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Abstract—The problem of sparse multichannel blind deconvolu-
tion (S-MBD) arises frequently in many engineering applications
such as radar/sonar/ultrasound imaging. To reduce its computa-
tional and implementation cost, we propose a compression method
that enables blind recovery from much fewer measurements with
respect to the full received signal in time. The proposed compression
measures the signal through a filter followed by subsampling,
allowing for a significant reduction in implementation cost. We
derive theoretical guarantees for the identifiability and recovery of
a sparse filter from compressed measurements. Our results allow
for the design of a wide class of compression filters. We, then,
propose a data-driven unrolled learning framework to learn the
compression filter and solve the S-MBD problem. The encoder is a
recurrent inference network that maps compressed measurements
into an estimate of sparse filters. We demonstrate that our unrolled
learning method is more robust to choices of source shapes and
has better recovery performance compared to optimization-based
methods. Finally, in data-limited applications (fewshot learning),
we highlight the superior generalization capability of unrolled
learning compared to conventional deep learning.

Index Terms—Compression, deep learning, dictionary learning,
multichannel blind-deconvolution, sparse coding, unrolling.

I. INTRODUCTION

IN A variety of remote sensing applications (e.g., radar imag-
ing [1], seismic signal processing [2], sonar imaging [3],
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and ultrasound imaging [4], [5]), an unknown source signal
reflected from sparsely located targets is measured through
a multichannel receiver system. The signal received at each
channel can be modelled as a linear convolution of a source
signal and sparse filters; the filters, modelling the targets’ loca-
tions, are also known as impulse responses of the channels [6],
[7]. Sparse multichannel blind-deconvolution (S-MBD) is the
problem of recovering the source signal shape and sparse filters
from received measurements [8], [9].

Bilen et al. [10] proposed an �1-based convex optimization
method to solve the S-MBD problem. Gribonval et al. [11]
and Mulleti et al. [12] studied S-MBD in the context of sparse
dictionary calibration, and Garcia-Cardona and Wohlberg [13]
formulated it via convolutional dictionary learning. Theoretical
analysis on identifiability of S-MBD exists in the literature [8],
[14], [15]. These works derived the identifiability results in
terms of the number of channels by assuming that the sparse
filters are random and all the measurements in each channel are
available. Specifically, they showed that givenM measurements
in each channel, N = O(M log4 M) channels are sufficient for
identifiability [8], [14]. In addition to using a large number of
channels, these results rely on having access to full measure-
ments at each channel. None of these methods uses the sparsity
of the filters to reduce the number of measurements in each
channel. In a multichannel receiver system, hardware cost and
power consumption increase with the number of channels, as
each channel requires a dedicated analog-to-digital converter
and corresponding circuitry. Further, the computational cost
depends on the number of channels and the number of mea-
surements per channel, as a larger number of measurements
requires more storage and computations. To reduce the hardware
implementation and computational cost, it is desired to solve
S-MBD from compressed (few) measurements captured from
fewer channels.

In the context of dictionary learning, Tolooshams et al. [16],
[17] proposed structured inference neural networks to solve the
S-MBD problem using algorithm unrolling [18], [19]; however,
their method still relies on full measurements. Chang et al. [20]
further extend the unrolling framework to enable dictionary
learning from compressed measurements through an unstruc-
tured random matrix; this compression has two drawbacks. First,
random-matrix-based compression may not achieve large com-
pression rates in practice. Second, their practical implementation
may be challenging due to their unstructured nature.

Mulleti et al. [12] addressed the later drawback and proposed
a structured, linear compression operator that could be realized
using a finite impulse response (FIR) filter. The authors took a
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frequency-domain approach for S-MBD and derived the iden-
tifiability results by using a fixed sum-of-sincs (SoS) FIR filter
for compression. In addition, the authors applied the blind dic-
tionary calibration (BDC) method [11] and the truncated-power
iteration (TPI) approach [21] to recover sparse filters from the
compressed Fourier measurements. This approach’s limitation
is that the source’s frequency spectrum is assumed not to vanish
on selected points. Since the source is unknown in advance,
designing the filter is challenging. Furthermore, the structure of
the filter is fixed and independent of the reconstruction method.

Recent work addressed this challenge by offering a data-
dependent joint design of the frequency locations of a
continuous-time SoS filter and the reconstruction parame-
ters [22]. However, the filters still follow the SoS structure with
learnable frequency locations, resulting in limited flexibility.
Hence, a natural question is whether a general condition on the
filters, which does not require an SoS form, can be derived such
that compression is possible with perfect recovery. Moreover,
can we leverage data to learn such a filter together with the
reconstruction method?

A. Contributions

In this paper, we focus on answering the preceding two
questions. Starting from a time-domain approach, we consider
the problem of filter-based compression for S-MBD. We de-
rive time-domain identifiability conditions on the compression
filter and the S-MBD measurements to enable recovery. The
time-domain approach helps in deriving general conditions on
the filters compared to the frequency-domain framework. More-
over, we offer learning-based methods for designing the filters,
which were briefly proposed and discussed in [23]. Our main
contributions are summarized as follows.

