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Abstract
We examine the squared error loss landscape of shallow linear neural networks. We show—with significantly milder assump-
tions than previous works—that the corresponding optimization problems have benign geometric properties: There are no
spurious local minima, and the Hessian at every saddle point has at least one negative eigenvalue. This means that at every
saddle point there is a directional negative curvature which algorithms can utilize to further decrease the objective value.
These geometric properties imply that many local search algorithms (such as the gradient descent which is widely utilized
for training neural networks) can provably solve the training problem with global convergence.

Keywords Deep learning · Linear neural network · Optimization geometry · Strict saddle · Spurious local minima

1 Introduction

A neural network consists of a sequence of operations (a.k.a.
layers), each of which performs a linear transformation of
its input, followed by a point-wise activation function, such
as a sigmoid function or the rectified linear unit (ReLU)
[38].Deep artificial neural networks (i.e., deep learning) have
recently led to the state-of-the-art empirical performance in
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many areas including computer vision,machine learning, and
signal processing [5,17,19,22,28,29,32].

One crucial property of neural networks is their ability
to approximate nonlinear functions. It has been shown that
even a shallow neural network (i.e., a network with only one
hidden layer) with a point-wise activation function has the
universal approximation ability [10,17]. In particular, a shal-
low network with a sufficient number of activations (a.k.a.
neurons) can approximate continuous functions on compact
subsets of Rd0 with any desired accuracy, where d0 is the
dimension of the input data.

However, the universal approximation theory does not
guarantee the algorithmic learnability of those parameters
which correspond to the linear transformation of the layers.
Neural networks may be trained (or learned) in an unsuper-
vised manner, a semi-supervised manner, or a supervised
manner which is by far the most common scenario. With
supervised learning, the neural networks are trained by min-
imizing a loss function in terms of the parameters to be
optimized and the training examples that consist of both input
objects and the corresponding outputs. A popular approach
for optimizing or tuning the parameters is gradient descent
with the backpropagation method efficiently computing the
gradient [44].

Although gradient descent and its variants work surpris-
ingly well for training neural networks in practice, it remains
an active research area to fully understand the theoretical
underpinnings of this phenomenon. In general, the training
optimization problems are nonconvex and it has been shown
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that even training a simple neural network is NP-complete in
general [4]. There is a large and rapidly increasing literature
on the optimization theory of neural networks, surveying all
of which is well outside our scope. Thus, we only briefly
survey the works most relevant to ours.

In seeking to better understand the optimization problems
in training neural networks, one line of research attempts
to analyze their geometric landscape. The geometric land-
scape of an objective function relates to questions concerning
the existence of spurious local minima and the existence of
negative eigenvalues of the Hessian at saddle points. If the
corresponding problem has no spurious local minima and
all the saddle points are strict (i.e., the Hessian at any sad-
dle point has a negative eigenvalue), then a number of local
search algorithms [12,18,23,24] are guaranteed to find glob-
ally minimal solutions. Baldi and Hornik [2] showed that
there are no spurious local minima in training shallow linear
neural networks but did not address the geometric landscape
around saddle points. Kawaguchi [20] further extended the
analysis in [2] and showed that the loss function for train-
ing a general linear neural network has no spurious local
minima and satisfies the strict saddle property (see Defini-
tion 4 in Sect. 2) for shallow neural networks under certain
conditions. Kawaguchi also proved that for general deeper
networks, there exist saddle points at which the Hessian is
positive semi-definite (PSD), i.e., does not have any negative
eigenvalues.

With respect to nonlinear neural networks, it was shown
that there are no spurious localminima for a networkwith one
ReLU node [11,43]. However, it has also been proved that
there do exist spurious local minima in the population loss of
shallow neural networks with even a small number (greater
than one) of ReLU activation functions [37]. Fortunately, the
number of spurious localminima canbe significantly reduced
with an over-parameterization scheme [37]. Soudry andHof-
fer [40] proved that the number of sub-optimal local minima
is negligible compared to the volume of global minima for
multilayer neural networkswhen the number of training sam-
ples N goes to infinity and the number of parameters is close
to N . Haeffele and Vidal [15] provided sufficient conditions
to guarantee that certain local minima (having an all-zero
slice) are also global minima. The training loss of multilayer
neural networks at differentiable local minimawas examined
in [39]. Yun et al. [45] very recently provided sufficient and
necessary conditions to guarantee that certain critical points
are also global minima.

A second line of research attempts to understand the
reason that local search algorithms efficiently find a local
minimum. Aside from standard Newton-like methods such
as cubic regularization [33] and the trust region algorithm [6],
recent work [12,18,23,24] has shown that first-order meth-
ods also efficiently avoid strict saddles. It has been shown in
[23,24] that a set of first-order local search techniques (such

as gradient descent) with random initialization almost surely
avoid strict saddles. Noisy gradient descent [12] and a variant
called perturbed gradient descent [18] have been proven to
efficiently avoid strict saddles from any initialization. Other
types of algorithms utilizing second-order (Hessian) infor-
mation [1,7,9] can also efficiently find approximate local
minima.

To guarantee that gradient descent-type algorithms (which
are widely adopted in training neural networks) converge
to the global solution, the behavior of the saddle points
of the objective functions in training neural networks is as
important as the behavior of local minima.1 However, the
former has rarely been investigated compared to the lat-
ter, even for shallow linear networks. It has been shown in
[2,20,21,31] that the objective function in training shallow
linear networks has no spurious local minima under certain
conditions. The behavior of saddle points is considered in
[20], where the strict saddle property is proved for the case
where both the input objects X ∈ R

d0×N and the correspond-
ing outputs Y ∈ R

d2×N of the training samples have full
row rank, YXT(XXT)−1XYT has distinct eigenvalues, and
d2 ≤ d0. While the assumption on X can be easily satisfied,
the assumption involving Y implicity adds constraints on the
true weights. Consider a simple case where Y = W�

2W
�
1X ,

withW�
2 andW

�
1 the underlying weights to be learned. Then,

the full-rank assumption on YYT = W�
2W

�
1XXTW�T

1 W�T
2

at least requires min(d0, d1) ≥ d2 and rank(W�
2W

�
1) ≥ d2.

Recently, the strict saddle property was also shown to hold
without the above conditions on X , Y , d0, and d2, but only
for degenerate critical points, specifically those points where
rank(W2W1) < min{d2, d1, d0} [34, Theorem 8].

In this paper, we analyze the optimization geometry of
the loss function in training shallow linear neural networks.
In doing so, we first characterize the behavior of all criti-
cal points of the corresponding optimization problems with
an additional regularizer [see (2)], but without requiring the
conditions used in [20] except the one on the input data X . In
particular, we examine the loss function for training a shal-
low linear neural network with an additional regularizer and
show that it has no spurious local minima and obeys the strict
saddle property if the input X has full row rank. This benign
geometry ensures that a number of local search algorithms—
including gradient descent—converge to a global minimum
when training a shallow linear neural network with the pro-
posed regularizer. We note that the additional regularizer
[in (2)] is utilized to shrink the set of critical points and
has no effect on the global minimum of the original prob-
lem. We also observe from experiments that this additional

1 From an optimization perspective, non-strict saddle points and local
minima have similar first-/second-order information and it is hard
for first-/second-order methods (like gradient descent) to distinguish
between them.

123



Journal of Mathematical Imaging and Vision

Table 1 Comparison of different results on characterizing the geometric landscape of the objective function in training a shallow linear network
[see (1)]. Here, ? means this point is not discussed and x indicates the result covers degenerate critical points only.

Result Regularizer Condition No spurious local minima Strict saddle property

[2, Fact 4] No XXT and YYT are of full
row rank, d2 ≤ d0,
YXT(XXT)−1XYT has
d2 distinct eigenvalues

� ?

[20, Theorem 2.3] No XXT and YYT are of full
row rank, d2 ≤ d0,
YXT(XXT)−1XYT has
d2 distinct eigenvalues

� �

[31, Theorem 2.1] No XXT and YYT are of full
row rank

� ?

[21, Theorem 1] No d1 ≥ min(d0, d2) � ?

