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From theory to mainstream technology

ireless communication technology has progressed dra-

matically over the past 25 years, in terms of societal adop-

tion as well as technical sophistication. In 1998, mobile
phones were still in the process of becoming compact and af-
fordable devices that could be widely utilized in both devel-
oped and developing countries. There were “only” 300 million
mobile subscribers in the world [1]. Cellular networks were
among the first privatized telecommunication markets, and
competition turned the devices into fashion accessories with
attractive designs that could be individualized. The service
was circumscribed to telephony and text messaging, but it was
groundbreaking in that, for the first time, telecommunication
was between people rather than locations.

There are now more than six billion subscribers worldwide,
and the mobile phone remains the main wireless device, but
much has changed. Traditional feature phones with physical
keypads have been replaced by smartphones with large touch-
screens. Telephony today constitutes a negligible fraction of
the traffic, the vast majority of which amounts to packets bear-
ing data for end-user applications. Video and audio streaming,
social media, gaming, and a host of other apps, generate the
bulk of the traffic. New services continue to arise and cement
the smartphone’s central role in nearly every aspect of our
lives. In parallel, nonhuman-operated devices are progres-
sively coming online to form the Internet-of-Things (IoT) as
society continues to be digitized.

Wireless networks have changed dramatically over the past
few decades, enabling this revolution in service provisioning
and making it possible to accommodate the ensuing dramatic
growth in traffic. There are many contributing components,
including new air interfaces for faster transmission, channel
coding for enhanced reliability, improved source compression
to remove redundancies, and leaner protocols to reduce over-
heads. Signal processing is at the core of these improvements,
but nowhere has it played a bigger role than in the development
of multiantenna communication. This article tells the story of
how major signal processing advances have transformed the
early multiantenna concepts into mainstream technology over
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the past 25 years. The story therefore begins somewhat arbi-
trarily in 1998. A broad account of the state-of-the-art signal
processing techniques for wireless systems by 1998 can be
found in [2], and its contrast with recent textbooks, such as [3],
[4], and [5], reveals the dramatic leap forward that has taken
place in the interim.

Fundamentals of multiantenna communications
Traditionally, a base station (BS) at a cellular network site fea-
tured antenna panels connected to a baseband unit (BBU) that
managed the digital signal processing. These panels, in turn,
were tall and narrow, containing multiple vertically stacked
radiating elements. By emitting the same signal from such
elements, constructive superposition was leveraged to create
a radiation pattern, vertically narrow and horizontally wide,
that covered a swath of ground in a predefined manner. This
is illustrated in Figure 1(a), with each panel’s coverage region
termed a cell sector.

At current BSs, the panels have been replaced with antenna
arrays having a more symmetric aspect ratio, which results
in radiated beams that can be narrow both horizontally and
vertically. The signal transmitted from each antenna element
is individually controlled by the BBU, which now has far
stronger computational capabilities and can alter the physical
shape of the produced beam over both time and frequency.
Figure 1(b) illustrates such a setup, and how each beam is nar-
row enough to aim at a particular user. When these arrays are
used in propagation environments with multiple widely spaced
paths, each radiated signal loses its directional beam shape and
is instead fine-tuned to make the paths superimpose coherently
on a small region around the intended receiver.

Antenna arrays bring about three main categories of
benefits:

1) Beamforming gain: The transmit beam is focused on the
receiver, whereby a larger fraction of the radiated energy
reaches it. Likewise, multiple receive antennas can collect

(a) A 2G deployment in 1998, consisting of fixed directive
antennas that broadcast each signal into a sector. (b) A 5G deployment in
2023, entailing antenna arrays that can exploit the three main multianten-
na benefits: beamforming gain, spatial diversity, and spatial multiplexing.

more energy from selected directions, reinforcing the beam
at that end with a focus on the transmitter. The overall
beamforming gain is proportional to the transmit and
receive array sizes.

Spatial diversity: There are generally multiple paths via
which signals travel between the transmitter and receiver,
and the ensuing signal replicas can combine destructively.
This causes signal fading, which antenna arrays can mitigate
by observing multiple fading realizations simultaneously.
Spatial multiplexing: Multiple signals can be transmitted
concurrently on different beams, either to a single user
equipped with multiple antennas, or to multiple users, as in
Figure 1(b). This provides a traffic multiplier or multiplex-
ing gain, provided the interference among the signals can
be kept at bay.

