+ -+ W] g o] " Each sub-NN has one output
node, and the output of the (I, k)th sub-NN is expressed as

sir(m) = (wiy) " dir(m), (18)

where Wi, = [w}),, W}y o, W}y n]" are the output
weights of a sub-NN. It is known that an NN with a single
hidden layer has the property of universal approximation [36].
We find that the sub-NNs with a single hidden layer in Fig. 2
are sufficient to model the combined PA nonlinear distortion
and I/Q imbalance. When all transmitters have the same I/Q
imbalance and PA nonlinearity, the sub-NN pairs share the
weight and bias parameters, i.e., the parameters of the sub-NN

pairs can be tied. This reduces the number of parameters of
all sub-NNs from 6 K N’ to 6N’.

Assume that the combined I/Q imbalance and PA nonlinear-
ity are well modelled using the sub-NNs. The second hidden
layer and the output layer are designed to model the multi-user
interference. The activation functions of the two layers go(.)
and g3(.) are linear as the interference shown in (8) is in a
linear form. The second hidden layer is fully connected to the
output layer, yielding the predicted in-phase and quadrature
components of the received signal. Considering the structure
of H' in (8), the weight matrix W3 between the second
hidden layer and output layer should have the same structure.
To impose such a structure on the weight matrix, we tie the
elements of the weight matrix, leading to
W31 W32:|

W? = |:_W32 w3l

(19)
where W3! and W3? are sub-weight matrices with dimension
N x K. It can be seen that the weight matrix has 2K N
parameters, which is in contrast to the unstructured weight
matrix that has 4K N parameters. Then the output of the NN
is

y'(m) = W?s'(m), (20)

where s'(m) = [s11(m),...,s1,k(m),...,s2k(m)]T is

the output vector from the 2K sub-NNs, and §'(m) =
[v11(m),...,v1,n(m),...,van(m)]T is a length-2N output
vector with vy ,(m) = R{J,,(m)} and va ,, (M) = {Gn(m)}.
Hence, the predicted signal of the nth receive antenna is
represented as §,(m) = vq,,(m) + jva,n(m).

Training of the NN is straightforward. Suppose the
length of the pilot signal is My, i.e., we have M, train-
ing samples {(p(m),t(m)),m = 1,...,Mp}, where
t(m) = [ti(m),ta(m),...,tg(m)]T and p(m) =
[p1(m), p2(m),...,pn(m)]T denote the pilot symbols and
corresponding received signal. The NN is trained with input
t'(m) = [R{t(m)}T, 3{t(m)}T]T, expected output p’(m) =
R{p(m)}T,3{p(m)}T]T and loss function

1 1 My 2N
Loss = — — — ! 2 21
O = 5N gy 2 2 (enlm) =Bl (m))%, @D

ie., the weights {W}, w7, W3} and biases {b},} are
determined with back-propagation [37].
After training, we obtain the following model:

~/

y'(m) = y'(m) + w'(m)
= NN (x(m)) + w'(m), (22)

where NN () denotes the trained NN and the term w’(m)
denotes a noise vector that accounts for training and modelling
errors. We then detect the transmitted symbols based on the
trained NN, as elaborated in the next section.

B. Bayesian Signal Detection Based on the Trained NN

During the phase of data transmission, we perform Bayesian
inference for the transmitted symbols based on the trained
NN, i.e., model (22). We assume the error w’(m) is white
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Gaussian with mean zero and unknown variance €' (¢ is the
precision). Our aim is to determine the transmitted symbol
vector x(m) based on the received signal y(m). We use
a Bayesian approach, in particular, message passing, where
we represent the trained NN (22) as a factor graph. The
weight matrix W3 in the NN leads to a densely connected
factor graph, resulting in difficulties in message passing in
terms of complexity and convergence. The AMP algorithm
is efficient in handling short loops induced by i.i.d. (sub-)
Gaussian matrices, but the weight matrix ‘W3 here is not i.i.d.
(sub-)Gaussian. Instead, we use the UAMP algorithm.
According to (20) and (22), we have

y = W3+, (23)

where the time index m is dropped for simplicity. As UAMP
works with a unitary transformed model, we perform a unitary
transformation to (23), i.e.,

r=Uly = &5 + o, (24)

where ® = UPW?3 = AV, U is obtained from the SVD
W3 = UAV, and the noise @ = UHw' has the same
distribution as w’ since U is a unitary matrix. As the noise
precision € is unknown, its estimation is included in the
detector. Define an auxiliary vector

z = &5/, 25)

which is treated as a latent variable. Then the joint distribution
of x, §’, z and € given r can be expressed as