� We formulate a compressive sparse-MBD problem based
on a hardware-efficient linear compression operator that
can be realized using an FIR filter. Unlike prior theoretical
analysis on Fourier samples [12], we provide time-domain
theoretical guarantees for the recovery of sparse filters
from reduced measurements. We derive identifiability con-
ditions jointly on the compression filter and the source in
terms of spark properties on the convolution matrices of
the source and compression filter. Unlike non-vanishing
frequency requirements of the source’s Fourier spectrum
in prior work [12], our framework neither enforces any
specific structural requirement on the compression filter
nor places vanishing spectrum conditions on the source.
However, the above-mentioned flexibility on identifiabil-
ity conditions comes with a trade-off, a need for more
measurements than the minimum required Fourier samples
achieved by [12] for identifiability.

� We propose unrolled inference networks (Fig. 2(b)); this
is to give an unrolling structure to standard deep learning
inference networks (Fig. 2(a)) using our compressive S-
MBD problem formulation. We build upon our preliminary
results in [23] and enable learning of the compression filter
from data. We note that the architecture shown in Fig. 3 a is

TABLE I
MEMORY STORAGE OF THE COMPRESSION OPERATOR WHEN IT IS STRUCTURE

LONG OR FILTER BANKS. MEMORY COST IS QUANTIFIED BY THE

DIMENSIONALITY OF THE COMPRESSION OPERATOR

previously proposed by [23]. We show that unrolled learn-
ing outperforms optimization-based methods and high-
light its robustness to the source shapes of Gaussian and
symmetric wavelet (Fig. 5). We characterize the effect of
unrolling, as compression ratio (CR) varies, e.g., only a
few unrolled layers are needed to achieve highly accurate
identification of the target locations (Fig. 4). Furthermore,
we propose an additional linear compression, performing
filtering followed by decimation; the compression is more
memory efficient (Table I) and has a minimal decline
in performance (Fig. 6). Our results differ from [23] as
follows: [23] a) provided no theoretical analysis of their
proposed unrolled network, b) considered only the noise-
less setting where the source shape is Gaussian, hence, no
robust characterization was performed, and c) focused on
target amplitude recovery rather than hit rate. Moreover,
the new compression based on decimated filtering and the
following contribution is unique to this paper.

� We propose combining a network denoiser with an un-
rolled network and show that this framework significantly
improves performance in the task of recovery from com-
pressed noisy measurements (Fig. 8). Finally, we highlight
the advantages of unrolled learning over conventional deep
learning in fewshot learning; our framework is significantly
superior to generic deep networks in the low data regime
(Fig. 10).

B. Notations and Organizations

We use the following notation in the paper. Vectors and
matrices are denoted by lower and uppercase boldfaced
letters, respectively. A real-valued, N -length, causal se-
quence {s[0], s[1], . . . , s[N − 1]} is denoted by a vector s =
[s[0], s[1], . . . , s[N − 1]]T ∈ R

N where the superscript T de-
notes transpose. For any two sequences s ∈ R

Ms and x ∈ R
Mx ,

their convolution is s ∗ x ∈ R
Ms+Mx−1. For any vector s ∈

R
Ms , a convolution matrix with M columns is constructed as,

Cs(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s[0] 0

s[1]
. . .

...
...

. . . s[0]

s[Ms − 1] s[1]
...

. . .
...

0 s[Ms − 1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)
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With this notation, the convolution s ∗ x is represented as
Cs(Mx)x = Cx(Ms)s. The symbol ∗

t
denotes truncated con-

volution, with the longer vector appearing on the left side of
the symbol. For Ms ≥ Mx, s ∗

t
x denotes values s ∗ x[m] for

Mx ≤ m ≤ Ms. The spark of a matrix A, that is, Spark(A)
is defined as the minimum number of columns of A that are
linearly dependent.

The paper is organized as follows. In Section II, we formulate
the S-MBD problem mathematically and present our assump-
tions. Time-domain identifiability results are derived in Sec-
tion III. In Section IV, we present a data-driven unrolled-based
compression filter design; we outline various unrolled architec-
tures and discuss their training mechanism. Numerical results
in Section V followed by a conclusion.

II. PROBLEM FORMULATION

Consider a set of N signals given as,

yn = s0 ∗ xn, n = 1, . . . , N, (2)

where ∗ denotes linear convolution operation. In this model, s0
represents a common source signal, and xn denotesn-th channel
filter.

The problem of multichannel blind-deconvolution (MBD)
is to determine the source and filters from the measurements
{yn}N

n=1. The problem is ill-posed without further assumptions
on either the source, the filters, or both. Sparse MBD (S-MBD) is
one such widely applicable model where the filters are assumed
to be sparse. In addition, the source is assumed to have a finite
impulse response (FIR). Specifically, we make the following
structural assumptions:

A1) Sparse Filters:xn ∈ R
Mx and ‖xn‖0 ≤ L for n =

1, . . . , N.
A2) FIR Source:s0 ∈ R

Ms0 .
A3) Sparse Coprime Filters: Consider the decomposition

xn = h0 ∗ x̄n for all n. If length of h0 is greater than
one, then ‖x̄n‖0 > L for all n.

