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Spiking Sparse Recovery With Non-Convex Penalties

Xiang Zhang“, Lei Yu

Abstract—Sparse recovery (SR) based on spiking neural net-
works has been shown to be computationally efficient with ultra-
low power consumption. However, existing spiking-based sparse
recovery (SSR) algorithms are designed for the convex £;-norm
regularized SR problem, which often underestimates the true
solution. This paper proposes an adaptive version of SSR, i.e.,
A-SSR, to optimize a class of non-convex regularized SR problems
and analyze its global asymptotic convergence. The superiority of
A-SSR s validated with synthetic simulations and real applications,
including image reconstruction and face recognition. Furthermore,
it is shown that the proposed A-SSR essentially improves the recov-
ery accuracy by avoiding systematic underestimation and obtains
over 4 dB PSNR improvement in image reconstruction quality and
around 5% improvement in recognition confidence. At the same
time, the proposed A-SSR maintains energy efficiency in hardware
implementation. When implemented on the neuromorphic Loihi
chip, our method consumes only about 1% of the power of the itera-
tive solver FISTA, enabling applications under energy-constrained
scenarios.

Index Terms—Sparse recovery, spiking neural network, non-
convex optimization.

I. INTRODUCTION

PARSE recovery (SR) is an essential problem in many
S applications of signal and image processing [1]. Direct
optimization of sparse regularized problems, e.g., iterative
shrinkage-thresholding algorithm (ISTA) [2], basis pursuit de-
noising (BPDN) [3] and least absolute shrinkage and selection
operator (LASSO) [4], often suffer from heavy computational
burden and power inefficiency due to the necessity of itera-
tive numerical methods to guarantee convergence, thus limiting
applications in real-world scenarios. Inspired by the efficient
communication scheme observed in biological nervous systems,
artificial spiking neurons transmit information with other neu-
rons via sparsely emitted spikes [5], leading to extremely low
power consumption of spiking neural networks (SNNs). The
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computability of SNNs has been proven in the pioneering works
of [6], [7]. Recent works have also established the efficiency of
SNNs in solving specific problems such as dictionary learn-
ing [8] and SR [9], [10], [11].

In the realm of SR, many works have focused on developing
SNN-based algorithms. Zylberberg et al. first demonstrated that
SR principles can operate on spiking neurons through synap-
tically local plasticity rules [12], but they did not provide a
specific energy function. Hu et al. proposed a hybrid distributed
algorithm (HDA), which is equivalent to a network of spik-
ing neurons, to solve a time-varying LASSO problem [13].
Compared to other distributed algorithms, HDA shows impor-
tant advantages such as energy efficiency and low bandwidth
requirements. Exploiting the sparse nature of the output, the
total power of SNNs is further reduced when dealing with SR
problems [9], [10]. Shapero et al. were the first to implement the
spiking SR (SSR) algorithm on a Field Programmable Analog
Array (FPAA) chip [9]. Though the SSR algorithm is restricted
to non-negative variables to mimic biophysical variables (e.g.,
firing rates of spiking neurons), their experiments still validate
the extremely high efficiency and low power consumption of
SSR systems, demonstrating huge potential in practical usage.

Most existing SSR algorithms are designed to solve the
convex /1-norm regularized optimization problem, which tends
to underestimate high-amplitude components and often results
in biased estimates. On some settings, the result of ¢;-norm
regularized optimization is not sparse enough, or the original
signal cannot be reliably recovered [14]. In contrast, numerous
researches have shown that non-convex regularized optimization
can lead to more accurate estimates since non-convex penalties
do not penalize high-amplitude components excessively [14],
[15]. Related algorithms can be roughly divided into three
classes. The first class is the iterative reweighted algorithms,
including the iterative reweighted least squares (IRLS) [16],
iterative reweighted ¢; minimization (IRL1) [14] and their ex-
tended versions for the £,-norm (0 < ¢ < 1) regularized mini-
mization problems [17]. These algorithms improve the recovery
performance via solving a sequence of weighted minimization
problems where the weights used for the next iteration are
updated according to the current solution. The second class
is the difference of convex functions algorithm (DC program-
ming) [15], which is based on an iterative algorithm that solves
a convex weighted LASSO problem at each iteration. The last
class is iterative thresholding algorithms [18]. By designing a
thresholding operator corresponding to the chosen non-convex
penalty, iterative thresholding is effective and easy to implement
when dealing with large scale problems [19].
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TABLE I
COMPARISON OF POWER CONSUMPTION

Dictionary Size (M x N) 8 x 16 16 x 32 32 X 64 64 x 128 128 x 256 256 x 512 512x1024
Power of FISTA [23] 1.61W 1.76W 1.83W 1.85W 1.94W 241W 8.7TW
Power of SSR [10] 12.55mW 16.34mW 19.76mW 21.40mW 27.02mW 30.61lmW 36.22mW
Power of A-SSR 12.87mW 14.30mW 18.44mW 20.71mW 25.21mW 30.15mW 35.85mW
Power Ratio FISTA/A-SSR 125% 123x 99 x 89x 77x 80x 244

The result we present here is the active power, which is obtained by subtracting the background power from the total power.

The lowest power consumption is marked in bold.

The performance of SR is significantly improved by exploit-
ing non-convex penalties, but the iterative process of the above
techniques hinders the overall computational efficiency. On the
other hand, SNN-based algorithms have shown excellent power
efficiency, motivating the combination of SNN and non-convex
regularized optimization. Previous works [9], [10] show that
SSR systems have equivalent dynamics to the non-spiking lo-
cally competitive algorithm (LCA) [20] when dealing with the
convex {1-norm regularized SR problems. In [21], the authors
present a general approach to implement LCA for a wide variety
of cost functions, including non-convex ones. Combining [9]
and [21] suggests replacing the convex penalties of existing SSR
approaches with non-convex penalties. However, the following
challenges remain unaddressed:

® Architecture Design: Existing SSR systems [9], [10], [11]

only describe the architecture with convex ¢;-norm penal-
ties. Thus, modifications should be made on SSR systems
to incorporate non-convex penalties while maintaining
the fundamental spiking dynamics. Although the idea of
combining [9] and [21] inspires several possible solu-
tions for implementing the SSR systems with non-convex
penalties, the corresponding theoretical properties includ-
ing system stability, convergence conditions, and solution
equivalence, need to be considered.