"[%)p(x),

p(x,2,8,€|r) < p(e)p(r|z, €)p(z|s')p(s
(26)

where we assume an improper prior for the noise precision,
ie., p(e) x 1/e [38],

I'lZ 6 Hp rnlzﬂm (27)
with p(rn\zn, 6) = N(Tn; Zny 6_1)’
plals) = 8 — @) = [[ 6 — @), ()

with <I>£ being the nth row of P,

p(s'[%) = [ [ plstnler i, zan) = [ (sun — i), (29)
1Lk

Lk
with fi(x},) given later in (44) and x}, = [x1 4, 22,]7, and

| Al

x) = [[plex) = TT/IAD D 6z — Xa)
k k a=1

Our aim is to obtain the (approximate) marginal (a posteriori
distribution) of each transmitted symbol p(z|r), based on
which a hard decision can be made with the maximum
posterior probability (MAP) criterion.

The factor graph representation for the factorization in
(26)-(30) is depicted in Fig. 3, where squares and circles
represent function nodes and variable nodes, respectively.
To facilitate the factor graph representation, we introduce
the notations in Table I, which shows the correspondence

(30)

Fig. 3.

Factor graph representation of the NN-modeled system.

TABLE I

FACTORS, UNDERLYING DISTRIBUTIONS AND FUNCTIONAL
FORMS ASSOCIATED WITH (26)

Factor Distribution Functional Form
fra p(Tn|2n, €) N(rn;zn, e 1)
fon p(znls’) 8(zn — <I>ZZS’)
Tsiw | PGLEITLE T2k) 8(si,e — f1(x}))
Jar p(xx) (1/14)| z‘*“ Ok — Aa)
fe p(e)

between the factor labels and the corresponding distributions
they represent.

We develop a message passing algorithm based on the
factor graph in Fig. 3. Due to the presence of loops in the
graph, an iterative process is required, which involves several
rounds of forward and backward recursions. In particular,
we use UAMP to handle the densely connected part of the
graph, which is crucial to achieving high performance with
low complexity. To deal with various factor nodes, both
belief propagation (BP) [39] and variational message passing
(VMP) [40] are used. In the following we derive the message
updates, where the message passed from node A to node B
is denoted by m 4. (c), which is a function of ¢. It is noted
that the message passing algorithm is an iterative one, and
some message computations in the current iteration require
messages computed in the last iteration. The message passing
algorithm is summarized in Algorithm 1, and the derivations
of the algorithm line by line are elaborated in the following.

According to the derivation of (U)AMP using loopy BP,
(U)AMP provides the message from variable node z,, to
function node f, . Due to the Gaussian approximation in the
derivation of (U)AMP, the message is Gaussian, i.e.,

Mzp— fry, (2n) = M5, —zn (2n) o N(zn§pnv Tpn)’ (31

where the mean p,, and the variance 7, are the nth elements
of p and 7, given in Lines 1 and 2 of Algorithm 1.

Following VMP, the message my, _..(¢) from factor node
fr, to variable node € can be expressed as

mg,. —e (6) X exp {<10g frn (Zna 6)>b(zn)} ’ (32)
where the belief of z,, is given as
b(zn) o Mzp— fr, (Zn)mfm—»zn (2n)- (33)

Later in (39), we will show that my, .. (z,) o
N (2n; 70, €1) with é71 being the estimate of ¢! in last
iteration, and its computation is given in (42). Hence b(z,) is
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Algorithm 1 MP-NN Message Passing Detector

Define vector A = AA 1. Initialization: 7'5(0) =1,809 =0,
c=0%%=0é=1andi=0.

Repeat
LTy =TIN
2: p P — 7, C
3T, = Tp. /(L4 éTp)
4 z=(érp-r+p)./(1+éTyp)
5. 6= 2N /(v —2[* + 17'v.)
6: T, = 1./(Tp —|—€_11)
7. c=T1.-(r—p)
8 1/7, = (1/2K)A" 7,
9: q =8+ 74(®c)
10: Vi k, G ), = (W) g(Wi %) + bl )
1 Yk, gy, = (Wi - wig )" (WG + by,
12: YLk, v, = (W2, ~w},k,2)Tg’(W?kf<2 +bix)
l,
13: VI, k, ijk = (Tq + Vi kTwp )Mk
14: VI, k, Tm (Ta + 12 1T sy ) Vb
15: VI, k, wlk (k= Qi) /e + Tuk
16: Yk, ¥yh = (qus — sz)/%k+xzk

17: Vi k, 7y, = (1/%k +1/ m)

18: Vi, k, Yrx = (d’ll/i/ Ti +¢z v/ zzuk)TWk
190 VE, 75 = Tyy i + Ty

20: Vk, P = 1k + jok .