A3′) Non-zero first and last elements of the source: s0[1] �= 0
and s0[Ms0

] �= 0.
The sparse filter model with FIR source is ubiquitous in ap-

plications [12]. For example, in radar imaging with N receivers,
s0 denotes the transmit pulse. By assuming that the target scene
consists of L stationary point targets, the signal received by
the n-th receiver can be modelled as yn in (2). Here, non-zero
locations and amplitudes of the sparse filter xn contain the
information of the distances and amplitudes of the targets for
the n-th receiver. As one can generate only compactly supported
transmits signals, the FIR source model is justified. As discussed
in [12], either (A3) or (A3′) ensure unique identifiability 1

Here, identifiability implies that the source and sparse filters
can be uniquely determined up to a scaling constant. As we are
representing one-dimensional sequences as finite-length vectors
with known support, we do not have shift ambiguity which alters
the support of the sequences.

1Assumption (A3′) is simple to verify in practice compared to assumption
(A3). For identifiability, we need either (A3) or (A3′) to be satisfied.

In the compressive S-MBD problem, the objective is to
determine either the sparse filters or the source or both from
compressed measurements of {yn}N

n=1. In this paper, we focus
on recovering the sparse filters {xn}N

n=1s from compressed mea-
surements. This problem is equivalent to estimating the locations
of the targets in radar [1] or ultrasound imaging [4], [5]. The de-
sirable properties of the compression operator are that it should
be linear, practically implementable, and importantly allows
perfect recovery with the highest compression rate possible. To
this end, we use linear-filtering-based compression. Specifically,
to compress the measurements, we consider subsampling the
filtered signal

zn = h ∗ yn = h ∗ s0 ∗ xn, (3)

where h ∈ R
Mh is a compression filter applied across all chan-

nels. Note that the compression mechanism is similar to that
in [12]. However, a major difference is that in our framework,
the filter h does not require a discrete-SoS (D-SoS) model. The
compressed measurements can be written as

zn = s ∗ xn, (4)

where s = h ∗ s0 ∈ R
Ms is the effective source of length Ms =

Ms0
+Mh − 1, and My = Ms0

+Mx − 1. If the number of
subsampled measurements of zn is less than My then compres-
sion is achieved.

In the following section, we discuss conditions on the filter
h, or more specifically on the effective source s to ensure
identifiability up to a scaling ambiguity. Specifically, if there
exist an alternative set of effective source ŝ and sparse filters
{x̂n}N

n=1, such that

zn = ŝ ∗ x̂n, n = 1, . . . , N, (5)

on the subsampled locations then, there exists a scalar β �= 0
such that

ŝ = β s and x̂n = xn/β, n = 1, . . . , N. (6)

If a set of alternative solutions satisfies (5) but not (6) then the
problem is not uniquely identifiable.

III. TIME-DOMAIN THEORETICAL GUARANTEES FOR

COMPRESSED S-MBD

In this section, we discuss the problem of uniquely identifying
the sparse filters {xn}N

n=1 from subsamples of {zn}N
n=1. The

identifiability depends on the subsampling strategy, which in
turn depends on the relative lengths of the compression filter h,
source s0, and sparse filters.

The MBD measurements in (4) can be written as

zn = Ch Cs0
xn ∈ R

Mz , n = 1, . . . , N, (7)

where Cs0
∈ R

My×Mx and Ch ∈ R
Mz×My are convolution

matrices corresponding to the source and filter, respectively. To
identify {xn}N

n=1 from subsamples of {zn}N
n=1, we consider a

binary-compression or subsampling operator B ∈ {0, 1}K×Mz

where K < Mz is the number of compressed measurements.
Each row of B has exactly one non-zero element, and the matrix
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Fig. 1. A toy example to demonstrate that recovery from compression through
subsampling may not be possible for Mh ≤ My .

has a full row rank. The compressed measurements are given as

z̄n = Bzn = BCh Cs0
xn, n = 1, . . . , N. (8)

The identifiability depends on the number of subsamples K,
subsampling pattern or matrix B, and properties of Ch Cs0

.
To proceed further, we present a few basic properties of Cs =

Ch Cs0
that will allow subsampling. We consider two possible

scenarios: (i) Mh ≤ My and (ii) Mh > My . We first show that
recovery from compression through subsampling may not be
possible for Mh ≤ My . Consider a toy example with Mx = 15,
L = 2, and Ms0

= 3 (See Fig. 1(a)). In Fig. 1(b), we chose a
compression filter of length Mh = 4 and plot the filtered signal
h ∗ yn. We observe that a few values of zn = h ∗ yn are zero
due to the short compression filter. Subsampling those values
will result in a loss of information. In addition, each non-zero
sample of zn only has a contribution from a few non-zero entries
of xn. This implies that the information of xn is not well spread
across the samples of zn which is desirable for compression.