Above, and in the sequel, the beamforming gain is taken as
the increase in signal power at the receiver, yet a more nuanced
description would further include the reduction in interfer-
ence to and from unintended users [5, Sec. 5.7]. With a careful
design, beamforming can strike an optimum balance between
increasing signal energy and reducing interference.
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State-of-the-art in 1998

Some of the benefits of antenna arrays were understood well
before 1998, but their technology readiness levels were much
different than today. Marconi himself famously capitalized on
beamforming to enable wireless transatlantic communication
in 1901. That experiment relied on an array antenna, which
achieves beam directivity by connecting multiple elements to
the same signal generator. The geometry of the array antenna
determines the direction in which the radiated signals super-
impose constructively. Hence, the beam direction is fixed and
determined at the time of building and erecting the array. This
is how the 2G antennas in Figure 1(a) were designed to cover a
sector with a fixed beam.

A different beam direction than the one dictated by the
array geometry can be realized by emitting the same signal
from all of the elements, but with appropriate phase shifts.
This concept was first observed experimentally by Ferdinand
Braun in 1902, and it led to the phased array technology used
for radar since World War II. The phase shifts can be varied
over time, to scan for objects in different angular directions.
Early field trials of phased arrays for 2G were conducted in
1996 [6]. The possibility of pointing the beams to user loca-
tions opened the door to stronger directivities and higher gains,
since a beam no longer had to cover an entire sector. The dif-
ference between array antennas and phased arrays is illustrat-
ed in Figure 2, which also depicts the digital antenna arrays
featured in 5G, where each element is connected to a separate
signal generator.

In parallel with the refinement of phased arrays for beam-
forming over several decades, the use of multiple receive
antennas for diversity also became commonplace. Spatial
diversity was conceived for signal reception as far back as the
1930s [7] and builds on an intuitive principle: if the same sig-
nal reaches several physically separated antennas, it is unlikely
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that the multipath propagation environment causes destructive
superposition, hence signal fading, at all such antennas simul-
taneously. By decoding a combination of the observations at
the various receive antennas, the communi-

cation becomes much more reliable.

A wireless network must of course pro-
vide an uplink connection from users to
BSs, as well as a downlink connection from
BSs to users. Thus, diversity is desirable in
both link directions, yet transmit diversity
did not emerge until the 1990s [8]. In 1998,
the Alamouti space—time block code for
two antennas was proposed [9] and a more
general framework for space—time coding
with multiple transmit antennas was published soon thereaf-
ter [10]. The principle is to repeatedly transmit a block of data
symbols while varying the spatial directivity in a predeter-
mined way (e.g., using different antennas); the receiver collects
observations over a time interval and decodes them. Space—
time codes are carefully crafted to not only enable decoding,
but to strike a satisfactory tradeoff between high spectral
efficiency (i.e., bits per second per Hertz of spectrum), high
diversity, and low complexity.

Altogether, beamforming gains and spatial diversity were
known by 1998, and it was largely thought that these were the
two main benefits of antenna arrays: beamforming gains in
the case of coherent arrays, associated with tight antenna spac-
ings and cleanly defined directions of arrival and departure,
and diversity gains in the case of arrays experiencing largely
uncorrelated fading across the antennas, associated with wider
spacings and rich multipath settings. The third, and ultimately
the most powerful benefit of antenna arrays, spatial multiplex-
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ing, was still largely under the radar. However, its seeds had
already been planted in research efforts on interference-aware
beamforming [11] and on communication concepts for linear
channels that couple multiple inputs into
multiple outputs [12]. Unlike beamform-
ing and diversity, which involved replicas
of a single signal, these precursors of spa-
tial multiplexing entailed the transmission
and reception of distinct signals simulta-
neously and on the same bandwidth. Par-
ticularly prescient was the transmission and
reception with two orthogonally polarized
antennas, subsequently extended in a piece
that featured multiantenna transmitters and
receivers with many of the ingredients required for true spatial
multiplexing [13]. However, it was not until after 1998 that all of
these pieces fell into place.

External technology developments

Three external trends have heavily guided and influenced the

evolution of multiantenna technology over the past decades.

1) The explosion in wireless traffic, which has doubled every
18 months as per Cooper’s law, along with a fundamental
change in the nature of such traffic, was driven by new user
behaviors and applications. An efficient network for tele-
phony had to support many simultaneous fixed-rate connec-
tions, while today’s data networks aim at maximizing the
bit rate per user device (to support certain applications) and
the bit rate per unit area (to accommodate many devices).

