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Abstract— This paper studies a new multi-device edge artificial-
intelligent (AI) system, which jointly exploits the AI model
split inference and integrated sensing and communication (ISAC)
to enable low-latency intelligent services at the network edge.
In this system, multiple ISAC devices perform radar sensing to
obtain multi-view data, and then offload the quantized version of
extracted features to a centralized edge server, which conducts
model inference based on the cascaded feature vectors. Under
this setup and by considering classification tasks, we measure
the inference accuracy by adopting an approximate but tractable
metric, namely discriminant gain, which is defined as the distance
of two classes in the Euclidean feature space under normalized
covariance. To maximize the discriminant gain, we first quantify
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the influence of the sensing, computation, and communication
processes on it with a derived closed-form expression. Then,
an end-to-end task-oriented resource management approach is
developed by integrating the three processes into a joint design.
This integrated sensing, computation, and communication (ISCC)
design approach, however, leads to a challenging non-convex
optimization problem, due to the complicated form of discrimi-
nant gain and the device heterogeneity in terms of channel gain,
quantization level, and generated feature subsets. Remarkably,
the considered non-convex problem can be optimally solved based
on the sum-of-ratios method. This gives the optimal ISCC scheme,
that jointly determines the transmit power and time allocation
at multiple devices for sensing and communication, as well
as their quantization bits allocation for computation distortion
control. By using human motions recognition as a concrete AI
inference task, extensive experiments are conducted to verify the
performance of our derived optimal ISCC scheme.

Index Terms— Task-oriented communications, integrated
sensing-communication- computation, edge AI.

I. INTRODUCTION

EDGE artificial intelligence (AI) has emerged as a promis-
ing technique to support a variety of intelligent appli-

cations, such as Metaverse and auto-driving, at the network
edge [1], [2], [3], [4], [5], [6]. To enable these intelligent
services, it is desirable to deploy well-trained machine learn-
ing models and utilize their inference capability for making
decisions. This leads to a new research paradigm called edge
AI model inference, or edge inference [7], [8].

Several techniques have been proposed for efficient imple-
mentation of edge inference. The first is called on-device
inference (see, e.g., [9], [10], [11], [12]), in which the inference
task is implemented at resource-limited devices. To alleviate
the computation loads, in on-device inference we need to
design dedicated light models such as MobileNets, or com-
press the deep models to reduce their sizes by e.g., pruning
and quantization. However, as there are various AI tasks with
many different models, this technique still has heavy storage
and computation cost. To address this challenge, the technique
of on-server inference has been suggested (see e.g., [13], [14]).
In this scheme, edge devices upload the input data to an
edge server, which performs the model inference and sends
the results back to the devices. Although on-server inference
can significantly alleviate the hardware requirements of the
devices, they are prone to data privacy leakage. To tackle this
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issue, the technique of split inference is proposed, which splits
the AI model into two submodels (see e.g., [15], [16], [17],
[18], [19], [20], [21], [22], [23]), one deployed at the devices
for feature extraction, e.g. principal component analysis (PCA)
and convolutional layers, and the other at the edge server
for the remaining inference task. As a result, split infer-
ence can preserve privacy by avoiding raw data transmission
and reduce the hardware requirements at edge devices by
offloading heavy computation loads to the edge server. Here
we focus on the split inference technique to exploit these
advantages.

Existing designs for split inference (see e.g., [15], [16], [17],
[18], [19], [20], [21], [22], [23]) mainly focus on reducing
the devices’ overhead on computation or communication.
However, the workflow of split inference consists of three key
processes including sensing, computation, and communication,
and its full potential can hardly be unleashed by optimization
from a single perspective. This thus calls for a joint design
from a systematic view integrating sensing, computation, and
communication. As shown in Fig. 1, the accuracy of split
inference depends on the input feature vector’s distortion level
arising from three processes, i.e., data acquisition (sensing),
feature extraction and quantization (computation), and feature
transmission to edge server (communication). Particularly,
sensing and communication compete for radio resources [24],
[25], and the allowed communication resource further deter-
mines the required quantization (distortion) level such that
the quantized features can be transmitted reliably to the edge
server under a delay constraint. Thereby the three processes are
highly coupled and need to be jointly considered. Furthermore,
the implementation of integrated sensing, communication and
computation (ISCC) should be designed under a new task-
oriented principle that concerns the successful completion of
the subsequent inference task [26], [27]. In the context of split
inference, the performance metric of interest for the system
is no longer throughput, but inference accuracy and latency.
Therefore, a real-time inference-task-oriented ISCC scheme
should maximize the inference accuracy by jointly designing
sensing, quantization, and transmission, under constraints on
low latency and on-device resources.

To achieve task-oriented ISCC design, the employment of
the recently proposed technique, called integrated sensing
and communication (ISAC), is essential as it allows effi-
cient sensing data acquisition and feature offloading with a
shared hardware [28]. The efficiency comes from the poten-
tially smaller form factor of the devices due to the use of
shared hardware for dual functions, and better management of
the shared radio resources like power and bandwidth [24].
As one of the key potential techniques in 6G networks,
ISAC has been widely studied in the existing literature,
for example, optimal waveform designs for dual functional
radar-and-communication (DFRC) systems in [29], [30], and
[31], the beamforming designs for ISAC systems in [32]
and [33], the ISAC assisted orthogonal time frequency space
(OTFS) modulation for vehicular networks in [34], and the
integration of ISAC with over-the-air computation in [35].
In the aforementioned systems, sensing and communication
are designed for separate goals: sensing targets obtaining

high-quality localization data and communication aims at
throughput maximization. However, in the context of edge AI,
sensing (data acquisition) and communication (feature trans-
mission) work together for a common goal, i.e., improving
edge AI performance.

Several pioneering works investigated task-oriented ISAC
schemes for edge AI. For instance, an ISAC based centralized
learning system was proposed in [36], which accelerates the
learning process by generating and uploading as many training
data as possible from the sensing devices to the edge server.
The authors in [37] proposed a vertical federated learning
based ISAC system for human motions recognition. However,
the prior works above fall short in ignoring the influence
of computation, and focusing only on the training phase
that can usually be performed in an offline way. There still
remains an uncharted area for task-oriented ISCC targeting
edge inference, thus motivating the main theme of the current
work.