® Theoretical Analysis. Prior work [10] provides theoretical

analysis of the SSR system with convex ¢;-norm penal-
ties [9]. However, this result does not hold for non-convex
penalties. In addition, the theoretical properties such as
system stability, solution equivalence, and convergence
conditions are closely related to the specific form of the
designed spiking system, which might vary with different
non-convex penalties.

Inspired by the results of [9], [10], [21], this paper presents an
adaptive version of SSR (A-SSR) to solve a class of non-convex
regularized SR problems with SNNs. In addition, we provide
theoretical analysis of A-SSR, including system stability, so-
lution equivalence, and convergence conditions. By adapting
the spiking model, the proposed method encourages the re-
covery of high-amplitude components, leading to improvement
in recovery accuracy. At the same time, A-SSR maintains the
advantages of simple hardware implementation and low power
consumption. When implemented on the neuromorphic Loihi
chip [22], the proposed method can solve SR problems with
approximately 1% of the power consumption of fast itera-
tive shrinkage-thresholding algorithm (FISTA) [23], as illus-
trated in Table I. Furthermore, we prove the global asymptotic

min
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Fig. 1. Relationship between SR algorithms and optimization problems. ISR,
SSR and A-SSR denote iterative, spiking and adaptive spiking sparse recovery
algorithms respectively. A = B represents that algorithm A solves optimiza-
tion problem B, and the red part indicates our contribution.

convergence of A-SSR and show that A-SSR converges to
a critical point of the corresponding non-convex regularized
optimization problem, theoretically guaranteeing the system
stability and recovery accuracy in practical applications. The
relationship between SR algorithms and the corresponding op-
timization problems is summarized in Fig. 1 for clarity.

The rest of this paper is organized as follows. The basic
concepts of spiking neurons and the corresponding configuration
for the ¢1-norm regularized SR problem (i.e., SSR shown in
Fig. 1) are introduced in Section II. Our A-SSR approach is
proposed in Section III by applying an adaptive mechanism
to the spiking neuron model. The relationship between A-SSR
and the non-convex regularized SR problem is established and
convergence of A-SSR is analyzed. Finally, we design a series of
experiments in Section IV to verify the performance of A-SSR
in terms of recovery accuracy and computational efficiency, and
demonstrate the superiority of A-SSR in real applications.

II. PRELIMINARY OF SSR

In this section, we first review the basic concepts of SNNs
and spiking neurons, and then introduce the development of
neuromorphic computing platforms designed for SNN. Finally,
we describe how SNN can be configured to solve SR problems.

A. SNNs and Spiking Neurons

Instead of using real-valued computation, i.e., the amplitude
of the signal, SNNs exploit the timing of the signals to process
information [24] in the form of binary spikes (either 1 or 0),
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Fig. 2. Activities of biological neurons and IAF neurons include three main

stages: potential charging, spike firing and refractory period.

leading to two main advantages: computational efficiency and
low power consumption. At first, the mathematical dot-product
operations in ANNs can be replaced by less computationally
intensive binary operations in SNNs, reducing the computational
burden [24]. On the other hand, spiking neurons are only acti-
vated when they receive or emit spikes, otherwise they stay in
idle mode to save energy. These characteristics potentially make
the spiking neuron an efficient computation unit. When encoun-
tering SR problems, the computational efficiency can be further
enhanced since spiking neurons are sparsely activated [9], [25].

A variety of spiking neuron models, e.g., integrate-and-fire
(IAF) [26] and Hodgkin-Huxley (HH) [27], have been proposed
to describe the generation of spikes at different levels of bio-
fidelity. In this work, we use the simple yet versatile ITAF model to
build SNNs, where the neuron behavior can be divided into three
stages: potential charging, spike firing and refractory period, as
illustrated in Fig. 2.

Potential Charging: Taking neuron-¢ as an example, its mem-
brane potential v;(t) updates according to

n®) = [ )+ s + 4t M

where 1€ is the constant current, j;(t) is the input current and
t;; is the latest firing time of neuron-i (¢;; = 0 if no spike is
emitted). The term ‘firing time’ refers to the moment when a
given neuron emits a spike. Collecting all the firing times of
neuron-¢, we can define the spike sequence as

l
oi(t) =Y 6(t—tix) )
k=1
where §(+) is the Dirac ¢ function and ¢; j, denotes the k-th firing
time of neuron-;.
Spike Firing: Neuron-i emits spikes when its membrane po-

tential v;(¢) reaches a predefined spiking threshold v* and then
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resets v;(t) to the resting potential »” < v°. Correspondingly,
the firing time ¢; j, is defined formally as follows,
tig : vi(tig) =% (3)
Combing the potential resetting mechanism with (1), we
reformulate (1) as

w®) = [ ) +uyas = 0 =) [Cotsias @

where the last term indicates the potential removed while reset-
ting the neuron after each spike (here we assume 1;(0) = 0).

Refractory Period: After the spike firing, neuron-; imme-
diately enters the refractory period for a given time interval
Tref > 0, during which v;(t) remains at " and no new spike
is emitted from neuron-i. Note that 77¢/ is usually set small
enough that there is no noticeable effect on the network dynam-
ics. At last, neuron-; returns to the charging period and starts
updating its membrane potential v;(t).

To apply IAF neurons to specific tasks, the basic methodology
is to configure the constant current ;¢ and design the connec-
tivity of neurons that relate to the input current pu;(t). After
running the configured SNN for a given time interval, the output
of network can be obtained by encoding the spike sequence [28].