2) The exponential improvement and size reduction of inte-
grated circuits have led to systems-on-a-chip that combine
radios, memory, and processors capable of advanced
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There are three classical categories of arrays: (a) array antennas that generate fixed beams, (b) phased arrays that rely on phase shifters to
control the beam direction, and (c) digital antenna arrays that have full control of the signal transmitted from each antenna element.
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signal processing on a tiny piece of silicon. While in 1998,
a digital antenna array with M = 2 or M = 4 elements
would consist of M external antenna elements connected
to M radio frequency (RF) units and one BBU, current 5G
BSs can integrate M = 64 elements and RF units into a
single box. This development has also
enabled smartphones to feature digital
arrays, for now with M =4 elements.

3) The gradual change in the signal wave-
forms: There were multiple 2G stan-
dards based either on time-division
multiple access (TDMA) or code-DMA
(CDMA). The first versions of 3G,
finalized precisely around 1998, were entirely based on
CDMA, which won the battle against the competing
orthogonal frequency-DMA (OFDMA). For 4G, the shift
to OFDMA finally took place, and 5G retained this same
waveform after a handful of alternatives were evalu-
ated and discarded. While all waveforms are in principle
compatible with antenna arrays, the choice does have a
fundamental impact on what signal processing algorithms
are required.

Five key areas of signal processing advances

We have identified five stages of signal processing advances in
the evolution of multiantenna technology from 2G to 5G and
beyond. The background, new solutions, and specific insights
are expounded on in the following sections.

From spatial diversity to spatial multiplexing

One could argue that, all the way back to Marconi, beamform-
ing was motivated by the interest in extending the range of cov-
erage. In turn, diversity was motivated by the desire to increase
reliability. By 1998, the exploding cost of radio spectrum ahead
of 3G brought about a new and powerful necessity: increasing
the spectral efficiency. The shift toward high bit-rate user ap-
plications further amplified this trend. The operational mode
of antenna arrays that maximizes the spectral efficiency is spa-
tial multiplexing and, after 1998, the atmosphere was therefore
primed for it to finally come to the fore.

The prerequisite for spatial multiplexing is a multiple-input
multiple-output (MIMO) communication channel, where each
input/output refers to an antenna element in a digital antenna
array. There are two MIMO categories: single-user MIMO
entails a multiantenna BS and a multiantenna user device,
while multiuser MIMO encompasses a multiantenna BS and
multiple user devices.

Arguably, the main catalyst for single-user MIMO was
the work in [14], which set out to design the perfect trans-
ceivers from an information-theoretic standpoint. Starting
with transmit and receive digital antenna arrays and no pre-
set conditions on how to employ them, it was found that, if
the elements within each array exhibited uncorrelated fading,
the optimum strategy was to have each radiate an indepen-
dent data-carrying signal. This was radically novel in that it
sought to exploit, rather than counter, multipath propagation; it

is the very existence of multiple paths that allows the receiver
to observe a distinct linear combination of the transmit signals
at each receive antenna, from where those transmit signals
can be resolved. The number of signals that can be spatially
multiplexed is then limited by the minimum of the number of
transmit and receive antenna elements. In
follow-up work, a specific architecture was
proposed to effect such spatial multiplexing,
the so called layered architecture, which
was remarkable in that it could be built
with off-the-shelf encoders and decoders
and did not require the transmitter to know
anything about the channel [15]. Additional
results progressively solidified the theoretical underpinnings
[16]. In particular, the idea of transmitting concurrent signals,
one from each antenna element, was generalized to the trans-
mission of concurrent beams from all elements at once. Phased
arrays cannot achieve such spatial multiplexing because they
only create one beam at a time, and digital antenna arrays are
decidedly necessary.

Multiuser MIMO can be traced back to signal process-
ing concepts for simultaneous uplink reception from mul-
tiple users [17] and simultaneous downlink beamforming to
users in different angular directions [18]. Here, the number
of signals that can be spatially multiplexed is not limited by
the number of antenna elements per user, but rather across all
users; even if each user features a single element, it is possible
to spatially multiplex one signal to/from each one. This major
advantage comes at the expense of the BS having to carefully
arrange the transmit and receive beams, such that each one
matches with the multipath characteristics of its intended
user and there is minimal interference among them, as in
Figure 2(b). With that, every user can transmit continuously
and over the entire system bandwidth, rather than only in a
time slot and/or frequency subband, reflecting the spatial
multiplexing benefit. Multiuser MIMO is a generalization to
multipath settings of classical space-DMA (SDMA), whereby
users share a channel in space rather than in time or frequency.
Interestingly, the SDMA concept is more than 20 years older
than single-user MIMO [19], which showcases that establish-
ing many simultaneous user connections was long perceived
more important in wireless networks than achieving high data
rate per connection.