In this paper, we consider a multi-view ISAC based edge
inference system with classification tasks. There is no require-
ment for the way to obtain the well-trained AI models. They
can be trained in a centralized way in a server, in an egde-
device collaborative way like in [20], or in a federated way
like in [38], etc. There is one mobile edge server (e.g., vehicle)
and multiple ISAC devices equipped with DFRC systems.
In this system, multiple ISAC devices perform radar sensing to
obtain multi-view sensing data, and then offload the quantized
version of extracted features to a centralized edge server,
which conducts the model inference based on the cascaded
feature vectors. The objective of this system is to maximize
the inference accuracy in a real-time manner, i.e., completing
the task under a latency constraint. Efficient implementation
of the considered edge inference system relies on the design of
ISCC, which faces the following technical challenges. The first
main difficulty is the lack of tractable measures for inference
accuracy. To address this issue, we adopt a new metric for
classification tasks called discriminant gain, which is proposed
in [21] and derived from the well-known Kullback-Leibler
(KL) divergence [39]. The discriminant gain measures the
discernibility between two classes in the Euclidean feature
space, as shown in Fig. 2. Specifically, the geometric interpre-
tation of discriminant gain between two classes is the distance
between the corresponding two classes in the feature space
under normalized feature covariance. Thereby, with larger
discriminant gain, the classes can be better differentiated,
which leads to larger inference accuracy. As discriminant
gain can provide theoretical guidance for enhancing inference
accuracy, it is adopted in this work as an approximate but
tractable measure. However, maximizing the discriminant gain
still faces challenges arising from its complicated form of
covariance normalized distance, as well as the coupling among
sensing, computation, and communication, and the device
heterogeneity in terms of channel gain, quantization level, and
the feature elements’ importance.

To address the challenges above, a non-convex infer-
ence accuracy maximization problem is formulated under the
constraints of limited on-device resources and low-latency
requirement. We then propose an optimal ISCC scheme, based
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Fig. 1. Integrated Sensing, Computation, and Communication (ISCC) in Edge AI Inference.

Fig. 2. Geometry of discriminant gain in the feature space.

on the sum-of-ratios method, to jointly determine the transmit
power and time allocation at multiple devices for sensing and
communication, as well as their quantization bits allocation for
computation distortion control. To the best of our knowledge,
this work represents the first attempt to design task-oriented
ISCC schemes for edge AI inference systems. The detailed
contributions of this work are summarized as follows:

• ISCC based Edge Inference System: A multi-view
radar sensing based system is established for real-time
inference tasks with concrete modeling of the sensing,
computation, and communication processes. Under the
system settings, we quantify the influence of sensing
noise, quantization distortion, and communication capac-
ity on the inference accuracy measured discriminant gain
with a derived closed-form expression.

• Inference Accuracy Maximization via ISCC Design:
Targeting maximizing the inference accuracy measured
by discriminant gain, an ISCC design problem that con-
cerns joint allocation of sensing and transmit power,
communication time, and quantization bits is formulated.
We then show that this problem can be transformed into
an equivalent problem with the objective being the sum
of multiple quasi-linear ratios, subject to a set of convex
constraints.

• Sum-of-ratios based Optimal Solution: We adopt the
method of sum-of-ratios to optimally solve the reformu-
lated problem in an iterative manner. In each iteration,
a convex problem is solved, which minimizes the sum of

weighted sensing and quantization distortion under given
discriminant gains of class pairs. Then, the discriminant
gains are updated using the previously solved distortion
level of sensing and quantization.

• Performance Evaluation: Extensive simulations over a
high-fidelity wireless sensing simulator proposed in [40]
are conducted to evaluate the performance of our pro-
posed ISCC scheme by considering a concrete task of
multi-view human motion recognition with two inference
models, i.e., support vector machine (SVM) and multi-
layer perception (MLP) neural network, respectively. It is
shown that maximizing the discriminant gain is effective
in maximizing the inference accuracy for both models
with SVM and MLP neural networks. It is also shown that
the proposed optimal ISCC scheme achieves significantly
higher inference accuracy than the benchmark schemes,
where sensing, quantization, and communication are sep-
arately designed or partially optimized. The superiority
of multi-view inference over single-view inference is also
validated.

The organization of this paper is as follows. The system
model is introduced in Section II. Then, the problem is
formulated and simplified in Section III. The optimal ISCC
scheme is proposed in Section IV, followed by the perfor-
mance evaluation in Section V. Finally, Section VI concludes
the paper.

II. SYSTEM MODEL

In this section, the models of network, radar sensing and
feature generation, quantization, and the metric of AI model
inference accuracy are introduced.

A. Network Model

As mentioned in [41] and [42], a single ISAC device only
obtains a narrow view of the source target, which is insufficient
for completing the task. Therefore, this work considers a
multi-view radar sensing based edge inference system, that
can obtain a number of different views of the source as
shown in Fig. 3. There is one mobile edge server with a
single-antenna access point (AP) and K single-antenna ISAC
devices equipped with DFRC transceivers. In practice, this
multi-view radar sensing system can be deployed in many
intelligent services, like auto-driving, health monitoring, traffic
surveillance, smart factories and homes (see, e.g., in [43]).
For example, in auto-driving systems, the edge server may
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correspond to high-mobility vehicles like cars, and the ISAC
devices correspond to radar sensors. Time-division multiple
access (TDMA) is used. The edge server needs to make a
real-time decision, such as obstacle detection in the wild, via
inferring a well-trained machine learning model. Its features
are collected from the ISAC devices. The detailed proce-
dure for data acquisition (sensing), feature extraction and
quantization (computation), and feature transmission to the
server (communication) at each device is presented in Fig. 4.
Specifically, the server first requests all devices to sense
the environment. Then, the sensing data of each device is
processed and quantized locally to a subset of features. Next,
all feature subsets are fed back to the edge server via wireless
links and are cascaded for completing the reference task. The
ISAC devices remain mute to save the energy consumption
when there is no request.

As shown in Fig. 4, the DFRC transceiver implements
ISAC by switching between the sensing mode and com-
munication mode flexibly in a time-division manner using
a shared radio-frequency front-end circuit [44].1 In sensing
mode, frequency-modulated continuous-wave (FMCW) signal
consisting of multiple up-ramp chirps is transmitted [44].
Then, by processing the received radar echo signals, sensing
data that contain the motion information of the sensing target
can be attained at the ISAC devices. In communication mode,
constant-frequency carrier modulated by communication data
using digital modulation scheme (e.g., QAM) is transmitted.
The total permitted time to finish the real-time inference task
is denoted as T . For an arbitrary device, say the k-th, its
sensing time is denoted as Tr,k and its computation time is
denoted as Tm,k, which both are assumed to be constant. The
communication time to transmit the features is denoted as Tc,k

and the total communication bandwidth is B. The wireless
channels are assumed to be static, as the time duration T
is short and smaller than the channel coherence time. The
channel gain of the link between the k-th device and server is
denoted as Hc,k. The AP is assumed to work as a coordinator
and can acquire the global channel state information (CSI).

B. Radar Sensing and Feature Generation Model

In this section, we first model the radar sensing channel
for obtaining the sensing data. Then, the signal processing for
feature generation is introduced.

