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ireless communication technology has progressed dra-
matically over the past 25 years, in terms of societal adop-
tion as well as technical sophistication. In 1998, mobile 

phones were still in the process of becoming compact and af-
fordable devices that could be widely utilized in both devel-
oped and developing countries. There were “only” 300 million 
mobile subscribers in the world [1]. Cellular networks were 
among the first privatized telecommunication markets, and 
competition turned the devices into fashion accessories with 
attractive designs that could be individualized. The service 
was circumscribed to telephony and text messaging, but it was 
groundbreaking in that, for the first time, telecommunication 
was between people rather than locations.

There are now more than six billion subscribers worldwide, 
and the mobile phone remains the main wireless device, but 
much has changed. Traditional feature phones with physical 
keypads have been replaced by smartphones with large touch-
screens. Telephony today constitutes a negligible fraction of 
the traffic, the vast majority of which amounts to packets bear-
ing data for end-user applications. Video and audio streaming, 
social media, gaming, and a host of other apps, generate the 
bulk of the traffic. New services continue to arise and cement 
the smartphone’s central role in nearly every aspect of our 
lives. In parallel, nonhuman-operated devices are progres-
sively coming online to form the Internet-of-Things (IoT) as 
society continues to be digitized.

Wireless networks have changed dramatically over the past 
few decades, enabling this revolution in service provisioning 
and making it possible to accommodate the ensuing dramatic 
growth in traffic. There are many contributing components, 
including new air interfaces for faster transmission, channel 
coding for enhanced reliability, improved source compression 
to remove redundancies, and leaner protocols to reduce over-
heads. Signal processing is at the core of these improvements, 
but nowhere has it played a bigger role than in the development 
of multiantenna communication. This article tells the story of 
how major signal processing advances have transformed the 
early multiantenna concepts into mainstream technology over 
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the past 25 years. The story therefore begins somewhat arbi-
trarily in 1998. A broad account of the state-of-the-art signal 
processing techniques for wireless systems by 1998 can be 
found in [2], and its contrast with recent textbooks, such as [3], 
[4], and [5], reveals the dramatic leap forward that has taken 
place in the interim.

Fundamentals of multiantenna communications
Traditionally, a base station (BS) at a cellular network site fea-
tured antenna panels connected to a baseband unit (BBU) that 
managed the digital signal processing. These panels, in turn, 
were tall and narrow, containing multiple vertically stacked 
radiating elements. By emitting the same signal from such 
elements, constructive superposition was leveraged to create 
a radiation pattern, vertically narrow and horizontally wide, 
that covered a swath of ground in a predefined manner. This 
is illustrated in Figure 1(a), with each panel’s coverage region 
termed a cell sector.

At current BSs, the panels have been replaced with antenna 
arrays having a more symmetric aspect ratio, which results 
in radiated beams that can be narrow both horizontally and 
vertically. The signal transmitted from each antenna element 
is individually controlled by the BBU, which now has far 
stronger computational capabilities and can alter the physical 
shape of the produced beam over both time and frequency. 
Figure 1(b) illustrates such a setup, and how each beam is nar-
row enough to aim at a particular user. When these arrays are 
used in propagation environments with multiple widely spaced 
paths, each radiated signal loses its directional beam shape and 
is instead fine-tuned to make the paths superimpose coherently 
on a small region around the intended receiver.

Antenna arrays bring about three main categories of  
benefits:
1)	 �Beamforming gain: The transmit beam is focused on the 

receiver, whereby a larger fraction of the radiated energy 
reaches it. Likewise, multiple receive antennas can collect 

more energy from selected directions, reinforcing the beam 
at that end with a focus on the transmitter. The overall 
beamforming gain is proportional to the transmit and 
receive array sizes.

2)	 �Spatial diversity: There are generally multiple paths via 
which signals travel between the transmitter and receiver, 
and the ensuing signal replicas can combine destructively. 
This causes signal fading, which antenna arrays can mitigate 
by observing multiple fading realizations simultaneously.

3)	 �Spatial multiplexing: Multiple signals can be transmitted 
concurrently on different beams, either to a single user 
equipped with multiple antennas, or to multiple users, as in 
Figure 1(b). This provides a traffic multiplier or multiplex-
ing gain, provided the interference among the signals can 
be kept at bay.
Above, and in the sequel, the beamforming gain is taken as 

the increase in signal power at the receiver, yet a more nuanced 
description would further include the reduction in interfer-
ence to and from unintended users [5, Sec. 5.7]. With a careful 
design, beamforming can strike an optimum balance between 
increasing signal energy and reducing interference.