The potential of MIMO, in both its single-user and mul-
tiuser fashions, sparked a chain reaction that spread rapidly
through academia and industry, bringing much excitement by
the early 2000s. Cellular standardization bodies, in particu-
lar, the 3G partnership project (3GPP) adopted it in a limited
fashion for late 3G releases and then as an integral part of the
designs beginning with 4G. Even faster was the adoption with-
in Wi-Fi, with the first version including MIMO certified in
2007 and supported by a multitude of devices, including lap-
tops, tablets, and smartphones.

MIMO harnesses the three dimensions of benefits shown
in Figure 3: beamforming gain, spatial diversity, and spatial
multiplexing. A clear understanding of how these benefits are

Authl)]iged licensed use limited to: Weizmann Institute of Sciencg%mgggﬁfw“ﬁmg%!%zb (J:H”G:Z%:ZJB UTC from IEEE Xplore. Restrictions apply.



related has emerged over time. Fundamental tradeoffs have
been identified, for given array configurations and channel
conditions.

Beamforming is a special case of spatial multiplexing

where a single beam is transmitted to a single user. This is

in fact the optimum strategy when the signal-to-noise ratio

(SNR) is low; maximizing the signal energy is then of the

essence, and the best recipe is to concentrate all the radiat-

ed energy on the strongest beam. At high SNR, in contrast,
energy is plentiful and can be spread over multiple beams,
to the point that it is optimum to activate

as many beams as the channel and

antenna counts allow. This is represent-

ed by the blue plane in Figure 3.

Spatial diversity, roughly quantified as

the number of independently faded sig-

nal replicas, and spatial multiplexing,

meaning the number of concurrent

beams, cannot be simultaneously maxi-

mized. These two quantities are rather

subject to a tradeoff [20]. At the extreme points of this

diversity-multiplexing tradeoff, one of the quantities is

maximized while the other stands at a minimum. Various
combinations are feasible at intermediate points of the
tradeoff curve, which is cartooned on the yellow plane

of Figure 3.

As mentioned, the choice between beamforming and spa-
tial multiplexing is dictated by the SNR, hence, by its under-
lying parameters (e.g., transmit power, channel attenuation,
noise power). In turn, the mix of diversity and multiplexing
depends on whether the priority is to increase reliability or
spectral efficiency. However, the operating point should be
selected holistically, and over the years this has caused the mix
to shift toward less diversity and more multiplexing. Indeed,
as successive system generations have spanned ever broader
bandwidths, more and more diversity has been reaped in the
frequency domain. The rewards of additional diversity rapidly
saturate, thus the need for spatial diversity has abated [21]. This
of course does not apply to narrowband control channels or
to low-power short-packet IoI' communication, where spatial
diversity remains important, but it does hold for the user data
channels that carry the bulk of the traffic in cellular networks.

From spatial multiplexing to massive MIMO

The basics of MIMO, developed under the premises of perfect
channel state information (CSI) and rich scattering, indicate
that an arbitrarily high spectral efficiency can be achieved by
deploying sufficiently many antennas and serving many users
at once. However, the practical challenges became apparent
when the technology was first commercialized. The spatial
multiplexing capability in single-user MIMO was often re-
stricted by limited scattering, while multiuser MIMO is re-
strained by imperfect CSI. Massive MIMO, a new form of
multiuser MIMO that originated from [22], was developed
in the 2010s to address these issues and is now at the heart
of 5G.

The new aspects of massive MIMO are as follows. First, it
relies on having many more BS antennas than spatially multi-
plexed users. This design choice renders the beams relatively
narrow (e.g., in the sense of focusing on a small region around
the intended receiver), hence there is likely to be little overlap
among beams focused on distinct users. Moreover, by virtue of
these favorable conditions, whatever little interference exists
can be suppressed through low-complexity linear signal pro-
cessing: for example, regularized zero-forcing that fine-tunes
each beam’s focal area to balance a strong beamforming gain

with low interference [23]. At the same
time, and again because of the excess BS
antennas, the effective channels provided
by these beams harden, meaning that they
become very stable and subject to only min-
imal fading fluctuations.