1) Sensing Signal: All ISAC devices transmit linear fre-
quency up-ramp chirp sequences as the sensing signals.
Consider an arbitrary ISAC device, say the k-th. A sensing
snapshot consists of M chirps, each of which has a duration
of T0 = Tr,k/M . The sensing signal in a snapshot is

sk(t) =
M−1∑
m=0

rect
(

t−mT0

T0

)
× cos

(
2πfc,k (t−mT0) + πµ (t−mT0)

2
)

,

where rect(·) is the rectangular-shaped pulse function with
width of 1 centered at t = 0, fc,k is the sensing carrier

1Practical implementations of the DFRC transceiver via software-defined
radio solution have been demonstrated in [28], [44], and [45].

frequency for the k-th ISAC device, µ = Bs/T0 is the scope
of each chirp, and Bs is the bandwidth of the sensing signal.
The echo signal at time t can be written as

rk(t) = uk(t) +
J∑

j=1

vk,j(t) + nr(t). (1)

In (1), uk(t) is the desired echo signal directly reflected by
the target and is given by

uk(t) = Hr,k(t)sk(t− τ). (2)

Here, Hr,k(t) is the reflection coefficient including the round-
trip path-loss, τ denotes the round-trip delay, vk,j(t) is the
echo signal reflected indirectly by the target from the j-th
indirect reflection path, which is given by

vk,j(t) = Cr,k,j(t)sk(t− τj), (3)

where Cr,k,j(t) and τj are the reflection coefficient from and
the signal delay of the j-th path respectively, J is the total
number of indirect reflection paths, and nr(t) is the Gaussian
noise at the sensing receiver. It is assumed that the values of
Hr,k(t) and Cr,k,j(t) can be estimated before sensing.

2) Sensing Signal Processing: Consider the k-th ISAC
device, the steps to process the received radar echo signals
are as follows:

Signal sampling: For sensing snapshot m, the received
signal rk(t) in (1) is sampled into a complex-valued vector
rk,m ∈ CMT0fs , where fs is the sampling rate. Arrange rk,m

in a two-dimensional data matrix Rk,m ∈ CT0fs×M , in which
T0fs is the length of the fast-time dimension, and M is the
length of the slow-time dimension.2

Data filtering: To mitigate the clutter and extract useful
information, we apply a singular value decomposition (SVD)
based linear filter to Rk,m [40]. The data matrix after filtering
is given by R̃k,m =

∑r2
i=r1

σiviui, where σi, vi, and ui

denote the i-th singular value, the i-th left-singular vector,
and the i-th right-singular vector of Rk,m, respectively, and
r1 and r2 are empirical parameters.

Feature extraction: We extract features in the slow-time
dimension for inference. First, we transform R̃k,m into a real
vector r̃k,m ∈ R1×2M by cascading the real part and imagi-
nary part of R̃k,m into a real matrix and then vectorize it. Next,
PCA is used to extract the principle feature elements from
r̃k,m, and thus make different feature elements uncorrelated.
Note that the principle eigen-space can be obtained during the
model training process and is obtained at the AP, which is
then broadcast to the ISAC devices. The number of extracted
feature elements is denoted as Nk. Since all the processing
steps are linear, the nk-th feature element, following (1),
is given by

r̄k(nk) = ūk(nk) +
J∑

j=1

v̄k,j(nk) + n̄r(nk), (4)

2The fast time dimension is referred to as range dimension whose sample
intervals can be used for ranging, whereas processing data in the slow-time
dimension allows one to estimate the Doppler spectrum at a given fast time
dimension.
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Fig. 3. Edge inference systems with multi-device sensing.

Fig. 4. Edge inference systems with multi-device sensing.

where ūk(nk) is the desired ground-truth feature, v̄k(nk) is
additive information in feature element brought by the clutter
signal from the j-th path, n̄r(nk) is the noise in feature
element.

Each feature element is normalized by the transmit radar
sensing power, say

√
Pr,k. Specifically, the nk-th feature

element is

x̂(nk) =
rk(n)√

Pr,k

= x(nk) + cr,k(nk) +
nr(nk)√

Pr,k

, (5)

where x(nk) = ūk(nk)/
√

Pr,k is the ground-true feature and

cr,k(nk) =
J∑

j=1

v̄k,j(nk)√
Pr,k

, (6)

is the normalized clutter. From (5), one can observe that
the sensed feature is polluted by the clutter, say cr,k(nk),
and the sensing noise nr(nk). According to the central limit
theorem, cr,k(nk) is assumed to follow a Gaussian distribution,
as the number of independent reflection paths J is large. Its
distribution is given as

cr,k(nk) ∼ N (0, σ2
c,k), (7)

where N (·, ·) represents the Gaussian distribution and σ2
c,k is

the constant variance and can be estimated before sensing. The
normalized sensing noise also has a Gaussian distribution:

nr(nk)/
√

Pr,k ∼ N
(
0, σ2

r/Pr,k

)
, (8)

where σ2
r is the noise variance.
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The feature subset generated by ISAC device k is x̂k =
{x̂(nk), 1 ≤ nk ≤ Nk}, where Nk is the total number
of generated feature elements. Furthermore, different feature
subsets generated by different ISAC devices are assumed to be
independent, as the ISAC devices are sparsely deployed and
the corresponding sensing areas are non-overlapping.

C. Quantization Model

Consider the k-th ISAC device, whose feature subset is
x̂k. Each feature element is quantized using the same linear
quantizer. Specifically, for the nk-th feature element, according
to [46] and by using high quantization bit range, its quantized
version is given by

z(nk) =
√

Qkx̂(nk) + dk, (9)

where x̂(nk) is the original feature element defined in (5),√
Qk is the quantization gain, dk is the approximate Gaussian

quantization distortion, given as

dk ∼ N (0, δ2
k), (10)

and δ2
k is the variance. At the receiver, the quantized feature

is recovered as

x̃(nk) =
z(nk)√

Qk
= x̂(nk) +

dk√
Qk

, (11)

where the notations follow that in (9). Note that in (11),
higher quantization gain, say larger

√
Qk, can lead to lower

quantization distortion in the recovered feature at the receiver.
The mutual information of the recovered feature subset x̃k =
{x̃(1k), x̃(2k), . . . , x̃(Nk)} and the generated feature subset
x̂k under the additive Gaussian distortion approximation can
be derived as

I(x̃k; x̂k) = Nk log2

(
1 +

Qk

δ2
k

)
, ∀k, (12)

which is also the overhead of device k for transmitting the
feature subset to the server.

D. Discriminant Gain

Following [21], we adopt discriminant gain, which is
derived from the well-known KL divergence proposed in [39],
as the inference accuracy metric of the classification task.

