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Abstract—To achieve ultra-high precision positioning, the ex-
tremely large-scale antenna array (ELAA), consisting of hun-
dreds or even thousands of antenna elements, has garnered
significant attention. However, due to increased antenna aperture,
it inevitably encounters both near-field effects and spatial non-
stationarity effects. In the near-field region, the traditional as-
sumption of far-field plane wavefront no longer holds, necessitat-
ing consideration of spherical wave characteristics. Spatial non-
stationarity arises when signals fail to reach the entire array, but
instead only impinge on a subset of antennas, which is referred
to as the signal’s visible region (VR). Both effects cause model
mismatch and therefore reduce positioning accuracy. In this
paper, we introduce an exact near-field signal model in the context
of ELAA. Based on this model, we prove that the steering vectors
of source signals and the eigenvectors of the signal subspace
become collinear as the number of antennas approaches infinity,
which makes it easier to estimate the VR and source location
parameters. Accordingly, we develop an estimation method to
effectively extract the VR information of signals even when the
VRs are discontinuous or overlapping. After obtaining the VR
information, we propose three source localization methods that
leverage the estimated VR and eigenvectors. Simulation results
demonstrate that the proposed methods achieve high-precision
localization while reducing computational complexity, thereby
overcoming the model mismatch induced by near-field effects
and spatial non-stationarity effects in ELAA.

Index Terms—Extremely large-scale antenna array (ELAA),
source localization, near-field, spatial non-stationarity, collinear,
gridless method.
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I. INTRODUCTION

Source localization is playing an increasingly important
role, particularly in applications such as autonomous driving
and forthcoming sixth-generation (6G) mobile communica-
tions systems, which demand exceptionally stringent localiza-
tion accuracy. Traditional small-scale antenna arrays have be-
come inadequate to meet these requirements. Theoretically, the
angular resolution is directly proportional to the physical aper-
ture size of the antenna array. Consequently, to achieve ultra-
high precision of localization, the employment of extremely
large-scale antenna arrays (ELAAs), composed of hundreds
or even thousands of antenna elements, has been proposed
[1]-[7]. ELAAs have demonstrated significant advantages in
enhancing localization accuracy compared to traditional small-
scale antenna arrays. However, they inevitably bring forth
new research challenges, particularly due to one key factor:
near-field effects [8]. Near-field effects concern the scenario
where targets are within the near-field region of the antenna
array, rendering traditional far-field assumption-based models
inapplicable [9]-[15]. This necessitates the adjustment or
complete redesign of localization algorithms to achieve higher
precision under near-field conditions.

In recent years, within the field of source localization,
there have been works that have begun to explore design
methods adapted to near-field propagation conditions [16]-
[22]. These methods are all based on the near-field model of
Fresnel approximation, which is also known as the second-
order approximate model. This model employs a second-
order Taylor expansion to approximate the spatial phase fac-
tor, neglecting the distance-related propagation attenuation.
High precision requirements on the estimation are inherently
difficult to reconcile with the approximation model. This
effect becomes more pronounced as the array size increases,
especially under ELAA conditions. It is worth noting that
the application of such simplified models in ELAA scenarios
further exacerbates the model mismatch issue, as the large
array aperture of ELAA amplifies the deviations between the
approximate models and the actual propagation characteristics
[23], [24]. Specifically, in [23], it is pointed out that when far-
field models are misapplied to ELAA near-field localization
scenarios, significant positioning errors still occur even beyond
the Fraunhofer distance, and these errors can be quantified
by the model-mismatch error. In [24], it is further verified
in extra-large multiple-input multiple-output (XL-MIMO) sys-
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tems that simplified models fail to capture two core features
of ELAA near-field scenarios (i.e., spatial non-stationarity
and spherical wavefronts), ultimately leading to unavoidable
mismatch-induced performance loss. To address this critical
issue, in [25], an exact spherical wave model is introduced,
using the range formula without simplification when express-
ing the phase term, and also considering amplitude variation.
Reduction of estimation errors in angle and range is achieved,
thereby enhancing the accuracy of localization [9], [26], [27].

Current research on near-field localization has explored
multiple dimensions focusing on algorithm optimization and
model characteristics. In [28], it focuses on the optimization
of the near-field multiple signal classification (MUSIC) algo-
rithm, addressing the rank deficiency issue of single-snapshot
data in near-field scenario by proposing a preprocessing
scheme that combines wave-number domain transformation
and Stolt interpolation, ultimately achieving super-resolution
localization of near-field targets. In [29], it introduces recon-
figurable intelligent surfaces (RIS) into near-field localization
to assist positioning by constructing controllable propagation
paths, and derives the Cramér-Rao bound (CRB) for position
and orientation estimation considering near-field spherical
wavefronts, providing a benchmark reference for near-field
localization performance. In [30], it further conducts a sys-
tematic review from signal modeling to processing, pointing
out that large-aperture arrays expand the effective near-field
region and enable range estimation using narrowband signals.

However, ELAA introduces not only near-field effects but
also spatial non-stationarity effects. Spatial non-stationarity
refers to the phenomenon where different subarrays of ELAA
observe the same signal source with varying power lev-
els, or even different signal sources altogether [31], [32].
Specifically, when ELAA operates in the radiative near-field
regime, this non-stationarity manifests as incident wave energy
being confined to specific local areas of the array, known as
visibility regions (VRs). Consequently, the performance for
localization of each source is constrained by its corresponding
VR [33]-[35]. Notably, near-field localization under spatial
non-stationarity remains unexplored, rendering the resolution
of this critical challenge an urgent research priority.

While research on spatial non-stationarity in source lo-
calization is still in its infancy, some works in wireless
communications has considered VR in channel estimation.
Specifically, the “you only look once” (YOLO) neural network
is introduced in [36] for object detection, by treating the
channel as an image to achieve fast estimation of model
parameters, including angle and delay detection paths and
scatterer recognition in VR. However, it defines the VR as a
collection of adjacent subarrays, implicitly assuming that the
VR is continuous and neglecting more complex VR scenar-
i0s. In [37], near-field spatial non-stationarity is considered
by utilizing block sparsity of subarrays. A structured block
orthogonal matching pursuit algorithm is then proposed for
effective active user detection and channel estimation. The
sparsity of subarrays and spatial stationarity of subarray chan-
nels are exploited to design a decentralized channel estimation
algorithm [38], while a VR detection algorithm is proposed by
approximating the VR as a combination of subarrays of ELAA

[39]. These methods divide ELAA into subarrays and assume
spatial stationarity within each subarray, thereby overlooking
the significant randomness of VR, as even individual subarrays
exhibit substantial variations in propagation characteristics
across their spatial domains. Assuming that the VR of beacon
users is known a priori, three location-based VR identification
schemes are proposed in [40], taking the user’s location as
input and its VR index as output. However, the performance
of its VR identification heavily relies on the location of
beacon users. A low-overhead joint localization and channel
reconstruction scheme is proposed in [41], based on which
VR identification methods are developed. A subarray-based
VR identification method is proposed in [42], which initially
generates step functions via least squares and quantization
mapping, using coarse localization estimates to determine the
VR. This is followed by iterative expansion of the largest
step regions and selection of the VR with minimal residual.
Although these methods achieve relatively high success rates
in VR identification, they are specifically developed for near-
field channel estimation and not well-suited for near-field
localization. Even if viable, they remain confined to continuous
and non-overlapping VR scenarios. Specifically, in practical
environments characterized by overlapping and discontinuous
VRs, such methods inevitably result in identification fail-
ures that induce mismatched steering vector models, thereby
severely degrading source discrimination capability and caus-
ing localization failure. Furthermore, even if VR information
is accurately identified, the impact of spatial non-stationarity
on the performance of traditional methods (such as subspace-
based methods) in localization tasks remains unclear, which
may lead to inaccurate angle and range estimation. Therefore,
further analysis of the underlying challenges is essential.