Second, massive MIMO is tailored for
resource-efficient CSI acquisition. The main
estimation principle is to emit separate pre-
defined pilot signals from each antenna

element and then gauge the channel coefficients from the
observations of these pilots at the receive elements. Massive
MIMO adopted time-division duplexing (TDD), where the
same bandwidth is utilized, in alternating fashion, for uplink
and downlink. Since, by virtue of reciprocity, the channel is
then identical in both directions, it suffices to estimate its coef-
ficients in one direction. Specifically, the CSI required for both
uplink and downlink is obtained from uplink pilots. The nec-
essary pilot resources are thus determined by the number of
multiplexed users, with no dependence on the number of BS
antennas. In contrast, many previous commercial implemen-
tations of multiuser MIMO were based on frequency-division
duplexing (FDD), where the uplink and downlink channels were

Beamforming Gain

A
»— Low SNR
2G: 5G:
Classical Spectral
Use Cases for Efficiency
Phased Arrays Maximization

Diversity-Multiplexing
Tradeoff

Spatial
Diversity

Spatial
Multiplexing

There are three benefit dimensions of multiantenna communi-
cation that have developed in past decades. From 2G to 5G, systems have
shifted from the green plane to the blue plane; that is, spatial diversity has
gradually been replaced by spatial multiplexing. Since spatial multiplexing
requires high SNRs to be practically useful, beamforming gains remain
essential at low SNRs.
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entirely different, or TDD operation without using reciprocity.
The downlink operation then required the BS to transmit as
many pilots as it has antennas, except in specific propagation
scenarios where the channels can be parametrized using a few
angles. Moreover, each user needed to quantize and feedback
its channel estimates to the BS. In a typical 5G setup with
M = 64 BS antennas that spatially multiplex K = 8 users, the
FDD alternative would require M/K = 8 times as many
pilots and a proportional amount of extra
CSI feedback.
The TDD operation is particularly help-
ful in complex propagation environments
with many paths per user, such as the one
sketched in Figure 4, where the optimum
downlink transmission spreads a user’s sig-
nal energy in many directions to match the
reflecting objects. CSI acquisition through
uplink pilots automatically captures these
fine characteristics, without any prior chan-
nel knowledge or array calibration. In FDD operation, besides
requiring vastly more pilot resources, essential channel details
are lost in the feedback quantization. In cellular networks, pilot
signals must be reused with care across cells to avoid pilot con-
tamination phenomena, whereby BSs inadvertently beamform
toward pilot-sharing users in neighboring cells. This is par-
ticularly a concern in TDD operation, where uplink estimation
errors also affect the downlink. A multitude of signal process-
ing and resource allocation schemes have been developed over
the past decade to alleviate pilot contamination [3], [4].
Massive MIMO provides a solid foundation for practical
signal processing design. While sophisticated information
theory for multiuser MIMO existed already by the 2000s
[24], it was largely limited to scenarios with perfect CSL. As
CSI quality is the main limiting factor of multiuser MIMO

Multiple Beams

Reflection _44_

The propagation channel consists of a multitude of
specularly or diffusely reflecting objects. Such channels are very
challenging to estimate with sufficient accuracy to enable multius-
er MIMO communication, but the TDD CSI estimation approach in
massive MIMO manages this.

performance, this constrained the practical usefulness of the
available theory. Thanks to the reliance on linear signal pro-
cessing, massive MIMO analyses successfully handle imper-
fect CSI and hardware imperfections, resulting in rigorous
and mathematically clean spectral efficiency expressions that
not only predict actual performance accurately, but serve as
effective tools for system optimization (e.g., pilot allocation,
power control, and beamforming). Massive MIMO theory not
only turned multiuser MIMO into a prac-
tically feasible technology, the analytical
elegance also expanded the way informa-
tion theory for wireless communication can
be taught [3], [4].

As mentioned, uplink—downlink reci-
procity in TDD operation is important for
massive MIMO. Reciprocity holds for the
over-the-air propagation as long as the chan-
nel impulse response remains constant:
that is, provided the duplexing takes place

within the channel coherence time. However, the transceiver
hardware is generally not reciprocal between transmission and
reception, for instance due to mismatches in the local oscilla-
tors. Such hardware nonreciprocity calls for a calibration pro-
cedure that phase-synchronizes the antennas within each array
through occasional mutual measurements.

Today, 5G BSs feature almost exclusively massive MIMO
configurations in TDD bands, with arrays of M = 32
or M = 64 antennas being the most common. Early on,
there were concerns that the signal processing would entail
an exceedingly high energy consumption, but this concern
was later dispelled, and dedicated systems-on-chip are now
available that implement clever signal processing algorithms
for the entire BBU, including massive MIMO, at reasonable
energy costs.

A quest for more bandwidlth at higher frequencies
Bit rate has long been the performance metric that users of
wireless technology are most familiar with, and hence wireless
technology has evolved to support higher values thereof. The
bit rate enjoyed by a single device equals the product of the
spectral efficiency and the spectral bandwidth. Therefore, be-
sides being driven higher by single-user MIMO, bit rates have
expanded over time thanks to the allocation of new frequency
bands. A 2G network typically had access to 20 MHz at car-
rier frequencies around 1 GHz, while current 5G networks pri-
marily span 100 MHz in the 3.5-GHz range, with the standard
supporting in excess of 500 MHz.