B. Neuromorphic Computing Platforms

Due to the asynchronous nature of spiking neurons, traditional
von Neumann architecture cannot fully utilize the advantages
of SNN [24], thus the research on neuromorphic computing
platforms becomes necessary. To simulate the working mech-
anism of the cerebral cortex, IBM developed the neuromor-
phic chip TrueNorth [29] with mature CMOS integrated cir-
cuit technology. Each chip integrates 1 million programmable
spiking neurons and 256 million synaptic connections, enabling
it to handle large-scale problems. Inspired by the connectivity
characteristics of the mammalian brain, the SpiNNaker project
has been proposed [30], aiming to deliver a massively parallel
million-core computer suitable for modeling large SNNs in
real biological time. Using a novel event-routing technology,
SynSense developed the dynamic neurormorphic asynchronous
processor (DYNAP) [31], which provides an ultra-low-power
and ultra-low-latency neuromorphic device for a variety of ar-
tificial intelligence edge computing applications. In addition,
Intel developed a 60-mm? on-chip learning processor, namely
Loihi [22], [32]. Each Loihi chip supports 130 thousand neurons
and 2.1 million synapses per mm?, which is the highest synapse
density in current neuromorphic chips. Recently, Tsinghua Uni-
versity successfully developed the Tianjic chip [33], which is
the first hybrid, synergistic platform. By building the hybrid
architecture of artificial neural networks (ANNs) and SNNs on
one chip, Tianjic provides a generalized platform for practical
tasks.

Recent advances in neuromorphic computing platforms show
a promising future for SNN and guarantee the performance of
SNN-based algorithms. We next introduce how the SNN can be
employed to solve SR problems.
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C. Spiking Sparse Recovery

Consider an M-dimensional stimulus s € R (e.g., an M-
pixel image) modeled as

s=®a+e€ 5

where @ = [¢1, ..., ¢n] € RM*N with M < N is the sensing
matrix or dictionary and € € RM is the noise. SR algorithms
aim at recovering an N-dimensional sparse signal a € R" from
s. One of the most popular methods is to solve a regularized
optimization problem

1 2
nin, §||s — ®all; + \C(a), A>0, (6)

where C(a) : RN — R is a sparsity inducing penalty. Ideally,
we may choose the £o-norm as the penalty C'(a) = ||al|, which
counts the number of nonzero elements in the sparse signal.
Due to the non-convexity and NP-hard issue [34] of ¢y-norm
regularized optimization, convex functions are often employed
as surrogate penalties, especially the ¢1-norm penalty C'(a) =
|lal|1. With convexity of the ¢1-norm, the optimization problem
(6) becomes tractable but traditional optimization methods [2],
[31, [4] often require a large number of iterations, which is highly
power consuming.

Instead of direct optimization, dynamic systems such as
Hopfield-style networks [35] can be employed to solve the ¢;-
norm regularized optimization problem. The locally competitive
algorithm (LCA) [20], [21] is a typical example. Specifically,
each neuron in the LCA is characterized by an internal state
variable, u;(t) fori = 1,..., N, and produces outputs, a; () for
i=1,..., N, through a non-linear thersholding function 7} (+).
The dynamics of the internal state variables u;(¢) is described
by a set of non-linear ordinary differential equations (ODEs):

ra(t) = ®T's —u(t) — (®7® —T)a(t)
a(t) = Tx(u(t)), (7

where 7 is the time constant. Through the evolution of (7), LCA
networks efficiently solve the ¢;-norm regularized optimization
problem [36] with much lower power compared to numerical
iterative approaches [37].

Recent works of [9], [10] converted the LCA system to its
spiking version and proposed the SSR system, which further
improves the power efficiency by exploiting the advantages of
SNN. In detail, SSR is designed to solve the SR problem (6) with
the ¢1-norm penalty and the non-negative constraint to mimic
the biological behaviors of spiking neurons [10], i.e.,

1
min s — ®al3 + Alall. ®)

Exploiting rate-based IAF neurons, one can approximate the so-
lution of (8) by the firing rate of neurons in the SSR system [10],
where the main idea is to embed the gradient flow of (8) as the
vector field of the network dynamics of SNN.

Following the methodology in Section II-A, we set the con-
stant current ;¢ = —\ with X\ the same constant as in (8), and
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T,l.e., tSNN = tAgs/T.

rewrite (4) as

vilt) = / (ui(s) — Nds — (v — ") / oi(s)ds. (9)

Then we define the input current 1;(t) as

pat) = bi = Qs (ax0;) (1), (10)
J#i
or in its differential form
Tﬂi(t):bi_ﬂi(t)_zgijaj(t)- (11)

J#i

Here b; & ¢7's denotes the bias current, Q;; & @7, is the
synaptic weight that measures the influence of spikes according
to the similarity of receptive fields, and c(t) & %e’t/ TH(t)isa
decay function where H(¢) denotes the Heaviside step function.
When no spike is fed, the input current p;(t) equals the bias
current b;, and if other neurons, e.g., neuron-7j, send a spike to
neuron-i, the spike will be weighted by (2, first, and then affect
the input current 1;(¢) of neuron-i with an exponential decay.

Based on the above configuration, one can build an SSR
system and obtain the output of network by the rate-based
encoding method. That is, the ¢-th element of the sparse signal
is equal to the firing rate a;(t) of neuron-i, i.e.,

t
a;(t) = 1 / o;(s)ds. (12)
t Jo
An example of neuron activity and a sparse signal is illustrated
in Fig. 3. In the SSR system, the neuron activity a; (¢) is strongly
related to the membrane potential v;(¢), where the potential
charging speed is determined by the input current p;(¢) and
the constant current —\. In fact, the differential form of the
input current (11) can be regarded as another dynamic system
similar to (7) but designed in a spiking-based manner, and the
constant current — A serves as a thresholding function like 7 ()
to induce sparsity. Thus, SSR can solve the SR problem (8) via
imitating the basic mechanism of LCA (7) in SNN. A formal
and rigorous analysis of the equivalence between the outputs of
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SSR and LCA is provided in [10]. Here we summarize the result
as the following theorem.

Theorem 1: Consider an SSR system defined by (2), (3), (9),
(10) and (12). As time goes to infinity, the firing rate a(t) =
[a1(t),...,an(t)]T of SSR is equivalent to the output of LCA
and converges to the optimal solution of the SR problem (8).