State-of-the-art in 1998
Some of the benefits of antenna arrays were understood well 
before 1998, but their technology readiness levels were much 
different than today. Marconi himself famously capitalized on 
beamforming to enable wireless transatlantic communication 
in 1901. That experiment relied on an array antenna, which 
achieves beam directivity by connecting multiple elements to 
the same signal generator. The geometry of the array antenna 
determines the direction in which the radiated signals super-
impose constructively. Hence, the beam direction is fixed and 
determined at the time of building and erecting the array. This 
is how the 2G antennas in Figure 1(a) were designed to cover a 
sector with a fixed beam.

A different beam direction than the one dictated by the 
array geometry can be realized by emitting the same signal 
from all of the elements, but with appropriate phase shifts. 
This concept was first observed experimentally by Ferdinand 
Braun in 1902, and it led to the phased array technology used 
for radar since World War II. The phase shifts can be varied 
over time, to scan for objects in different angular directions. 
Early field trials of phased arrays for 2G were conducted in 
1996 [6]. The possibility of pointing the beams to user loca-
tions opened the door to stronger directivities and higher gains, 
since a beam no longer had to cover an entire sector. The dif-
ference between array antennas and phased arrays is illustrat-
ed in Figure 2, which also depicts the digital antenna arrays 
featured in 5G, where each element is connected to a separate 
signal generator.

In parallel with the refinement of phased arrays for beam-
forming over several decades, the use of multiple receive 
antennas for diversity also became commonplace. Spatial 
diversity was conceived for signal reception as far back as the 
1930s [7] and builds on an intuitive principle: if the same sig-
nal reaches several physically separated antennas, it is unlikely 
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FIGURE 1. (a) A 2G deployment in 1998, consisting of fixed directive 
antennas that broadcast each signal into a sector. (b) A 5G deployment in 
2023, entailing antenna arrays that can exploit the three main multianten-
na benefits: beamforming gain, spatial diversity, and spatial multiplexing.
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that the multipath propagation environment causes destructive 
superposition, hence signal fading, at all such antennas simul-
taneously. By decoding a combination of the observations at 
the various receive antennas, the communi-
cation becomes much more reliable.

A wireless network must of course pro-
vide an uplink connection from users to 
BSs, as well as a downlink connection from 
BSs to users. Thus, diversity is desirable in 
both link directions, yet transmit diversity 
did not emerge until the 1990s [8]. In 1998, 
the Alamouti space–time block code for 
two antennas was proposed [9] and a more 
general framework for space–time coding 
with multiple transmit antennas was published soon thereaf-
ter [10]. The principle is to repeatedly transmit a block of data 
symbols while varying the spatial directivity in a predeter-
mined way (e.g., using different antennas); the receiver collects 
observations over a time interval and decodes them. Space–
time codes are carefully crafted to not only enable decoding, 
but to strike a satisfactory tradeoff between high spectral 
efficiency (i.e., bits per second per Hertz of spectrum), high 
diversity, and low complexity.

Altogether, beamforming gains and spatial diversity were 
known by 1998, and it was largely thought that these were the 
two main benefits of antenna arrays: beamforming gains in 
the case of coherent arrays, associated with tight antenna spac-
ings and cleanly defined directions of arrival and departure, 
and diversity gains in the case of arrays experiencing largely 
uncorrelated fading across the antennas, associated with wider 
spacings and rich multipath settings. The third, and ultimately 
the most powerful benefit of antenna arrays, spatial multiplex-

ing, was still largely under the radar. However, its seeds had 
already been planted in research efforts on interference-aware 
beamforming [11] and on communication concepts for linear 

channels that couple multiple inputs into 
multiple outputs [12]. Unlike beamform-
ing and diversity, which involved replicas 
of a single signal, these precursors of spa-
tial multiplexing entailed the transmission 
and reception of distinct signals simulta-
neously and on the same bandwidth. Par-
ticularly prescient was the transmission and 
reception with two orthogonally polarized 
antennas, subsequently extended in a piece 
that featured multiantenna transmitters and 

receivers with many of the ingredients required for true spatial 
multiplexing [13]. However, it was not until after 1998 that all of 
these pieces fell into place.

External technology developments
Three external trends have heavily guided and influenced the 
evolution of multiantenna technology over the past decades.
1)	 The explosion in wireless traffic, which has doubled every 

18 months as per Cooper’s law, along with a fundamental 
change in the nature of such traffic, was driven by new user 
behaviors and applications. An efficient network for tele-
phony had to support many simultaneous fixed-rate connec-
tions, while today’s data networks aim at maximizing the 
bit rate per user device (to support certain applications) and 
the bit rate per unit area (to accommodate many devices).

2)	 The exponential improvement and size reduction of inte-
grated circuits have led to systems-on-a-chip that combine 
radios, memory, and processors capable of advanced 

Array Antennas Phased Arrays Digital Antenna Arrays

Power Splitter
and Combiner

Antenna
Element

BBU BBU BBU
(a) (b) (c)

Phase
Shifter

One Signal for
All Elements

One Signal per
Antenna Element

FIGURE 2. There are three classical categories of arrays: (a) array antennas that generate fixed beams, (b) phased arrays that rely on phase shifters to 
control the beam direction, and (c) digital antenna arrays that have full control of the signal transmitted from each antenna element.