The radio spectrum is a limited natural resource shared by
a multitude of technologies, including those beyond the civil-
ian wireless communication arena considered in this article.
While a few sub-6-GHz bands have been refarmed from out-
dated technologies to cellular networks, the strive for fresh
bandwidth inevitably pushes systems toward ever higher fre-
quencies. In particular, millimeter-wave (mmWave) bands, nomi-
nally starting at 30 GHz, are now part of 5G. First-generation
mmWave technology has been rolled out by a few telecom
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operators, while the bulk of them wait for the hardware to
mature and for the 3.5-GHz band to become congested.

The field strength of a signal radiated from a point source in
free space attenuates with distance in a frequency-independent
manner. Then, the power captured from such an electric field
is proportional to the receiver’s aperture and, since the size of
an antenna element shrinks with the wavelength, an increased
carrier frequency necessitates further antenna elements to
maintain the desired aperture. Moreover, the channel condi-
tions in cellular networks become steadily more challenging
as the frequency shifts up due to reduced scattering and dif-
fraction, and steeper penetration losses, all of which call for
beamforming gains. Multiantenna technology is therefore
paramount at mmWave frequencies.

At the same time, implementation becomes difficult, and
not only because of the added hardware components and the
huge dimensionalities in digital signal processing. When mov-
ing to higher frequencies and broader bandwidths, hence to
faster sampling rates, power amplifier efficiency and dissipa-
tion in analog-to-digital converters (ADCs) are further issues
that need attention. The signal processing community has
explored two main ways to deal with the hardware and algo-
rithmic complexity [25].

The first option is to reduce the number of RF units, par-
ticularly converters, by designing transceivers as a mix of
phased arrays and digital antenna arrays. The resulting hybrid
analog—digital antenna array is illustrated in Figure 5, where
each column is a phased subarray that is connected separately
to the BBU, such that different signals can be transmitted and
received. Each subarray can form a single beam and spatial
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multiplexing can then be applied through different linear
combinations of those beams. If the channel features a small
number of propagation paths, each subarray can focus a beam
on one of those paths, and the communication performance of
a digital antenna array can be attained with fewer hardware
components. In the multipath scenario illustrated in Figure 4,
five distinct beam directions are sufficient to communicate
effectively. Hybrid antenna arrays can take other forms, but
generally entail a semianalog beamforming implementation
with more antenna elements than digital ports [26]. There are
several prices to pay for abandoning the digital antenna array
paradigm. One can only transmit as many beams as there are
digital ports and the beamforming fidelity is crippled in wide-
band systems since combinations of the same beams must
be used on all subcarriers. Channel estimation becomes
more intricate since each phased array must sweep through as
many beam directions as it has elements in order to excite all
channel dimensions.

An alternative to reducing the number of RF units is digi-
tal antenna arrays with lowered ADC resolutions, as also
illustrated in Figure 5. The energy consumption of an ADC
grows exponentially with the resolution, hence enormous ener-
gy reductions are possible by moving from the conventional
15 bits per sample down to, say, five bits per sample. And yet,
since an array with M elements and b-bit ADCs collects a total
of bM bits per sample period, the total number of ADC bits
can still be sizeable even if b is small, explaining why a high
spectral efficiency can be maintained [27]. The extreme case
of uplink massive MIMO with b = 1 happens to be analytically
tractable [28], which has facilitated the emergence of signal

Low-Resolution Digital Antenna Array

—L L
1]
1]

N

One Input per
Antenna Element

BBU
(b)

Conventional digital antenna arrays incur a high energy consumption when implemented at mmWave frequencies. There are two main ways to
circumvent this: (2) Reduce the number of components using hybrid analog-digital antenna arrays, consisting of multiple phased subarrays; (b) Design
digital antenna arrays with simplified components, such as low-resolution ADCs.
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processing algorithms that compensate for the ensuing quan-
tization distortion. The downlink counterpart involves low-
resolution digital-to-analog converters [29].

Reduced bit resolution is also viable for hybrid antenna
arrays; if the analog signal combining prior to quantization and
the digital postprocessing is properly opti-
mized for the communication task at hand,
the signal content becomes more amendable
to a low-bit representation [30].

The initial 5G mmWave products are
based on hybrid arrays, but there are indica-
tions that the low-resolution approach might eventually become
the preferred solution [31].