Proof: See [10] for details. O

Compared to the analog LCA system (7), SSR poses signifi-
cant advantages in power efficiency. Take the system output as an
example. The LCA system needs to constantly keep a relatively
high voltage/current to carry the output signal, while the SSR
system emits sparse and binary spikes to represent the output,
which is easy to implement in a low-power manner. In [10],
the SSR algorithm is shown to largely outperform the analog
LCA with a 94% decrease in power consumption and an 89%
decrease in convergence time, showing the great potential of the
spiking-based framework. To tackle the underestimation issue
of /1-norm regularization, we next extend SSR to solve the SR
problem with non-convex penalties.

III. SSR WITH NON-CONVEX PENALTIES

Consider the SR problem with non-convex penalty g(-), ie.,

1 N
min B(a) = s — ®alf + A3 glail).  (13)

a>0 —1

One can optimize (13) via IRLS [16] or IRL1 [14] and find more
accurate estimates than optimizing (8). Thus applying spiking
neurons to solve (13) can further improve the performance of
SSR. To this end, we first extend SSR to its adaptive version
(i.e., A-SSR) by adapting the spiking neuron, and then establish
the bridge between A-SSR and the SR problem with non-convex
penalties (13).

A. Adaptive Spiking Sparse Recovery

The configuration of the input current y;(¢) and the encoding
method in A-SSR remain the same as in SSR, i.e., (10) and (12).
To fit the non-convex regularization in (13), we need to extend
(9) by replacing the the constant current —\ with the adaptive
current —A;(t), i.e.,

vilt) = / (nils) — Au())ds — (v° — ) / oi(s)ds, (14)

where A;(t) = A\g'(|a;(t)]) with ¢'(|a;(¢)]) the first derivative
of g(Ja;(t)]) w.rt. |a;(t)| and X the same constant as in (13).
Equation (14) indicates that the charging speed of potential v; (¢)
is also affected by the firing rate a; (), and the adaptive function
is determined by the chosen penalty g(-). In other words, the
spiking neuron in A-SSR can adaptively adjust the charging
speed according to its own firing activity.

To obtain the adaptive current A;(¢) in analog SNNs, we
need to compute the non-linear function ¢'(-). These non-linear
functions can be easily realized even by using simple opera-
tional amplifiers in analog systems, with which the basic func-
tionalities suchasmultiplication, division, log,
exp, abs already exist. For instance, the first derivative of

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

the exponential penalty (as Example 1 in Section III-B), i.e.,
g'(x) = ve~ 7", can be realized via cascading an exponential
operator and several multiplication operators [38].

For simplicity, we set the spiking threshold v* = 1, the resting
potential " = 0 and additionally add the lower bound of poten-
tial v~ = 0 so that v;(t) will be reset to v~ once v;(t) < v ™.
Based on the above, we summarize the definition of A-SSR
below.

pi(t) = b; — ZQij (ax o) (t) (15a)
J#i

vi(t) = / (i) — As(t))ds

Input current

Potential

- /Ot oi(s)ds (15b)

Firing time tig: vi(tig) =v° (15¢)

Spike sequence o;(t) = Z 0t —tik) (15d)
lk t

Firing rate a;(t) = ;/0 oi(s)ds. (15¢)

Note that the term (v* — ©") in (15b) disappears because v* = 1
and " = 0 in our configuration. Through the dynamic evolution
of A-SSR systems, the solution of the SR problem (13) can be
approximated by the firing rate (15e) of spiking neurons (see
Theorem 2 in Section III-C).

Apart from the proposed A-SSR system, there exist several
possible implementations of the spiking SR system with non-
convex penalties. For instance, one could apply adaptation on
the spiking threshold »* instead of the adaptive current used in
A-SSR, or modify the SSR system [9] based on the nonlinearities
corresponding to non-convex objectives in [21]. Here, we focus
on the implementation of A-SSR and investigate its theoretical
properties including convergence conditions (Section III-B),
system stability, and solution equivalence (Section III-C).

B. Choice of Non-Convex Penalties

Instead of ¢;-norm regularization, the target optimization
(13) is regularized with non-convex penalties ¢(-), and thus the
system stability is directly related to the chosen ¢(-). To guide
the penalty selection, we provide the following rules.

Rule-1 g(-) is non-negative and subanalytic on [0, 4+00).

Rule-2 The first derivative of g(-) is continuous and non-

negative on [0, +00), i.e., ¢'(-) > 0.
Rule-3 The second derivative of g(-) exists, and is bounded
g"(z) € (—1,0),Vz € (0, +00).

With Rule-1, the objective (13) is also subanalytic, guaran-
teeing the convergence of A-SSR (see Appendix A for details).
Rule-2 ensures that A;(¢) will not go negative and prevents the
potential v;(¢) from overcharging. Finally, Rule-3 suggests that
the penalty choice should be related to parameter A, which is ben-
eficial to the system stability. Rule-3 also implies that ¢'(|a;|) is
monotonically decreasing over |a; | in our case. Therefore, these
neurons with higher firing rates are more likely to fire spikes
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according to (15b), leading to better recovery of high-amplitude
components.

Although Rule-3 may seem strict, there is a wide range
of possible penalties under an appropriate )\, including those
commonly used in practice [21], [39]. Here, we analyze three
exemplary penalties that will be used in our experiments.

Example 1: The exponential penalty g(z)=1-—e 7,
where v > 0 is a constant. It is obvious that the exponential
penalty meets Rule-1 and Rule-2. For Rule-3, note that

g//(l’) - 7726771; € (7’7270)7 Vx € (Oa +OO).
Given the parameter A, the exponential penalty satisfies all the
rules when vy € (O, @}
Example 2: The logarithmic penalty g¢(x) = log(z + 0),
where 6 > 0 is a constant. To meet Rule-1, we must have

g(0) = log() > 0, therefore § > 1. With 6 > 1, Rule-2 holds
as well. As for Rule-3, we have

1 1
g”(l') = —m S (—92,0> s YV S (O, +OO)
Given the parameter \, one can derive that 6 > \/X satisfying
Rule-3. Hence, the logarithmic penalty satisfies all the rules
when 6 € [¢, +-00) with & = max(vV/, 1).