Wireless networks have 
changed dramatically over 
the past few decades, 
enabling this revolution 
in service provisioning 
and making it possible to 
accommodate the ensuing 
dramatic growth in traffic.
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signal processing on a tiny piece of silicon. While in 1998, 
a digital antenna array with M = 2 or M = 4 elements 
would consist of M external antenna elements connected 
to M radio frequency (RF) units and one BBU, current 5G 
BSs can integrate M = 64 elements and RF units into a 
single box. This development has also 
enabled smartphones to feature digital 
arrays, for now with M = 4 elements.

3)	 The gradual change in the signal wave-
forms: There were multiple 2G stan-
dards based either on time-division 
multiple access (TDMA) or code-DMA 
(CDMA). The first versions of 3G, 
finalized precisely around 1998, were entirely based on 
CDMA, which won the battle against the competing 
orthogonal frequency-DMA (OFDMA). For 4G, the shift 
to OFDMA finally took place, and 5G retained this same 
waveform after a handful of alternatives were evalu-
ated and discarded. While all waveforms are in principle 
compatible with antenna arrays, the choice does have a 
fundamental impact on what signal processing algorithms 
are required.

Five key areas of signal processing advances
We have identified five stages of signal processing advances in 
the evolution of multiantenna technology from 2G to 5G and 
beyond. The background, new solutions, and specific insights 
are expounded on in the following sections.

From spatial diversity to spatial multiplexing
One could argue that, all the way back to Marconi, beamform-
ing was motivated by the interest in extending the range of cov-
erage. In turn, diversity was motivated by the desire to increase 
reliability. By 1998, the exploding cost of radio spectrum ahead 
of 3G brought about a new and powerful necessity: increasing 
the spectral efficiency. The shift toward high bit-rate user ap-
plications further amplified this trend. The operational mode 
of antenna arrays that maximizes the spectral efficiency is spa-
tial multiplexing and, after 1998, the atmosphere was therefore 
primed for it to finally come to the fore.

The prerequisite for spatial multiplexing is a multiple-input 
multiple-output (MIMO) communication channel, where each 
input/output refers to an antenna element in a digital antenna 
array. There are two MIMO categories: single-user MIMO 
entails a multiantenna BS and a multiantenna user device, 
while multiuser MIMO encompasses a multiantenna BS and 
multiple user devices.

Arguably, the main catalyst for single-user MIMO was 
the work in [14], which set out to design the perfect trans-
ceivers from an information-theoretic standpoint. Starting 
with transmit and receive digital antenna arrays and no pre-
set conditions on how to employ them, it was found that, if 
the elements within each array exhibited uncorrelated fading, 
the optimum strategy was to have each radiate an indepen-
dent data-carrying signal. This was radically novel in that it 
sought to exploit, rather than counter, multipath propagation; it 

is the very existence of multiple paths that allows the receiver 
to observe a distinct linear combination of the transmit signals 
at each receive antenna, from where those transmit signals 
can be resolved. The number of signals that can be spatially 
multiplexed is then limited by the minimum of the number of 

transmit and receive antenna elements. In 
follow-up work, a specific architecture was 
proposed to effect such spatial multiplexing, 
the so called layered architecture, which 
was remarkable in that it could be built 
with off-the-shelf encoders and decoders 
and did not require the transmitter to know 
anything about the channel [15]. Additional 

results progressively solidified the theoretical underpinnings 
[16]. In particular, the idea of transmitting concurrent signals, 
one from each antenna element, was generalized to the trans-
mission of concurrent beams from all elements at once. Phased 
arrays cannot achieve such spatial multiplexing because they 
only create one beam at a time, and digital antenna arrays are 
decidedly necessary.

Multiuser MIMO can be traced back to signal process-
ing concepts for simultaneous uplink reception from mul-
tiple users [17] and simultaneous downlink beamforming to 
users in different angular directions [18]. Here, the number 
of signals that can be spatially multiplexed is not limited by 
the number of antenna elements per user, but rather across all 
users; even if each user features a single element, it is possible 
to spatially multiplex one signal to/from each one. This major 
advantage comes at the expense of the BS having to carefully 
arrange the transmit and receive beams, such that each one 
matches with the multipath characteristics of its intended 
user and there is minimal interference among them, as in  
Figure 2(b). With that, every user can transmit continuously 
and over the entire system bandwidth, rather than only in a 
time slot and/or frequency subband, reflecting the spatial 
multiplexing benefit. Multiuser MIMO is a generalization to 
multipath settings of classical space-DMA (SDMA), whereby 
users share a channel in space rather than in time or frequency. 
Interestingly, the SDMA concept is more than 20 years older 
than single-user MIMO [19], which showcases that establish-
ing many simultaneous user connections was long perceived 
more important in wireless networks than achieving high data 
rate per connection.