Further opportunities for dimensionality reduction

The joint evolution toward arrays with more antenna elements
and wider bandwidths, requiring higher sampling rates, makes
it essential not to overdesign the transceivers. As an alterna-
tive to scaling up a conventionally small digital array, Figure 5
showcases two ways of increasing the antenna element counts
while reducing the hardware complexity per element. Both
approaches capitalize on the massive MIMO philosophy of
having more antenna elements than multiplexed beams, which
enables a reduction in the beamforming exactness because the
beams are so narrow that interuser interference is low anyway.
Further dimensionality reductions are possible by exploit-
ing the structure of the channel—say, sparsity in the angular,
frequency, and time domains—or by exploiting the specific
task the system is designed to address.

Besides being exponential in the resolution, the energy con-
sumption of an ADC is proportional to the sampling rate. A
host of ideas based on sub-Nyquist sampling and compressed
sensing have been proposed to reduce the sampling rate by
exploiting various forms of channel structure that exist in
many scenarios [32]. In mmWave channels with a small num-
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ber N of propagation paths, there might be only roughly N
nonzero taps in the channel impulse response regardless of the
bandwidth. Such time-domain sparsity in the channel response
can be leveraged to reduce the sampling rate [33]. The N paths
are likely distinct also in the angular domain, given that BSs
are usually deployed high above the envi-
ronmental clutter; reflections take place
only locally around each user, subtending
a small angular spread at the distant BS.
Figure 6 illustrates such a scenario with
N = 3 distinct paths, supporting three mul-
tiplexed signals. The line-of-sight path has a distinctly short
delay, while the two remaining paths have similar delays but
are clearly distinguishable in the angular realm. The joint
channel sparsity is represented by the three colored entries in a
time-angle matrix, with the vast majority of entries containing
no propagation paths. Combining these forms of sparsity with
modern compressed-sensing tools enables hefty reductions in
sampling rates.

Many data services exhibit intermittent activity patterns;
among the thousands of devices associated with a BS, only a
small subset requires data transfers within a given time slot.
Signal processing can enable these devices to transmit effi-
ciently without requiring a preceding access procedure. The
key is to assign each device with a unique but nonorthogonal
pilot sequence and then utilize sparsity in the user domain
along and the large number of spatial samples obtained over an
antenna array to enable user identification and channel estima-
tion [34]. The joint user and data detection problem has also
been approached using compressed sensing methods [35].

Commercial massive MIMO products already exploit some
elementary channel sparsity; for instance, the received signals
over the many antennas might be transformed into an equal
number of angular dimensions. The dimensions that contain
little power are discarded in the early stages of the digital
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The channel in mmWave systems with large spectral bandwidths and antenna counts might exhibit sparsity in the joint time-angle domain. In
this example, there are NV =3 paths that are distinct in both time and angle. The sparse impulse response can be exploited along with compressed sens-
ing techniques to reduce the sampling rate, thereby lowering power consumption.
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uplink processing to shrink the dimensionality of the remain-
ing computations. However, the more radical compressed sens-
ing solutions are yet to be brought to life.

Machine learning-based

algorithmic refinements

One of the most active areas in contemporary signal processing
is machine learning (ML). While this is a many decades-old
discipline, the increased availability of large amounts of data
and processing power has, in recent years, greatly enhanced its
potential to transform the implementation of many signal pro-
cessing tasks from more traditional model-driven algorithms
into data-driven ones. This transformation

is also taking place in the context of signal

processing for wireless communications,

which has traditionally been very heav-

ily (and successfully) model-based. Several

trends are driving this transformation. One

trend is that, with the vast amount of IoT

and machine-type connections that coexist

with human-type broadband connections,

wireless network traffic is becoming increasingly intricate to
model accurately, thereby making network operation difficult
to optimize. Another trend is that antenna arrays and other
sensors are becoming pervasive on smartphones and other
connected devices, hence the volume of data available for
learning is swelling dramatically. Yet a third trend is that the
amount of processing power distributed throughout wireless
networks is growing rapidly, giving rise to paradigms such as
fog and edge computing.