[34, Theorem 8] No No � x

[47, Theorem 3] ‖WT
2W2 − W1WT

1 ‖2F d1 ≤ min(d0, d2) and
conditions (4) and (5)

� �

Theorem 2 ‖WT
2W2 − W1XXTWT

1 ‖2F XXT is of full row rank � �
Theorem 3 No XXT is of full row rank � �

regularizer speeds up the convergence of iterative algorithms
in certain cases. Building on our study of the regularized
problem and on [34, Theorem 8], we then show that these
benign geometric properties are preserved even without the
additional regularizer under the same assumption on the input
data. Table 1 summarizes ourmain result and those of related
works on characterizing the geometric landscape of the loss
function in training shallow linear neural networks.

Outside of the context of neural networks, such geometric
analysis (characterizing the behavior of all critical points)
has been recognized as a powerful tool for understanding
nonconvex optimization problems in applications such as
phase retrieval [36,41], dictionary learning [42], tensor fac-
torization [12], phase synchronization [30], and low-rank
matrix optimization [3,13,14,25,26,35,46,47]. A similar reg-
ularizer [see (6)] to the one used in (2) is also utilized in
[13,25,35,46,47] for analyzing the optimization geometry.

The outline of this paper is as follows. Section 2 contains
the formal definitions for strict saddles and the strict saddle
property. Section 3 presents our main result on the geometric
properties for training shallow linear neural networks. The
proof of our main result is given in Sect. 4.

2 Preliminaries

2.1 Notation

We use the symbols I and 0 to, respectively, represent the
identity matrix and zero matrix with appropriate sizes. We
denote the set of r × r orthonormal matrices by Or :=
{R ∈ R

r×r : RTR = I}. If a function g(W1,W2) has

two arguments, W1 ∈ R
d1×d0 and W2 ∈ R

d2×d1 , then we
occasionally use the notation g(Z)where we stack these two

matrices into a larger one via Z =
[
W2

WT
1

]
. For a scalar func-

tion h(W)with a matrix variableW ∈ R
d2×d0 , its gradient is

a d2 × d0 matrix whose (i, j)th entry is [∇h(W)]i j = ∂h(W)
∂Wi j

for all i ∈ [d2], j ∈ [d0]. Here, [d2] = {1, 2, . . . , d2} for
any d2 ∈ N and Wi j is the (i, j)th entry of the matrix
W . Throughout the paper, the Hessian of h(W) is repre-
sented by a bilinear form defined via [∇2h(W)](A, B) =∑

i, j,k,l
∂2h(W)

∂Wi j ∂Wkl
Ai j Bkl for any A, B ∈ R

d2×d0 . Finally, we
use λmin(·) to denote the smallest eigenvalue of a matrix.

2.2 Strict Saddle Property

Suppose h : Rn → R is a twice continuously differentiable
objective function. The notions of critical points, strict sad-
dles, and the strict saddle property are formally defined as
follows.

Definition 1 (Critical points) x is called a critical point of h
if the gradient at x vanishes, i.e., ∇h(x) = 0.

Definition 2 (Strict saddles [12]) We say a critical point x is
a strict saddle if theHessian evaluated at this point has at least
one strictly negative eigenvalue, i.e., λmin(∇2h(x)) < 0.

In words, for a strict saddle, also called a ridable saddle
[42], its Hessian has at least one negative eigenvalue which
implies that there is a directional negative curvature that algo-
rithms can utilize to further decrease the objective value.
This property ensures that many local search algorithms can
escape strict saddles by either directly exploiting the negative

123



Journal of Mathematical Imaging and Vision

curvature [9] or adding noise which serves as a surrogate of
the negative curvature [12,18].On the other hand,when a sad-
dle point has a Hessian that is positive semi-definite (PSD),
it is difficult for first- and second-order methods to avoid
converging to such a point. In other words, local search algo-
rithms require exploiting higher-order (at least third-order)
information in order to escape from a critical point that is
neither a local minimum nor a strict saddle. We note that any
local maxima are, by definition, strict saddles.

The following strict saddle property defines a set of non-
convex functions that can be efficiently minimized by a
number of iterative algorithms with guaranteed convergence.

Definition 3 (Strict saddle property [12]) A twice differen-
tiable function satisfies the strict saddle property if each
critical point either corresponds to a local minimum or is
a strict saddle.

Intuitively, the strict saddle property requires a function to
have a negative curvature direction—which can be exploited
by a number of iterative algorithms such as noisy gradi-
ent descent [12] and the trust region method [8] to further
decrease the function value—at all critical points except for
local minima.

Theorem 1 [12,24,33,42] For a twice continuously differen-
tiable objective function satisfying the strict saddle property,
a number of iterative optimization algorithms can find a local
minimum. In particular, for such functions,

• Gradient descent almost surely converges to a local min-
imum with a random initialization [12];

• Noisy gradient descent [12] finds a local minimum with
high probability and any initialization; and

• Newton-like methods such as cubic regularization [33]
converge to a local minimum with any initialization.

Theorem 1 ensures that many local search algorithms can
be utilized to find a local minimum for strict saddle functions
(i.e., ones obeying the strict saddle property). This is themain
reason that significant effort has been devoted to establishing
the strict saddle property for different problems [20,25,35,36,
41,46].

In our analysis, we further characterize local minima as
follows.

Definition 4 (Spurious local minima) We say a critical point
x is a spurious local minimum if it is a local minimum but
not a global minimum.

In other words, we separate the set of local minima into two
categories: the global minima and the spurious local minima
which are not global minima. Note that most local search
algorithms are only guaranteed to find a local minimum,

which is not necessarily a global one. Thus, to ensure the
local search algorithms listed in Theorem 1 find a globalmin-
imum, in addition to the strict saddle property, the objective
function is also required to have no spurious local minima.

In summary, the geometric landscape of an objective func-
tion relates to questions concerning the existence of spurious
local minima and the strict saddle property. In particular, if
the function has no spurious localminima and obeys the strict
saddle property, then a number of iterative algorithms such as
the ones listed in Theorem 1 converge to a global minimum.
Our goal in the next section is to show that the objective func-
tion in training a shallow linear network with a regularizer
satisfies these conditions.

3 Global Optimality in Shallow Linear
Networks

In this paper,we consider the followingoptimization problem
concerning the training of a shallow linear network:

min
W1∈Rd1×d0

W2∈Rd2×d1

f (W1,W2) = 1

2
‖W2W1X − Y‖2F , (1)

where X ∈ R
d0×N and Y ∈ R

d2×N are the input and output
training examples, and W1 ∈ R

d1×d0 and W2 ∈ R
d2×d1 are

the model parameters (or weights) corresponding to the first
and second layers, respectively. Throughout, we call d0, d1,
and d2 the sizes of the input layer, hidden layer, and output
layer, respectively. The goal of training a neural network is
to optimize the parameters W1 and W2 such that the output
W2W1X matches the desired output Y .

Instead of proposing new algorithms to minimize the
objective function in (1), we are interested in characteriz-
ing its geometric landscape by understanding the behavior
of all of its critical points.

3.1 Main Results

We present our main theorems concerning the behavior
of all of the critical points of problem (1). First, note
that an ambiguity exists in the solution to problem (1)
since W2AA−1W1 = W2W1 (and thus f (W1,W2) =
f (A−1W1,W2A)) for any invertible A. In other words, if
(W1,W2) is a critical point, then (A−1W1,W2A) is also a
critical point. As pointed out in [13,27,35,46,47], if A−1W1

and AW2 are extremely unbalanced in the sense that one has
very large energy and the other one has very small energy—
for example A = tI when t is very large or small—then it
could be difficult to directly analyze the property of such crit-
ical points. We utilize an additional regularizer [see (3)] to
resolve the ambiguity issue and show that the corresponding
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objective function has no spurious local minima and obeys
the strict saddle property without requiring any of the fol-
lowing conditions that appear in certain works discussed in
Sect. 3.2: Y is of full row rank, d2 ≤ d0, YXT(XXT)−1XYT

has d2 distinct eigenvalues, d1 ≤ min(d0, d2), (4) holds, or
(5) holds.