Example 3: The arctangent penalty g(x) = arctan(z/n),
where 1 > 0 is a constant. It is clear that this penalty satisfies
Rule-1 and Rule-2. To meet Rule-3, note that

§'(z) = — 2nx c _3\/§
(n? + 22)° 8n
For a given ), the arctangent penalty will meet all the rules when
n e (% A, +oo) .
With the above examples, one can see how the rules guide the
selection of non-convex penalties. Under the same penalty g(-)
that satisfies all the above rules, we next discuss the equivalence

between the output of A-SSR and the solution of the SR problem
(13), and analyze the convergence property of A-SSR systems.

0) , Ve (0,400).

C. Convergence Analysis of A-SSR

In this section, we prove the global asymptotic convergence
of A-SSR systems and state that the firing rate a(¢) of A-SSR is
equivalent to a critical point of the SR problem (13) as time goes
to infinity. Let us first review the definition of critical points: A
vector a* € R is called as a critical point of objective V(-)
when it satisfies the inclusion

0€aV(a).

We then state the convergence result as follows.

Theorem 2: Consider a penalty g(-) satisfying all the rules
mentioned in Section III-B. We additionally define the average
input current u;(t) as

o1 [*
u;(t) Lof f/ wi(s)ds. (16)
t Jo
Then the average input current u(t) = [uy(¢),...,un()]” and

the firingrate a(t) = [ay(t), ..., an(t)]T of A-SSR are globally
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asymptotically convergent, and a(t) will converge to a critical
point of (13) as time goes to infinity.

Proof: See Appendix A for the detailed proof. ]

The contribution of Theorem 2 is two-fold:

o System Stability: The stability of A-SSR is guaranteed.
Though we cannot promise to find the global minimum
of F(a) defined in (13), which is generally hard (or even
impossible) due to the non-convexity of E'(a), the conver-
gence result is often sufficient for practical purposes. In
our experiments, A-SSR systems can obtain a satisfactory
solution within 20 SNN time (see Fig. 7(c)), which is
equivalent to around 0.04 s on the neuromorphic chip Loihi
(see Fig. 8).

e Solution Equivalence: The output of A-SSR is equivalent
to the solution of the SR problem (13), e.g., see Fig. 6. By
using spiking neurons to solve the non-convex regularized
SR problem, A-SSR can take advantage of both fields and
serve as an efficient SR solver with high recovery accuracy
(see Fig. 7) and low power consumption (see Table I).

IV. EXPERIMENTAL ANALYSIS

To verify the performance of A-SSR, we present a series of ex-
periments based on Nengo [40], a neural engineering simulation
platform, and the neuromorphic processor Loihi [22]. Our exper-
iments are conducted on both synthetic and real datasets. In the
experiment of synthetic data, we first investigate the influence of
the trade-off parameter A in (13), which is related to the accuracy
and sparsity of the final estimates. The different working process
between SSR and A-SSR is then analyzed to reveal the benefit
of the adaptive mechanism in (15b). Following that, we conduct
experiments to verify the solution equivalence between A-SSR
and the SR problem (13). Next, we compare the performance
of A-SSR systems corresponding to different penalty functions,
and show the advantages of A-SSR in power consumption and
running time. Finally, we solve an image reconstruction task and
a face recognition task to demonstrate the potential of A-SSR in
practical applications. In our experiments, the time constant 7
is set to 0.1; the entries of dictionary ® are sampled randomly
from a standard Gaussian distribution A/ (0, 1); and the noise we
consider here is the white Gaussian noise.

A. Influence of Parameter \

In this experiment, we mainly illustrate the relationship be-
tween parameter A and the performance of A-SSR. We de-
sign an A-SSR with exponential penalty g(|a;|) = 1 — e 712!
where v = 1, and compare to SSR under the same dictionary
& c R100%200 From Fig. 4, it is obvious that the A-SSR system
is superior to SSR in both accuracy and sparsity. The result also
shows that the performance is closely related to the parameter
. If A is chosen too large, the charging speed of all neurons be-
comes slow according to (15b), resulting in longer convergence
time. In contrast, if A is too small, the effect of the adaptive
mechanism becomes negligible since the sparsity constraint in
(13) almost vanishes. The selection of X also affects the choice
of non-convex penalty due to Rule-3 in Section III-B. Generally
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NMSE (dB)

(a) Accuracy

Fig. 4.
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Sparsity (%)

(b) Sparsity

Influence of parameter \. (a) Recovery accuracy under different A. The metric NM SE = 10log,((||a — al|2/||a]|2) indicates normalized mean square

error, where a denotes the original signal. (b) Comparison of recovery sparsity, where sparsity is defined as the percentage of non-zero coefficients in total.
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smaller \ leads to a wider choice of ¢(-). Taking all factors into
consideration, we choose A = 0.1 in the following experiments.

B. Comparison Between SSR and A-SSR

Using the same A-SSR system as in Section IV-A, we now
compare the working process of the proposed A-SSR to SSR. For
simplicity, we design a simple SNN with only three neurons, and
set the original signal to & = [0.4792, 0,0.9754]7". As displayed
in Fig. 5(a) and (b), one can find that these active neurons (e.g.,
neuron-1) in A-SSR tend to produce more spikes than that of the
SSR system. This is because the adaptive mechanism within A-
SSR encourages these active neurons to spike more frequently,
leading to better recovery of high-amplitude components. On
the other hand, these inactive neurons (e.g., neuron-2) are more
intensively affected as input spikes increase, making A-SSR be
in periodical stabilization earlier (as shown in Fig. 5). After the
same SNN time, the normalized mean square errors (N M SE's)
generated by SSR and A-SSR are —19.95 dB and —28.97 dB,
correspondingly.

C. Verification of Solution Equivalence

To verify the solution equivalence, we implement LCA [20],
[21] on Matlab as a baseline system to solve the SR problem (13).
Apart from the A-SSR system in Section IV-A, we employ an
additional A-SSR system with the logarithmic penalty g(|a;|) =

=]
- 3 * Ok Kk * ¥ * * * * * * * kK kK Ok KK
52
3
D 1 * * * * * * * * *
z
1 Neuron-1 Neuron-2 Neuron-3
]
c
9 L
&
! 1
1
0 P :
0 5 10 15 20
SNN Time
(b) A-SSR

The potential diagram (bottom) and the spike raster diagram (top) of SSR and A-SSR with exponential penalty. The dashed box indicates the first stable

log(]a;| + 1), which belongs to the family of approximate ¢,,-
norm (0 < ¢ < 1) functions in [21]. We configure A-SSR and
LCA to solve the same non-convex regularized optimization
problems (13) under the same dictionary ® € R190%200 159,
sparsity, and noise-free scenarios. Asillustrated in Fig. 6, A-SSR
and LCA converge to similar solutions, indicating that the output
of A-SSR is equivalent to the solution of SR problem (13).