There is a confluence of ML and communications in the
optimization of wireless networks. This is a very natural appli-
cation for ML since the operation of these networks involves
a multitude of tasks that ML is good at addressing, including

lterative
Model-Based Algorithm

Final Output

inferential tasks, such as channel estimation, signal detection,
and data decoding, as well as decision-making tasks such as
routing, access control, and resource allocation. ML-based
solutions can capture practical characteristics that were over-
looked by the models, underpinning existing algorithms. How-
ever, to ensure that ML algorithms improve upon the existing,
it is essential to initiate the training procedure judiciously.
The model-aided ML paradigm provides a structured way
to transfer classical know-how from the signal processing
community onto new ML algorithms [36]. Figure 7 exempli-
fies how an existing iterative algorithm can be transformed
into an enhanced ML algorithm. The existing algorithm takes
an initial input signal and processes/updates
it iteratively until a predefined termination
criterion is satisfied, at which point the final
output is obtained. The specific processing
is normally obtained through model-based
algorithm design. Instead of expressing the
algorithm as a loop, L iterations of the algo-
rithm can be expressed as a sequence of L
identical processing layers. If a data-driven
training procedure is employed to fine-tune these processing
layers, which no longer have to be identical, what ensues is an
ML algorithm that is guaranteed to perform better than the
original model-based algorithm. This procedure is called algo-
rithm unrolling or deep unfolding, and it has in recent years
been utilized to enhance various multiantenna tasks, including
signal detection [37] and beamforming optimization for down-
link multiuser MIMO [38].

A peek into the future

Over the past 25 years, multiantenna techniques have gone
from rudimentary designs for beamforming and diversity
combining to a mainstream technology that uses massive

Model-Aided ML Algorithm

_______________________________________________________________ " Training
: : : .. Procedure
: : : T
Trained Trained Trained ]
- Processing 1 Processing 2 Processing L| :
Algorlt_hm Final Output
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Initial Input Initial Input

Many conventional model-based algorithms for optimization in multiantenna communication are iterative. Suppose one such
algorithm can be expressed as an iterative processing loop that continues until a termination criterion is satisfied. An enhanced ML
algorithm can be developed through algorithm unrolling; that is, writing the iteration as L separate processing layers and fine-tuning

these layers through a data-aided training procedure.
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spatial multiplexing to multiply the capacity of 5G networks.
The MIMO technology is now present in every smartphone
and BS that enters the market. Fast and capable signal process-
ing algorithms have enabled this leap forward, and are cur-
rently buttressing the emergence of low-power 5G mmWave
transceivers where high-resolution hardware components are
replaced with digital processing. Recent theoretical break-
throughs, including ML-based algorithms, are bound to con-
tinue sustaining the progress of the technology.

Indeed, we expect the multiantenna communication jour-
ney to continue. The insatiable growth in data traffic can only
be met by deploying ever more antennas and ever more band-
width. The massive MIMO philosophy prescribes that the
number of BS antennas, M, must scale proportionally to the
number of active users, K. As the complexity of algorithms,
such as regularized zero-forcing is proportional to MK?> [4],
a linear scaling in both K and M implies a cubic complexity
growth. Moreover, once the bandwidth surpasses 1 GHz, the
sampling rates approach the clock speed of existing proces-
sors, which renders the implementation even more demanding.
The compressed sensing algorithms described earlier might be
suitable to address these challenges, but there is likely room for
many new signal processing advances.

When adding ever more antennas to BSs, practical size
and weight constraints might make new deployment prin-
ciples necessary, beyond the boxes-in-a-tower paradigm. One
promising approach is to distribute the antennas over multiple
physical locations while retaining the coherent transmission
and reception processing, a concept rooted in cell cooperation
and network MIMO ideas, as well as in the notion of remote
RF units, and whose present embodiment is termed cell-free
massive MIMO [39]. Apart from stronger beamforming gains,
a distributed antenna deployment can provide improved spatial
multiplexing capabilities and macroscopic diversity against
the shadowing of large objects in the environment. The cur-
rent trend of shifting baseband computations from BS sites to
edge-cloud computers will ease the adoption of this deploy-
ment approach.

After two decades of smartphones ruling the wireless eco-
system, other devices, such as extended reality eyeglasses, are
predicted to take center stage. New services will surface, with
renewed standards for the bit rates, latency, and reliability that
users expect wireless networks to deliver. Other performance
metrics might arise to dictate future technology development,
particularly related to sustainability, environmental impact,
and deployment costs, as well as to the digital divide between
the digitized and far-from-digitized regions of the world.

Beyond the signal processing advances captured in this
article, two emerging research topics build on multiantenna
technology. The first is integrated communication and sens-
ing [40], which explores how large-scale antenna arrays
can be simultaneously used for accurate radar sensing,
localization, and communication. It seems natural that the
deployment of massive antenna numbers for communication
purposes can be the catalyst for other applications that ben-
efit from wireless measurements. Another related research

direction is that of smart surfaces [41], whose signal reflec-
tion properties can be controlled by means of metamaterials
with programmable impedance patterns. These reconfigu-
rable intelligent surfaces provide a sort of passive beam-
forming that is particularly useful to enhance propagation
conditions over wireless channels.
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