This paper studies ELAA-enabled source localization, ac-
counting for both near-field effects and spatial non-stationarity
effects. We first prove the collinearity between the steering
vectors of source signals and the signal subspace eigenvectors.
In our prior work [43], it is shown that the signal subspace
eigenvectors are approximately collinear with the steering
vectors, but the proof is only applicable to the case of two
signals. Here, we provide a different proof, which not only
clarifies the conditions for collinearity but also extends the
result to scenarios with multiple signals. Specifically, we
demonstrate that as the number of antennas increases, the
signal subspace eigenvectors become exactly collinear with
the steering vectors. Leveraging this property, we accurately
estimate the VRs of each source, even when they are dis-
continuous or overlapping. Based on the VR information, we
develop three localization algorithms to estimate both the angle
and range of each source. The contributions of this paper are
summarized as follows:

1) Exact Near-Field Modeling for ELAA: By incorporating a
selection matrix to characterize the exact ELAA near-field
model, the traditional Fresnel approximation is avoided
and spatial non-stationarity and near-field effects are more
accurately represented. Moreover, problem and challenges
faced by applying the MUSIC algorithm within the exact
ELAA near-field model are analyzed.
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2) Collinearity Establishment in ELAA: By analyzing the
relationship between the eigenvectors within the signal
subspace of the covariance matrix and each steering vector,
we prove that in ELAA scenario, each eigenvector exhibits
unique collinearity with one steering vector. This property
is applicable to a variety of complex scenarios ranging from
spatial stationarity to spatial non-stationarity, and from non-
overlapping VRs to overlapping VRs.

3) Collinearity-Based Source Localization: A novel VR es-
timation method is proposed based on the collinearity
property, ensuring effectiveness in complex scenarios with
overlapping or discontinuous VRs. Building on this, three
localization algorithms, which include a correlation local-
ization algorithm, a MUSIC-based localization algorithm,
and a gridless localization algorithm, are proposed con-
sidering both speed and accuracy. Specifically, the first
two effectively reduce computational complexity while
ensuring high-precision localization estimation, whereas
the third further improves positioning accuracy and reduces
computational overhead through efficient gridless search.

The rest of this paper is organized as follows. Section
IT presents the exact near-field model with spatial non-
stationarity in ELAA scenario. In Section III, the challenges
encountered in applying MUSIC to ELAA scenario are dis-
cussed, and the collinearity between steering vectors and
eigenvectors is analyzed. A VR estimation method and three
algorithms for angle and range estimation are presented in
Section IV. Simulations conducted in Section V validate the
collinearity theorem and demonstrate the proposed solutions’
superiority in angle and range estimation, achieving significant
improvements in both positioning accuracy and computational
complexity. Finally, conclusions are drawn in Section VI.

We adopt the following notations throughout this paper.
The set of complex numbers is denoted by C. The conjugate
transpose of a matrix A is represented by A¥. An identity
matrix of dimension N x NN is expressed as Iy. The ¢5-norm
of a matrix A is written as ||A|2, while a diagonal matrix
whose diagonal entries correspond to the elements of vector =
in sequence is denoted as diag(x). The inner product between
vectors a and b is defined as (a, b).

II. SYSTEM MODEL

In this section, we introduce the signal model of ELAA
considering both the exact steering vector and spatial non-
stationarity.

A. Exact Signal Model

As shown in Fig. 1, consider an M-element uniform lin-
ear array (ULA) where M is very large (e.g., hundreds or
thousands of antennas). We set the reference point at the
center of the array and the index set of the antennas is
denoted as ¢ = f%, e ,%} The spacing between
two adjacent antennas is d. In ELAA, the large array aperture
leads to a large Rayleigh distance, which is defined as the
boundary that separates near-field and far-field regions of the
array. The Rayleigh distance is calculated as 2D? /), where D
denotes the array aperture and A is the signal wavelength. For

s,(t) s,(t) S (1)

- 5.(H)

4, : e
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Fig. 1. Spatial non-stationarity of K sources in ELAA, where the VRs
of different sources are highlighted by different colors and they may be
discontinuous or overlapping, or both.

example, when the carrier frequency is 300GHz, the Rayleigh
distance of a 512-element ULA is 131 meters. If the ULA has
1000 elements, this distance extends to 500 meters. Therefore,
some sources may lie within the near-field region of ELAA,
necessitating the use of spherical wave modeling to accurately
characterize the impinging signal propagation, instead of plane
wave approximation.

We assume K narrowband near-field uncorrelated source
signals impinge onto the array. The position of the k-th source
is denoted by {¥j,rr}, where ¥y is the angle of the k-th
source and 7 the range between the reference point and the
k-th source. The signal received by the m-th antenna is [25]

K
Z/m(t) = Z Am ('ﬂka Tk)Sk (t) + Ny (t)7 (1)
k=1

where a,, (0%, rE) = :kae*j%"(rm,rm)’ si(t) is the k-th
narrowband signal, A is the wavelength of the signal, n,,(t) is
additive white Gaussian noise with zero mean and 7, j is the
range between the m-th antenna and the k-th source defined

as,

Tk = \/(md — rgsin (k)2 + (rg cos (9x))?
_ \/r,% — 2rgmdsin (05) + (md)2.

2

B. Spatial Non-Stationarity

In ELAA, with the increase of array aperture, different
sources may only “see” a portion of the array, as shown in
Fig. 1, where different colors indicate the VRs of different
sources. These VRs may be discontinuous or overlapping,
or both. When VRs are discontinuous, they may consist of
two or more discontinuous subarrays that collectively receive
signals. When there are overlapping regions, the antennas in
the overlapping region can receive two or more signals simul-
taneously, whereas the non-overlapping regions are restricted
to receiving only a single signal each. Formally, the VR of the
k-th source is denoted as ¢y, which consists of the indices of
the antennas observed by the k-th source. Then, ¢y C ¢, and
¢ = ¢ indicates spatial stationarity. To incorporate spatial
non-stationarity into model (1), we introduce a selection matrix

T = [y, ,v&] € {0,1}""F where the m-th element in
Vi 1s
1, me ¢
V= 3
Ve )m 0, otherwise. ®)
For example, for M = 7 and K = 3, we have ¢ =

{-3,-2,-1,0,1,2,3}; assume that ¢py = {-3,—2,—1},
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¢ = {-2,-1,0,1} and ¢35 = {-1,0,2,3}, so v1 =
0,017, 2 = [0,1,1,1,1,0,0]" and 3 =
,1,1]T. Then, ¢, and ¢, are overlapping, and ¢

is discontinuous. In this case,
1 0 0]
110
1 1 1
r=10 1 1 “)
0 1 0
0 0 1
10 0 1]
As a result, model (1) is replaced by
K
Ym(t) = Z('Yk)mam(ﬁka 7) Sk (t) + nm (1) (&)
k=1
The received signals of the entire array is represented by,
K
y(t) = ) [k oaldi,rx)] s(t) + n(t)
=~ (6)