21: Yk, a, o = eXP(—Tikl\/\a — ¥l?)

22: Yk, a4, fea = €/ Soroh Ena

23: k, @0 = S Aajina
24: Vk, T, 41 = ZlAll ikl Aa
25: Calculate nll'};l,fyll*,;l, qﬁgl using Lines 10-12 with &
26: Vh, 701 = 7itl = 1/2r3H

£i+1‘2

A1+1

ml k 5172 k
27: Vk‘ All-&-kl _ ER{AH-I A;-',;Cl \s{xz-kl
28: Vi, k, TN = ()T 4 ()Pt
29: VI, k, 53! = qﬁl
30: §+1—4K21 1 k 1 SLL+Ic1
31 =1+1

Until terminated

Gaussian according to the property of the product of Gaussian
functions, i.e., b(z,) = N (2n; 2n, v,, ) with

ve, = (17, + 67

n (34)
Vs, (€rn + D/ Tp, )-

(33)

Zn

Note that 7, may contain zero elements. To avoid numerical
problems in (34) and (35), they are rewritten (in vector form)
as

T, =Tp.[(1 + éTp),
z2=(érp -r+p)./(1+€Tp),

(36)
(37)

which are Lines 3 and 4 of Algorithm 1.

From (32) and the Gaussianity of b(z,), the message
my, _.c(€) is expressed as

M —e(€)  Vesexp(—e(lr — 2l +1..)).  (38)

2

According to VMP, the message from function node f,. to
variable node z,, is

mfrn —Zn (Zn) X eXp { <10g fT‘n (Z’na 6)>b(e) }

XN (2n3mn, €71, (39)
where € = (€)y() with

b(€) X mf_’frn (e)m.fﬂﬂ" _’6(6)

2N
) [Tms., (e
x eV Lexp {—; Z (Jrn — 2l + vs,) /2} (40)

n
and

= fe(e) H

n’#n

Mef,, (€) my, (€. (41)
It is noted that b(e) follows a Gamma distribution with rate
parameter —1>" (|r, — 2,|? + v., ) and shape parameter N,
$0 € = (€)p(e) can be computed as
. 2N
€= ,
Zn 1(rn = 2al? +02,)
which can be rewritten in vector form shown in Line 5 of
Algorithm 1. From (39), the Gaussian form of the message
my, .., (2n) suggests the following model

(42)

rn=2n +wnp,n=1...,2N, (43)

where w,, is a Gaussian noise with mean 0 and variance
¢~L. This fits the forward recursion of the UAMP algorithm
with a known noise variance, corresponding to Lines 6 - 9 of
Algorithm 1.

According its derivation, UAMP produces the message
My o fap (s1,6) < N (81,55 qk, Tg) With mean g; 5, and vari-
ance 7,, which are given in Lines 8 and 9 of Algorithm 1. Next,
we need to compute the outgoing message of the function node
Jorxe = 0(sik — fi(xy)). It is noted that the local function is
nonlinear with the following expression:

fixg) =

where g1(-) = Tanh(-). The nonlinear function makes the
computation of the message my, , —a,, (1) intractable.
To solve this problem, f;(xj},) is linearized by using the first
order Taylor expansion at the estimate of xj in the last
iteration, i.e.,

filx) = fil%)

(WZQ,k)Tgl(Wll,k,lxl,k + Wll,k,gx2,k + bzl,k;), (44)

1)+ (%) (g, — %5, (45)

with

filX)) = Gue = (Wz W)’ gl(Wz kX + bz k) (46)
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which is Line 10 of Algorithm 1, and

dfi(x%y) 0fix)]"

ey, T
= B = 5 3 47
fi(x%) N . [10,k5 V,k] 47)
where
T .
M = (Wl21< 'Wll,k,l) gll(WllkX;v + bll,k)v (48)
Yk = (Wl2,k : Wll,m)Tgi(Wllka% + bll,k)v (49)

which are Lines 11 - 12 of Algorithm 1. In the derivations,
we use the property g1 (-) =1 — g1()2.