The potential of MIMO, in both its single-user and mul-
tiuser fashions, sparked a chain reaction that spread rapidly 
through academia and industry, bringing much excitement by 
the early 2000s. Cellular standardization bodies, in particu-
lar, the 3G partnership project (3GPP) adopted it in a limited 
fashion for late 3G releases and then as an integral part of the 
designs beginning with 4G. Even faster was the adoption with-
in Wi-Fi, with the first version including MIMO certified in 
2007 and supported by a multitude of devices, including lap-
tops, tablets, and smartphones.

MIMO harnesses the three dimensions of benefits shown 
in Figure 3: beamforming gain, spatial diversity, and spatial 
multiplexing. A clear understanding of how these benefits are 

Marconi himself 
famously capitalized on 
beamforming to enable 
wireless transatlantic 
communication in 1901.
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related has emerged over time. Fundamental tradeoffs have 
been identified, for given array configurations and channel 
conditions.

■■ �Beamforming is a special case of spatial multiplexing 
where a single beam is transmitted to a single user. This is 
in fact the optimum strategy when the signal-to-noise ratio 
(SNR) is low; maximizing the signal energy is then of the 
essence, and the best recipe is to concentrate all the radiat-
ed energy on the strongest beam. At high SNR, in contrast, 
energy is plentiful and can be spread over multiple beams, 
to the point that it is optimum to activate 
as many beams as the channel and 
antenna counts allow. This is represent-
ed by the blue plane in Figure 3.

■■ �Spatial diversity, roughly quantified as 
the number of independently faded sig-
nal replicas, and spatial multiplexing, 
meaning the number of concurrent 
beams, cannot be simultaneously maxi-
mized. These two quantities are rather 
subject to a tradeoff [20]. At the extreme points of this 
diversity-multiplexing tradeoff, one of the quantities is 
maximized while the other stands at a minimum. Various 
combinations are feasible at intermediate points of the 
tradeoff curve, which is cartooned on the yellow plane 
of Figure 3.
As mentioned, the choice between beamforming and spa-

tial multiplexing is dictated by the SNR, hence, by its under-
lying parameters (e.g., transmit power, channel attenuation, 
noise power). In turn, the mix of diversity and multiplexing 
depends on whether the priority is to increase reliability or 
spectral efficiency. However, the operating point should be 
selected holistically, and over the years this has caused the mix 
to shift toward less diversity and more multiplexing. Indeed, 
as successive system generations have spanned ever broader 
bandwidths, more and more diversity has been reaped in the 
frequency domain. The rewards of additional diversity rapidly 
saturate, thus the need for spatial diversity has abated [21]. This 
of course does not apply to narrowband control channels or 
to low-power short-packet IoT communication, where spatial 
diversity remains important, but it does hold for the user data 
channels that carry the bulk of the traffic in cellular networks.

From spatial multiplexing to massive MIMO
The basics of MIMO, developed under the premises of perfect 
channel state information (CSI) and rich scattering, indicate 
that an arbitrarily high spectral efficiency can be achieved by 
deploying sufficiently many antennas and serving many users 
at once. However, the practical challenges became apparent 
when the technology was first commercialized. The spatial 
multiplexing capability in single-user MIMO was often re-
stricted by limited scattering, while multiuser MIMO is re-
strained by imperfect CSI. Massive MIMO, a new form of 
multiuser MIMO that originated from [22], was developed 
in the 2010s to address these issues and is now at the heart 
of 5G.

The new aspects of massive MIMO are as follows. First, it 
relies on having many more BS antennas than spatially multi-
plexed users. This design choice renders the beams relatively 
narrow (e.g., in the sense of focusing on a small region around 
the intended receiver), hence there is likely to be little overlap 
among beams focused on distinct users. Moreover, by virtue of 
these favorable conditions, whatever little interference exists 
can be suppressed through low-complexity linear signal pro-
cessing: for example, regularized zero-forcing that fine-tunes 
each beam’s focal area to balance a strong beamforming gain 

with low interference [23]. At the same 
time, and again because of the excess BS 
antennas, the effective channels provided 
by these beams harden, meaning that they 
become very stable and subject to only min-
imal fading fluctuations.

Second, massive MIMO is tailored for 
resource-efficient CSI acquisition. The main 
estimation principle is to emit separate pre-
defined pilot signals from each antenna 

element and then gauge the channel coefficients from the 
observations of these pilots at the receive elements. Massive 
MIMO adopted time-division duplexing (TDD), where the 
same bandwidth is utilized, in alternating fashion, for uplink 
and downlink. Since, by virtue of reciprocity, the channel is 
then identical in both directions, it suffices to estimate its coef-
ficients in one direction. Specifically, the CSI required for both 
uplink and downlink is obtained from uplink pilots. The nec-
essary pilot resources are thus determined by the number of 
multiplexed users, with no dependence on the number of BS 
antennas. In contrast, many previous commercial implemen-
tations of multiuser MIMO were based on frequency-division 
duplexing (FDD), where the uplink and downlink channels were 
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FIGURE 3. There are three benefit dimensions of multiantenna communi-
cation that have developed in past decades. From 2G to 5G, systems have 
shifted from the green plane to the blue plane; that is, spatial diversity has 
gradually been replaced by spatial multiplexing. Since spatial multiplexing 
requires high SNRs to be practically useful, beamforming gains remain 
essential at low SNRs.