Next, consider a long compression filter such that Mh > My .
In the toy example, we set Mh = My + 5. The compression
filter and zn = h ∗ yn are shown in Fig. 1(c). We note that
none of the values are zero unless the convolution sum is zero
in that sample. Further, it can be verified that the values of
zn[m] for My − 1 ≤ m ≤ Mh − 1 have a contribution from
all the samples of yn [23]. This implies that these samples,
indexed by the set K = {My − 1,My, . . . ,Mh − 1}, carry in-
formation of all the non-zero components of the sparse filter.
The set K includes the sample of the convolution Ch where
h and y are fully overlapped. Hence, perfect recovery through
subsampling may be possible by considering the measurements
{zn[m]}m∈K. Given this intuition, we set the operator B to

subsample the measurements from the set K where the com-
pression ratio is controlled by the relative length of the com-
pression filter Mh and signal My . For the remainder of this
section, we denote Th(r) := BCh, applied on a signal of length
r. For a fixed My , the number of compressed measurements
K = |K| = Mh −My + 1 increases linearly with the length of
the compression filter. The measurements {zn[m]}m∈K are said
to be compressed if K < My . We next derive conditions that
ensure compression together with identifiability. Given that the
subsamples {zn[m]}m∈K carry information about the sparse
filters, the questions required to be answered are whether the
sparse filters can be identifiable from these measurements with
the assumption that K < My . To answer the question, we next
study the problem of identifying the sparse filters from the
subsamples of the truncated convolution

z̄n = Th(My)y
n = h ∗

t
yn, (9)

where the Toeplitz matrix Th(r) ∈ C
(Mh−r+1)×r, for 1 ≤ r ≤

Mh, is constructed as

Th(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

h[r − 1] h[r − 2] · · · h[0]

h[r] h[r − 1] · · · h[1]

h[r + 1] h[r] · · · h[2]
...

...
. . .

...

h[Mh − 1] h[Mh − 2] · · · h[Mh − r]

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(10)

For r = My , the matrix consists of K = Mh −My + 1 rows or
K compressed measurements. The compressed measurements
can alternatively be written as

z̄n = Th(My)Cs0
(Mx)x

n = A(My,Mx)x
n, (11)

where

A(My,Mx) = Th(My)Cs0
(Mx) ∈ C

K×Mx , (12)

is equivalent to the compression matrix in standard sparse re-
covery. The subscripts of A denote the number of columns of
matrices Th and Cs0

. In the current setup, A is unknown, unlike
the standard sparse recovery problem where the matrix is known.
For identifiability, the spark property of the matrix A plays a
crucial role, as summarized in the following theorem.

Theorem 1 (Sparse-Filters Identifiability for Compressive
MBD): Consider the MBD measurements yn = s0 ∗ xn, n =
1, . . . , N whereN ≥ 2. The source s0 satisfies assumption (A2)
and the sparse filters {xn}N

n=1 satisfy assumption (A1) with
sparsity level L < min(

√
Ms0

/2,
√
Mx). Consider the mea-

surements zn[m],m ∈ K or z̄n = A(My,Mx)x
n, n = 1, . . . , N .

The measurements are compressed, and we have the following
necessary and sufficient conditions for identifiability.

1) (Necessary) If Spark(A(My,Mx)) ≤ 2L then the sparse
filters are not uniquely identifiable.

2) (Sufficient) If Spark(A(My+Mx−1,2Mx−1)) > 2L2 and ei-
ther (A3) or (A3′) is satisfied, then the sparse filters can
be identified up to a scaling constant.
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Proof: We first focus on the necessary and sufficient condi-
tions and then show that for both cases the measurements are
compressed.

Necessary Conditions: From (11), we know that if Spark
(A(My,Mx)) ≤ 2L then for every sparse filter xn there exists
another L-sparse vector x̂n �= xn such that,

A(My,Mx)(x
n − x̂n) = 0, n = 1, . . . , N. (13)

Hence, there exists an alternative set of sparse filters {x̂n}N
n=1

satisfying the compressed measurements.
Sufficient Conditions: Let us assume that there exists an

alternative source ŝ0 and a set of feasible sparse filters {x̂}N
n=1

such that

z̄n = h ∗
t
(s0 ∗ xn) = h ∗

t
(̂s0 ∗ x̂n). (14)

This implies that the alternative set (̂s0, {x̂}N
n=1) results in the

same compressed measurements. Since all the vectors are of
finite dimension, from (14) it can be shown that

h ∗ s0 ∗ xn = h ∗ ŝ0 ∗ x̂n, n = 1, . . . , N. (15)

Then, for any two channels, say from channel numbersn = 1, 2,
we have the following cross-convolution relationship [12]:

h ∗
t
(s0 ∗ (x̂1∗x2 − x̂2∗x1)︸ ︷︷ ︸

q

) = 0, (16)

where q ∈ R
2Mx−1. From the condition L <

√
Mx, we have

that ‖q‖0 ≤ 2L2 [12]. Using (12), we rewrite (16) as

A(My+Mx−1,2Mx−1) q = 0. (17)

Since ‖q‖0 ≤ 2L2, from (17) we infer that q = 0 if
Spark(A(My+Mx−1,2Mx−1)) ≥ 2L2. Then, for q = 0, we have
that x̂1∗x2 = x̂2∗x1 which can be written in the z-domain as

X̂1(z)X2(z) = X̂2(z)X1(z). (18)

This relationship implies that there exists a function G(z) such
that Xn(z) = G(z)X̂n(z). Hence, it can be shown that G(z)
is a constant function if one of the conditions (A3) or (A3′) is
satisfied (See [12, Section IV.E]). In other words, x̂n is a scaled
version of xn and hence a feasible solution. A similar argument
can be used for any pair of sparse filters, and we conclude that
identifiability holds for all sparse filters.