Theorem 2 Assume that XXT is of full row rank. Then, for
any μ > 0, the following objective function:

g(W1,W2) =1

2
‖W2W1X − Y‖2F + μ

4
ρ(W1,W2) (2)

with

ρ(W1,W2) := ‖WT
2W2 − W1XXTWT

1‖2F (3)

obeys the following properties:

(i) g(W1,W2) has the same global minimum value as
f (W1,W2) in (1);

(ii) any critical point (W1,W2) of g is also a critical point
of f ;

(iii) g(W1,W2) has no spurious local minima and the
Hessian at any saddle point has a strictly negative
eigenvalue.

The proof of Theorem 2 is given in Sect. 4.1. The main
idea in proving Theorem 2 is to connect g(W1,W2) in (2)
with the following low-rank factorization problem:

min
W̃1,W2

1

2
‖W2W̃1 − Ỹ‖2F + μ

4
‖WT

2W2 − W̃1W̃
T
1‖2F ,

where W̃1 and Ỹ are related toW and Y ; see (10) in Sect. 4.1
for the formal definitions.

Theorem 2(i) states that the regularizer ρ(W1,W2) in (3)
has no effect on the global minimum of the original problem,
i.e., the onewithout this regularizer.Moreover, as established
in Theorem 2(ii), any critical point of g in (2) is also a critical
point of f in (1), but the converse is not true. With the regu-
larizer ρ(W1,W2), which mostly plays the role of shrinking
the set of critical points, we prove that g has no spurious local
minima and obeys the strict saddle property.

As our results hold for anyμ > 0 and g = f whenμ = 0,
one may conjecture that these properties also hold for the
original objective function f under the same assumptions,
i.e., assuming only that XXT has full row rank. This is indeed
true and is formally established in the following result.

Theorem 3 Assume that X is of full row rank. Then, the
objective function f appearing in (1) has no spurious local
minima and obeys the strict saddle property.

The proof of Theorem 3 is given in Sect. 4.2. Theorem 3
builds heavily onTheorem2andon [34, Theorem8],which is
also presented in Theorem 5. Specifically, as we have noted,
[34, Theorem 8] characterizes the behavior of degenerate
critical points. Using Theorem 2, we further prove that any
non-degenerate critical point of f is either a global minimum
or a strict saddle.

3.2 Connection to PreviousWork on Shallow Linear
Neural Networks

As summarized in Table 1, the results in [2,21,31] on char-
acterizing the geometric landscape of the loss function in
training shallow linear neural networks only consider the
behavior of local minima, but not saddle points. The strict
saddle property is proved only in [20] and partly in [34]. We
first review the result in [20] concerning the optimization
geometry of problem (1).

Theorem 4 [20, Theorem 2.3] Assume that X and Y are of
full rank with d2 ≤ d0 and YXT(XXT)−1XYT has d2 dis-
tinct eigenvalues. Then, the objective function f appearing
in (1) has no spurious local minima and obeys the strict sad-
dle property.

Theorem 4 implies that the objective function in (1) has
benign geometric properties if d2 ≤ d0 and the training
samples are such that X and Y are of full row rank and
YXT(XXT)−1XYT has d2 distinct eigenvalues. The recent
work [31] generalizes the first point of Theorem 4 (i.e.,
no spurious local minima) by getting rid of the assump-
tion that YXT(XXT)−1XYT has d2 distinct eigenvalues.
However, the geometry of the saddle points is not charac-
terized in [31]. In [21], it is also proved that the condition
on YXT(XXT)−1XYT is not necessary. In particular, when
applied to (1), the result in [21] implies that the objec-
tive function in (1) has no spurious local minima when
d1 ≤ min(d0, d2). This condition requires that the hidden
layer is narrower than the input and output layers. Again, the
optimization geometry around saddle points is not discussed
in [21].

We now review the more recent result in [34, Theorem 8].

Theorem 5 [34,Theorem8]Theobjective function f appear-
ing in (1) has no spurious local minima. Moreover, any
critical point Z of f that is degenerate (i.e., for which
rank(W2W1) < min{d2, d1, d0}) is either a global minimum
of f or a strict saddle.

In cases where the global minimum of f is non-
degenerate—for example when Y = W�

2W
�
1X for some W�

2
and W�

1 such that W�
2W

�
1 is non-degenerate—Theorem 5

implies that all degenerate critical points are strict saddles.
However,we note that the behavior of non-degenerate critical
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points in these cases is more important from the algorithmic
point of view, since one can always check the rank of a con-
vergent point and perturb it if it is degenerate, but this is not
possible at non-degenerate convergent points. Our Theorem
3 generalizes Theorem 5 to ensure that every critical point
that is not a global minimum is a strict saddle, regardless of
its rank.

Next, as a direct consequence of [47, Theorem 3], the fol-
lowing result also establishes certain conditions under which
the objective function in (1) with an additional regularizer
[see (6)] has no spurious local minima and obeys the strict
saddle property.

Corollary 1 [47,Theorem3]Suppose d1 ≤ min(d0, d2). Fur-
thermore, for any d2 × d0 matrix A with rank(A) ≤ 4d1,
suppose the following holds

α‖A‖2F ≤ trace(AXXTAT) ≤ β‖A‖2F (4)

for some positive α and β such that β
α

≤ 1.5. Furthermore,
suppose minW∈Rd2×d0 ‖WX − Y‖2F admits a solution W�

which satisfies

0 < rank(W�) = r� ≤ d1. (5)

Then, for any 0 < μ ≤ α
16 , the following objective function

h(W1,W2) =1

2
‖W2W1X − Y‖2F

+ μ

4
‖WT

2W2 − W1WT
1‖2F ,

(6)

has no spurious local minima and the Hessian at any saddle
point has a strictly negative eigenvalue with

λmin

(
∇2h(W1,W2)

)
≤⎧⎨

⎩
−0.08ασd1(W

�), d1 = r�

−0.05α · min
{
σ 2
rc (W2W1), σr� (W�)

}
, d1 > r�

−0.1ασr� (W�), rc = 0,

(7)

where rc ≤ d1 is the rank of W1W2, λmin(·) represents the
smallest eigenvalue, and σ	(·) denotes the 	th largest singu-
lar value.

Corollary 1, following from [47, Theorem 3], utilizes a reg-
ularizer ‖WT

2W2 − W1WT
1‖2F which balances the energy

between W1 and W2 and has the effect of shrinking the set
of critical points. This allows one to show that each critical
point is either a global minimum or a strict saddle. Similar to
Theorem 2(i), this regularizer also has no effect on the global
minimum of the original problem (1).

As we explained before, Theorem 4 implicitly requires
that min(d0, d1) ≥ d2 and rank(W�

2W
�
1) ≥ d2. On the other

hand, Corollary 1 requires d1 ≤ min(d0, d2) and (4). When

d1 ≤ min(d0, d2), the hidden layer is narrower than the input
and output layers. Note that (4) has nothing to do with the
underlying network parametersW�

1 andW
�
2, but requires the

training data matrix X to act as an isometry operator for
rank-4d1 matrices. To see this, we rewrite

trace(AXXTAT) =
N∑
i=1

xTi A
TAxi =

N∑
i=1

〈xi xTi , ATA〉

which is a sum of the rank-one measurements of ATA.
Unlike Theorem 4, which requires that YYT is of full rank

and d2 ≤ d0, and unlike Corollary 1, which requires (4) and
d1 ≤ min(d0, d2), Theorems 2 and 3 only necessitate that
XXT is full rank and have no condition on the size of d0, d1,
and d2. As we explained before, suppose Y is generated as
Y = W�

2W
�
1X ,whereW�

2 andW
�
1 are the underlyingweights

to be recovered. Then, the full-rank assumption of YYT =
W�

2W
�
1XXTW�T

1 W�T
2 at least requiresmin(d0, d1) ≥ d2 and

rank(W�
2W

�
1) ≥ d2. In other words, Theorem 4 necessitates

that the hidden layer iswider than the output,while Theorems
2 and 3work for networks where the hidden layer is narrower
than the input and output layers. On the other hand, Theorems
2 and 3 allow for the hidden layer of the network to be either
narrower or wider than the input and the output layers.