With indexes [,1’ € {1, 2}, the message mfsm_,ggl/_’k(xl/,k)
is computed by the BP rule with messages m, = Tern (s1.k)
and VI" # U',mg,, = fer k(xlu x) later computed in (65),
yielding

mfsl_’k_‘ll/yk (.’L‘l',k;)

= (forn (810> X5) ), e fop e LR gy ()

o Nz oy, il ), (50)
where for I’ =1
l,
Tw,lk (14 + 'YlQ,kTm,k)/le,k (51
Z/JM = (@ — Qui)/Mmr + T1k (52)
and for I’ = 2
1,2
T = (Ta T 00kTar )/ Viw (53)
Un = (e — Guk) /e + F2k (54)

given in Lines 13 - 16 of Algorithm 1.
My —f., , (T1) is calculated as

The message

Ny o= fa (ml,k) =Mfo, =ik (mlak)meQYk"$l,k (ml,k)

o N (@113 V1 ks T ), (55)

with
T = (Uryl + 152 )7 (56)
Yik = Gk /T T VR o0 ) Tk (57)

given in Lines 17 and 18 of Algorithm 1.

Note that all the values in the above computations are real
as the real parts and imaginary parts of the variables are
separated. To facilitate the estimation of the complex-valued
symbols, we merge the real and imaginary components:

The = T1,k T Topo (58)
Y = Y1k + Jor, (59
which are shown in Lines 19 and 20 of Algorithm 1.
The prior of xj, is a uniform discrete distribution, i.e.,
plzr = Aa) = 1/]A[. (60)

It is not hard to show that the a posteriori mean &j; and
variance 7., of z; are given by (also shown in Lines 21 - 24

of Algorithm 1)

|Al
B =Y Aaltk.a 61)
a=1
|Al
Tow = O lkala — Zx]%, (62)
a=1
where
|Al
o =%kal Y Ckar (63)
a=1
with
€ra = exp(=77 A0 = Pif?). (64)

To simplify the message computations, we use the following
approximation:

Mayw— oy = Marp—Foy ) = Mo, =z (65)

Since the a posteriori mean % of xj are updated in (61),
we update f(x),) (including g x, m x and ;5 ) in (45) with
the updated Zj. This is Line 25 of Algorithm 1.

To compute the message m Fer s> WE Separate the real
part and imaginary part of z;, and assume that they have the
same variance, so

(66)
(67)

Teyg = Twog — Trk/Q

Ty = R{ 21}, To . = {3},
which are Lines 26 and 27 of Algorithm 1. Then, we are ready
to compute the message from fs, , to s, ie.,

mfsl:k_’sl,k (Slvk) = <f5l,k (Sl,kﬂ X;c)>nl/ mwl’,k"fsl,k ("L'l’,k)

O(N(Sl’k;?l’k,?shk), (68)

with
<F = leszl,k + ’712,197-302,1@ (69)
‘? = ks (70)

which are Lines 28 and 29 of Algorithm 1. According to
UAMP version 2 [33], an averaged variance is required, i.e.,

2 2K

= SR D T

=1 k=1

(71)

which is Line 30 of Algorithm 1. This is the end of a single
round iteration of the iterative process. A number of iterations
are performed until the algorithm converges, or the algorithm
is terminated when a pre-set number of iterations is reached.

C. Complexity Analysis

We analyze the complexity of the proposed detector and the
benchmark detectors, including the DNN-based direct detector
and RMP-based direct detector. Only multiplications/divisions
are counted in the analysis.

For training of the proposed detector, the back-propagation
consists of a forward phase for signal flow calculation and
a backward phase for gradient calculation. The forward phase
requires 8 K N’/ +2K N operations for a single training sample,
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and the backward phase requires 4K3N’ + (N')3N opera-
tions with tied weights. Hence, for £ iterations of gradient
descent with My training samples, the proposed detector has
the complexity O(MoL(KN' + KN + K3N' + (N')3N)).
Similarly, for the DNN based direct detector, the complexity
for training is O(MoLKNNiN,), where N; and Ny are
the number of nodes of the first and second hidden layers.
As Nj and Ny are normally much larger than K, N and N’,
the proposed detector has less training complexity than the
DNN-based direct detector. The training of the RMP-based
direct detector requires a complexity of O((NP(L + 1))3 +
(NP(L + 1))?My), where matrix inversion is required to
determine the polynomial coefficients (the number of coef-
ficients can be very large). For the proposed detector, the
training length M, can be greatly reduced and it converges fast
with less hyperparameters. Compared to the RMP-based direct
detector (with zero memory length), the proposed detector
may require higher complexity in training, but the proposed
detector delivers remarkably better performance as shown in
Section V.