While all waveforms are in 
principle compatible with 
antenna arrays, the choice 
does have a fundamental 
impact on what signal 
processing algorithms are 
required.
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entirely different, or TDD operation without using reciprocity. 
The downlink operation then required the BS to transmit as 
many pilots as it has antennas, except in specific propagation 
scenarios where the channels can be parametrized using a few 
angles. Moreover, each user needed to quantize and feedback 
its channel estimates to the BS. In a typical 5G setup with  
M = 64 BS antennas that spatially multiplex K = 8 users, the 
FDD alternative would require M/K = 8 times as many 
pilots and a proportional amount of extra 
CSI feedback.

The TDD operation is particularly help-
ful in complex propagation environments 
with many paths per user, such as the one 
sketched in Figure 4, where the optimum 
downlink transmission spreads a user’s sig-
nal energy in many directions to match the 
reflecting objects. CSI acquisition through 
uplink pilots automatically captures these 
fine characteristics, without any prior chan-
nel knowledge or array calibration. In FDD operation, besides 
requiring vastly more pilot resources, essential channel details 
are lost in the feedback quantization. In cellular networks, pilot 
signals must be reused with care across cells to avoid pilot con-
tamination phenomena, whereby BSs inadvertently beamform 
toward pilot-sharing users in neighboring cells. This is par-
ticularly a concern in TDD operation, where uplink estimation 
errors also affect the downlink. A multitude of signal process-
ing and resource allocation schemes have been developed over 
the past decade to alleviate pilot contamination [3], [4].

Massive MIMO provides a solid foundation for practical 
signal processing design. While sophisticated information 
theory for multiuser MIMO existed already by the 2000s 
[24], it was largely limited to scenarios with perfect CSI. As 
CSI quality is the main limiting factor of multiuser MIMO 

performance, this constrained the practical usefulness of the 
available theory. Thanks to the reliance on linear signal pro-
cessing, massive MIMO analyses successfully handle imper-
fect CSI and hardware imperfections, resulting in rigorous 
and mathematically clean spectral efficiency expressions that 
not only predict actual performance accurately, but serve as 
effective tools for system optimization (e.g., pilot allocation, 
power control, and beamforming). Massive MIMO theory not 

only turned multiuser MIMO into a prac-
tically feasible technology, the analytical 
elegance also expanded the way informa-
tion theory for wireless communication can 
be taught [3], [4].

As mentioned, uplink–downlink reci-
procity in TDD operation is important for 
massive MIMO. Reciprocity holds for the 
over-the-air propagation as long as the chan-
nel impulse response remains constant: 
that is, provided the duplexing takes place 

within the channel coherence time. However, the transceiver 
hardware is generally not reciprocal between transmission and 
reception, for instance due to mismatches in the local oscilla-
tors. Such hardware nonreciprocity calls for a calibration pro-
cedure that phase-synchronizes the antennas within each array 
through occasional mutual measurements.

Today, 5G BSs feature almost exclusively massive MIMO 
configurations in TDD bands, with arrays of M = 32 
or M = 64 antennas being the most common. Early on, 
there were concerns that the signal processing would entail 
an exceedingly high energy consumption, but this concern 
was later dispelled, and dedicated systems-on-chip are now 
available that implement clever signal processing algorithms 
for the entire BBU, including massive MIMO, at reasonable 
energy costs.

A quest for more bandwidth at higher frequencies
Bit rate has long been the performance metric that users of 
wireless technology are most familiar with, and hence wireless 
technology has evolved to support higher values thereof. The 
bit rate enjoyed by a single device equals the product of the 
spectral efficiency and the spectral bandwidth. Therefore, be-
sides being driven higher by single-user MIMO, bit rates have 
expanded over time thanks to the allocation of new frequency 
bands. A 2G network typically had access to 20 MHz at car-
rier frequencies around 1 GHz, while current 5G networks pri-
marily span 100 MHz in the 3.5-GHz range, with the standard  
supporting in excess of 500 MHz.