&(ﬂk,Tk)
As(t) +n(t),
where y(t) = [y1(t), - ,ynm(t)]T, o denotes the Hadamard

product, s(t) [s1(t), - ,sx(®)]T and n(t) =
[n1(t), - ,nar(t)]T are the source and noise signals, re-
spectively, a(Vy,7r) = [a1(Vg,7), -, anr(Dg,r1)]" for

k=1,---,K, and A = [d(ﬁl,rl),~ .- ,&(19[(,7‘]()] is the
corresponding array manifold matrix. Our primary objective
is to achieve source localization through joint estimation of
the angle ¥ and range rj using model (6). However, as
will be seen in Section III, the presence of ~; introduced
by the VR leads to parameter estimation errors in MUSIC.
Furthermore, the steering vector a (9, ri) does not possess
the Vandermonde structure required by traditional gridless
methods (e.g., root-MUSIC and ESPRIT), thereby rendering
these algorithms inapplicable. Consequently, achieving precise
source localization becomes challenging under such condi-
tions. To address this challenge, we systematically analyze
the underlying issues and propose a collinearity theorem in
the subsequent sections to facilitate accurate angle and range
estimation.

III. THE COLLINEARITY PROPERTY IN ELAA

In this section, we provide collinearity property of ELAA
which can help to accurately estimate the VR and location pa-
rameters. Specifically, in Section III-A, we show that MUSIC
cannot accurately locate the sources when the VR information
is unknown because MUSIC spectrum is generated based on
the assumption of spatial stationarity. In Section III-B, we
show that MUSIC still cannot successfully locate the sources
even if the VR information is known a priori due to the
difficulty in distinguishing signals received by overlapping
regions of different VRs, as well as the issue of pseudo peaks
in non-stationary scenario which is reported for the first time.
To enable accurate estimation of VR and location parameters,
the collinearity property of ELAA is presented in Section
1I-C.

{a,72}
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Fig. 2. The spectrum of MUSIC applying to the exact near-field model with
spatial non-stationarity when K = 2 and the peaks of the two sources are
{91, 71} and {V2,7r2}.

A. MUSIC under Unknown VR

When the VR information is unknown, applying the MUSIC
algorithm to the exact near-field model with spatial non-
stationarity generates a significant number of pseudo peaks,
rendering the algorithm ineffective. This occurs because MU-
SIC relies on steering vectors based on the assumption of
spatial stationarity during the search process, rather than using
the actual steering vectors that exhibit spatial non-stationarity.
The use of mismatched steering vectors inevitably reduces esti-
mation accuracy, leading to diminished spectral peak sharpness
in the MUSIC algorithm, thereby impacting the algorithm’s
ability to resolve distinct signal sources and limiting the
traditional MUSIC algorithm’s estimation performance under
the ELAA model. To illustrate this issue, Fig. 2 presents the
MUSIC spectrum for two signals impinging on a 500-element
ELAA. The simulation parameters include a signal-to-noise
ratio (SNR) of 10 dB, wavelength A = 0.01m, source param-
eters {01,7r1} = {30°,5000\} with a VR spanning subarrays
¢1 = {1,---,360}, and {VJ2,r2} = {—10°,10000A} with
¢y = {171,--- ,500}. As shown, two peak clusters emerge,
each containing multiple peaks. The highest peaks of the two
clusters are denoted as {¢y,r1} and {2, 72}, respectively.
Notably, the magnitude of the highest pseudo peak, i.e., the
second highest peak, in the left cluster (—0.719699) exceeds
that of the highest peak in the right cluster (—0.78347),
making it difficult to identify the position of the main peak rep-
resented by {¥2,72}. In addition, the shapes of the two peak
clusters are not sharp enough, which can also have a negative
impact on our judgment of the main peak, especially when
the SNR is low. Therefore, to enhance estimation accuracy, it
is necessary to consider VR information, thus improving the
effectiveness of the MUSIC algorithm under the ELAA model.

B. MUSIC under Known VR

Although recovering VR information prior to applying
the MUSIC algorithm for angle and range estimation is
theoretically feasible, due to the necessity of conducting
multiple grid searches, the computation load will increase
significantly. Furthermore, this approach also encounters two
critical challenges. On the one hand, the VRs of different
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Fig. 3. The spectrum of MUSIC when the VR center gradually shifts leftward
under known VR.

signals may overlap, and therefore, even if the VRs can be
accurately estimated, it is still impossible to estimate angles
and ranges due to difficulty in distinguishing signals received
by overlapping regions. On the other hand, even if there is
no overlap among VRs, i.e., each VR only receives a single
signal, we still encounter the issue of pseudo peaks, which
will be illustrated below.

In traditional near-field models without spatial non-
stationarity, the reference point is typically set at the array
center. However, in the ELAA signal model, each of the
K sources corresponds to a distinct subarray defined by
¢1, -+ ,¢pi. For each subarray, the reference point is not
necessarily at the center of the subarray. Only when the center
of the subarray is at the center of the entire array will its
reference point be at the center of the subarray. To validate
this, an experiment is conducted with parameters M = 500
and {¢,r} = {30°,7000A}. As shown in Fig. 3, when the
VR center is located at the center of the array, no pseudo
peaks appear. However, as the VR center deviates from the
array center, pseudo peaks emerge, and the more severe the
deviation from the array center, the more pseudo peaks appear,
with some of them exhibiting higher amplitudes. Although
pseudo peaks can be avoided by resetting the reference point of
each subarray after obtaining the VR, it is difficult to achieve
accurate VR estimation. When the VR estimation error is
large, the pseudo peaks problem remains inevitable.

C. The Collinearity Property

In MUSIC algorithm, the covariance matrix R of the
received signal y(t) can be decomposed into signal subspace
Us and noise subspace Upn by eigenvalue decomposition,

R=UsXsUs” + UNSNUNT (7

200

200

where Ug = [vy, -+ ,0pr, -+ ,vk|. The K eigenvectors in
Us correspond to the K largest eigenvalues { A }5_,. It is
well-known that the space spanned by Ug and that by the
array manifold Ais theoretically coincident. In traditional far-
field scenario, it is not easy to find the relationship between
a(9,ri) and vy. However, for the exact signal model (6)
in ELAA, we observe a close relationship between the two
vectors, i.e., they are collinear when M — oo. To see this, we
first provide the following definitions.

Definition 1: The correlation between vectors c and d is,
[ed™|

= 8
lel2ldll2 ®

€ed

Then, the two vectors are collinear if ec.q = 1.

Theorem 1: For the exact near-field model under ELAA,
when { f;:?%l’“) VS | are unequal, where pj denotes sig-

@)l o
la(@e,re)ll3
(0,1], the signal subspace eigenvectors {vi,--- ,vi} of the

covariance matrix are collinear with the steering vectors
{a(V1,71), - ,a(Fk,rk)} as M — co.

Proof: See Appendix A. O

nal power of the k-th source and ny

Remark 1: Since the probability that there exists a case of
equality {2 (fsn(%r:) MK is extremely low, Theorem 1 holds true
in the vast majority of scenarios. Furthermore, we will validate
such a case in subsequent simulation experiments. It should
be pointed out that Theorem 1 holds true regardless of the
presence of spatial non-stationarity and whether VRs overlap
or not. Thus, the collinearity property also exists in spatial

stationary scenario when M — oo.