For signal detection, the proposed detector performs UAMP
on the trained NN. The complexity of UAMP is dominated
by two matrix-vector product operations in Line 2 and Line 9
of Algorithm 1, resulting in O(K N) per iteration. Besides,
the determination of ¢, 7;, and 7/, in Lines 11-13 of
Algorithm 1 also involves matrix-vector product operations
with O(KN’) per iteration. An SVD with complexity
O(min(K2N, N?K)) is also needed, but it only needs to
be computed once, and can be shared by the whole symbol
sequence with length L,. Therefore, with I iterations, the
complexity of the proposed detector is O([.KN + I.KN' +
min(K2N, N2K)/L,). The proposed detector has a fast con-
vergence speed (it requires about I. = 10 iterations to
converge according to the simulations in Section V). The
DNN-based detector requires a complexity of O(NN; +
NiNs + NoK), and the RMP-based detector requires a com-
plexity of O(KNP(L + 1)). So, the complexity of proposed
detector can be slightly larger, but it performs remarkably
better than the benchmark detectors as shown in Section V.

IV. EXTENSION TO CODED SYSTEM WITH
TURBO RECEIVER

In a turbo receiver, the detector and decoder work in an
iterative manner to achieve joint detection and decoding. It is
well known that a turbo receiver is much more powerful than
a conventional non-iterative receiver [41], [42]. Compared
to the direct detectors, the proposed Bayesian detector is
readily extended to a SISO detector so that a turbo receiver
can be implemented. In a turbo system, the information
bits are firstly encoded and then interleaved before mapping.
Each symbol z; € A = [A,..., 4] is mapped from a
sub-sequence of the coded bit sequence, which is denoted
by u, = [uj,..., uLOg‘Al]. Each )\, corresponds to a length-
log |.A| binary sequence denoted by {Al, ..., Ai® Al

The turbo receiver is shown in Fig. 4, which consists of the
UAMP-based Bayesian detector and a SISO decoder, working
in an iterative manner to exchange extrinsic log-likelihood
ratios (LLRs) of the coded bits. For simplicity, a single user is

[ -1 |
L 07 | SISO u,
IV Decoder
. ] |
. MP-NN . . .
Detector e . .
[ 1 |
I SISO u
Decoder K
YN 1 I |

Fig. 4. Block diagram of turbo receiver, where IT and IT-! denote an
interleaver and the corresponding deinterleaver, respectively.

assumed in Fig. 4. The detector calculates the extrinsic LLRs
for each coded bit with the extrinsic LLRs from the decoder
as the a priori information. Then, with the extrinsic LLRs
from the detector, the decoder refines the LLRs with the code
constraints. In this work, we assume a standard SISO decoder
(e.g., the Bahl-Cocke-Jelinek—Raviv (BCJR) algorithm for
convolutional codes) is employed, and we adapt the detector
proposed in Section III to a SISO one.

The task of the detector is to calculate the extrinsic LLR
for each code bit uZ(m), which is represented as

e(,d\ P(UZ = 0Jr) a(, d
L (uk) - ln(p(ui — 1‘!‘)) L (uk;)v
where L(u}) is the output extrinsic LLR of the decoder in
the previous iteration. The extrinsic LLR L¢(uf) is passed to
the decoder. The derivation for L¢(u}) in terms of extrinsic
mean and variance can be found in [43], and L¢(u}) can be
expressed as

(72)

[Aa—mg, |? ! /
T, (=) T sl =)
o€ ' qa'#q
e qy __ q
L(uy) =1n TR PRV
> exp(— 2Bl T p(uf = %)
Ao €AY q'7#q

(73)

where Ag and Aé denote subsets of all A\, € D whose label
in position ¢ has the value of 0 and 1, respectively, and my,
and vy are the extrinsic mean and variance of x3. According
to [43], the extrinsic variance and mean are defined as

1 1

e —1
=(— — — 74
Vg (U[k): 'Uk) ( )
my, My
mik = U;k( P s - . )7 (75)