First, consider an arbitrary feature element generated by the
k-th ISAC device x̃(nk). By substituting x̂(nk) in (5) into
x̃(nk) in (11), it can be written as

x̃(nk) = x(nk) + cr,k(nk) +
nr(nk)√

Pr,k

+
dk√
Qk

, (13)

where the notations follow that in (5), (7), and (11).
According to [21], the ground-truth feature element x(nk) is

assumed to have a mixed Gaussian distribution. Its probability
density function is

f (x(nk)) =
1
L

L∑
ℓ=1

N
(
µℓ,nk

, σ2
nk

)
, ∀nk, ∀k, (14)

where L is the total number of classes in the inference task,
µℓ,nk

is the centroid of the ℓ-th class, and σ2
nk

is the variance.3

By substituting the distributions of the ground-truth feature in
(14), the clutter distribution in (7), the normalized sensing
noise in (8), and the quantization distortion in (10), into
the recovered feature element x̃(nk), its distribution can be
derived as

f (x̃(nk)) =
1
L

L∑
ℓ=1

fℓ (x̃(nk)) , ∀nk, ∀k, (15)

where fℓ (x̃(nk)) is the probability density function of x̃(nk)
in terms of the ℓ-th class and is given by

fℓ (x̃(nk)) = N
(
µℓ,nk

, σ2
nk

+ σ2
c,k +

σ2
r

Pr,k
+

δ2
k

Qk

)
, ∀ℓ. (16)

Next, the discriminant gain of x̃(nk) can be derived from
the well-established KL divergence [21]. Specifically, consider
an arbitrary class pair, say classes ℓ and ℓ′. Its discriminant
gain is

Gℓ,ℓ′ (x̃(nk)) =DKL

[
fℓ (x̃(nk))

∥∥fℓ′ (x̃(nk))
]

+ DKL

[
fℓ′ (x̃(nk))

∥∥fℓ (x̃(nk))
]
,

=
∫

x̃(nk)

{
fℓ (x̃(nk)) log

[
fℓ′ (x̃(nk))
fℓ (x̃(nk))

]
+ fℓ′ (x̃(nk)) log

[
fℓ (x̃(nk))
fℓ′ (x̃(nk))

] }
dx̃(nk),

=

(
µℓ,nk

− µℓ′,nk

)2

σ2
nk

+ σ2
c,k + σ2

r/Pr,k + δ2
k/Qk

, ∀(ℓ, ℓ′),

(17)

where DKL [·∥·] is the KL divergence defined in [39], and the
other notations follow that in (15). It follows that the discrim-
inant gain of the whole feature vector x̃ = {x̃1, x̃2, . . . , x̃K},
where x̃k = {x̃(1k), x̃(2k), . . . , x̃(Nk)}, in terms of this class
pair is given by

Gℓ,ℓ′ (x̃) = DKL

[
fℓ (x̃)

∥∥fℓ′ (x̃)
]
+ DKL

[
fℓ′ (x̃)

∥∥fℓ (x̃)
]
,

=
K∑

k=1

Nk∑
nk=1

Gℓ,ℓ′ (x̃(nk)) , (18)

since different feature elements in x̃ are independent. The
overall discriminant gain of x̃ is defined as the average of
all class pairs:

G =
2

L(L− 1)

K∑
k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

Gℓ,ℓ′ (x̃(nk)) . (19)

III. PROBLEM FORMULATION & SIMPLIFICATION

A. Problem Formulation

Our objective is to maximize the total discriminant gain in
(19) under the constraints on latency, successful transmission,
and energy. The objective can be written as

max
Pc,k,Pr,k,Tc,k,Qk

G, (20)

where the notations follow that in (17) and (19). Next, we for-
mulate the various constraints.

3These statistics can be pre-estimated at the AP using the training dataset.
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1) Latency Constraint: The total allocated sensing, com-
putation, and communication time should be less than the
permitted latency of the real-time inference task:

(C1)
K∑

k=1

(Tr,k + Tm,k + Tc,k) ≤ T, (21)

where Tr,k, Tm,k, and Tc,k are the constant sensing time, the
constant computation time, and the allocated communication
time of ISAC device k respectively, and T is the permitted
latency to finish the task.

2) Successful Transmission Constraint: To ensure success-
ful transmission of the quantized feature subset to the receiver,
the mutual information between the generated feature subset
x̂k and the recovered one x̃k should be less than the channel
capacity as formally stated below [47]:

I(x̃k; x̂k) ≤ Rk, ∀k, (22)

where Rk is the channel capacity of ISAC device k. It is given
by

Rk = Tc,kB log2

(
1 +

Pc,kHc,k

δ2
c

)
, ∀k, (23)

where B is the system bandwidth, δ2
c is the channel noise

power, Tc,k is the allocated time slot, Pc,k is the transmit
power, and Hc,k is the channel gain. By substituting the
mutual information in (12) and the data rate in (23) into the
transmission constraint in (22), it can be written as

(C2) Nk log2

(
1 +

Qk

δ2
k

)
≤ Tc,kB log2

(
1 +

Pc,kHc,k

δ2
c

)
, ∀k.

(24)

3) Energy Constraint: The energy consumption of each
ISAC device should be bounded:

(C3) Pr,kTr,k + Em,k + Pc,kTc,k ≤ Ek, ∀k, (25)

where Pr,k, Pc,k, Tr,k, Tc,k, Em,k, and Ek are the sens-
ing power, the transmit power, the constant sensing time,
the communication time, the constant computation energy
consumption, and the energy threshold of ISAC device k,
respectively.

Under the three kinds of constraints above, the problem of
maximizing discriminant gain is formulated as

(P1) max
Pc,k,Pr,k,Tc,k,Qk

G,

s.t. Pc,k, Pr,k, Tc,k, Qk ∈ R+, ∀k,

(C1) ∼ (C3). (26)

(P1) is a non-convex problem due to the non-convexity of
the objective function and Constraints (C2) and (C3) therein.
Although the discriminant gain maximization problem is
investigated in [21] via progress feature transmission, this
work is the first to enhance the inference performance from a
systematic view, i.e., the integration of sensing, computation
and communication. In the sequel, an equivalent simplified
problem is derived.

B. Problem Simplification

To simplify (P1), the following variable transformations are
applied:

Sk =
σ2

r

Pr,k
, Dk =

δ2
k

Qk
, Ec,k = Pc,kTc,k, (27)

where Sk, Dk, and Ec,k can be interpreted as the normalized
sensing noise power, the normalized quantization distortion,
and the communication energy consumption of ISAC device
k, respectively. By substituting (27) into (P1), it can be
equivalently derived as

(P2) max
Ec,k,Sk,

Tc,k,Dk

G =
2

L(L− 1)

K∑
k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

Ĝℓ,ℓ′ (x̃(nk)) ,

s.t. Pc,k, Pr,k, Tc,k, Qk ∈ R+, ∀k,
K∑

k=1

(Tr,k + Tm,k + Tc,k) ≤ T,

Nk log2(1 +
1

Dk
)

≤ Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
, ∀k,

σ2
rTr,k

Sk
+ Em,k + Ec,k ≤ Ek, ∀k,

where

Ĝℓ,ℓ′ (x̃(nk)) =

(
µℓ,nk

− µℓ′,nk

)2

σ2
nk

+ σ2
c,k + Sk + Dk

. (28)

In (P2), all constraints are convex but the objective function (in
the form of summation over multiple ratios) to be maximized
is non-concave, thus making (P2) non-convex. To tackle the
problem, the sum-of-ratios method is used in the following.