The radio spectrum is a limited natural resource shared by 
a multitude of technologies, including those beyond the civil-
ian wireless communication arena considered in this article. 
While a few sub-6-GHz bands have been refarmed from out-
dated technologies to cellular networks, the strive for fresh 
bandwidth inevitably pushes systems toward ever higher fre-
quencies. In particular, millimeter-wave (mmWave) bands, nomi-
nally starting at 30 GHz, are now part of 5G. First-generation 
mmWave technology has been rolled out by a few telecom 
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FIGURE 4. The propagation channel consists of a multitude of 
specularly or diffusely reflecting objects. Such channels are very 
challenging to estimate with sufficient accuracy to enable multius-
er MIMO communication, but the TDD CSI estimation approach in 
massive MIMO manages this.

The potential of MIMO, 
in both its single-user 
and multiuser fashions, 
sparked a chain reaction 
that spread rapidly through 
academia and industry, 
bringing much excitement 
by the early 2000s.
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operators, while the bulk of them wait for the hardware to 
mature and for the 3.5-GHz band to become congested.

The field strength of a signal radiated from a point source in 
free space attenuates with distance in a frequency-independent 
manner. Then, the power captured from such an electric field 
is proportional to the receiver’s aperture and, since the size of 
an antenna element shrinks with the wavelength, an increased 
carrier frequency necessitates further antenna elements to 
maintain the desired aperture. Moreover, the channel condi-
tions in cellular networks become steadily more challenging 
as the frequency shifts up due to reduced scattering and dif-
fraction, and steeper penetration losses, all of which call for 
beamforming gains. Multiantenna technology is therefore 
paramount at mmWave frequencies.

At the same time, implementation becomes difficult, and 
not only because of the added hardware components and the 
huge dimensionalities in digital signal processing. When mov-
ing to higher frequencies and broader bandwidths, hence to 
faster sampling rates, power amplifier efficiency and dissipa-
tion in analog-to-digital converters (ADCs) are further issues 
that need attention. The signal processing community has 
explored two main ways to deal with the hardware and algo-
rithmic complexity [25].

The first option is to reduce the number of RF units, par-
ticularly converters, by designing transceivers as a mix of 
phased arrays and digital antenna arrays. The resulting hybrid 
analog–digital antenna array is illustrated in Figure 5, where 
each column is a phased subarray that is connected separately 
to the BBU, such that different signals can be transmitted and 
received. Each subarray can form a single beam and spatial 

multiplexing can then be applied through different linear 
combinations of those beams. If the channel features a small 
number of propagation paths, each subarray can focus a beam 
on one of those paths, and the communication performance of 
a digital antenna array can be attained with fewer hardware 
components. In the multipath scenario illustrated in Figure 4, 
five distinct beam directions are sufficient to communicate 
effectively. Hybrid antenna arrays can take other forms, but 
generally entail a semianalog beamforming implementation 
with more antenna elements than digital ports [26]. There are 
several prices to pay for abandoning the digital antenna array 
paradigm. One can only transmit as many beams as there are 
digital ports and the beamforming fidelity is crippled in wide-
band systems since combinations of the same beams must 
be used on all subcarriers. Channel estimation becomes 
more intricate since each phased array must sweep through as 
many beam directions as it has elements in order to excite all 
channel dimensions.

An alternative to reducing the number of RF units is digi-
tal antenna arrays with lowered ADC resolutions, as also 
illustrated in Figure 5. The energy consumption of an ADC 
grows exponentially with the resolution, hence enormous ener-
gy reductions are possible by moving from the conventional  
15 bits per sample down to, say, five bits per sample. And yet, 
since an array with M elements and b-bit ADCs collects a total 
of bM bits per sample period, the total number of ADC bits 
can still be sizeable even if b is small, explaining why a high 
spectral efficiency can be maintained [27]. The extreme case 
of uplink massive MIMO with b = 1 happens to be analytically 
tractable [28], which has facilitated the emergence of signal 

Hybrid Analog–Digital Antenna Array Low-Resolution Digital Antenna Array

Power
Combiner

BBU BBU
(a) (b)

Phase
Shifter

Low-Resolution ADCs

High-Resolution ADCs

Subarrays

One Input per
Antenna Element

One Input per
Subarray

FIGURE 5. Conventional digital antenna arrays incur a high energy consumption when implemented at mmWave frequencies. There are two main ways to 
circumvent this: (a) Reduce the number of components using hybrid analog-digital antenna arrays, consisting of multiple phased subarrays; (b) Design 
digital antenna arrays with simplified components, such as low-resolution ADCs.
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processing algorithms that compensate for the ensuing quan-
tization distortion. The downlink counterpart involves low-
resolution digital-to-analog converters [29].

Reduced bit resolution is also viable for hybrid antenna 
arrays; if the analog signal combining prior to quantization and 
the digital postprocessing is properly opti-
mized for the communication task at hand, 
the signal content becomes more amendable 
to a low-bit representation [30].

The initial 5G mmWave products are 
based on hybrid arrays, but there are indica-
tions that the low-resolution approach might eventually become 
the preferred solution [31].