Vzy, Vzy,

where m,, and v,, are the a priori mean and variance of xy,
calculated based on the output LLRs of the SISO decoder [41],
[42], [44], and mP,  and v} are the a posteriori mean and
variance of xj. By examining the derivation of the Bayesian
detector in Algorithm 1, we can find that 'J}k and Tin consist of
the extrinsic mean and variance of zj, as they are the messages
passed from observation and do not contain the immediate a
priori information about x;. Therefore, we have

mg, =, v, =75 (76)

Then, (73) can be readily used to calculate the extrinsic LLRs
of the coded bits. Note that with the LLRs output from the
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SISO decoder, we can compute the probability p(z, = A, ) for
each zj, which is no longer 1/|.A] in Algorithm 1. Therefore,
k.o 1n Line 21 of Algorithm 1 needs to be changed to

gk,a = p(ﬁk == )\a) eXP(*UJ:P\a - lzk|2)

In addition, we note that the iteration of the detector can
be incorporated into the iteration between the SISO decoder
and detector, i.e., only a single loop iteration (without inner
iteration) is needed.

(77)

V. SIMULATION RESULTS

Assume that the BS is equipped with a uniform linear
antenna array, and in the simulations we set N = 10 and K =
5 (unless specified). The modulation scheme used is 16-QAM.
The Saleh-Valenzuela channel model [45] is employed. The
channel vector h; between the kth user and the NN receive
antennas is represented as

N Qk
hy =[5 Brgalfky), (78)
Qr =

where 6y, is the incident angle of the gth path, a(f,) =
L[l, e7j2‘n'clsin(0kq)//\7 o ,efj27rdsin(9kq)(N71)//\]T is a
length- N steering vector with antenna spacing d, A is the
wavelength of carrier, Qi is the number of paths for user
k, and By, is the complex gain of the gth path. We use
the same parameter settings as in [46], where d = )\/2,
Q = 3, Brq follows Gaussian distribution with zero mean
and unity variance, and 0, is uniformly drawn from
(—0.57,0.57]. As in [35] and [47], the parameters used for
the PA nonlinearity are o, = 4.65, ag = 2560, B, = 0.114,
0, = 081, z = 0.58, g1 = 2.4 and ¢» = 2.3. For 1/Q
imbalance, the parameters are 0, = 4° and A\ = 0.05. The
SNR is defined as P,/c2, where P, is the power of the
transmitted signal of a user (assuming all users have the same
transmit power), and o2 is the power of the noise (per receive
antenna) at the receiver. We compare the proposed detector
called MP-NN, where the parameters of the sub-NN pairs
are tied, with existing detectors, including DNN based direct
detector [26] and RMP-based direct detector [34], which are
called D-DNN and D-RMP, respectively.

The deep learning framework Tensorflow is used for (D)NN
training and validation. Batch gradient descent is adopted, and
cross-validation is used to avoid overfitting and ensure the
generality of the trained model. We use 80% and 20% of the
dataset for training (including 3-fold validation) and testing.
Through the validation data set, we determine that the batch
size is 100 and the number of epochs is 300. The Adam
optimizer with a learning rate 0.01 is employed to update
the (D)NN parameters. For the proposed NN, the number
of hidden nodes N’ in the sub-NNs is 20. For D-DNN, the
activation function T'anh is employed for hidden layers. The
number of hidden layers is 2, and the numbers of nodes of
the hidden layers are 30 and 40, unless these parameters are
specified. For D-RMP, a fifth order polynomial is employed
and the memory length L is set to 0.

-%-D-DNN 500
->-D-DNN 1000
% D-RMP 500
4 -/A-D-DNN 3000
10 £|$>D-RMP 1000|
-A-D-RMP 3000
-%-MP-NN 500

->-MP-NN 1000
-5 | [-A-MP-NN 3000
10 : . R
5 10 15 20 25
SNR(dB)

Fig. 5. SER performance comparisons of MP-NN, D-DNN and D-RMP
based detectors with different training lengths.
10° :
-/ ‘D-DNN
—A—D-RMP

MP-NN

30 35

SNR (dB)

Fig. 6. SER performance comparisons of MP-NN, D-DNN and D-RMP
based detectors with K=16 and N=32.