By Theorem 1, we find a collinear relationship between
the eigenvectors {v;}X | and {a(dy, i)} ;. Consequently,
given the eigenvectors {v;}X_, of covariance matrix R,
obtaining the VR and source location parameters will become
much easier. In the next section, we will present methods for
VR estimation and source localization based on Theorem 1. It
should be noted that, existing methods [36], [41] assume the
VRs are continuous while we assume the VRs are arbitrary.
Hence, the methods proposed in Section IV based on Theorem
1 are more applicable in complex scenarios where the VRs are
discontinuous, which will also be verified in Section V.

IV. VR ESTIMATION AND SOURCE LOCALIZATION

Leveraging the collinearity property we first propose a
method for VR estimation, regardless of whether the VRs of
signals overlap or not, in Section IV-A. Based on the estimated
VR information, we further propose three different source
localization algorithms in Section IV-B, Section IV-C, and
Section IV-D, respectively.

A. VR Estimation

Due to the collinearity between steering vectors and eigen-
vectors, the VR information of the steering vectors can be
mapped onto the eigenvectors, as shown in Fig. 4. We can
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Fig. 4. Visualization of element-wise magnitudes of steering vectors and
eigenvectors when M = 201, K = 2, ¢1 = {—100,---,50}, ¢p2 =
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Fig. 5. Comparison between wys and |vg/| when the SNR is 5 dB.

estimate VR through variations in the magnitude of eigen-
vectors. However, when SNR is low, noise can interfere with
the estimation of VR boundaries. The most straightforward
approach is to estimate the two distinct jump points on either
side of each eigenvector. However, this method performs
poorly in low SNR conditions due to noise interference.
Therefore, we consider filtering out values outside the VR
by setting a threshold, while ensuring that the values within
the VR encompass most of received signal’s power. This
method exhibits strong robustness against fluctuating noise
and has relatively low computational complexity. To further
reduce the impact of noise interference, before estimation, a
preprocessing step can be applied to the eigenvector: for the
k’-th eigenvector vy, first construct a new covariance matrix
Ry = vk/v}g , and then proceed with the following steps,

AR anll3] 9)

where R,y is the m-th column of Ry.. As can be seen
from Fig. 5, under the premise that the values of wjs and
|vgs| are almost identical outside the VR, the values of
wy, within the VR are significantly higher than the original
values of |vy/|. This preprocessing step addresses the issue
of noise interference in low SNR conditions, enhancing the
robustness against noise disturbances. This enhancement is
more conducive to our approach of estimating the VR by
setting thresholds. The estimated VR of the k’-th eigenvector
is denoted as,

wy = [R5,

b= Mo No st Ny LR 0

where N is the estimated minimum index and ﬁ . 18 the
estimated maximum one. Therefore, we obtain the selection
vector of the k’-th eigenvector,
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0, Otherwise.
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B. Correlation Localization Algorithm

Since the steering vector and the eigenvector are collinear,
we can leverage the correlation between these two vectors
for source localization. We employ a grid search approach to
identify the angle and range parameters that correspond to the
largest correlation between the steering vector and the %'-th
eigenvector,

argmax { Vg o ’?k/a ) (12)

3.7 a(9,7) o A2

where {19,17} represents the grid points in angle and range
spaces. This algorithm is referred to as CLA-VR in subsequent
experiments.

Remark 2: Because of large amplitude variations in the exact
near-field model, it is necessary to normalize all steering
vectors before calculating correlations; otherwise, it may lead
to parameter estimation errors.

C. Localization Algorithm Based on MUSIC

Conducting a global search using the MUSIC algorithm
is impractical since the array size is large, so we consider
reducing the dimension. For simplicity, we assume an one-
to-one correspondence between the eigenvectors of the signal
subspace and the steering vectors, i.e., the k-th eigenvector
vy, is collinear with the k-th steering vector a(dy, rx ), respec-
tively.! So we have,

Vi = ukd(ﬂk,rk), (13)
where ug, £k = 1,--- , K are complex coefficients. Further-
more, extracting data within the VRs of v, and ignoring
data outside the VRs, we can obtain v o whose dimension
is related to the size of their VRs. Construct the following
covariance matrix for the k-th source,

Rk = ’Ud*)k’UH = ui&(ﬂk,rk)dh’(ﬁk, ’I“k),

P a4

Consequently, we can directly apply MUSIC to R}, to estimate
the angle and range of the k-th source. Since the size of VR
may be much smaller than that of the entire array, utilizing
(14) can significantly reduce the computational complexity.
Therefore, this algorithm is designated as Fast MUSIC-VR in
subsequent experiments.

IThis one-to-one correspondence assumption is solely for simplifying the
mathematical representation and derivation process. In practical scenarios, the
collinearity relationship does not strictly follow the index matching of k. For
example, the eigenvector indexed k&’ (e.g., v1) may be collinear with the
steering vector indexed k (e.g., a(J2,72)), and the indices k and &’ do not
necessarily correspond to each other.

Authorized licensed use limited to: Nanjing Univ of Post & Telecommunications. Downloaded on January 19,2026 at 05:08:05 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSP.2026.3654842

Remark 3: It should be noted that our method Fast MUSIC-
VR estimates the angle and range parameters by finding
the maximum value in each small-dimensional MUSIC spec-
trum rather than using a time-consuming full-array two-
dimensional search to find K peaks. Moreover, the compu-
tational efficiency of this method is closely correlated with
the size of the VR. The smaller the VR, the more efficient the
Fast MUSIC-VR. Since each small-dimensional spectrum only
contains the signal of a single source. Consequently, there
is no need to account for the impact of pseudo peaks. The
avoidance of redundant computations in peak finding thereby
enables the method to achieve higher computational efficiency.

D. Gridless Localization Algorithm

Algorithm 1 Gridless Localization Algorithm

Input: Eigenvectors wvp,---,vg, estimated VR vectors
1, , YK, iteration number 7.
Output: Optimal position of the particle swarm P, g, Py ..
1: for each particle ¢+ do
2:  for each dimension d do

3: Initialize position A;, R; randomly within the effec-
tive near-field range;
4: Initialize position V; g, V; , randomly within permis-

sible range;
5:  end for
6: end for
7. for each k' € [1, K] do
8:  for each particle i do
9: Calculate the

maximum fitness value

f (O, k), f (9ip,mip, k') of  particle
based on (15);

10: The optimal position for the individual corresponding
to the maximum fitness value is P, 9, Py ,;

11: Update P, y, Py ,;

12: if f(Asiq1, Rigi1, k') <f(Pioy, Piry, k') then

13: pg,ﬂ,t—i—l =97 1415 ch'l,r,t+1 =Tit41

14: else

15: pg;ﬂ,t+1 = p?,ﬁ,t’ p(ii,r,t—&-l = T;'i,t;

16: end if

17:  end for

18:  for each particle ¢ do

19: for each dimension d do

20 Uﬁ§7t+1 = wvﬁﬂyt + cirand (pfﬂ,t - ﬁﬁt) +

k d .
carand (pg’ﬁ’t — ﬁi,t) ;
d

21: Vipt1 = wvf{rﬁt + cirand (pfmt — rgt) +
carand (p’;'mt — rﬁt);