D. Performance of A-SSR Under Different Adaptive Functions

To explore the performance of A-SSR with different adaptive
functions, we add A-SSR with g¢(|a;|) = arctan(|a;|/n) into
the experiments and set n = 1. We first compare the probability
of successful recovery with the same dictionary ® ¢ R100%200
and different sparsity levels. Here we define successful recovery
as the case NMSE < —15 dB in the noise-free scenario, and
test each algorithm with 100 samples. In Fig. 7(b), the recovery
probability of SSR drops quickly at the beginning while all A-
SSR systems hold their probability at nearly 1 until the sparsity
is over 15%, showing that A-SSR systems can still recover the
signal reliably under less sparse conditions.

Next, we consider the situation where the signal is corrupted
by white Gaussian noise. We choose @ € R'00%200 20 dB
SNR and 15% sparsity as the default setting, and present four
experiments: Fig. 7(c) shows the convergence comparison under
the same conditions, and Fig. 7(d)—(f) show the performance
under different levels of sparsity, noise, and measurements.
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Performance of A-SSR systems with different adaptive functions. (a) Illustration of the penalties used in this experiment; £p-norm and ¢ -norm are also

drawn for reference. (b) Probability of successful recovery in the noise-free scenario. (¢c) Convergence comparison. (d)—(f) Performance under different levels of
sparsity, noise and measurement, respectively. SNR indicates the signal-to-noise ratio, and measurement represents the size ratio M /N of dictionary ® € RM*N,

Evidently, all the A-SSR systems achieve general improvement
in accuracy compared to SSR. The performance of A-SSR also
varies with the chosen non-convex penalty, i.e., the adaptive
function, and the exponential penalty is the best choice for the
proposed experiments.

E. Computational Efficiency of A-SSR

In this section, we conduct experiments to verify the com-
putational efficiency of the proposed A-SSR system compared
to other spiking-based and iterative-based SR approaches. Al-
though the existing LCA [21] also provides an analog framework
for SR and can be extended to solve non-convex regularized
SR problems, the prior work of [9] has converted LCA to a
spiking-based version (i.e., SSR) and verified the significant
superiority of SSR over analog LCA in both power consump-
tion and convergence speed. Therefore, we mainly compare
our A-SSR with SSR [9], [10] and FISTA [23], which is one

of the fastest numerical solvers in the SR field. To show the
advantages of A-SSR in power consumption and running time,
we implement SSR and A-SSR with exponential penalty on the
Loihi chip, and use an Intel Core i7-6700HQ 2.6 GHz CPU to run
the reference iterative algorithm FISTA [23]. Since FISTA and
SSR are designed to solve the ¢;-norm regularized optimization
problem while A-SSR is designed for the non-convex one, the
following strategy is used to make the comparison fair: we first
run the SSR system and FISTA to obtain the solutions satisfying
NMSE < —13dB under 15% sparsity and the same dictionary
with 0.5 measurement ratio. Then we record the SNN time
needed for SSR to meet the criterion, and run A-SSR for the same
SNN time. In this way, we can measure the power consumption
of all algorithms. From the result of Table I, it is evident that
spiking approaches are energy efficient with around two orders
of magnitude lower power compared to FISTA.

One more interesting point is that although A-SSR systems
need to operate an additional adaptive mechanism, its power
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Fig. 8. Comparison of running time between FISTA [23] and A-SSR under
different sizes of dictionary & € RM*N,

consumption is still comparable to (or even lower than) that
of SSR. To explain this, we recall the comparison of SSR and
A-SSR in Fig. 5. With the adaptive mechanism, A-SSR system
is likely to be stable earlier than SSR. During the stable period,
these inactive neurons (e.g., neuron-2) only operate within a low
potential range or even remain at v~ = (0. This behavior saves
energy to some extent since the membrane potential is related to
voltage on the Loihi chip. In addition, the A-SSR system actually
produces results with around —17 dB NMSE since we compare
SSR and A-SSR under the same SNN time. Therefore, our A-
SSR algorithm is able to achieve more accurate estimates than
SSR and maintain power-efficient implementation on hardware.

We also measure the running time of FISTA and A-SSR in the
above power experiments. As displayed in Fig. 8, the running
time of FISTA increases significantly with the rising scale of
the SR problem, while that of A-SSR stays at around 0.04 s
at different scales. This is because Loihi assigns more resource
cores to meet the increasing size of neurons and runs all resource
cores in a highly parallel manner. Thus the running time of A-
SSR s related to the number of neurons in one resource core and
the spike traffic rather than the scale of the SR problem, showing
great potential in practical applications.

FE. Application: Image Reconstruction

SR plays an important role in image reconstruction [42]. To
evaluate A-SSR in practical tasks, we perform image reconstruc-
tion on the MNIST database [41], which consists of 28 x 28
gray images with handwritten digits from different writers. For
simplicity, we treat each image as a 784-dimensional vector
and construct the dictionary with 0.5 measurement ratio, i.e.,
& c R392¥784_ With a test image a* € R4, the input vector
s € R3%2 can be obtained by s = ®a*. Under the same SNN
time, we test SSR and A-SSR algorithms with 100 samples per
digit.