Further opportunities for dimensionality reduction
The joint evolution toward arrays with more antenna elements 
and wider bandwidths, requiring higher sampling rates, makes 
it essential not to overdesign the transceivers. As an alterna-
tive to scaling up a conventionally small digital array, Figure 5 
showcases two ways of increasing the antenna element counts 
while reducing the hardware complexity per element. Both 
approaches capitalize on the massive MIMO philosophy of 
having more antenna elements than multiplexed beams, which 
enables a reduction in the beamforming exactness because the 
beams are so narrow that interuser interference is low anyway. 
Further dimensionality reductions are possible by exploit-
ing the structure of the channel—say, sparsity in the angular,  
frequency, and time domains—or by exploiting the specific 
task the system is designed to address.

Besides being exponential in the resolution, the energy con-
sumption of an ADC is proportional to the sampling rate. A 
host of ideas based on sub-Nyquist sampling and compressed 
sensing have been proposed to reduce the sampling rate by 
exploiting various forms of channel structure that exist in 
many scenarios [32]. In mmWave channels with a small num-

ber N of propagation paths, there might be only roughly N 
nonzero taps in the channel impulse response regardless of the 
bandwidth. Such time-domain sparsity in the channel response 
can be leveraged to reduce the sampling rate [33]. The N paths 
are likely distinct also in the angular domain, given that BSs 

are usually deployed high above the envi-
ronmental clutter; reflections take place 
only locally around each user, subtending 
a small angular spread at the distant BS. 
Figure 6 illustrates such a scenario with 
N = 3 distinct paths, supporting three mul-

tiplexed signals. The line-of-sight path has a distinctly short 
delay, while the two remaining paths have similar delays but 
are clearly distinguishable in the angular realm. The joint 
channel sparsity is represented by the three colored entries in a 
time-angle matrix, with the vast majority of entries containing 
no propagation paths. Combining these forms of sparsity with 
modern compressed-sensing tools enables hefty reductions in 
sampling rates.

Many data services exhibit intermittent activity patterns; 
among the thousands of devices associated with a BS, only a 
small subset requires data transfers within a given time slot. 
Signal processing can enable these devices to transmit effi-
ciently without requiring a preceding access procedure. The 
key is to assign each device with a unique but nonorthogonal 
pilot sequence and then utilize sparsity in the user domain 
along and the large number of spatial samples obtained over an 
antenna array to enable user identification and channel estima-
tion [34]. The joint user and data detection problem has also 
been approached using compressed sensing methods [35]. 

Commercial massive MIMO products already exploit some 
elementary channel sparsity; for instance, the received signals 
over the many antennas might be transformed into an equal 
number of angular dimensions. The dimensions that contain 
little power are discarded in the early stages of the digital 

Path 1 (Line-of-Sight)

Path 2 (Reflected)

Path 3 (Reflected)

Angular Dimension

: Zero Coefficients

: Nonzero Coefficients

Channel
Taps

in Time

FIGURE 6. The channel in mmWave systems with large spectral bandwidths and antenna counts might exhibit sparsity in the joint time-angle domain. In 
this example, there are N = 3 paths that are distinct in both time and angle. The sparse impulse response can be exploited along with compressed sens-
ing techniques to reduce the sampling rate, thereby lowering power consumption.

The MIMO technology 
is now present in every 
smartphone and BS that 
enters the market.
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uplink processing to shrink the dimensionality of the remain-
ing computations. However, the more radical compressed sens-
ing solutions are yet to be brought to life.

Machine learning-based  
algorithmic refinements
One of the most active areas in contemporary signal processing 
is machine learning (ML). While this is a many decades-old 
discipline, the increased availability of large amounts of data 
and processing power has, in recent years, greatly enhanced its 
potential to transform the implementation of many signal pro-
cessing tasks from more traditional model-driven algorithms 
into data-driven ones. This transformation 
is also taking place in the context of signal 
processing for wireless communications, 
which has traditionally been very heav-
ily (and successfully) model-based. Several 
trends are driving this transformation. One 
trend is that, with the vast amount of IoT 
and machine-type connections that coexist 
with human-type broadband connections, 
wireless network traffic is becoming increasingly intricate to 
model accurately, thereby making network operation difficult 
to optimize. Another trend is that antenna arrays and other 
sensors are becoming pervasive on smartphones and other 
connected devices, hence the volume of data available for 
learning is swelling dramatically. Yet a third trend is that the 
amount of processing power distributed throughout wireless 
networks is growing rapidly, giving rise to paradigms such as 
fog and edge computing.

There is a confluence of ML and communications in the 
optimization of wireless networks. This is a very natural appli-
cation for ML since the operation of these networks involves 
a multitude of tasks that ML is good at addressing, including 

inferential tasks, such as channel estimation, signal detection, 
and data decoding, as well as decision-making tasks such as 
routing, access control, and resource allocation. ML-based 
solutions can capture practical characteristics that were over-
looked by the models, underpinning existing algorithms. How-
ever, to ensure that ML algorithms improve upon the existing, 
it is essential to initiate the training procedure judiciously.