Compressed Measurements: Next, we show that the number
of measurements K < My , i.e., the measurements zn are com-
pressed. The identifiability results are derived in terms of spark
properties of A. For the spark properties to be satisfied, the
length of the compression filter Mh requires satisfying certain
conditions, as discussed next. In the discussion, we use the fact
that for any matrix to satisfy the minimum spark property, its
number of rows should be greater than or equal to the minimum
spark. For example, consider a matrix B ∈ C

K×N . Then, for any
integer L ≤ N , the condition Spark(B) > L is satisfied only if
K ≥ L.

In the sufficiency part, the inequality Spark(A(My,Mx)) ≤
2L indicates a necessary condition. Hence, for identifiability
it is necessary that Spark(A(My,Mx)) > 2L which is ensured
only if the number of rows of A(My,Mx) or more specifically,

the number of rows of Th(My) is greater than or equal to 2L.
Since the number of rows of A(My,Mx) determines the number
of compressed measurements (see (11)), the results imply that
identifiability is not possible if the number of measurements
K, which is equal to the number of rows of A(My,Mx), is
less than 2L. For K ≥ 2L, the compression filter’s length
Mh should be chosen such that Mh ≥ 2L+My − 1. Since
L < min(

√
Ms0

/2,
√
Mx), we have that

Ms0
> 2L2 and Mx > L2. (19)

By using the above bounds, it can be verified that 2L ≤ K <
My = Mx +Ms0

− 1 < 3L2 − 1 and hence the measurements
are compressed.

For the sufficient conditions, it is required that Spark
(A(My+Mx−1,2Mx−1)) > 2L2 which in turn means that the
number of rows of Th(My +Mx − 1) is greater than or equal
to 2L2. This can be ensured by choosing the length of the
filter such that Mh ≥ 2L2 + 2Mx +Ms0

− 3. From the spark
condition in the sufficient part, it may not be straightforward
to determine the number of measurements, as the condition
is derived for A(My+Mx−1,2Mx−1) which is different from
A(My,Mx) used for compression (see (11)). However, by using
the condition Mh ≥ 2L2 + 2Mx +Ms0

− 3 and calculating
the number of rows of A(My,Mx), we note that a minimum of
K = Mh −My + 1 = 2L2 +Mx − 1 measurements is avail-
able. For K = 2L2 +Mx − 1 and My = Mx +Ms0

− 1, it
can be verified that K < My as 2L2 < Ms0

. Hence, the mea-
surements are compressed. �

The theorem states necessary and sufficient conditions on the
source and compression filter in terms of spark properties. In
addition, we show that the measurements are compressible if the
sparsity level is restricted in terms of the lengths of the source
and the sparse filter. In the frequency-domain guarantees derived
in [12], the sparsity level should satisfy the inequalityL <

√
Mx

for identifiability. However, in the time-domain guarantees (The-
orem 1), it should satisfy the condition L < min(

√
Ms,

√
Mx)

which is a stronger condition if Ms < Mx. For Ms < Mx, the
time-domain results can identify less sparse signals. This is a
consequence of the joint identifiability condition on both the
compression filter and the MBD measurements.

Compared to the identifiability condition in [12], the results
in Theorem 1 are generic. To be specific, in the frequency-
domain identifiability results [12], a D-SoS filter is used together
with a non-vanishing spectral support condition on the source.
Whereas the time-domain results in Theorem 1 are generic and
do not use any structure or condition on the compression filter
or source. Hence, the conditions derived can be used to design a
wider class of signals for compression. Note that the D-SoS filter,
together with the non-vanishing spectral support condition, also
satisfies the spark conditions in Theorem 1 (See Appendix for
details). For sufficient guarantees, the approach in [12] requires
minimum 2L2 Fourier measurements, whereas the proposed
time-domain approach requires a minimum of 2L2 +Mx − 1
compressed measurements. The additional measurements in the
proposed approach are due to the joint identifiability condition.
Theoretical guarantees were also presented in [8], [14], [15], [24]
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for the S-MBD problem where they consider random sparsity
models used. Specifically, these models assume that the sparse
filters follow a Bernoulli-Gaussian distribution. The models
may not be applicable in many applications. In comparison, the
proposed approach is deterministic (no randomness) in nature
and hence more widely applicable.

Given the above-mentioned identifiability results for the re-
covery of sparse filters from compressed measurements, we next
focus on formulating the optimization problem and providing
algorithms to solve S-MBD.

IV. UNROLLED LEARNING FOR COMPRESSED MULTICHANNEL

BLIND DECONVOLUTION

Given the generality of the compression filter, we propose to
learn the compression filter from data in the time domain. Specif-
ically, we introduce a structured inference network based on
algorithm unrolling [18] to learn a filter-based compression op-
erator for compressed S-MBD. First, we formulate the problem
as an alternating-minimization-based optimization and review
inference networks in the context of compressive MBD. Then,
we introduce constrained and unrolled networks to structure the
inference mapping, on which our main results are based.