Finally, consider a three-layer network with X = I. In
this case, (1) reduces to amatrix factorization problemwhere
f (W1,W2) = ‖W2W1 − Y‖2F and the regularizer in (2) is
the same as the one in (6). Theorem 4 requires thatY is of full
row rank and has d2 distinct singular values. For the matrix
factorization problem, we know from Corollary 1 that for
any Y , h has benign geometry (i.e., no spurious local minima
and the strict saddle property) as long as d1 ≤ min(d0, d2).
As a direct consequence of Theorems 2 and 3, this benign
geometry is also preserved even when d1 > d0 or d1 > d2
for matrix factorization via minimizing

g(W1,W2) = ‖W2W1 − Y‖2F + μ

4
‖WT

2W2 − W1WT
1‖2F

where μ ≥ 0 (note that one can get rid of the regularizer by
setting μ = 0).

3.3 Possible Extensions

As we mentioned before, an ambiguity exists in the solu-
tion to the original training problem f in (1). In partic-
ular, W2AA−1W1 = W2W1 (and thus f (W1,W2) =
f (A−1W1,W2A)) for any invertible A. Similar to [13,27,
35,46,47], we utilize a regularizer ρ in (3) to address this
ambiguity issue by shrinking the set of critical points, and
we characterize the behavior of every critical point of the
regularized objective g in (2). However, unlike the works
mentioned above that only focus on a regularized problem,
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we further prove that the original problem f has a similar
favorable geometry to g.We believe this technique could also
be applied to problems such as the low-rank matrix recovery
problems in [13,27,35,46,47]; in particular, it could poten-
tially provide an answer to an open question arising in [47]
as to whether the regularizer is needed since it is empirically
observed that gradient descent always efficiently finds the
global minimum even without the regularizer.

It is also of interest to extend this approach to deep lin-
ear neural networks which have a similar ambiguity issue.
For example, consider a four-layer neural network which
transforms X into W3W2W1X . In this case, aside from the
regularizer in (3), one can utilize an additional regularizer
such as ‖WT

3W3 −W2WT
2‖2F to makeW3 andW2 balanced

(i.e., WT
3W3 = W2WT

2 ). Similar to the analysis of the shal-
low linear network, the first step would be to characterize all
the critical points for the problem with two regularizers. One
would then need to insure that the original training problem
without regularizer has a similar geometry to the regularized
one. Toward that goal, one would need to extend Theorem
5—which characterizes the properties of degenerate critical
points—to deep linear networks.We leave a full investigation
for future work.

4 Proof of Main Results

4.1 Proof of Theorem 2

In this section, we prove Theorem 2 by individually prov-
ing its three arguments. For Theorem 2(i), it is clear that
g(W1,W2) ≥ f (W1,W2) for any W1,W2, where we
repeat that

f (W1,W2) = 1

2
‖W2W1X − Y‖2F .

Therefore, we need only show that g has the same objective
function as f at the global minimum of f . The proof of
Theorem 2(ii) mainly relies on (9) in Lemma 1which implies
that at any critical point (W1,W2) of g, the regularizer ρ

achieves its global minimum and hence its gradient is also
zero, suggesting that ∇ f (W1,W2) = ∇g(W1,W2) = 0.
To prove Theorem 2(iii), we characterize the behavior of all
of the critical points of the objective function g in (2). In
particular, we show that for any critical point of g, if it is not
a global minimum, then it is a strict saddle, i.e., its Hessian
has at least one negative eigenvalue.

Proof of Theorem 2(i) Suppose the row rank of X is d ′
0 ≤ d0.

Let

X = UΣVT (8)

be a reduced SVD of X , whereΣ is a d ′
0×d ′

0 diagonal matrix
with positive diagonals. Then,

f (W1,W2)

= 1

2
‖W2W1UΣ − YV‖2F + ‖Y‖2F − ‖YV‖2F

= f1(W1,W2) + C,

where f1(W1,W2) = 1
2‖W2W1UΣ − YV‖2F and C =

‖Y‖2F − ‖YV‖2F . Denote by (W�
1,W

�
2) a global minimum

of f1(W1,W2) :

(W�
1,W

�
2) = arg minW1,W2

f (W1,W2)

= arg minW1,W2
f1(W1,W2).

We now construct (Ŵ1, Ŵ2) such that g(Ŵ1, Ŵ2) =
f (W�

1,W
�
2). Toward that goal, letW

�
2W

�
1UΣ = P1Ω QT

1 be
a reduced SVD ofW�

2W
�
1UΣ , where Ω is a diagonal matrix

with positive diagonals. Also, let Ŵ1 = Ω1/2QT
1Σ−1UT

and Ŵ2 = P1Ω
1/2 . It follows that

Ŵ
T
2 Ŵ2 − Ŵ1XXTŴ

T
1 = Ω − Ω = 0,

Ŵ2Ŵ1UΣ = P1Ω QT
1 = W�

2W
�
1UΣ,

which implies that f1(W�
1,W

�
2) = f1(Ŵ1, Ŵ2) and

f (W�
1,W

�
2) = f1(W�

1,W
�
2) + C = f1(Ŵ1, Ŵ2) + C

= f (Ŵ1, Ŵ2) = g(Ŵ1, Ŵ2)

since ‖ŴT
2 Ŵ2 − Ŵ1XXTŴ

T
1‖2F = 0. This further indi-

cates that g and f have the same global optimum (since
g(W1,W2) ≥ f (W1,W2) for any (W1,W2)). This proves
that the regularizer in (2) has no effect on the globalminimum
of the original problem. ��

Proof of Theorem 2(ii) We first establish the following result
that characterizes all the critical points of g. ��

Lemma 1 Let X = UΣVT be an SVD of X as in (8), where
Σ is a diagonal matrix with positive diagonals σ1 ≥ σ2 ≥
· · · ≥ σd0 > 0. Let Ỹ := YV = P�QT = ∑r

j=1 λ j p jq
T
j

be a reduced SVD of Ỹ , where r is the rank of Ỹ . Then, any

critical point Z =
[
W2

WT
1

]
of (2) satisfies

WT
2W2 = W1XXTWT

1 . (9)
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Furthermore, any Z =
[
W2

WT
1

]
is a critical point of g(Z) if

and only if Z ∈ Cg with

Cg =
{
Z =

[
W̃2RT

UΣ−1W̃
T
1 R

T

]
: Z̃ =

[
W̃2

W̃
T
1

]
,

z̃i ∈
{√

λ1

[
p1
q1

]
, . . . ,

√
λr

[
pr
qr

]
, 0

}
,

z̃Ti z̃ j = 0, ∀i �= j, R ∈ Od1

}
,

(10)

where z̃i denotes the i th column of Z̃.

The proof of Lemma 1 is in “Appendix A.” From (9), g(Z) =
f (Z) at any critical point Z. We compute the gradient of the
regularizer ρ(W1,W2) as

∇W1ρ(W1,W2)

:= −μW2(WT
2W2 − W1XXTWT

1 )W1XXT,

∇W2ρ(W1,W2)

:= μW2(WT
2W2 − W2XXTWT

1 )W1XXT.

Plugging (9) into the above equations gives

∇W1ρ(W1,W2) = ∇W2ρ(W1,W2) = 0

for any critical point (W1,W2) of g. This further implies that
if Z is a critical point of g, then it must also be a critical point
of f since ∇g(Z) = ∇ f (Z) + ∇ρ(Z) and both ∇g(Z) =
∇ρ(Z) = 0, so that

∇ f (Z) = 0. (11)

This proves Theorem 2(ii).

Proof of Theorem 2(iii) We show that any critical point of g is
either a global minimum or a strict saddle. Toward that end,
for any Z ∈ C, we first write the objective value at this point
as

g(Z) = 1

2
‖W2W1X − Y‖2F

= 1

2
‖W̃2W̃1Σ

−1UTX − Y‖2F
= 1

2
‖W̃2W̃1 − YV‖2F + ‖Y‖2F − ‖YV‖2F ,

where UΣVT is a reduced SVD of X as defined in (8),
and W̃2 and W̃1 are defined in (10). Noting that ‖Y‖2F −
‖YV‖2F is a constant in terms of the variables W2 and W1,
we conclude that Z is a global minimum of g(Z) if and only

if Z̃ is a global minimum of

g̃(Z̃) := 1

2
‖W̃2W̃1 − YV‖2F . (12)

Based on this observation, the following result further char-
acterizes the behavior of all of the critical points in Lemma
1. ��
Lemma 2 With the same setup as in Lemma 1, letC be defined
in (10). Then, all local minima of (2) belong to the following
set (which contains all the global solutions of (2))

Xg =
{
Z =

[
W̃2R

UΣ−1W̃
T
1 R

]
∈ C : ‖W̃2W̃1 − YV‖2F

= min
A∈Rd2×d1 ,B∈Rd1×d0

‖AB − YV‖2F
}
.