A. Uncoded System

We first consider a uncoded system. Fig. 5 shows the
symbol error rate (SER) of the detectors, where the training
lengths 500, 1000 and 3000 are used to examine the impact
of training length on the performance of the detectors. From
the results, we can see that in all the cases, the proposed
MP-NN detector always performs remarkably better than other
detectors. We can also see that D-RMP performs better than
D-DNN. Moreover, when the training length is decreased
from 3000 to 500, there are only minor changes in the
performance of MP-NN, which indicates that the training
length 500 is sufficient for MP-NN. In contrast, the impact of
the training length on the performance of D-RMP and D-DNN
is significant, and their performance degrades rapidly with the
reduce of the training length. These results demonstrate the
effectiveness of the proposed detector, i.e., it can be trained
more effectively and the Bayesian detector is much more
powerful. Considering that neither D-RMP nor D-DNN works
well with training lengths 500 and 1000, we use training length
3000 in the subsequent simulations. We also examine the SER
performance of the proposed detector with a larger number of
users and receive antennas. The results are shown in Fig. 6,
where the number of users K is increased to 16, the number
of receive antennas [V is increased to 32, and the other setups
remain the same as those in Fig. 5 (with training length 3000).
It can be seen that the proposed MP-NN detector still achieves
significant performance gain compared to the D-DNN and
D-RMP detectors.
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—>-D-DNN case 1 N
—+—D-DNN case 2 AN
1072} |-A D-DNN case 3 R
‘ ‘ ‘ ‘ A
5 10 15 20 25 30
SNR (dB)

Fig. 7. SER performance comparisons of D-DNN with different
hyper-parameters.

10F -

—%—MP-NN with AMP
—£—|gnore hardware impairments
=7 Only consider PA nonlinearity
105 | i MP-NN with UAMP

5 10 15 20 25 30 35
SNR (dB)

Fig. 8.  SER performance of the MP-NN detector, the receiver without
handling I/Q imbalance, and the receiver without handling nonlinearity and
1/Q imbalance.

With the training length fixed to 3000, we examine the
performance of D-DNN by changing its hyper-parameters
including the number of layers and hidden nodes, which are
indicated by cases 1, 2 and 3. In case 1, the number of hidden
layers is 2, we increase the number of hidden nodes in the
two hidden layers to 300 and 400, respectively. In case 2,
we increase the number of hidden layers to 3 with hidden
nodes 30, 40 and 50, respectively. In case 3, we use the default
setup as before. The results are shown in Fig. 7. It can be seen
that, compared to the default hyper-parameter setting (case 3),
the SER performance of D-DNN deteriorates significantly with
other settings. This is because the number of parameters for
the DNN is increased significantly in cases 1 and 2, and
the training samples are insufficient. Hence in the subsequent
examples, we will use the default setting for D-DNN.

It is mentioned in the previous section that, UAMP plays
a crucial role in the message passing based Bayesian detector
MP-NN. To demonstrate this, we also use AMP to deal with
the densely connected part of the factor graph (i.e., AMP is
integrated into the message passing algorithm). We compare
the SER performance of the detector with AMP and UAMP
in Fig. 8. We can see that the AMP based detector simply
does not work as the AMP algorithm does not converge.
To demonstrate that it is necessary to handle the I/Q imbal-
ance and PA nonlinearity at the receiver side, we compare

-30 [-©-Polynomial based modeling (12th order)
-E5-Polynomial based modeling (5th order)
-©-Proposed NN based modeling

10 15 20 25 30 35
SNR(dB)

-35
5

Fig. 9. Modeling performance comparison of the proposed NN and
polynomial methods with 5th and 12th orders, respectively.

the MP-NN receiver with the receiver without considering
I/Q imbalance and nonlinearity, where the zero-forcing (ZF)
detector with known MIMO channel matrix is employed.
We also compared the proposed receiver with the receiver
without considering I/Q imbalance, where polynomial based
detector is employed to handle PA nonlinearity. The results are
also shown in Fig. 8. It can be seen that, without considering
both I/Q imbalance and PA nonlinearity, the receiver simply
does not work properly. If only PA nonlinearity is considered,
the receiver performs poorly and a very high SER floor is
observed. The results indicate that both I/Q imbalance and PA
nonlinearity need to be properly handled by the receiver to
achieve good performance.