IV. OPTIMAL ISCC SCHEME

In this section, an optimal ISCC scheme for joint sensing
& transmit power, time, and quantization bits allocation,
is proposed to solve (P2). The solution process is presented in
Fig. 5. Specifically, (P2) is optimally tackled by an iterative
method, called sum-of-ratios. In each iteration, the auxiliary
variables are first introduced to derive a convex problem from
(P2), called sum of weighted distortion minimization. Then,
the convex problem is addressed by alternately solving the
problem of joint power and quantization bits allocation and
the problem of communication time allocation.

A. The Sum-of-Ratios Method

In this part, the sum-of ratios method in [48] is utilized
to optimally address (P2) by alternating between two steps:
1) solving a convex sub-problem, that is derived from (P2)
to minimize the sum of weighted sensing and quantization
distortion under given discriminant gains, and 2) updating the
discriminant gains using the solved distortion level of sensing
and quantization. These two steps iterate till convergence. The
detailed procedure is elaborated in the sequel.

To begin with, we show that the sum-of ratios method can
be applied to solve (P2), as shown in the lemma below.
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Fig. 5. Solution Methodology of the ISCC scheme.

Lemma 1: The objective function of (P2) is the sum of
multiple quasi-linear ratios. (P2) can be optimally solved
using the sum-of-ratios method.

Proof: See Appendix.
Based on Lemma 1, the detailed solution process via using

the sum-of-ratios method is presented as follows. First, the
objective function of (P2) is rewritten as

G =
K∑

k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

Aℓ,ℓ′,nk

Bℓ,ℓ′,nk
(Sk, Dk)

, (29)

where Aℓ,ℓ′,nk
and Bℓ,ℓ′,nk

(Sk, Dk) are
Aℓ,ℓ′,nk

= 1,

Bℓ,ℓ′,nk
(Sk, Dk) =

L(L− 1)(σ2
nk

+ σ2
c,k + Sk + Dk)

2
(
µℓ,nk

− µℓ′,nk

)2 ,

(30)

for all (ℓ, ℓ′, nk). We then create the following sub-problem:

(P3) max
Ec,k,Sk,

Tc,k,Dk

K∑
k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

xℓ,ℓ′,nk

[
Aℓ,ℓ′,nk

− yℓ,ℓ′,nk
Bℓ,ℓ′,nk

(Sk, Dk)
]
,

s.t. All constraints in (P2), (31)

where
{
xℓ,ℓ′,nk

}
and

{
yℓ,ℓ′,nk

}
are the introduced auxiliary

variables, and Aℓ,ℓ′,nk
and Bℓ,ℓ′,nk

(Sk, Dk) are defined in
(30). In (P3), each term in the objective function is a scale
of the sum of sensing noise power {Sk} and quantization
distortion {Dk}, giving its name of sum of weighted distortion
minimization problem. It is easy to show that (P3) is convex.

Next, according to [48] and Theorem 1 in [49], (P2)
can be optimally addressed by alternating between optimally
solving the sub-problem in (P3) under given auxiliary vari-
ables

{
xℓ,ℓ′,nk

}
and

{
yℓ,ℓ′,nk

}
, and updating them based on

the correspondingly obtained solution. Hence, based on the
convexity of (P3), (P2) can be optimally solved by iteratively
performing the following two steps till convergence.
• Step 1: Optimally solving (P3) with given auxiliary

variables
{
xℓ,ℓ′,nk

}
and

{
yℓ,ℓ′,nk

}
.

• Step 2: For all (ℓ, ℓ′, nk), updating the auxiliary variables{
xℓ,ℓ′,nk

}
and

{
yℓ,ℓ′,nk

}
as

xℓ,ℓ′,nk
=

1
Bℓ,ℓ′,nk

(Sk, Dk)
,

yℓ,ℓ′,nk
=

Aℓ,ℓ′,nk

Bℓ,ℓ′,nk
(Sk, Dk)

=
1

Bℓ,ℓ′,nk
(Sk, Dk)

, (32)

where Bℓ,ℓ′,nk
(Sk, Dk) is defined in (30). From the

above equation, it can be observed that

xℓ,ℓ′,nk
= yℓ,ℓ′,nk

, (33)

and they are the discriminant gain of feature nk between
the classes ℓ and ℓ′.

The above process can be interpreted as iterating over address-
ing the sum of weighted distortion minimization problem
under given discriminant gain, and updating the discriminant
gain using the solved sensing and communication distortion
level.

B. An Alternating Method for Solving (P3)

In this section, an alternating algorithm is proposed to solve
the convex sub-problem in (P3) with given auxiliary variables{
xℓ,ℓ′,nk

}
and

{
yℓ,ℓ′,nk

}
. This allows closed-form solutions

with structural properties and can achieve low computational
complexity. Next, the two sub-problems are first introduced,
followed by a summary of the alternating algorithm.

1) Joint Power and Quantization Bits Allocation: In this
case, the communication time, say {Tc,k}, is given. By sub-
stituting (33) and Aℓ,ℓ′,nk

in (30), (P3) can be written as

(P4) max
Ec,k,Sk,

Dk

K∑
k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

[
yℓ,ℓ′,nk

− y2
ℓ,ℓ′,nk

Bℓ,ℓ′,nk
(Sk, Dk)

]
,

s.t. Ec,k, Sk, Dk ∈ R+, ∀k,

Nk log2(1 +
1

Dk
)

≤ Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
, ∀k,

σ2
rTr,k/Sk + Em,k + Ec,k ≤ Ek, ∀k,
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which is a convex problem. The Karush-Kuhn-Tucker (KKT)
conditions are used to solve (P4). The Lagrangian is given by

LP4 =−
K∑

k=1

Nk∑
nk=1

L∑
ℓ′=1

∑
ℓ<ℓ′

[yℓ,ℓ′,nk
−y2

ℓ,ℓ′,nk
Bℓ,ℓ′,nk

(Sk, Dk)],

+
K∑

k=1

αk

[
Nk log2

(
1 +

1
Dk

)
−Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)]
,

+
K∑

k=1

βk

(
Tr,k

Sk
+ Em,k + Ec,k − Ek

)
, (34)

where {αk ≥ 0} and {βk ≥ 0} are the corresponding
Lagrange multipliers, and Bℓ,ℓ′,nk

(Sk, Dk) is defined in (30).
The first KKT condition can be written as

∂LP4

∂Sk
=

L∑
ℓ′=1

∑
ℓ<ℓ′

(
y2

ℓ,ℓ′,nk
× ∂Bℓ,ℓ′,nk

∂Sk

)
− βkTr,k

S2
k

= 0, ∀k,

(35)

where, according to (30),

∂Bℓ,ℓ′,nk

∂Sk
=

L(L− 1)

2
(
µℓ,nk

− µℓ′,nk

)2 .