(13)

Any Z ∈ Cg \ Xg is a strict saddle of g(Z) satisfying:

• If r ≤ d1, then

λmin(∇2g(W)) ≤ −2
λr

1 + ∑
i σ

−2
i

; (14)

• If r > d1, then

λmin(∇2g(W)) ≤ −2
λd1 − λr ′

1 + ∑
i σ

−2
i

, (15)

where λr ′ is the largest singular value of Ỹ that is strictly
smaller than λd1 .

The proof of Lemma 2 is given in “Appendix B.” Lemma 2
states that any critical point of g is either a global minimum
or a strict saddle. This proves Theorem 2(iii) and thus we
complete the proof of Theorem 2.

4.2 Proof of Theorem 3

Building on Theorem 2 and Theorem 5, we now consider the
landscape of f in (1). Let C f denote the set of critical points
of f :

C f = {Z : ∇ f (Z) = 0} .

Our goal is to characterize the behavior of all critical points
that are not global minima. In particular, we want to show
that every critical point of f is either a global minimum or a
strict saddle.

Let Z =
[
W2

WT
1

]
be any critical point in C f . According to

Theorem5,whenW2W1 is degenerate (i.e., rank(W2W1) <
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min{d2, d1, d0}), Z must be either a global minimum or a
strict saddle. We now assume the other case that W2W1 is
non-degenerate. For this case, we first construct a surrogate
function f [see (18)] similar to the one in (12). We then
connect the critical points of f to those of f , which according
to Lemma 2 are either global minima or strict saddles.

Let W2W1UΣ = ΦΘΨ T be a reduced SVD of
W2W1UΣ , where Θ is a diagonal and square matrix with
positive singular values, andΦ andΨ are orthonormal matri-
ces of proper dimension. We now construct

W2 = W2W1UΣΨ Θ−1/2 = ΦΘ1/2,

W1 = Θ−1/2ΦTW2W1 = Θ1/2Ψ TΣ−1UT.
(16)

The above-constructed pair Z =
[
W2

W
T
1

]
satisfies

W
T
2W2 = W1XXTW

T
1 , W2W1 = W2W1. (17)

Note that here W2 (resp. W1) have different numbers of
columns (resp. rows) than W2 (resp. W1). We denote by

f (W1,W2) = 1

2
‖W2W1UΣ − YV‖2F . (18)

Since Z ∈ C f , we have ∇W1 f (W1,W2) = 0 and
∇W2 f (W1,W2) = 0. It follows that

∇W2
f (W1,W2) = (W2W1UΣ − YV )(W1UΣ)T

= ∇W2 f (W1,W2)WT
2ΦΘ−1/2

= 0.

And similarly, we have

∇W1
f (W1,W2)

= Θ−1/2Ψ TΣ−1UTWT
1∇W1 f (W1,W2) = 0,

which together with the above inequation implies that Z is
also a critical point of f . Due to (17) which states that Z
also satisfies (9), it follows from the same arguments used
in Lemmas 1 and 2 that Z is either a global minimum or a
strict saddle of f . Moreover, sinceW2W1 has the same rank
as W2W1 which is assumed to be non-degenerate, we have
that Z is a global minimum of f if and only if

‖W2W1UΣ − YV‖2F = min
A∈Rd2×d1

B∈Rd1×d0

‖AB − YV‖2F ,

where the minimum of the right-hand side is also achieved
by the global minimum of f according to (13). Therefore, if
Z is a global minimum of f , then Z is also a global minimum
of f .

Now, we consider the other case when Z is not a global
minimum of f , i.e., it is a strict saddle. In this case, there

exists Δ =
[
Δ2

Δ
T
1

]
such that

[∇2 f (W1,W2)](Δ,Δ) < 0.

Now, construct

Δ1 = W1UΣΨ Θ−1/2Δ1

Δ2 = Δ2Θ
−1/2ΦTW2

which satisfies

W2Δ1 = W2W1, ΔW2W1 = Δ2W1,

Δ2Δ1 = Δ2Δ1.

By the Hessian quadratic form given in (32) (ignoring the
μ terms), we have

[∇2 f (Z)](Δ,Δ) = [∇2 f (Z)](Δ,Δ) < 0,

which implies that Z is a strict saddle of f . This completes
the proof of Theorem 3.

5 Conclusion

Weconsider the optimization landscape of the objective func-
tion in training shallow linear networks. In particular, we
proved that the corresponding optimization problems under
a very mild condition have a simple landscape: There are
no spurious local minima, and any critical point is either a
local (and thus also global) minimum or a strict saddle such
that the Hessian evaluated at this point has a strictly negative
eigenvalue. These properties guarantee that a number of iter-
ative optimization algorithms (especially gradient descent,
which is widely used in training neural networks) converge
to a global minimum from either a random initialization or
an arbitrary initialization depending on the specific algorithm
used. It would be of interest to prove similar geometric prop-
erties for the training problem without the mild condition on
the row rank of X .

A Proof of Lemma 1

A.1 Proof of (9)

Intuitively, the regularizer ρ in (3) forces WT
2 and W1X to

be balanced (i.e., WT
2W2 = W1XXTWT

1 ). We show that
with this regularizer, any critical point of g obeys (9). To
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establish this, first note that any critical point Z of g(Z)

satisfies ∇g(Z) = 0, i.e.,

∇W1g(W1,W2) = WT
2 (W2W1X − Y)XT

− μ(WT
2W2 − W1XXTWT

1 )W1XXT = 0,
(19)

and

∇W2g(W1,W2) = (W2W1X − Y)XTWT
1

+ μW2(WT
2W2 − W1XXTWT

1 ) = 0.
(20)

By (19), we obtain

WT
2 (W2W1X − Y)XT

= μ(WT
2W2 − W1XXTWT

1 )W1XXT.
(21)

Multiplying (20) on the left by WT
2 and plugging the result

with the expression for WT
2 (W2W1X − Y)XT in (21) gives

(WT
2W2 − W1XXTWT

1 )W1XXTWT
1

+ WT
2W2(WT

2W2 − W1XXTWT
1 ) = 0,

which is equivalent to

WT
2W2WT

2W2 = W1XXTWT
1W1XXTWT

1 .

Note that WT
2W2 and W1XXTWT

1 are the principal
square roots (i.e., PSD square roots) of WT

2W2WT
2W2 and

W1XXTWT
1W1XXTWT

1 , respectively. Utilizing the result
that a PSD matrix A has a unique PSD matrix B such that
Bk = A for any k ≥ 1 [16, Theorem 7.2.6], we obtain

WT
2W2 = W1XXTWT

1

for any critical point Z.

A.2 Proof of (10)

To show (10), we first plug (9) back into (19) and (20), sim-
plifying the first-order optimality equation as

WT
2 (W2W1X − Y)XT = 0,

(W2W1X − Y)XTWT
1 = 0.

(22)

What remains is to find all (W1,W2) that satisfy the above
equation.

Let W2 = L	RT be a full SVD of W2, where L ∈
R
d2×d2 and R ∈ R

d1×d1 are orthonormal matrices. Define

W̃2 = W2R = L	, W̃1 = RTW1UΣ . (23)

Since W1XXTWT
1 = WT

2W2 [see (9)], we have

W̃1W̃
T
1 = W̃

T
2 W̃2 = 	T	. (24)

Noting that	T	 is a diagonal matrix with nonnegative diag-
onals, it follows that W̃

T
1 is an orthogonalmatrix, but possibly

includes zero columns.
Due to (22), we have

W̃
T
2 (W̃2W̃1 − YV )ΣUT

= RT(WT
2 (W2W1X − Y)XT) = 0,

(W̃2W̃1 − YV )ΣUTW̃
T
1

= (W2W1X − Y)XTWT
1 R = 0,

(25)

where we utilized the reduced SVD decomposition X =
UΣVT in (8). Note that the diagonals of Σ are all positive
and recall

Ỹ = YV .