The model-aided ML paradigm provides a structured way 
to transfer classical know-how from the signal processing 
community onto new ML algorithms [36]. Figure 7 exempli-
fies how an existing iterative algorithm can be transformed 
into an enhanced ML algorithm. The existing algorithm takes 

an initial input signal and processes/updates 
it iteratively until a predefined termination 
criterion is satisfied, at which point the final 
output is obtained. The specific processing 
is normally obtained through model-based 
algorithm design. Instead of expressing the 
algorithm as a loop, L iterations of the algo-
rithm can be expressed as a sequence of L 
identical processing layers. If a data-driven 

training procedure is employed to fine-tune these processing 
layers, which no longer have to be identical, what ensues is an 
ML algorithm that is guaranteed to perform better than the 
original model-based algorithm. This procedure is called algo-
rithm unrolling or deep unfolding, and it has in recent years 
been utilized to enhance various multiantenna tasks, including 
signal detection [37] and beamforming optimization for down-
link multiuser MIMO [38].

A peek into the future
Over the past 25 years, multiantenna techniques have gone 
from rudimentary designs for beamforming and diversity 
combining to a mainstream technology that uses massive 
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Procedure

Algorithm
Unrolling
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Processing
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Processing 1
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FIGURE 7. Many conventional model-based algorithms for optimization in multiantenna communication are iterative. Suppose one such 
algorithm can be expressed as an iterative processing loop that continues until a termination criterion is satisfied. An enhanced ML 
algorithm can be developed through algorithm unrolling; that is, writing the iteration as L separate processing layers and fine-tuning 
these layers through a data-aided training procedure.

Recent theoretical 
breakthroughs, including 
ML-based algorithms, 
are bound to continue 
sustaining the progress 
of the technology.
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spatial multiplexing to multiply the capacity of 5G networks. 
The MIMO technology is now present in every smartphone 
and BS that enters the market. Fast and capable signal process-
ing algorithms have enabled this leap forward, and are cur-
rently buttressing the emergence of low-power 5G mmWave 
transceivers where high-resolution hardware components are 
replaced with digital processing. Recent theoretical break-
throughs, including ML-based algorithms, are bound to con-
tinue sustaining the progress of the technology.

Indeed, we expect the multiantenna communication jour-
ney to continue. The insatiable growth in data traffic can only 
be met by deploying ever more antennas and ever more band-
width. The massive MIMO philosophy prescribes that the 
number of BS antennas, M, must scale proportionally to the 
number of active users, K. As the complexity of algorithms, 
such as regularized zero-forcing is proportional to MK2 [4], 
a linear scaling in both K and M implies a cubic complexity 
growth. Moreover, once the bandwidth surpasses 1 GHz, the 
sampling rates approach the clock speed of existing proces-
sors, which renders the implementation even more demanding. 
The compressed sensing algorithms described earlier might be 
suitable to address these challenges, but there is likely room for 
many new signal processing advances.

When adding ever more antennas to BSs, practical size 
and weight constraints might make new deployment prin-
ciples necessary, beyond the boxes-in-a-tower paradigm. One 
promising approach is to distribute the antennas over multiple 
physical locations while retaining the coherent transmission 
and reception processing, a concept rooted in cell cooperation 
and network MIMO ideas, as well as in the notion of remote 
RF units, and whose present embodiment is termed cell-free 
massive MIMO [39]. Apart from stronger beamforming gains, 
a distributed antenna deployment can provide improved spatial 
multiplexing capabilities and macroscopic diversity against 
the shadowing of large objects in the environment. The cur-
rent trend of shifting baseband computations from BS sites to 
edge-cloud computers will ease the adoption of this deploy-
ment approach.

After two decades of smartphones ruling the wireless eco-
system, other devices, such as extended reality eyeglasses, are 
predicted to take center stage. New services will surface, with 
renewed standards for the bit rates, latency, and reliability that 
users expect wireless networks to deliver. Other performance 
metrics might arise to dictate future technology development, 
particularly related to sustainability, environmental impact, 
and deployment costs, as well as to the digital divide between 
the digitized and far-from-digitized regions of the world.

Beyond the signal processing advances captured in this 
article, two emerging research topics build on multiantenna 
technology. The first is integrated communication and sens-
ing [40], which explores how large-scale antenna arrays 
can be simultaneously used for accurate radar sensing, 
localization, and communication. It seems natural that the 
deployment of massive antenna numbers for communication 
purposes can be the catalyst for other applications that ben-
efit from wireless measurements. Another related research 

direction is that of smart surfaces [41], whose signal reflec-
tion properties can be controlled by means of metamaterials 
with programmable impedance patterns. These reconfigu-
rable intelligent surfaces provide a sort of passive beam-
forming that is particularly useful to enhance propagation 
conditions over wireless channels.
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