(36)

It follows that

1
Sk

=

√√√√ L∑
ℓ′=1

∑
ℓ<ℓ′

L(L− 1)y2
ℓ,ℓ′,nk

2
(
µℓ,nk

− µℓ′,nk

)2 ×
1

βkTr,k
. (37)

By substituting Sk in (27) into (37), the following optimal
sensing power allocation scheme can be obtained.

Lemma 2: The optimal sensing power for ISAC device k
must satisfy

Pr,k =σ2
r ×

√√√√ L∑
ℓ′=1

∑
ℓ<ℓ′

L(L− 1)y2
ℓ,ℓ′,nk

2
(
µℓ,nk

− µℓ′,nk

)2 ×
1

βkTr,k
, ∀k,

(38)

where {βk} are the Lagrangian multipliers.
From (38), we conclude the following. Consider an arbitrary
ISAC device, say the k-th one. First, if the number of classes
L is large, or the required discriminant gains {yℓ,ℓ′,nk

} are
large, more power should be allocated for sensing. Then, if the
centroid distances, say {

(
µℓ,nk

− µℓ′,nk

)2}, are large, or the
sensing noise variance σ2

r is small, the required sensing power
can be reduced. In addition, long sensing time, i.e., larger Tr,k,
can also reduce the required sensing power.

The second KKT condition is given by

∂LP4

∂Dk
=

L∑
ℓ′=1

∑
ℓ<ℓ′

(
y2

ℓ,ℓ′,nk
× ∂Bℓ,ℓ′,nk

∂Dk

)
− αkNk ln 2

Dk(Dk + 1)
= 0, ∀k, (39)

which, by substituting Bℓ,ℓ′,nk
(Sk, Dk) in (30), can be derived

as

Dk =

√√√√√1
4

+
αkNk ln 2

L∑
ℓ′=1

∑
ℓ<ℓ′

L(L−1)y2
ℓ,ℓ′,nk

2
(
µℓ,nk

−µℓ′,nk

)2

− 1
2
, ∀k, (40)

where {αk} are the Lagrangian multipliers. By substituting
Dk in (27) into (40), we obtain the following lemma.

Lemma 3: The optimal quantization gain satisfies

Qk =
δ2
k

Dk
, ∀k, (41)

where δ2
k is the quantization distortion and Dk is defined in

(40).
Several observations can be made from (41). For an arbitrary
ISAC device, say the k-th, larger number of classes L, larger
number of feature elements Nk, and larger required discrim-
inant gains {yℓ,ℓ′,nk

}, call for greater quantization gain (or
level), as it requires more fine-grained feature representations
to increase the differentiability among them. In addition, larger
centroid distances between classes, say {

(
µℓ,nk

− µℓ′,nk

)2},
require smaller quantization gain, since different classes are
well separated and thus low-resolution feature representation
is fine for discriminating them.

The third KKT condition can be written as
∂LP4

∂Ec,k
= − αkBTc,kHc,k

(Ec,kHc,k + Tc,kδ2
c ) ln 2

+ βk = 0. (42)

It follows that

Ec,k = max
{

αkBTc,k

βk ln 2
− Tc,kδ2

c

Hc,k
, 0

}
. (43)

By substituting Ec,k in (27) into (43), we have the following
optimal power allocation.

Lemma 4: The optimal communication power for each
ISAC device should be

Pc,k = max
{

αkB

βk ln 2
− δ2

c

Hc,k
, 0

}
, ∀k. (44)

Based on the results above, the primal-dual method can be
used to solve (P4), as summarized in Algorithm 1.

2) Communication Time Allocation: In this case, the nor-
malized sensing noise power {Sk}, communication energy
{Ec,k}, and normalized quantization distortion {Dk} are first
solved by Algorithm 1. To determine the communication time
allocation {Tc,k}, a feasibility problem of (P3) is first derived,
as shown in (P5). It obtains the minimum required time,
denoted as T ∗, under given weighted distortion determined by
{Sk}, {Ec,k}, and {Dk}. Then, following the methods used
in [50] and [51], the tractability of (P3) under the current
weighted distortion is determined by the comparison between
T ∗ and the permitted latency T , as described below.
• Case of T ∗ > T : In this case, the given {Sk}, {Dk}, and
{Ec,k} are not in the feasible region of (P3). The reason
is that the latency constraint therein cannot be satisfied.
To this end, the latency of all ISAC devices should be
reduced to satisfy the constraint.4

4If the initial point is feasible, the solution will not fall into this case by
using the sequel algorithm.
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Algorithm 1 Joint Power and Quantization Bits Allo-
cation
1: Input: Channel gains {Hc,k}, auxiliary variables
{yℓ,ℓ′,nk

}, feature elements’ class centroids {µℓ,nk
}

and variances {σ2
nk
}, and the given communication

latencies {Tc,k}.
2: Initialize {α(0)

k }, {β(0)
k }, the step sizes {ηαk

} and
{ηβk

}, and i = 0.
3: Loop
4: Solve {Sk}, {Dk}, and {Ec,k} using (37), (40),

and (43), respectively.
5: Update the multipliers as

α
(i+1)
k = max

{
α

(i)
k + ηαk

∂LP4

∂αk
, 0

}
, ∀k,

β
(i+1)
k = max

{
β

(i)
k + ηβk

∂LP4

∂βk
, 0

}
, ∀k,

6: i = i + 1.
7: Until Convergence
8: Calculate Bℓ,ℓ′,nk

(Sk, Dk) using (30).
9: Output: {Bℓ,ℓ′,nk

(Sk, Dk)}, {Sk}, {Dk}, and
{Ec,k}.

• Case of T ∗ < T : In this case, more time can be allocated
to all ISAC devices to achieve discriminant gain in (P3).

• Case of T ∗ = T : The current time allocation is optimal.
Based on the observations above, for the first two cases,
a time updating rule is proposed to re-allocate the remaining
(exceeding) time (T −T ∗) to all devices, which can guarantee
(P3) is feasible in the next iterations, and reduce the total
weighted distortion. In the sequel, the detailed procedure is
described.

First, the feasibility problem is given by

(P5) T ∗ = min
Tc,k

K∑
k=1

(Tc,k + Tm,k + Tr,k),

s.t. Tc,k ∈ R+, ∀k,

Nk log2

(
1 +

1
Dk

)
≤ Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
, ∀k.

To solve (P5), its Lagrange function is derived as

LP5

=
K∑

k=1

(Tc,k + Tm,k + Tr,k)

+
K∑

k=1

λk

[
Nk log2

(
1 +

1
Dk

)
−Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)]
, (45)

where {λk ≥ 0} are the Lagrangian multipliers. As (P5) is
convex, the primal-dual method can be used to obtain the
optimal solution, where the optimizer are denoted as {T ∗c,k}.

Then, the communication time updating to re-allocate the
remaining (exceeding) time (T − T ∗) is designed as follows:

Tc,k = T ∗c,k +
γk∑K

k=1 γk

× (T − T ∗), ∀k, (46)

where T ∗ is the obtained optimal total duration, T ∗c,k is the
solved optimal communication time of ISAC device k, γk is
defined as

γk =
∂LP5

∂λk

∣∣∣∣
λk=λ∗k

,

= Nk log2

(
1 +

1
Dk

)
− Tc,kB log2

(
1 +

Ec,kHc,k

T ∗c,kδ2
c

)
.