Then, (25) gives

W̃
T
2 (W̃2W̃1 − Ỹ) = 0,

(W̃2W̃1 − Ỹ)W̃
T
1 = 0.

(26)

We now compute all W̃2 and W̃1 satisfying (26). To that
end, let φ ∈ R

d2 and ψ ∈ R
d0 be the i th column and the i th

row of W̃2 and W̃1, respectively. Due to (24), we have

‖φ‖2 = ‖ψ‖2. (27)

It follows from (26) that

Ỹ
T
φ = ‖φ‖22ψ, (28)

Ỹψ = ‖ψ‖22φ. (29)

Multiplying (28) by Ỹ and plugging (29) into the resulting
equation gives

Ỹ Ỹ
T
φ = ‖φ‖42φ, (30)

where we used (27). Similarly, we have

Ỹ
T
Ỹψ = ‖ψ‖42ψ . (31)

Let Ỹ = P�QT = ∑r
j=1 λ j p jq

T
j be the reduced SVD

of Ỹ . It follows from (30) that φ is either a zero vector (i.e.,
φ = 0), or a left singular vector of Ỹ (i.e., φ = α p j for some
j ∈ [r ]). Plugging φ = α p j into (30) gives

λ2j = α4.
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Thus, φ = ±√
λ j p j . If φ = 0, then due to (27), we have

ψ = 0. If φ = ±√
λ j p j , then plugging into (28) gives

ψ = ±√
λ jq j .

Thus, we conclude that

(φ,ψ) ∈
{
±√

λ1( p1, q1), . . . ,±
√

λr ( pr , qr ), (0, 0)
}

,

which together with (24) implies that any critical point Z
belongs to (10) by absorbing the sign ± into R.

We now prove the other direction ⇒. For any Z ∈ C, we
compute the gradient of g at this point and directly verify it
satisfies (19) and (20), i.e., Z is a critical point of g(Z). This
completes the proof of Lemma 1.

B Proof of Lemma 2

Due to the fact that Z is a global minimum of g(Z) if and
only if Z̃ is a global minimum of g̃(Z̃), we know any Z ∈ X
is a globalminimumof g(Z). The rest is to show that any Z ∈
C \X is a strict saddle. For this purpose, we first compute the

Hessian quadrature form ∇2g(Z)[Δ,Δ] for any Δ =
[
Δ2

ΔT
1

]

(with Δ1 ∈ R
d1×d0 ,Δ2 ∈ R

d2×d1 ) as

∇2g(Z)[Δ,Δ]
= ‖(W2Δ1 + Δ2W1)X‖2F

+2
〈
Δ2Δ1, (W2W1X − Y)XT

〉

+μ
(〈WT

2W2−W1XXTWT
1 ,ΔT

2Δ2−Δ1XXTΔT
1 〉 +

1

2
‖WT

2Δ2 + ΔT
2W2−W1XXTΔT

1−Δ1XXTWT
1 ‖2F

)
= ‖(W2Δ1 + Δ2W1)X1‖2F

+2
〈
Δ2Δ1, (W2W1X − Y)XT

〉
+

μ

2
‖WT

2Δ2 + ΔT
2W2−W1XXTΔT

1−Δ1XXTWT
1 ‖2F ,

(32)

where the second equality follows because any critical point
Z satisfies (9). We continue the proof by considering two
cases in which we provide explicit expressions for the set X
that contains all the global minima and construct a negative
direction for g at all the points C \ X .
Case i: r ≤ d1. In this case, min g̃(Z̃) = 0 and g̃(Z̃) achieves
its global minimum 0 if and only if W̃2W̃1 = YV . Thus, we
rewrite X as

X =
{
Z =

[
W̃2R

UΣ−1W̃
T
1 R

]
∈ C : W̃2W̃1 = YV

}
,

which further implies that

C \ X =
{
Z =

[
W̃2R

UΣ−1W̃
T
1 R

]
∈ C :

YV − W̃2W̃1 =
∑
i∈Ω

λi piq
T
i ,Ω ⊂ [r ]

}
.

Thus, for any Z ∈ C \ X , the corresponding W̃2W̃1 is a
low-rank approximation to YV .

Let k ∈ Ω . We have

pTk W̃2 = 0, W̃1qk = 0. (33)

In words, pk and qk are orthogonal to W̃2 and W̃1, respec-
tively. Let α ∈ R

d1 be the eigenvector associated with the
smallest eigenvalue of Z̃

T
Z̃. Note that such α simultane-

ously lives in the null spaces of W̃2 and W̃
T
1 since Z̃ is rank

deficient, indicating

0 = αT Z̃
T
Z̃α = αTW̃

T
2 W̃2α + αTW̃1W̃

T
1α,

which further implies

W̃2α = 0, W̃
T
1α = 0. (34)

With this property, we construct Δ by setting Δ2 = pkα
TR

and Δ1 = RTαqTk Σ−1UT.
Now, we show that Z is a strict saddle by arguing that

g(Z) has a strictly negative curvature along the constructed
direction Δ, i.e., [∇2g(Z)](Δ,Δ) < 0. For this purpose, we
compute the three terms in (32) as follows:

‖(W2Δ1 + Δ2W1)X1‖2F = 0 (35)

since W2Δ1 = W2RTαqTk Σ−1UT = W̃2αqTk Σ−1UT = 0
andΔ2W1 = pkα

TRW1 = pkα
TW̃1 = 0 by utilizing (34);

‖WT
2Δ2 + ΔT

2W2 − W1XXTΔT
1 − Δ1XXTWT

1 ‖2F = 0

since it follows from (33) that WT
2Δ2 = RTW̃

T
2 pkα

TR = 0
and

W1XXTΔT
1 = RTW̃1Σ

−1UTUΣ2UTUΣ−1qkα
TR

= RTW̃1qkα
TR = 0;

and
〈
Δ2Δ1, (W2W1X − Y)XT

〉

=
〈
pkq

T
k Σ−1UT, (W̃2W̃1 − YV )ΣUT

〉

=
〈
pkq

T
k , W̃2W̃1

〉
−

〈
pkq

T
k ,YV

〉
= −λk,
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where the last equality utilizes (33). Thus, we have

∇2g(Z)[Δ,Δ] = −2λk ≤ −2λr .

We finally obtain (14) by noting that

‖Δ‖2F = ‖Δ1‖2F + ‖Δ2‖2F
= ‖ pkαTR‖2F + ‖RTαqTk Σ−1UT‖2F
= 1 + ‖Σ−1qk‖2F ≤ 1 + ‖Σ−1‖2F‖qk‖2F
= 1 + ‖Σ−1‖2F ,

where the inequality follows from the Cauchy–Schwartz
inequality |aTb| ≤ ‖a‖2‖b‖2.
Case ii: r > d1. In this case, minimizing g̃(Z̃) in (12) is
equivalent to finding a low-rank approximation to YV . Let
� denote the indices of the singular vectors { p j } and {q j }
that are included in Z̃, that is,

{̃zi , i ∈ [d1]} =
{
0,

√
λ j

[
p j
q j

]
, j ∈ �

}
.

Then, for any Z̃, we have

W̃2W̃1 − YV =
∑
i �=λ

λi piqi

and

g̃(Z̃) = 1

2
‖W̃2W̃1 − YV‖2F = 1

2

⎛
⎝∑

i �=�

λ2i

⎞
⎠ ,

which implies that Z̃ is a global minimum of g̃(Z̃) if

‖W̃2W̃1 − YV‖2F =
∑
i>d1

λ2i .

To simply the following analysis, we assume λd1 > λd1+1,
but the argument is similar in the case of repeated eigenvalues
at λd1 (i.e., λd1 = λd1+1 = · · · ). In this case, we know for
any Z ∈ C \ X that is not a global minimum, there exists
Ω ⊂ [r ] which contains k ∈ Ω, k ≤ d1 such that

YV − W̃2W̃1 =
∑
i∈Ω

λi piq
T
i .