A. Learned Optimization-Based Methods

Given the generative model, we form the following optimiza-
tion problem to recover the source s0, estimate the sparse filters
xn, and learn a compression operator Φ (i.e., Th(My)):

min
Φ,s0,{xn}N

n=1

N∑
n=1

1

2
‖z̄n − Φ(s0 ∗ xn)‖22 + λ‖xn‖1

s.t. ‖s0‖2 = ‖h‖2 = 1, (20)

where λ is a regularization parameter enforcing sparsity, and h
is the filter corresponding to the compression operator Φ. Φ is
implemented as a convolution operator followed by a truncation.
To avoid scaling ambiguity, we impose a norm constraint on the
source s0 and compression filter h. We can solve this problem
by alternating minimization. At update iteration l, given an
estimate of s

(l)
0 and Φ(l), solve the sparse coding problem for

each example, i.e.,

xn(l) = argmin
xn

1

2
‖z̄n − Φ(l)(s

(l)
0 ∗ xn)‖22 + λ‖xn‖1. (21)

We call this step sparse coding. Then, use the newly estimated
sparse filters xn(l) to refine the learned s0 and h, i.e.,

{
Φ(l+1), s

(l+1)
0

}
= argmin

Φ,s0

N∑
n=1

1

2
‖z̄n − Φ(s0 ∗ xn(l))‖22

s.t. ‖s0‖2 = ‖h‖2 = 1 (22)

which is the learning step. Next, we review inference networks
and discuss how to use the above alternating-minimization-
based formulation to construct structured deep neural networks
for S-MBD.

B. Inference Networks

Following a fully data-driven approach, one may utilize stan-
dard deep learning-based inference networks; this is to learn a
mapping from compressed measurements z̄ to the sparse filters
x. For training, the full measurements y are compressed using
the trainable compression operator Φ, and then ΦT is applied
to have an approximation of y; this is followed by an inference
network to output x̂. The joint learning of Φ and x is achieved by
forward and backward passes. The forward pass infers the sparse
filter x, and Φ is learned in the backward pass during training.
This approach is used previously by [25], [26] to recover data
from compressed measurements, where the inference mapping
is a deep neural network (Fig. 2(a)). In this paper, we propose
to give an unrolling structure [18] to the inference network
(Fig. 2(b)); the building blocks gθ, fθ, and Sθ are determined
by the optimization model, chosen to solve the problem. Prior
work has demonstrated the competitive performance of unrolled
networks, with an order of magnitude lower number of trainable
parameters, to a state-of-the-art deep network on the supervised
task of Poisson image denoising [27]. To complement this, we
show in Section V-G that indeed our unrolled learning frame-
work (Fig. 2(b)) outperforms the generic neural network-based
inference mappings (Fig. 2(a)) in data-limited regimes.

1) Constrained Unrolled Networks: To construct the infer-
ence mapping, we use an approach similar to [17] to map the
alternating optimization problem into an autoencoder. The for-
ward pass is designed for sparse filter recovery separable among
the examples (i.e., channels), and the backward pass is used
to learn parameters shared among the dataset (i.e., source and
compression filter). We design the forward pass of the encoder
to solve the sparse coding step (21) by performingT iterations of
iterative soft thresholding algorithm (ISTA) [28]. Each iteration
implements

xt+1 = Sαλ(xt − αCT
s0

ΦT(ΦCs0
xt − z̄)), (23)

where α is the step-size, Sb(v) = ReLUb(v)− ReLUb(−v) is
the shrinkage operator with ReLUb(v) = (v − b) · 1v≥b, and
Cs0

is the convolution matrix corresponding to the source s0.
The decoder maps the code estimates xn

T into an estimate of the
data ŷn and then the compressed data ˆ̄zn using s0 and h. The
learning step (22) minimizes the loss

min
Φ,Cs0

N∑
n=1

1

2
‖z̄n − ΦCs0

xn
T (Cs0

,Φ)‖22,

s.t. ‖s0‖2 = ‖h‖2 = 1 (24)

achieved by backpropagated gradient descent, followed by a
projection step to ensure the norm constraints. Having ac-
cess to the full measurements yn, the learning step (22) can
be modified to minΦ,Cs0

∑N
n=1

1
2‖y − Cs0

xn
T (Cs0

,Φ)‖22 or

minΦ,Cs0

∑N
n=1

1
2‖xn − xn

T (Cs0
,Φ)‖22, in the supervised set-

ting, with the knowledge of the sparse codes. Indeed, this is
possible as the sparse filters are being estimated through the
inference network and are the function of Cs0

and Φ. Hence,
the gradient of the loss ‖xn − xn

T ‖22 with respect to Cs0
and Φ
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Fig. 2. Inference mapping for compressed multichannel blind-deconvolution.

Fig. 3. Encoder architecture of learned structured multichannel blind-deconvolution (LS-MBD).

can be computed by backpropagation. We use this sparse filter
loss to train the proposed architectures.