(47)

Several observations can be made from (46). First, if the
current total weighted distortion is not feasible in the given
delay, i.e., T ∗ > T , using the updating rule in (46) can
make (P3) feasible in the next iterations. Then, it is observed
γk represents the throughput gap of device k between the
required communication load for reliably transmitting the
quantized feature subset and the available channel capacity.
If the minimum required latency is less than the permitted
one, i.e., T ∗ < T , the updating rule indicates that the device
requiring more communication capacity is allocated with more
time.

Proposition 1: (Enhanced Discriminant Gain via Addi-
tional Time Allocation) The time updating rule in (46) leads
to smaller weighted distortion level for (P3) and results in
enhanced discriminant gain.

Proof: See Appendix.
Overall, the primal dual method to solve (P5) and the

communication time updating are summarized in Algorithm 2,
where ηλk

and ηk are the step sizes, and

∂LP5

∂Tc,k
= 1− λk

[
B log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
+

Ec,kHc,k

(Ec,kHc,k + Tc,kδ2
c ) ln 2

]
, ∀k, (48)

where the notations follow those in (23) and (27).
3) Alternating Algorithm for Solving (P3): Based on Propo-

sition 1, the alternating optimization between Algorithms 1
and 2 leads to monotonically decreasing weighted distortion
for (P3). Since (P3) is convex, the alternating method can
optimally solve (P3), as summarized in Algorithm 3, which
suggests a linear convergence rate according to [52].

C. Solution to (P2)

Based on the previous results, (P3) can be optimally solved
using the method of sum-or-ratios, together with the alter-
nating algorithm in Algorithm 3. The detailed procedure is
summarized in Algorithm 4. Then, by substituting the solution
into the variable transformations in (27), the optimal solution
of (P2) can be obtained.
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Algorithm 2 Communication Time Allocation for
Solving (P5)
1: Input: {Sk}, {Ec,k}, and {Dk}.
2: Initialize {λ(0)

k }, the step sizes {ηλk
} and {ηk},

and i = 0.
3: Loop
4: Update the multipliers as
λ

(i+1)
k = max

{
λ

(i)
k + ηλk

∂LP5
∂λk

, 0
}

, ∀k.

5: Initialize T
(0)
c,k and t = 0.

6: Loop

7: T
(t+1)
c,k = max

{
T

(t)
c,k − ηk

∂LP5

∂T
(t)
c,k

, 0
}

.

8: t = t + 1.
9: Until Convergence
10: Until Convergence
11: {T ∗c,k = Tc,k, ∀k} and calculate T ∗.
12: Update the communication time {Tc,k} using (46).
13: Output: {Tc,k}.

Algorithm 3 Alternating Algorithm for Solving (P3)
1: Input: Channel gains {Hc,k} and auxiliary
variables yℓ,ℓ′,nk

.
2: Initialize communication time {Tc,k}.
3: Loop
4: Solve sensing noise power {Sk}, quantization
distortion {Dk}, and communication energy {Ec,k}
and discriminant gains {Bℓ,ℓ′,nk

(Sk, Dk)}, using
Algorithm 1.

5: Solve communication time {Tc,k} using
Algorithm 2.

6: Until Convergence
7: Output: {Bℓ,ℓ′,nk

(Sk, Dk)}, {Sk}, {Dk}, {Ec,k},
and {Tc,k}.

D. Discussion

Although the PCA based feature extraction approach is
adopted for analysis in this work, the theoretical analysis
above is general and feasible for all feature extraction methods,
as long as the assumption that the global feature vector follows
a mixture of Gaussians distribution. To deal with this issue that
this assumption does not strictly hold in some AI tasks, one
practical approach is to fit their feature vectors to the Gaussian
mixture distributions. Then, the proposed ISCC scheme can be
applied to these AI tasks.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Communication Model: In this experiment, we consider
a network of K = 3 ISAC devices, which are randomly
located in a circular area of radius 50 meters. The distance
between the circle center and the AP is 450 meters. The chan-
nel gain Hk is modeled as Hk = |ϕkhk|2, where ϕk and hk are
the large-scale fading propagation coefficient and small-scale
fading propagation coefficient, respectively. The large-scale

Algorithm 4 Sum-of-Ratios Based Optimal ISCC
Scheme for Solving (P2)
1: Input: Channel gains {Hc,k}.
2: Initialize auxiliary variables {yℓ,ℓ′,nk

}.
3: Loop
4: Solve (P3) under given {yℓ,ℓ′,nk

}, using
Algorithm 3, and get {Sk}, {Dk}, {Ec,k}, {Tc,k},
and {Bℓ,ℓ′,nk

(Sk, Dk)}.
5: Update the auxiliary variables as
yℓ,ℓ′,nk

= 1
Bℓ,ℓ′,nk

(Sk,Dk) , ∀(ℓ, ℓ
′, nk),

6: Until Convergence
7: Output: {Bℓ,ℓ′,nk

(Sk, Dk)}, {Sk}, {Dk}, {Ec,k},
and {Tc,k}.

Fig. 6. Inference accuracy versus discriminant gain.

propagation coefficient in dB from device k to the edge server
is modeled as [ϕk]dB = −[PLk]dB + [ζk]dB, where [PLk]dB =
128.1 + 37.6 log10 distk (distk is the distance in kilometer) is
the path loss in dB, and [ζk]dB accounts for the shadowing
in dB. In the simulation, [ζk]dB is Gauss-distributed random
variable with mean zero and variance σ2

ζ . The small-scale
fading is assumed to be Rayleigh fading, i.e., hk ∼ CN (0, 1).

2) Inference Task: In our simulation, we apply the wireless
sensing simulator in [40] to simulate various high-fidelity
human motions and generate human motion datasets. The
inference task is to identify four different human motions, i.e.,
child walking, child pacing, adult walking, and adult pacing
via the design of ISCC. Similar to the setup in [53], the heights
of children and adults are assumed to be uniformly distributed
in interval [0.9m, 1.2m] and [1.6m, 1.9m], respectively. The
speed of standing, walking, and pacing are 0 m/s, 0.5H m/s,
and 0.25H m/s, respectively, where H is the height value. The
heading of the moving human is set to be uniformly distributed
in [−180◦, 180◦].

3) Inference Model: Two machine learning models, i.e.,
SVM and MLP neural network, are considered for inference
in the experiments, respectively. The magnitudes of the feature
elements are taken as the inputs of the learning models.
The neural network model has 2 hidden layers with 80 and
40 neurons, respectively. Both models are trained on 800 data
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TABLE I
SIMULATION PARAMETERS

Fig. 7. Confusion matrices.