Similar to Case i , we have

pTk W̃2 = 0, W̃1qk = 0. (36)

Let α ∈ R
d1 be the eigenvector associated with the smallest

eigenvalue of Z̃
T
Z̃. By the form of Z̃ in (10), we have

‖W̃2α‖22 = ‖W̃T
1α‖22 ≤ λd1+1, (37)

where the inequality attains equality when d1 + 1 ∈ Ω . As
in Case i , we construct Δ by setting Δ2 = pkα

TR and
Δ1 = RTαqTk Σ−1UT. We now show that Z is a strict saddle
by arguing that g(Z) has a strictly negative curvature along
the constructed direction Δ (i.e., [∇2g(Z)](Δ,Δ) < 0) by
computing the three terms in (32) as follows:

‖(W2Δ1 + Δ2W1)X1‖2F
=

∥∥∥W̃2αqTk V
T + pkα

TW̃1VT
∥∥∥2
F

= ∥∥W̃2α
∥∥2
F +

∥∥∥+αTW̃1

∥∥∥2
F

+ 2
〈
W̃2αqTk , pkα

TW̃1

〉

≤ 2λd1+1,

where the last line follows from (36) and (37);

‖(W2Δ1 + Δ2W1)X1‖2F = 0

holds with a similar argument as in (35); and

〈
Δ2Δ1, (W2W1X − Y)XT

〉

=
〈
pkq

T
k Σ−1UT, (W̃2W̃1 − YV )ΣUT

〉

=
〈
pkq

T
k , W̃2W̃1

〉
−

〈
pkq

T
k ,YV

〉

= −λk ≤ −λd1,

where the last equality used (36) and the fact that k ≤ d1.
Thus, we have

∇2g(Z)[Δ,Δ] ≤ −2(λd1 − λd1+1),

completing the proof of Lemma 2.

References

1. Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., Ma, T.: Finding
approximate localminima faster than gradient descent. In: Proceed-
ings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1195–1199. ACM (2017)

2. Baldi, P., Hornik, K.: Neural networks and principal component
analysis: learning from examples without local minima. Neural
Netw. 2(1), 53–58 (1989)

3. Bhojanapalli, S., Neyshabur, B., Srebro, N.: Global optimality of
local search for low rank matrix recovery. In: Advances in Neural
Information Processing Systems, pp. 3873–3881 (2016)

4. Blum, A., Rivest, R.L.: Training a 3-node neural network is NP-
complete. In: Advances in Neural Information Processing Systems
(NIPS), pp. 494–501 (1989)

5. Borgerding, M., Schniter, P., Rangan, S.: Amp-inspired deep net-
works for sparse linear inverse problems. IEEE Trans. Signal
Process. 65(16), 4293–4308 (2017)

6. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based
on interior point techniques for nonlinear programming.Math. Pro-
gram. 89(1), 149–185 (2000)

123



Journal of Mathematical Imaging and Vision

7. Carmon,Y.,Duchi, J.C., Hinder, O., Sidford,A.:Acceleratedmeth-
ods for non-convex optimization. arXiv preprint arXiv:1611.00756
(2016)

8. Conn, A.R., Gould, N.I., Toint, P.L.: Trust RegionMethods. SIAM,
Philadelphia (2000)

9. Curtis, F.E., Robinson, D.P.: Exploiting negative curvature
in deterministic and stochastic optimization. arXiv preprint
arXiv:1703.00412 (2017)

10. Cybenko, G.: Approximation by superpositions of a sigmoidal
function. Math. Control Signals Syst. 2(4), 303–314 (1989)

11. Du, S.S., Lee, J.D., Tian, Y.: When is a convolutional filter easy to
learn? arXiv preprint arXiv:1709.06129 (2017)

12. Ge, R., Huang, F., Jin, C., Yuan, Y.: Escaping from saddle points—
online stochastic gradient for tensor decomposition. In: Conference
on Learning Theory, pp. 797–842 (2015)

13. Ge, R., Jin, C., Zheng, Y.: No spurious local minima in nonconvex
low rank problems: a unified geometric analysis. In: International
Conference on Machine Learning, pp. 1233–1242 (2017)

14. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local
minimum. In: Advances in Neural Information Processing Sys-
tems, pp. 2973–2981 (2016)

15. Haeffele, B.D.,Vidal, R.:Global optimality in neural network train-
ing. In: Conference on Computer Vision and Pattern Recognition,
pp. 7331–7339 (2017)

16. Horn, R.A., Johnson, C.R.:MatrixAnalysis. CambridgeUniversity
Press, Cambridge (2012)

17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward
networks are universal approximators. Neural Netw. 2(5), 359–366
(1989)

18. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How
to escape saddle points efficiently. In: International Conference on
Machine Learning, pp. 1724–1732 (2017)

19. Kamilov, U.S., Mansour, H.: Learning optimal nonlinearities for
iterative thresholding algorithms. IEEE Signal Process. Lett. 23(5),
747–751 (2016)

20. Kawaguchi, K.: Deep learning without poor local minima. In:
Advances in Neural Information Processing Systems, pp. 586–594
(2016)

21. Laurent, T., von Brecht, J.: Deep linear neural networks with
arbitrary loss: all local minima are global. arXiv preprint
arXiv:1712.01473 (2017)

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436 (2015)

23. Lee, J.D., Panageas, I., Piliouras, G., Simchowitz,M., Jordan,M.I.,
Recht, B.: First-order methods almost always avoid saddle points.
arXiv preprint arXiv:1710.07406 (2017)

24. Lee, J.D., Simchowitz, M., Jordan, M.I., Recht, B.: Gradient
descent only converges to minimizers. In: Conference on Learning
Theory, pp. 1246–1257 (2016)

25. Li, Q., Zhu, Z., Tang, G.: The non-convex geometry of low-rank
matrix optimization. Inf. Inference: J. IMA 8, 51–96 (2019)

26. Li, X., Wang, Z., Lu, J., Arora, R., Haupt, J., Liu, H., Zhao, T.:
Symmetry, saddle points, and global geometry of nonconvexmatrix
factorization. arXiv preprint arXiv:1612.09296 (2016)

27. Li, X., Zhu, Z., So, A.M.C., Vidal, R.: Nonconvex robust low-rank
matrix recovery. arXiv preprint arXiv:1809.09237 (2018)

28. Li, Y., Zhang,Y., Huang,X.,Ma, J.: Learning source-invariant deep
hashing convolutional neural networks for cross-source remote
sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 99,
1–16 (2018)

29. Li, Y., Zhang, Y., Huang, X., Yuille, A.L.: Deep networks under
scene-level supervision for multi-class geospatial object detection
from remote sensing images. ISPRS J. Photogramm. Remote Sens.
146, 182–196 (2018)

30. Liu, H., Yue, M.C., Man-Cho So, A.: On the estimation perfor-
mance and convergence rate of the generalized power method for
phase synchronization. SIAM J. Optim. 27(4), 2426–2446 (2017)

31. Lu, H., Kawaguchi, K.: Depth creates no bad local minima. arXiv
preprint arXiv:1702.08580 (2017)

32. Mousavi,A., Patel,A.B.,Baraniuk,R.G.:Adeep learning approach
to structured signal recovery. In: 53rd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pp. 1336–
1343 (2015)

33. Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method
and its global performance. Math. Program. 108(1), 177–205
(2006)

34. Nouiehed, M., Razaviyayn, M.: Learning deep models: critical
points and local openness. arXiv preprint arXiv:1803.02968 (2018)

35. Park, D., Kyrillidis, A., Carmanis, C., Sanghavi, S.: Non-square
matrix sensing without spurious local minima via the burer-
monteiro approach. In: Artificial Intelligence and Statistics, pp.
65–74 (2017)

36. Qu, Q., Zhang, Y., Eldar, Y.C., Wright, J.: Convolutional phase
retrieval via gradient descent. arXiv preprint arXiv:1712.00716
(2017)

37. Safran, I., Shamir, O.: Spurious local minima are common in
two-layer relu neural networks. arXiv preprint arXiv:1712.08968
(2017)

38. Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill,
New York (1997)

39. Soudry, D., Carmon, Y.: No bad local minima: Data independent
training error guarantees for multilayer neural networks. arXiv
preprint arXiv:1605.08361 (2016)