As discussed in the previous section, the architecture of
the NN proposed in this work is designed based on signal
flow to model the joint effects of hardware impairments
and co-channel interference. We note that the polynomial
techniques [34] can also be used to model the joint effects.
It is interesting to compare the performance of the two
methods. We use the normalized mean square error (NMSE)
to evaluate the modelling performance and the results are
shown in Fig. 9, where polynomials with the 5th and 12th
order are used. We note that, although the use of higher
order polynomial may improve the modelling capability of the
polynomial technique, it causes difficulties in determining the
polynomial parameters due to numerical instability. Moreover,
it is noted that when the order of polynomial increases by one,
the number of parameters to be determined is increased by
4K N(L+ 1), which is a significant increase, making it prone
to overfitting due to the limited number of training samples.
As shown in Fig. 9, the proposed NN significantly outperforms
the Sth-order polynomial, indicating that the proposed NN
has much better modeling capability. When increasing the
polynomial order to 12, the performance of the polynomial
method becomes extremely poor due to numerical instability
and overfitting. The results demonstrate the advantage of the
proposed NN in modelling.

So far, we have compared the performance of the receivers
with moderate hardware imperfections. It is also interesting to
test the capabilities of the receivers in handling severer hard-
ware imperfections. According to [48], we increase the gain
a, of amplitude to amplitude conversion to 6.5 to simulate
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Fig. 10. SER performance comparisons of the receivers with moderate and
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Fig. 11. SER performance comparison with extreme I/Q imbalance and PA
nonlinear distortion.

severer PA nonlinearity. Fig. 10 shows the SER performance
of the receivers. It can be seen that the performance of D-RMP
and D-DDN deteriorate significantly with severer hardware
imperfections. In contrast, the proposed MP-NN receiver only
incurs marginal performance loss, and it still delivers out-
standing performance. We also adjust the I/Q imbalance and
PA nonlinearity to an extreme condition. The PA nonlinearity
is simulated using a fifth-order polynomial in [16]. The 1/Q
imbalance parameter 6y is increased to 10°. The results are
shown in Fig. 11, where we can see that D-RMP and D-DNN
simply do not work under the extreme hardware imperfections.
In contrast, the proposed MP-NN detector still performs very
well. These results demonstrate the high capability of MP-NN
to deal with hardware distortions.

B. Coded System

We then evaluate the performance of the detectors in a coded
system, and compare the performance of the systems with and
without turbo receiver. We use a rate-2/3 convolutional code
with generators [23], [35], followed by a random interleaver
and 16-QAM modulation, where Gray mapping is used in
symbol mapping. The BCJR algorithm is used to implement
the SISO decoder. As it is unknown how to implement a
turbo receiver based on the direct detectors D-RMP and

-©-D-DNN
<-D-RMP
||[E-MP-NN

2 5 8 11 14 17
SNR (dB)

Fig. 12. BER performance of MP-NN, D-RMP and D-DNN receivers in a
coded system.

D-DNN, so non-iterative receivers are implemented for them,
where the outputs of detectors after hard decision are fed to
a Viterbi decoder. The other settings are the same as those
in the previous section, and the bit error rate (BER) is used
to evaluate the performance of the receivers. We compare the
performance of the MP-NN turbo receiver, D-RMP receiver
and D-DNN receiver in the coded system. Fig. 12 shows
the BER performance of the receivers. We can see that the
proposed MP-NN detector performs significantly better than
other receivers. Similar to the previous results, the D-RMP
receiver performs slightly better than the D-DNN receiver.

VI. CONCLUSION

In this work, we developed a Bayesian detector for
MIMO communications with combined hardware imperfec-
tions. Based on the signal flow, we first design the architecture
of an NN to model the hardware imperfections and multi-
user interference, so that the NN can be trained much more
efficiently, compared to conventional DNN-based methods.
Then, representing the trained NN as a factor graph and lever-
aging UAMP, we develop an efficient message passing based
Bayesian detector MP-NN. Both non-iterative receiver and
turbo receiver are investigated. Extensive simulation results
demonstrate that the proposed method significantly outper-
forms state-of-the-art algorithms.

By combining NN and factor graph techniques, this work
provides a general way to achieve Bayesian signal detection
for a communication system with complicated input-output
relationship. Interestingly, a recent work in [49] also combines
NNs and factor graphs for stationary time sequence inference.
However, the ways of combining NNs and factor graphs in this
work and [49] are very different. Here, NNs are represented as
factor graphs to develop efficient message passing algorithms
for Bayesian inference, where message passing is carried out
on NNs. In [49], NNs are used to learn specific components of
a factor graph describing the distribution of the time sequence,
where NN are involved in the computation of local messages.
Combining NNs and factor graphs is promising to tackle
challenging signal processing tasks, which is worth further
exploration.
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