Fig. 3(a) shows the encoder network architecture. In the
context of dense dictionary learning and given full measure-
ments, Tolooshams and Ba [29] provide a theoretical analysis
of such constrained networks; they provide conditions on the
network and data under which dictionary recovery is achieved
via network training.

2) Learned Unrolled Networks: The ISTA encoder architec-
ture can be further modified by relaxing and untying the filter
operator corresponding to Cs0

and CT
s0

as shown in Fig. 3(b). We
call this architecture learned structured multichannel blind de-
convolution learned ISTA (LS-MBD-LISTA). This is to increase
the capacity of the model to learn from data. Unrolling ISTA
iterations and similar relaxations were introduced first by [30]
for dense matrices, where each iteration of ISTA is referred
to as a layer of a structured neural network. Our proposed

architecture is a variant of LISTA introduced in [30] where the
relaxed operations We, Wc, and Wd, each has their own filters
he,hc,hd; We and Wc performs correlation, and Wd performs
convolution. In this case, we can also let the biases of the neural
network b be learned from data.

In the presence of measurement noise, we propose to add a
differentiable denoiser (e.g., neural network architecture) before
the unrolled layers and specify different Wt

c, and Wt
d kernels

and vector bias bt for each layer t (Fig. 3(c)). We use the
variants of our proposed learned structured multichannel blind
deconvolution network in the results discussed in the paper.

C. Training

Similar to the two-stage approach proposed in [23], we first
train the encoder along with a decoder given full measurements
(i.e., Φ = I). This is an unsupervised training for source Cs0
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recovery by minimizing the reconstruction loss ‖y − ŷ‖22 using
the LS-MBD-CISTA network encoder architecture. This net-
work architecture is only used for source recovery purposes.
For applications where the source is known, this first stage can
be skipped. In the second stage, having access to the recovered
Cs0

and following the generative model (2), we construct a
training set consisting of {yn,xn}N

n=1 (See Section V-A for
more info on data generation). LS-MBD-LCISTA or LS-MBD-
LCISTA-denoiser are the main networks used for target recovery
in this stage. For a given compression ratio CR =

Mh−My+1
My

,
we learn the compression operator Φ and the encoder network
parameters in a supervised manner by minimizing ‖x − x̂‖22.
We trained one network for each of the studied scenarios. For
example, each CR value has its trained network. Moreover,
when studying the effect of source shape, unrolling layers, or
measurement noise, one network is trained for each specific
scenario.

V. RESULTS

This section evaluates the performance of our unrolled learn-
ing filter-based compression for multichannel blind deconvolu-
tion. We outline the data generation details and explain the train-
ing procedure. The section characterizes the proposed method
and the effect of unrolling on sparse filter recovery. Moreover,
we evaluate unrolled learning against the optimization-based
method in [12]. Specifically, given the source and sparse tar-
gets, we show the outperformance of LS-MBD-LCISTA against
FS-MBD in the absence of measurement noise. Then, we offer
a more efficient compression operator with minimal reduction
in performance. At last, we assess our method, specifically
LS-MBD-LCISTA-denoiser, in the presence of noise and high-
light that using unrolled learning to structure the inference
mapping makes it possible to train networks in data-limited
regimes.

A. Simulated Data Generation and Evaluation Criteria

We generated training simulated data with the following
parameters (N = 10,000,Ms0

= 99,Mx = 100, xs = 6 where
the code is xs = ‖x‖0-sparse.) For most of the experiments, we

used a Gaussian source shape, s0[k] = e
− 6

5
√

Ms0 (k − 
Ms0

2 �)2
where k ∈ {0, 2, . . . ,Ms0

− 1}, followed by a normalization
step ‖s0‖2 = 1. Gaussian source shapes are mainly concen-
trated in low frequencies. Hence, to highlight the robustness of
our method toward source shapes containing narrow frequency
bands, for a portion of the experiments, we switched to a sym-
metric Morlet wavelet with a scaling factor of 1.5. The choice
of source shape is the same during both training and inference.
The sparse filter supports are chosen uniformly at random, with
amplitudes drawn from Unif(4, 9). For the noisy experiments,
we added Gaussian noise, denoted by v, with various σ and
computed the SNR of the signal as 20 log ‖s0∗x‖2

‖v‖2
. Specifically,

given the same data distribution across all channels, the reported
SNR is averaged over the channel (data examples).

We followed a similar approach and generated two additional
test and validation sets, each of size N = 1,000. The validation

set is used to choose the best-performing network across the
training epochs. All datasets of training, test, and validation
follow the same data distribution, i.e., they share similar sparse
filter statistics and source shapes.

We refer to the sparse filters as code or the target of in-
terest, and evaluate the performance of the methods using
three metrics: normalized root-mean-squared error (NRMSE)
between the estimate and ground-truth code, exact hit rate
number of correctly detected targets

actual number of targets , and approximate hit rate which we
allow a tolerance of one (e.g., for ground-truth code with a sup-
port set of {7, 45, 90} and estimated code with a support set of
{7, 46, 89}, the approximate hit rate is 100%). In this definition,
the actual target refers to the support (non-zero entries) of the
ground-truth code, and the detected targets refer to the support
of the estimated code. We expect a lower NRMSE, and a higher
hit rate as the compression ratio CR increases. We report results
after picking xs = 6 highest elements of the code support and
setting the rest of the code entries to 0.