40. Soudry, D., Hoffer, E.: Exponentially vanishing sub-optimal
local minima in multilayer neural networks. arXiv preprint
arXiv:1702.05777 (2017)

41. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval.
Found. Comput. Math. 18, 1–68 (2018)

42. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the
sphere I: overview and the geometric picture. IEEE Trans. Inf.
Theory 63(2), 853–884 (2017)

43. Tian, Y.: An analytical formula of population gradient for two-
layered relu network and its applications in convergence and critical
point analysis. In: International Conference on Machine Learning,
pp. 3404–3413 (2017)

44. Werbos, P.: Beyond regression: new fools for prediction and anal-
ysis in the behavioral sciences. Ph.D. thesis, Harvard University
(1974)

45. Yun, C., Sra, S., Jadbabaie, A.: Global optimality conditions for
deep neural networks. arXiv preprint arXiv:1707.02444 (2017)

46. Zhu, Z., Li, Q., Tang, G., Wakin, M.B.: The global optimiza-
tion geometry of low-rank matrix optimization. arXiv preprint
arXiv:1703.01256 (2017)

47. Zhu, Z., Li, Q., Tang, G., Wakin, M.B.: Global optimality in low-
rank matrix optimization. IEEE Trans. Signal Process. 66(13),
3614–3628 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1611.00756
http://arxiv.org/abs/1703.00412
http://arxiv.org/abs/1709.06129
http://arxiv.org/abs/1712.01473
http://arxiv.org/abs/1710.07406
http://arxiv.org/abs/1612.09296
http://arxiv.org/abs/1809.09237
http://arxiv.org/abs/1702.08580
http://arxiv.org/abs/1803.02968
http://arxiv.org/abs/1712.00716
http://arxiv.org/abs/1712.08968
http://arxiv.org/abs/1605.08361
http://arxiv.org/abs/1702.05777
http://arxiv.org/abs/1707.02444
http://arxiv.org/abs/1703.01256


Journal of Mathematical Imaging and Vision

Zhihui Zhu is a Postdoctoral
Fellow in the Mathematical Insti-
tute for Data Science at the Johns
Hopkins University. He received
his B.Eng. degree in communi-
cations engineering in 2012 from
Zhejiang University of Technol-
ogy (Jianxing Honors College),
and his Ph.D. degree in electrical
engineering in 2017 at the Col-
orado School of Mines, where his
research was awarded a Gradu-
ate Research Award. His research
interests include exploiting inher-
ent structures and applying opti-

mization methods with guaranteed performance for signal processing,
machine learning, and data analysis.

Daniel Soudry Since October
2017, Daniel Soudry is an assis-
tant professor (Taub Fellow) in
the Department of Electrical Engi-
neering at the Technion, work-
ing in the areas of machine learn-
ing and theoretical neuroscience.
Before that, he did his post-doc
(as a Gruss Lipper fellow) work-
ing with Prof. Liam Paninski in
the Department of Statistics, the
Center for Theoretical Neuroscien-
ce the Grossman Center for Statis-
tics of the Mind at Columbia Uni-
versity. He did his Ph.D. in the

Department of Electrical Engineering at the Technion, Israel Institute
of technology, under the guidance of Prof. Ron Meir. He received his
B.Sc. degree in Electrical Engineering and Physics from the Technion.

Yonina C. Eldar received the B.Sc.
degree in Physics in 1995 and the
B.Sc. degree in Electrical Engi-
neering in 1996 both from Tel-
Aviv University (TAU), Tel-Aviv,
Israel, and the Ph.D. degree in
Electrical Engineering and Com-
puter Science in 2002 from the
Massachusetts Institute of Tech-
nology (MIT), Cambridge. She is
currently a Professor in the Depart-
ment of Mathematics and Com-
puter Science, Weizmann Institute
of Science, Rehovot, Israel. She
was previously a Professor in the

Department of Electrical Engineering at the Technion, where she held
the Edwards Chair in Engineering. She is also a Visiting Professor at
MIT, a Visiting Scientist at the Broad Institute, and an Adjunct Profes-
sor at Duke University and was a Visiting Professor at Stanford. She is
a member of the Israel Academy of Sciences and Humanities (elected
2017), an IEEE Fellow, and a EURASIP Fellow. Her research interests
are in the broad areas of statistical signal processing, sampling the-
ory and compressed sensing, learning and optimization methods, and
their applications to biology and optics. Dr. Eldar has received numer-
ous awards for excellence in research and teaching, including the IEEE
Signal Processing Society Technical Achievement Award (2013), the
IEEE/AESS Fred Nathanson Memorial Radar Award (2014), and the

IEEE Kiyo Tomiyasu Award (2016). She was a Horev Fellow of the
Leaders in Science and Technology program at the Technion and an
Alon Fellow. She received the Michael Bruno Memorial Award from
the Rothschild Foundation, the Weizmann Prize for Exact Sciences,
the Wolf Foundation Krill Prize for Excellence in Scientific Research,
the Henry Taub Prize for Excellence in Research (twice), the Hershel
Rich Innovation Award (three times), the Award for Women with Dis-
tinguished Contributions, the Andre and Bella Meyer Lectureship, the
Career Development Chair at the Technion, the Muriel & David Jac-
know Award for Excellence in Teaching, and the Technion’s Award
for Excellence in Teaching (twice). She received several best paper
awards and best demo awards together with her research students and
colleagues including the SIAM outstanding Paper Prize and the IET
Circuits, Devices and Systems Premium Award, and was selected as
one of the 50 most influential women in Israel. She was a member of
the Young Israel Academy of Science and Humanities and the Israel
Committee for Higher Education. She is the Editor in Chief of Foun-
dations and Trends in Signal Processing, a member of the IEEE Sensor
Array and Multichannel Technical Committee and serves on several
other IEEE committees. In the past, she was a Signal Processing Soci-
ety Distinguished Lecturer, member of the IEEE Signal Processing
Theory and Methods and Bio Imaging Signal Processing technical
committees, and served as an associate editor for the IEEE Transac-
tions On Signal Processing, the EURASIP Journal of Signal Process-
ing, the SIAM Journal on Matrix Analysis and Applications, and the
SIAM Journal on Imaging Sciences. She was Co-Chair and Technical
Co-Chair of several international conferences and workshops.

Michael B. Wakin is a Profes-
sor of Electrical Engineering at
the Colorado School of Mines. Dr.
Wakin received a B.S. in elec-
trical engineering and a B.A. in
mathematics in 2000 (summa cum
laude), an M.S. in electrical engi-
neering in 2002, and a Ph.D. in
electrical engineering in 2007, all
from Rice University. He was an
NSF Mathematical Sciences Post-
doctoral Research Fellow at Cal-
tech from 2006–2007, an Assis-
tant Professor at the University of
Michigan from 2007–2008, and a

Ben L. Fryrear Associate Professor at Mines from 2015–2017. His
research interests include signal and data processing using sparse,
low-rank, and manifold-based models. In 2007, Dr. Wakin shared
the Hershel M. Rich Invention Award from Rice University for the
design of a single-pixel camera based on compressive sensing. In
2008, Dr. Wakin received the DARPA Young Faculty Award for his
research in compressive multi-signal processing for environments such
as sensor and camera networks. In 2012, Dr. Wakin received the
NSF CAREER Award for research into dimensionality reduction tech-
niques for structured data sets. In 2014, Dr. Wakin received the Excel-
lence in Research Award for his research as a junior faculty member
at Mines. Dr. Wakin is a recipient of the Best Paper Award from the
IEEE Signal Processing Society. He has served as an Associate Edi-
tor for IEEE Signal Processing Letters and is currently an Associate
Editor for IEEE Transactions on Signal Processing.

123


	The Global Optimization Geometry of Shallow Linear Neural Networks
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Strict Saddle Property

	3 Global Optimality in Shallow Linear Networks
	3.1 Main Results
	3.2 Connection to Previous Work on Shallow Linear Neural Networks
	3.3 Possible Extensions


	4 Proof of Main Results
	4.1 Proof of Theorem 2
	4.2 Proof of Theorem 3

	5 Conclusion
	A Proof of Lemma 1
	A.1 Proof of (9)
	A.2 Proof of (10)

	B Proof of Lemma 2
	References