Fig. 8. Performance comparison of the SVM among different schemes.

samples without any distortion, i.e., sensing clutter, sensing
noise, and quantization distortion. The inference experiments
for test accuracy are implemented over 200 data samples
with distortion. Moreover, all the data samples are distributed
uniformly over the four classes.

Unless specified otherwise, other simulation parameters are
stated in Table I. All experiments are implemented using
Python 3.8 on a Linux server with one NVIDIA® GeForce®

RTX 3090 GPU 24GB and one Intel® Xeon® Gold 5218 CPU.

B. Inference Algorithms

For comparison, we consider four schemes as follows.

• Power-aware allocation: The sensing power is first allo-
cated randomly and then the other parameters are allo-
cated by the scheme in Algorithm 4.

• Time-aware allocation: The communication time is firstly
allocated equally and then the other parameters are allo-
cated by the scheme in Algorithm 4.
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Fig. 9. Performance comparison of the neural network among different schemes.

Fig. 10. Inference accuracy comparison among different models under
different number of ISAC devices.

• Quantization-aware allocation: The quantization bits are
first allocated as 16 bits for each ISAC device and then
the other parameters are allocated by the scheme in
Algorithm 4.

• Optimal allocation (our proposal): All the parameters are
allocated by the optimal ISCC scheme in Algorithm 4.

C. Experimental Results

In this part, the relations between the inference accuracy
and discriminant gain regarding the two models are first
presented. Then, the four algorithms are compared in terms of
the SVM model and the neural network, respectively. Finally,
the influence of the number of participating devices on the
inference accuracy is shown.

1) Inference Accuracy v.s. Discriminant Gain: The rela-
tions between the inference accuracy and discriminant gain
regarding the SVM model and the MLP neural network are
shown in Fig. 6. It is observed that the inference accuracy
increases as the discriminant gain grows for both models.
Besides, when the discriminant gain is large, i.e., the distortion
of the samples caused by sensing and quantization is small, the

SVM outperforms the MLP neural network. This is because
the well-trained MLP neural network is more sensitive to small
distortion than the SVM model. However, the neural network
is more robust than the SVM when the discriminant gain
is small, i.e., the distortion is large. It is also observed that
when the discriminant gain is too large, the accuracy increases
slowly because the centroids of different classes are too far
apart in this case, and increasing the discriminant gain does
not help much to increase the accuracy. To further demonstrate
the effectiveness of the models, the confusion matrices of MLP
and SVM are shown in Fig. 7.

2) Inference Accuracy of SVM: The inference accuracy of
the SVM model is presented in Fig 8. From the figure, the
performance of all schemes increases as the resources, i.e.,
energy threshold of each device and the permitted latency
for the inference task, increase. Besides, the proposed opti-
mal allocation scheme outperforms the other three baseline
schemes. Furthermore, in the case of long permitted latency,
the performance of the power-aware allocation scheme remains
unchanged as the permitted latency continuously increases.
The reason is that the sensing noise is dominant in this case.

3) Inference Accuracy of Neural Network: The inference
accuracy of the MLP neural network model in terms of the
energy threshold and the permitted latency is shown in Fig. 9.
Again, as more resources are allocated, the performance of all
schemes increases. Besides, the proposed optimal allocation
scheme achieves the best performance. Furthermore, the longer
permitted latency will not lead to better performance for the
power-aware allocation scheme when the latency is large, for
a similar reason in the scenario of the SVM model.

4) Inference Accuracy v.s. Number of ISAC Devices: In
Fig. 10, the inference accuracy of both models in terms of
different number of ISAC devices are presented. For both
cases, as the number of devices increases, better inference
accuracy is achieved. The reason is that providing more
features to the inference task can lead to a larger feature space,
which can further make the distance, i.e., the discriminant gain,
between arbitrary two different classes larger. In addition, the
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SVM outperforms the MLP, since the MLP neural network is
more sensitive to small feature distortion than the SVM model.

The extensive experimental results above show that the
proposed optimal ISCC scheme has the best performance and
verifies our theoretical analysis.

VI. CONCLUSION

In this paper, we propose an optimal task-oriented ISCC
scheme for edge AI inference. To begin with, the influ-
ence of sensing, computation, and communication on the
inference accuracy measured by discriminant gain is char-
acterized. Accordingly, an ISCC problem is formulated to
optimize the inference accuracy. Then, by ingeniously uti-
lizing some variables transmission, the original complicated
non-convex problem is equivalently converted to a problem
with a quasi-linear objective function and a convex feasible
region. Benefiting from this new structure, the sum-of-ratios
method is adopted to develop an optimal algorithm, that jointly
allocates the sensing and communication power, quantization
bits, and communication time.

This work opens several interesting directions for inference-
task-oriented designs. One is the ISAC device scheduling,
i.e., the feature selection, for inference accuracy maximization
when the radio resources, e.g., time and frequency bands, are
scarce. Another is to enhance the inference accuracy in the
broadband systems with frequency-selective wireless channels.

APPENDIX

A. Proof of Lemma 1

The objective function of (P2) can be re-written as
(29), where all {Aℓ,ℓ′,nk

} are constants. In addition,
{−Bℓ,ℓ′,nk

(Sk, Dk)} for all (ℓ, ℓ′, nk) are linear. Obviously,
each ratio is quasi-linear. Hence, (P2) can be optimally solved
by the sum-of-ratios method if its feasible region is convex,
according to [48] and [49]. In the next, we will show that
the constraints are convex. The first constraint in (P2) is∑K

k=1(Tr,k + Tm,k + Tc,k) ≤ T, which forms a linear set
and hence is convex. In the second constraint,

Nk log2

(
1 +

1
Dk

)
≤ Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
, ∀k, (49)

the left part is convex, as its second derivative is positive. The
right part of the second constraint can be linearly transformed
from f(x, y) = x log2(1 + y/x), which can be easily shown
to be concave. As a linear transformation preserves convexity,
the right part of the second constraint is a concave function.
Thus, the second constraint forms a convex set. Next, the third
constraint, i.e., σ2

rTr,k/Sk + Em,k + Ec,k ≤ Ek, also forms a
convex set.

B. Proof of Proposition 1

In (P3), the second constraint is

Nk log2

(
1 +

1
Dk

)
≤ Tc,kB log2

(
1 +

Ec,kHc,k

Tc,kδ2
c

)
, ∀k, (50)

whose right-hand part is a strictly decreasing function of
Tc,k. That is to say, with increasing Tc,k, smaller commu-
nication energy Ec,k is used to satisfy this constraint for each

device. Then, consider the final constraint in (P3), given as{
σ2

rTr,k/Sk + Em,k + Ec,k ≤ Ek, ∀k
}

, where smaller Ec,k

can lead to smaller sensing noise Sk. Next, according to
Bℓ,ℓ′,nk

(Sk, Dk) defined in (30), it is a linearly increasing
function of Sk. Hence, the objective function of (P3) increases,
which further leads to an enhanced discriminant gain accord-
ing to (29).
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