Some reconstruction results are shown in Fig. 9. Compared
to the SSR algorithm, A-SSR systems are able to reconstruct
images with higher contrast, more details, and less noises since
A-SSR systems can produce more accurate and sparse estimates.
We then employ the commonly used metrics peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [43] for
quantitative evaluation. In Table II, all the A-SSR methods
surpass SSR over 4 dB in PSNR and 0.12 in SSIM. It demon-
strates that the adaptive mechanism not only achieves better

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

TABLE II
QUANTITATIVE RESULT OF RECONSTRUCTION

Metric PSNR(dB) SSIM NMSE(dB)
SSR [10] 18.87 0.7722 -9.039
A-SSR-Exp 24.49 0.9196 -14.65
A-SSR-Log 22.87 0.9014 -13.04
A-SSR-Atan 23.68 0.9106 -13.84

The above results are acquired in the noise-free scenario.
The highest PSNR and SSIM, and the lowest NMSE are marked
in bold.

recovery of high-amplitude elements, but also maintains the
overall structure of images. In Fig. 10, we consider the case
where the test image a* is corrupted by white Gaussian noise.
Though the reconstruction performance fluctuates with the noise
level, A-SSR systems still achieve an overall improvement in
reconstruction quality, which is consistent with the analysis in
Section IV-D.

G. Application: Face Recognition

In addition to image reconstructions, SR shows advantages in
image recognition [44]. In our recognition task, we select 640
frontal-face images of 10 individuals from the Extended Yale B
database [45]. All images are downsampled to shape 18 x 16
and regarded as 288-dimensional vectors, and we denote the
m-th face image of the n-th subject as A, ,, € R?®®. For each
individual, 40 images are taken for training and the rest (i.e., 24
images) are left for the testing phase. In the training, we first nor-
malize each A, ,, to a unit Euclidean norm A, ,, € R?®8, and
then construct the dictionary by concatenating all the training
samples, ie., P = [1’&1717 A271, ey A4071, ALQ, - ,A40,10] S
R288x400 " For the testing, we take the remaining normal-
ized images, i.e., Am,n where m =41,42,...,64 and n =
1,2,...,10,ass to form the bias current b = ®”'s in our A-SSR
system. After running 30 SNN time, we evaluate the recognition
performance by analyzing the output spike sequences. Since the
recognition rate varies with the chosen decision strategy, we
instead analyze the confidence of recognition, which is a more
intuitive representation of the performance. Here we define the
recognition confidence as the ratio of spikes emitted by a certain
class to the total number of output spikes.

Fig. 11 illustrates the recognition confidence between the
SSR and our A-SSR systems in the noise-free scenario. With
the help of the adaptive mechanism, all A-SSR algorithms
achieve around 5% confidence improvement over SSR, leading
to stronger system robustness. To further verify this, we add two
kinds of interference to the original test image. In the first case,
we corrupt the test image with white Gaussian noise according
to a pre-setting signal-to-noise ratio (SNR) value (as shown
in Fig. 12(a)). In the second scenario, we randomly choose a
percentage of pixels from the test image, and replace their values
with zeros (as shown in Fig. 12(b)). Thus we can simulate the
situation where input information is limited. From the results
of Fig. 12(c) and (d), one can see that A-SSR methods maintain
their advantages either under noises or with limited information.
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Fig. 9. Qualitative comparisons between SSR (row 2) and A-SSR (row 3-5 are the results of A-SSR-Exp, A-SSR-Log and A-SSR-Atan respectively) on the
MNIST database [41]. Row 1 displays the ground truth.
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V. CONCLUSION

In this work, we propose A-SSR to solve a class of non-convex
regularized SR problems via adaptive spiking neurons. By estab-
lishing the connection between the non-convex penalty and the
adaptive mechanism, A-SSR can avoid the underestimation of
high-amplitude components in sparse signals, thereby obtaining
results with better accuracy and sparsity. Exploiting the advan-
tage of spiking neurons, A-SSR implemented on Loihi only
consumes around one percent of the power of FISTA. Thus the
proposed method is able to produce better estimates and remain
energy-efficient on hardware. To guide the use of A-SSR, we
also provide a set of selection rules for non-convex penalties and
prove the global asymptotic convergence of A-SSR. Extensive
experiments demonstrate the remarkable performance and low
power consumption of A-SSR, showing potential in practical
usages like always-on or energy-constrained applications.

APPENDIX A
PROOF OF THEOREM 2

To help prove Theorem 2, we design a non-spiking auxiliary
system which serves as a bridge between A-SSR and the non-
convex regularized optimization (13). The auxiliary system is
defined as follows (dependence on ¢ is omitted for readability):

Tt = b —uft = Y Qa,
i
au 1 au au
ai" = max(ui" — A§",0) = F ™), ifug > AT,
0, else,
(17)

where f(uf") = uf* — A" = u* — A\g'(|a¢"]) is defined on
[0,4+00), and variables are restricted to be non-negative, i.e.,
u$* > 0and af" > 0.

For clarity, we divide the proof into four lemmas. The relation-
ship between the auxiliary system and the target optimization
(13) is first established in Lemma 1. In Lemma 2, we then prove
the global asymptotic convergence of the auxiliary system by
leveraging the convergence result in [36]. With the boundedness
of p(t) and u(t) in Lemma 3, we finally prove that the A-SSR
system converges to the auxiliary system as time goes to infinity,
and the firing rate a(t) will converge to a critical point of the
corresponding non-convex regularized optimization (13).

Lemma 1: With the objective E(a®") defined in (13), the
auxiliary system (17) satisfies that 70" € —9F(a®").

Proof: First define the following operator:

=1 if x > 0,
sgn(z) < €[-1,1] ifz=0, (18)
=-1 ifz <0.

When « is a vector, sgn(x) is also a vector with the i-th element
equal to sgn(z;). Then we can derive the inclusion
ui(t) — i (t) € A (1) sen(ai (1))

K2

19)
based on (17) and the following discussion:

e When ul®(t) > A (1), sgn(a?™(t)) = sgn(uf™(t)) =1

holds since A¢*(t) > 0 from Rule-2 in Section III-B.
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Hence, we can derive the relationship uf*(t) — a?"(t) =
A (t) = A (t) sgn(a” (1)).
e Whenuf*(t) € [0, A$"(t)], we have aZ*(t) = 0, therefore
ui™(t) — ai* () = ui™(t) € A7 (t) sgn(af"(t)).
According to (19), the state u"(t) in (17) can be rewritten as

a* =b—u™ — (7P — I)a™
€b— dTPa™ — A" sgn(a™),
which is also equivalent to
ra® € s — T Pa™ — \g/(J]a®|) sgn(a®™)

since b = ®7's and A% = \g'(|]a®*|). On the other hand, the
sub-differentiation of E(a**) w.r.t. a®" yields

OE(a™) = (—®"s+ &" ®a™ + \g'(|]a™|) sgn(a““))T.