22: 19§1,t+1 = ﬁg,t + Uzd,ﬁ,tﬂ’ 7"éi,t+1 = Tf{t + Uﬁr,t-&-l;

23: Update P, y, Py ,;

24: end for

25:  end for
26:  Repeat the above steps until ¢t = T7;
27: end for

The CLA-VR and Fast MUSIC-VR proposed in Section
IV-B and Section IV-C belong to on-grid algorithms which
suffer from grid mismatch effect and high computational

complexity issue. In order to solve this problem, we consider
avoiding the grid search process to propose a gridless
algorithm which utilizes the particle swarm optimization
(PSO) technique to solve the non-convex optimization
problem in terms of angle and range parameters. PSO is an
evolutionary optimization technique, and its core idea is to
use information sharing of individuals in the group to make
the movement of the whole group evolve from disorder to
order in the problem solving space, so as to obtain a feasible
solution to the problem [44], [45]. Each individual is defined
as a particle, which represents a potential solution in the
search space, and it can memorize the optimal position of
the group and its own optimal position and speed. In each
generation, the particle information is combined to adjust
the speed of each dimension, which is used to calculate the
new position of the particle. The particle changes its state
continuously in the multi-dimensional search space until it
reaches the optimal state. In a continuous spatial coordinate
system, a particle swarm can be mathematically described
as follows. Let the size of the particle swarm be N, and
for each particle in a D-dimensional space, its position

vector is represented by A;y = (Y1, , %4, - ,%iD),
Riﬂ‘ = (rﬂ, e Tids ’I“iD), and its velocity
vector by Viy = (Vit,9, > Vid,9, " > ViD,9)s
Vir- = (Wi, ,Ydr - ,Vbpy,). The individual
optimal position, i.e., the best position experienced by the
particle, is denoted as P, y = (pi1,9, - sPid9: " ,PiD,9)
and P, = (Pit,rs -+ > Pidys- - »DiD,r),  While
the global optimal position, i.e., the best position
experienced by any individual within the swarm is
represented as P,y = (Pg1,9, " Pgd0s " »PgD,9)
and P, = (pg1,rs " >Pgdrs " »PgD,r). It is important to

note that the fitness value at each position is set to be the
correlation between the steering vector at that position and
the k’-th eigenvector, with the specific expression being:

(Vi ©Ywr, a(Vig, Tia) © Yir)
lver o Yirll2l|@(Pia, mia) © Arr |2

F Wiayrias k) = (15)
Based on the PSO algorithm, the corresponding gridless lo-
calization algorithm is summarized in Algorithm 1, which is
named PSO-VR in following experiments. It should be noted
that the values of w, c1, co are empirically determined through
repeated experiments.

V. SIMULATION RESULTS

In this section, extensive simulations are performed to
validate the collinearity theorem and evaluate the performance
of our proposed methods, including the VR estimation method
and three localization algorithms. Unless otherwise specified,
considering computational complexity, a ULA with M = 500
antennas2, with its center located at the origin of the coordinate
system, is employed. The inter-element spacing d = \/2,
where the wavelength of the signal A = 0.01lm, and the
number of snapshots L = 2000. Since the near-field region

2In fact, our method shows better performance in larger arrays. However,
implementing traditional methods such as MUSIC requires significant amount
of time. Hence, we set M = 500.
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Fig. 6. The probability of collinearity varies with the increase of M under
different conditions.

is (0.62 D3/, 2D2/)\), the near-field range is set between
3000 and 10000\ from the array.

A. Validation of Collinearity Theorem

To validate Theorem 1, three scenarios are considered:
spatially stationary and non-stationary cases where K = 2, and
the non-stationary case where K > 2. We increase the array
size from 10 to 2000 and carry out 20,000 Monte Carlo trials,
during which the quantity of trials that fulfill the collinearity
threshold is tallied. The proportion of the number of trials
satisfying the collinearity threshold to the overall number of
trials denotes the collinearity probability. In each trial, the VR
of each signal is selected randomly, and the position of the
signal is also randomly determined within the near-field region

of the array. The values of ’%‘ in different scenarios are
calculated by (28), (31) and (33), respectively. These values
are then compared with the collinearity threshold of 0.01. If
the value falls below this threshold, it is regarded as collinear.
Lastly, the collinearity probabilities at different M values are
statistically analyzed, as shown in Fig. 6. It can be observed
that for all three scenarios, the probability of collinearity
ascends in tandem with augmentation of the value of M, and
even when the number of antennas M = 500 and the number
of sources K = 15, the collinearity probability can still
exceed 98%. Consequently, it can be deduced that irrespective
of the presence or absence of spatial non-stationarity and
notwithstanding the variation in the number of signal sources,
Theorem 1 invariably holds.

B. Performance of VR Estimation

In Fig. 7, the success rate of the VR estimation method in
continuous and discontinuous VR scenarios through 10,000
Monte Carlo trials is presented, under different SNR values.
The SNR is defined as the ratio of the received signal power
to the noise variance, where the noise variance is adjusted to
reflect the signal attenuation over distance. We set K = 2,
with angles and ranges randomly selected from the near-
field range. For the continuous VR scenario, a segment of
subarray is randomly selected from the ELAA as the VR,
while for the discontinuous VR scenario, two segments of
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Fig. 8. Success rates of VR estimation in different scenarios.

subarrays are randomly chosen from the ELAA to form the
VR. As shown, our proposed method achieves a success
rate of over 90% when the SNR is greater than —18 dB
in the discontinuous VR scenario; and for the continuous
VR scenario, the success rate is over 90% when the SNR
exceeds —15 dB. Moreover, the performance of our proposed
method is not significantly different between continuous and
discontinuous VR scenarios, with VR identified successfully
in both cases. Furthermore, compared to the VR identification
method in [42], our method achieves a higher overall success
rate, especially in discontinuous VR scenarios.

Fig. 8 demonstrates the success rates of our VR estimation
method in two specific scenarios. In the first scenario, there is
only one signal present, and the VR of this signal gradually
expands from a smaller subarray to the entire ELAA, i.e.,
from spatial non-stationarity to spatial stationarity. Clearly,
our method is completely successful in this scenario. In the
second scenario, we set the position parameters of two signals
to {¢1,71} = {—30°,7800A} and {2, 7r2} = {60°,4500A};
additionally, the VRs of two signals are continuous, where one
signal’s VR is constant, with ¢»p; = {101, --- ,500}, while the
other signal’s VR is variable, with ¢po = {1,--- ,m}, with m
varying from 100 to 500. As m varies, the overlapping region
between ¢, and ¢, increases from none to complete coin-
cidence. In this scenario, our method entirely fails when the
overlap rate reaches 75%. At this point, through calculation,
we find that {ZL°10L P2Rz2l2 1 — [718.19,712.98}. Due to

77 Leos (91) cos (¥2) . :
close proximity of their values, the collinearity theorem thus
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Fig. 9. The spectra of MUSIC, MUSIC-VR, Fast MUSIC-VR, and CLA-VR
when the VRs of two signals overlap.

becomes almost invalid.

C. Estimated Spectrum

The performance of our proposed localization algorithms
Fast MUSIC-VR and CLA-VR is evaluated by comparing
with MUSIC and MUSIC with estimated VR (MUSIC-VR).
In MUSIC-VR, we replace the steering vector in the cal-
culated MUSIC spectrum with the steering vector with VR.
As described in Subsection III-A, an unknown I' leads to
a mismatch between a(¥,7) and a(0y,7y), resulting in a
decrease in accuracy. To solve it, we consider searching in
the space using the steering vector with estimated VR. Due
to K different VRs, we still need to search K times and the

9
TABLE I
CPU RUNNING TIME FOR THE FIRST SCENARIO.
Algorithm Average CPU running time (s)
L1SVD 153.60
LISVD-VR 185.48
MUSIC 6.52
MUSIC-VR 20.13
Method in [42] 36.06
TSMUSIC 1.83
Fast MUSIC-VR 0.96
CLA-VR 1.90
PSO-VR 8.47
TABLE II

CPU RUNNING TIME FOR THE SECOND SCENARIO.
Algorithm Average CPU running time (s)
L1SVD 154.01
LISVD-VR 187.48
MUSIC 6.34
MUSIC-VR 19.23
Method in [42] 33.44
TSMUSIC 1.77
Fast MUSIC-VR 4.40
CLA-VR 1.88
PSO-VR 8.43

spectrum of the k’-th search is given as,

. 1
Sk/(’ﬂ, 7') = N I7i - .
(a(ﬁ, 7:) o :)’k’) UNU]g (0(19, ’l:) o "N)/k/>
(16)

Then, we can apply MUSIC to covariance matrix for K times
with K different spectrum models. The spectrum of CLA-VR
is obtained by computing (12), and its magnitude represents
the strength of correlation.

In the spectrum estimation experiment, we set K = 2,
SNR = 10 dB, the position of the two signals as {1,711} =
{=10°,5000\} and {d¥2,72} = {30°,8000\}, and the VR
information as ¢p; = {1,---,400} and ¢ = {201, --- ,500}.
We estimate the spectrum of the two signals in the overlapping
scenario, as depicted in Fig. 9. Notably, the spectrum per-
formance of the MUSIC algorithm is significantly deficient,
with not only the primary peak being insufficiently distinct
but also pseudo peaks related to one primary peak interfering
with the interpretation of another primary peak. In contrast,
MUSIC-VR and the proposed methods can successfully iden-
tify the two sources.> Importantly, our methods differ from
the MUSIC algorithm, and the pseudo peaks near one signal’s
primary peak will not interfere with the judgment of another
signal’s primary peak. This is because our methods do not
simultaneously estimate K sources but instead estimate the
spectrum for each source individually, a total of K times. The
advantage of this design is that the primary peak of one signal
remains unaffected by pseudo peaks from other signals.

3The spectrum of the CLA-VR algorithm presented in the figure has
undergone a specific processing step, where the values at the grid points of
the original spectrum are multiplied by ten to highlight the primary peak.
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Fig. 10. RMSE comparison of different algorithms for varying SNR, in the
scenario where the VRs of three signals are non-overlapping and continuous.

D. RMSE

In the root mean square error (RMSE) experiment, we
set K = 3 and SNR varies from —15 dB to 20 dB. Four
scenarios are considered, covering both simple and complex
VR scenarios, while maintaining {¢1,71} = {45°,6000A},
{¥2,70} = {10°,7000\} and {93,735} = {—30°,8000\}
unchanged in each scenario. We compare the performance
of our three algorithms with MUSIC, MUSIC-VR, L1SVD,
L1SVD-VR, the method proposed in [42], and two-stage
MUSIC (TSMUSIC).

The first scenario has three non-overlapping signals while
the VR of each signal is continuous, i.e., ¢1 = {1,---,50},
¢y = {201,---,250} and ¢p3 = {401,---,450}, and the
simulation results are shown in Fig. 10. Both in terms of angle
estimation and range estimation, it can be observed that the
MUSIC algorithm fails due to the presence of pseudo peaks.
Similarly, the L1SVD algorithm also fails in this scenario
because it cannot effectively utilize the VR information, which
leads to model mismatch and ultimately results in estimation
errors. However, as the SNR increases, the RMSE of the meth-
ods including MUSIC-VR, L1SVD-VR, the method proposed
in [42], TSMUSIC and the three algorithms proposed in this
paper (i.e., CLA-VR, Fast MUSIC-VR and PSO-VR) shows a
significant downward trend. Among these methods, the PSO-

1 1
10 15 20

0 5
SNR(dB)
(b) RMSE for ranges

Fig. 11. RMSE comparison of different algorithms for varying SNR, in the
scenario where the VRs of only two sources overlap.

VR algorithm performs the best. Its RMSE curve is the closest
to the CRB curve. Secondarily, the CLA-VR, Fast MUSIC-VR
and MUSIC-VR algorithms achieve good performance, and
the remaining three comparative algorithms perform slightly
worse, and among them, the L1SVD-VR algorithm has the
worst performance.

In order to compare the computing time of each algorithm
intuitively, we show the CPU running time for the first scenario
in Table I. We can observe that the LISVD-VR algorithm has
the longest running time among all algorithms. By contrast,
the MUSIC-VR algorithm has a longer running time than the
traditional MUSIC algorithm, which is attributed to its require-
ment to perform K independent MUSIC operations. Among
these comparative algorithms, TSMUSIC algorithm shows a
relatively short running time. Among the three algorithms
proposed in this paper, Fast MUSIC-VR shows the shortest
running time, followed by CLA-VR and then PSO-VR.

The second scenario has two signals overlapping while
the third signal does not overlap, i.e., ¢1 = {1,---,300},
¢2 = {251,---,400} and ¢p3 = {401,---,500}, and the
simulation results are shown in Fig. 11. Similar to the first sce-
nario, the MUSIC and L1SVD algorithms still fail. However,
as the SNR increases, the RMSE of the other algorithms still
shows a significant decreasing trend. Among these methods,
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Fig. 12. RMSE comparison of different algorithms for varying SNR, in the
scenario where the VRs of three sources overlap and the overlapping region
contains at most three sources.

the PSO-VR algorithm still achieves the best performance,
and its RMSE curve almost coincides with the CRB curve. To
further compare the computing time of each algorithm, Table
II presents the CPU running time for the second scenario. It
can be observed that Fast MUSIC-VR’s running time increases
significantly, while that of other algorithms remains nearly
unchanged. This is because Fast MUSIC-VR’s running time
depends on each VR’s array size, which is directly related to
the covariance matrix dimension. Specifically, Fast MUSIC-
VR runs faster than CLA-VR when each source’s VR is
relatively small, but CLA-VR achieves shorter average running
time for large VRs. Although PSO-VR is not the fastest
among the three proposed methods, its inherent gridless nature
provides distinct advantages in estimation performance. Thus,
each of the proposed methods has its unique advantages.

The third scenario is the mutual overlap of three signal
VRs, with three signals present in the overlapping region,
ie, ¢1 = {1,---,250}, ¢po = {201,---,300} and ¢p5 =
{231,---,400}. This scenario represents the most complex
case when K = 3 and only VR overlaps are considered,
and its simulation results are shown in Fig. 12. In this
scenario, the coupling between the VRs of the three signals
is severe. Therefore, the RMSE curves of algorithms other
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Fig. 13. RMSE comparison of different algorithms for varying SNR, in the
scenario where the VR of one source is discontinuous and overlaps with the
other two sources.

than MUSIC and L1SVD deviate more significantly from the
CRB, particularly in terms of angle estimation. Nevertheless,
our proposed algorithms (i.e., CLA-VR, Fast MUSIC-VR,
PSO-VR) still remain effective even in this complex scenario,
maintaining relatively low RMSE values and ensuring accurate
estimation of signal angles and ranges.