It is thus straightforward that Ta®"* € —0FE(a*") holds. O
We next prove the convergence property of the auxiliary
system. In fact, the auxiliary system is a one-side case of
LCA [20], [46]. The global asymptotic convergence of LCA
has been proven in [36] using Lojasiewicz inequality. Here we
transform Theorem 1 and 2 in [36] to the one-side case that we
are focusing on.
Theorem 3: (LCA convergence results from [36]) Consider
the LCA system (17). If it satisfies the following conditions:
1) f(-) is continuous on [0,4o0) and differentiable on
(0, +00),

2) fA{™(t)) =0, and f(uf"(t)) <uf"(t), Vui"(t) €
[A7(t), +00),

3) ud™(t) — a(t) € ANOC(a?™(t)),

4) f(-) is subanalytic on [0, +00),

5) f(uf*(t)) >0, Vui(t) € (Af"(t), +o0),

6) YU > A¥(¢), Iy >0 s.t. Yud*(t) €

(A (@), U], f'(ui(t) < Cu,

then the state u®“(t) = [ug*(t),...,us"(t)]* and the out-
put a%%(t) = [ad%(t),...,a%*(t)]* of system (17) are globally
asymptotically convergent.

Now we show the convergence of auxiliary system (17) by
proving the conditions required in Theorem 3.

Lemma 2: The state u®®(t) and the output a®*(¢) of the
auxiliary system (17) are globally asymptotically convergent.

Proof: With the rules in Section III-B, it is straightforward
that the system (17) satisfies conditions 1)-2). Condition 3) is
met by (19) since C'(a?"(t)) = g(|a?"(t)]) in our case. As for
condition 4), it is used to guarantee that F(a) is subanalytic
in [36], which is also satisfied by Rule-1 in Section III-B.

To prove condition 5), we derive the first derivative of
F (a2 (1)) on ug (t) € (AL (), +00):

1/ au o dAl(t) dagu(t)
Fu(t) =1- dag™(t) dug™(t)

= 1= Ag"(lai"(t)]) sgn(ai™ (t)) f' (ui" (t))-

With Rule-3 in Section III-B, one can obtain that

1/ au _ 1
P 0) = T 3 gam ) sgn(a@ (@)

>0,
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which corresponds to condition 5). Furthermore, f’(-) also sat-
isfies condition 6) since one can always find an upper bound of
1'(+) on bounded intervals. The proof then follows by the result
of Theorem 3. ]

To help establish the relationship between the auxiliary sys-
tem and our A-SSR system, we first prove the boundedness of
the soma current p(¢) and its average value u(t).

Lemma 3: There exist an upper bound B and a lower bound
B_ such that (), u;(t) € [B_, B4], Vi, t > 0.

Proof: Based on the assumption that all dictionary vectors
are normalized to unit Euclidean norm, we define the following
auxiliary parameters:

Oma & max |37 65, bma & max|bi]
JF 7

With the refractory period in spiking neurons, the duration
between spikes cannot be arbitrarily small whenever these two
spike times exist, L.e., t; p+1 — tix > T7ef Wk > 0. Therefore,
the inequality

1 e
BE =YD > (ax o)),
T c=0
holds and the following relationship can be obtained from (15a):
i (t) S bmax + (N - 1) Qmaxﬂ7

where IV denotes the total number of neurons in A-SSR. Simi-
larly, the relationship (;(t) > —bmax — (N — 1)Qax 5 holds.
Since w; is the average of y;, there exist bounds

By = bmax + (N — 1) Qmax 8,
B_ = _bmax - (N - 1)Qmaxﬁ

such that 1;(t), u;(t) € [B-, By],Vi,t > 0. O
Recall that v~ = 01is the lower bound of potential v; (¢), which
means that

[ o) = astonas - [ty >0

holds. By applying operator ¢~ to (20), we derive the inequality

(20)

Thus u;(t) > 0 holds based on a;(t) > 0 and A;(¢) > 0 from
Rule-2 in Section III-B. This implies that u;(¢) can be fur-
ther bounded by zero in practice, i.e., u;(t) € [0, By]. With
the boundedness of 1;(t) and w;(t), we can prove the global
asymptotic convergence of our A-SSR system.

Lemma 4: Ast — oo, the firing rate a(t) of A-SSR globally
asymptotically converges to a critical point of the non-convex
regularized optimization (13).

Proof: With the derivative derived from (16):

)= pi(t) — ui(t)

r ; 2n

a;(t
the following equation is obtained by applying ¢~ J: g dsto(11):

u;(t) — pi(0) .

; (22)

i (t) = b — wi(t) = Y Qija;(t) — 7

i

6283

On the other hand, one can derive the following relationship
based on (15b) and (15¢):

i) = 3 [ ts) = Atoyas — 0
:WmfAmyJ%Q (23)

Under a;(t) > 0, (23) can be further transformed to
as(t) = max (u (1) — Ag(t) — ”"f) , o) Lo

With v;(t) € [v~, v*] and the result of Lemma 3, it is obvious
that (22) and (24) converge to (17) as t — oo, i.e., A-SSR
converges to the auxiliary system. Based on Lemma 2, the u(¢)
and a(t) of A-SSR are also globally asymptotically convergent
when time goes to infinity.

Assume that u* is the stable point of A-SSR and a* is the
corresponding output. With (21) and the result of Lemma 3, we
have

u* = lim a(t) = lim pit) —u(®)

t—00 t—00 t

=0. 25)

Since A-SSR converges to the auxiliary system, our A-SSR
system satisfies 7u(t) € —9E(a(t)) as t — co. According to
(25), it is clear that

0€dE(a")
holds, meaning that as time goes to infinity, the firing rate a(t)
converges to a*, a critical point of (13). (|

With the above results, we complete the proof of Theorem 2.
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