The final scenario is a signal with a discontinuous VR,
and the VRs of the other two signals overlap with it, but
the overlapping regions do not exceed two signals each, i.e.,
¢ = {1,---,100,301,---,400}, ¢po = {71,--- ,300} and
¢3 = {381,---,500}, and the results are shown in Fig.
13. We observe that in this scenario, all algorithms except
the still ineffective MUSIC and L1SVD achieve successful
localization. For the proposed algorithms, their range estima-
tion performance is comparatively poor. Specifically, although
their RMSE decreases with increasing SNR, the deviation of
range estimation from the CRB is more significant than that in
angle estimation. Furthermore, this scenario fully verifies the
effectiveness of the proposed algorithms in complex scenarios
with discontinuous and overlapping VRs.

In the RMSE experiment with varying number of snapshots,
the number of snapshots L is set to vary from 100 to
2000. The angles and ranges of the three sources remain
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Fig. 14. RMSE comparison of different algorithms for varying L, in the
scenario where the VRs of three sources overlap and the overlapping region
contains at most two sources.

consistent with those in the previous experiments. The VR
is set to ¢1 = {1,---,250}, ¢po = {221,---,400} and
¢3 = {371,--- ,500}, and the SNR is set to 10 dB. Simulation
results are presented in Fig. 14, from which it can be seen
that the MUSIC and L1SVD algorithms still fail to estimate
angles and ranges, while all other comparative algorithms are
capable of effective estimation. Additionally, in both angle
estimation and range estimation, under the scenario of a small
number of snapshots (i.e., L < 400), the CLA-VR algorithm
demonstrates the best estimation performance compared with
other algorithms. Finally, there is a notable performance
variation for the PSO-VR algorithm: when L < 800, its
performance is inferior to that of the CLA-VR, Fast MUSIC-
VR, and MUSIC-VR algorithms. However, as the number
of snapshots further increases (i.e., L > 800), the PSO-
VR algorithm gradually exhibits the best performance among
these algorithms. This phenomenon is attributed to the gridless
nature of the PSO-VR algorithm. This is because the algorithm
requires more snapshot data to optimize the particle swarm
search and converge to the optimal solution, and it ultimately
achieves higher estimation accuracy than the other algorithms
once sufficient data is available.

In summary, our three proposed algorithms outperform other

comparative methods in ELAA-based source localization, with
distinct advantages in balancing accuracy and computational
efficiency. Specifically, both CLA-VR and Fast MUSIC-VR
achieve localization accuracy comparable to that of MUSIC-
VR while exhibiting significantly faster running times. They
also demonstrate good localization accuracy when the number
of snapshots is small. Furthermore, our PSO-VR algorithm
stands out with the highest localization accuracy when the
number of snapshots is sufficiently large. Its RMSE curve
remains the closest to the CRB even in complex scenarios such
as discontinuous or overlapping VR. While its average running
time is longer than that of CLA-VR and Fast MUSIC-VR, it
is still more computationally efficient than most comparative
methods.

VI. CONCLUSIONS AND FUTURE WORK

An exact steering vector model for ELAA has been intro-
duced considering spatial non-stationarity and near-field ef-
fects. Building on this model, the collinearity property between
the signal subspace eigenvectors and the steering vectors is
proved, based on which a VR estimation method is designed.
It has a high success rate and remains effective in complex
scenarios. Furthermore, three localization algorithms, namely
Fast MUSIC-VR, CLA-VR, and PSO-VR, are proposed for
angle and range estimation in ELAA. The simplicity of our
methods lies in their ability to directly estimate angle and
range using the eigenvectors within the signal subspace of the
covariance matrix. Numerical results indicate that our methods
exhibit a superior RMSE performance and a higher resolution
than the comparative algorithms. In the future, we aim to apply
the collinearity theorem to more practical scenarios featuring
mixed near-field and far-field sources, while expanding its
application to uniform planar arrays and a broader range of
array configurations. Additionally, the development of deep
learning-based methods for related localization tasks will also
be a key focus of our future work.

APPENDIX A
PROOF OF THEOREM 1

According to eigenvalue decomposition, we have,

(R— Ay Dvpy =0,k =1, , K, (17)

with R = APAH + 521 , where o2 is the noise power, and
P = diag(p1,--- ,pr) denotes signal power. According to
subspace theory, we have,

v = crpra(V,m1) + -+ cxpa(Vi, rK), (18)

where ¢y 1/, -+ ,ck i are complex coefficients. To find the
relationship between the steering vector {a(J, )}, and
v, we can find the ratio between the coefficients {cy s He_ ;.
For example, if c; ;/ is much greater than other coefficients,
we can say a(¢1,71) and vy are collinear. Then, substituting
(18) into (17), we can obtain the following M equations,

K
w(m,k)ep =0, m=1,---, M,
k=1

19)
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with w(m, k) = (02 + ¢y, — )\k/)A(m k) + g(m, k), where
A(m k) is the (m, k)-th element of A, 1y, is the total power
of the k th signals received by ELAA, given as,

Ve = prlla(i, )13, (20)

and g(m, k) denotes the correlation between the steering
vector of the k-th signal and the steering vectors of others,
given by,

1,10k, k)] Agnay + -
(-1, T—1)a(Ig, )] A(m,k—l)

g(ma k) =DP1 [
+ pr—1 [@"
+ it [

+pi [@" (Vk,7K)a(Ik, )] A(m,K)~

21

Since M>K, we only need to solve K — 1 equations in

(19) to obtain the ratio between each pair of coefficients, e.g.,
c CK K k!

R g "/]l , . In the following, we first consider
Cl k! C1 /!
the case of K = 2, and then extend it to the case of K >2.

A. The Case of K =2
From (19), we have w(m, 1)¢q g +w(m, 2)ca 1 = 0. Then,

. C N . .

the ratio |-2£"| is given as,
C2, k! w(m, 1)
c1p w(m,?2)

[02 + U1 — M| A(m,l) +g(m,1) (22)

[02 + 7/}2 - )\k’} A(m,2) + g(ma 2)

According to [46], as M — oo, the eigenvalues A\ = 1) +02.
In this case, we can see that there are two possibilities, i.e.,
A = 1 + 02 or A\ = 1y + o2, Without loss of generality,
we assume that A,y = v +02, and then consider the scenarios
of both spatial stationarity and spatial non-stationarity.

1) Spatial Stationarity: When A = 1 + o2, (22) is
modified as,

!’ 1
C2k ggma ) (23)
1K/ (Y2 — 1) Agm,2) + g9(m, 2)
In the case of spatial stationarity, (20) is given as,
e\ 2 , 2
¢k2pkl(k> + +< d )] 24)
1,k M,k

By defining the function,
2

2
s = (52)
Tk
(md — T sin (ﬁk))Q —+ (’I"k- CcOoS (ﬂk))2 ’

(24) can be rewritten as,

(25)

M—-1 M-1
¢kzpk{f<— 5 >+~--+f( 5 )} (26)
Obviously, (25) is  symmetric  about m =
mesink)  and  thus, we only focus on %zpk =

- [f(%% .+f(@)] In Fig. 15, The

H (g1, mre1) @i, )] Aggern) + -

y
t f(m) f(m)
|

T sin(4,) L M-1M+1 0 r.sin(4,) . -
d 2 2 d 2 2

M-1
(b) f‘r'kiin IS f(m)dm
0 _

o

M+41

@ frgwk) f(m)dm
d

Fig. 15. Transform the summation of a sequence into a definite integral.

bar chart depicts the discrete values of f(m) at various
points, and the total area of the bar chart represents the
summation of these discrete values of f(m). Meanwhile, the
area under the curve f(m) signifies the definite integral of
f(m) within the corresponding range. It is observed that the
area covered by the bar chart exceeds the area beneath the
curve in Fig. 15(a), but falls short of that in Fig. 15(b), i.e.,

M+1 1 M—1
2
pk/ o fm)dm < Sy, Spk/ _ f(m)dm,
Th bll(li<’l9k) 2 Tk su{;(ﬁk)_l
' (27
_ TpRT _ 2pgr d
Define A = #(gk) and B = #(51@) arctan (m)
LY

M1
When M — oo, we have pyg sz wy f(m)dm = A and
T ein ()

pkf@_

d
field region is (0.62 D3/, 2D? //\), where D = (M —1)d
is the array aperture [47], when M — oo, ri could be infinity.
Therefore, when A — 0o, B = /\Cff;dﬂ which is a constant,*
and A is significantly greater than é? Furthermore, as A <
ka < A+ B, it is possible to derive §¢k — A by applying

the squeeze theorem. Thus, we conclude that ¢, = 24 =

. f(m)dm = A+ B. Since the range of the near-

e so s — = % (20— 2n) and then
(23) can be rewritten as,
Cop | _ g(m, 1)
’ 27 272
CLk |:T (COPS (7;92) coz. (Y1) ):| A(m 2) + g(m 2)

(28)

When M — oo, the correlation between different steering
vectors can be ignored, i.e., g(m,1) — 0 and g(m,2) — 0,
and A(mﬁz) is a complex number with a non-zero modulus.
Consequently, we can observe that the determining factor in

Q2T p2T2  _ _Pp1 _para

(28)is A (COS (92) cos (191)) When cos (192) 7& cos (  itis
_ p2T2  _ _piTi

a non-zero value, and it becomes larger as cos(@3) ~ cos (1)

increases. Therefore, we can deduce through analysis that

C2,k! D2T2 piT1

C1,kt — 0 when cos (¥2) 7& cos (V91) "
proportion of steering vector a(¢1, 1) on the k’-th eigenvector
vg is much greater than that of steering vector a(ds,7s),

which means that vy and a(¢1,71) are collinear. Similarly,

Consequently, the

4We do not consider signals parallel to the array direction, ie., ¥ €
(—90°,90°).
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14
Ci Kk’ T
cll’k - 2 pinT K ]A K A (33)
.y T T
aok @i + Tﬂ— (cz())s (%) cojs (]19J])> (ql A(mlai) oot qK—lA(mxfhi))
Ci Kk’ T4
74':]‘5 — - J - (36)
k! w; + M (pini - pjnj) (Q{(A(ml,i) + -+ Q§({71A(mk,1,i)>

the other eigenvector is collinear with the steering vector
d(ﬂg, 7”'2).

2) Spatial Non-Stationarity: When the VRs of two signals
do not overlap, i.e., ¢1 N @ = (J, it is known that g(m, 1) =
g(m,2) = 0. When m € ¢4, (19) can be simplified as,

(0% + 1 — M) A(m,l)cl,k/ =0.

Since 02411 — A\ = 0, from (29) we know 1,k 1s non-zero-
valued. Additionally, when m € ¢, (19) can be simplified as,

(o — Y1) A2y o = 0. (30)

Since 1 # 1, we have cppr = 0. From (18), we can
conclude that vy = ¢y pra (91, 71). Similarly, the other eigen-
vector equals cg v @(¥2,r2). As a result, we can conclude that
{v1,v2} are collinear with {a(d1,71), a(92,72)}.

When the VRs of two signals overlap, i.e., ¢1 N ¢p2 # 0,
we can not ignore the impact of g(m, k), and then, (22) can
be rewritten as,

(29)

g(m,1)
27 nar nir A
|:T (fozs (2;922) - fols (11911))] A(m,2) + g(m7 2)

C2 k!
C1,k’

)

€29

where 11, n2 € (0,1] represent the adjustment coefficients of
VR, et o = S i, = S
g(m,1) and g(m,2) are unpredictable terms, but according to
their definitions, when M — oo, we can infer that their values
are very small, i.e, g(m,1) — 0 and g(m,2) — 0. Moreover,
A(m,g) is also a complex number with a non-zero modulus.

Co g/
Cl,k’

panara piniri
cos (J92) cos (V1)

derived. As a result, {v1,v2} and {a(V1,r1),a(d2,r2)} also
have collinear relationship in this situation.

Therefore, as long as — 0 can be

B. The Case of K>2

Now we discuss the case of K >2. From (19), we randomly
select K — 1 equations. By solving these equations, we have,

Cik | _ affw(ma, j) + -+ qg_w(mg_1,5) 32)
Cj k! q{(w(ml, Z) + -+ qu_lw(mK_l,i) ’
where ¢ = (—1)’“*1%, r=1,---,K —1 are

real coefficients, and 7! denotes the factorial of r, by deducing
that they satisfy ¢ +- - -+¢%_, = 0. These coefficients are es-
sentially the deformation of Pascal’s Triangle, and it can be de-
rived through the relevant knowledge of Pascal’s Triangle [48].

Similar to the case of K = 2, we assume that \ir =1, + o2,
and substituting w(m, k) = (02 + 1y, — )\k/)A(m,k) +g(m, k)
into (32), we can derive (33) when spatial non-stationarity is
considered where w; = ¢ g(my,i) + -+ ¢ _g(mr_1,7)
and w; = qf¥g(m1,j) + - + ¢k _,9(mK_1,7). Without
loss of generality, we consider that K = 3 and there ex-
ist overlapping regions between VRs. Under this scenario,
¢ =1,¢3 = —1 and (33) becomes,

Ci k!
Cjk

Wi

=+ 5 (2t~ 2y) (Ao~ )

When M — oo, we can disregard the minor impact of
the correlation between the steering vectors of K signals,
ie, w; — 0 and w; — 0. However, as K increases,
G A, i+ ai_ Ay i) in (33) will become in-
creasingly complex, leading to an increased probability of non-
collinear scenarios occurring. Nevertheless, when C’gs”("g;) *

fgsnég:?) , i 0. To summa-
rize, the eigenvectors {vy, -+ , vk} and the steering vectors
{a(¥1,71), -+ ,a(¥k,rk)} are collinear in most cases.

For the near-field model based on the Fresnel approximation
and the far-field model, the amplitude has no variation, which

remains constant at one. Therefore, (20) can be rewritten as:
Y = ppM. (35)

Subsequently, (33) can be reformulated as (36). Thus, as M —
oo, if p;n; # pjn;, there is a high probability that ‘%‘ — 0.
In this case, it is highly likely that the steering vectors and
eigenvectors in this model also have a collinear relationship.
On the other hand, if p;n; = p;n;, the value of ‘Z—f:‘ mainly
fluctuates around 1 and does not change with the increase
of M, which indicates that there is no collinear relationship
between the steering vectors and the eigenvectors.

Cz‘,k/
’

C.

there is a high probability that
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