B. Training

The networks are implemented and trained in PyTorch. The
convolution weights are randomly initialized using a standard
Normal distribution, and the biases, if trained, are set to zero.
For LS-MBD-CISTA, we set α = 0.05, and for the rest of the
networks, We and Wc are scaled by a factor of 0.05 after
initialization to adjust to the step size. For all networks except
LS-MBD-CISTA, the step size α is absorbed, hence learned
within the weight Wc. We unrolled all networks for up to
T = 30 layers unless stated. Given the non-negatively of the
sparse filters, we set S = ReLU.

All networks are trained for 10,000 epochs with a batch size
of 100. We use the ADAM optimizer with a learning rate of 10−3

and ε = 10−14 [31]; the learning rate is decayed by a factor of
0.9 in the middle of the training. The small value of ε is to
ensure the exploration of the loss landscape without staying in
local minima. The chosen learning rate is the common value
used for unrolled networks in the literature [29].

C. Effect of Unrolling

We characterize the proposed methods as a function of un-
rolling, i.e., how well the target locations and amplitudes are
recovered as the network is unrolled. We used the Gaussian
source shape for this section and the architecture type of LS-
MBD-LCISTA. We compared unrolling networks of T = 5 and
T = 30 for a range of compression ratios. Fig. 4 demonstrates
the results: the amount of unrolling is crucial for amplitude
recovery regardless of compression ratio and exact hit rate,
especially when CR is low. The reported results are the average
of two independent trials.

D. Unrolled Learning vs. Optimization-Based Methods

We compare the proposed network LS-MBD-LCISTA
(Fig. 3(b)) against the optimization-based method of fixed and
structured MBD (FS-MBD) [12]; FS-MBD uses source infor-
mation in the Fourier domain to design a compression matrix
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Fig. 4. Effect of Unrolling.

Fig. 5. Ours vs. FS-MBD. Our method is more robust to the source shape.
FS-MBD only works well when the source is concentrated in low-freq and is
not narrow in freq.

Φ, uses a blind-dictionary calibration for structured source esti-
mation, and solve the sparse coding step using FISTA [32, Ch.
2] [33]. Concerning the problem formulation in this manuscript,
FS-MBD solves (20) over sparse targets and the source in the
frequency domain with known designed compression. For a fair
comparison, we assume both of the methods know the source
shape; hence, the problem reduces to designing/learning the
compression.

We use two different source shapes (Gaussian and symmetric
wavelet). For both scenarios and in all compression ratios,
LS-MBD-LCISTA outperforms FS-MBD. This result conveys
two main messages. First, the learnable network parameters,
especially the biases, allow LS-MBD-LCISTA to estimate the
sparse filters in terms of NRMSE (Fig. 5(a)) much better than
FS-MBD which used �1-based sparse coding with fixed spar-
sity level. Second, our method is robust to source shape; the
out-performance of LS-MBD-LCISTA against FS-MBD is sig-
nificant when the source has a wavelet shape (i.e., the frequency
content is not concentrated around low frequencies and contains

Fig. 6. Long and filter bank compression filters show similar performance.

narrow bands). Fig. 5 visualizes this result in terms of both
NRMSE and exact hit rate.

E. Toward More Efficient Compression Operator

Although the proposed compression operator is efficient
compared to unstructured matrix compressions as discussed
in [23], the method has one limitation; The length of the filter
Mh must be greater than the length of the signal, and this
makes the method not suitable for long data. In this section,
we ameliorate this by re-designing the compression operator
as follows: the compression performs a sum of P correla-
tions (shown in (25)) where their kernel size Mh is much
smaller than the size of the signal. Then, the compression is
achieved by decimation (this decimation is also referred to
as strides). The desired compression ratio can be achieved by
changing the number of convolutional filters and the decimation
factor.

z̄ = Φy =

P∑
p=1

Dd(hp ∗ y) (25)

where Dd denotes the decimation operator matrix by a factor
of d. Hence, the compression Φ is implemented as a sum of
convolutions with strides. We call this method “filter banks”,
and refer to the former one as “long”. Fig. 6 shows that both
methods show similar code recovery performance for various
ranges of compression ratios. The data used for this experiment
has a symmetric wavelet source shape, and the filter bank
compression uses kernels of size Mh = 9 with stride 9. For
example, for CR = %55.5, we used 5 convolutional filters, or
for CR = %22.2, only two filters are used. The architecture used
in the above comparison is LS-MBD-LCISTA.

Given the comparable performance, Table I highlights the
memory advantage of the filter banks method compared to the
long method. For example, given the generated data (see Sec-
tion V-A) for the long method when CR = 50, the compression
length is Mh = 296 which is almost twice as large as the signal
length. However, for the filter banks methods, compression of
CR = 55.5 can be achieved by 5 filters of each length Mh = 9
with decimation (stride) of 9 (This is indeed independent of the
length of the signal). We compute the memory cost based on the
dimensionality of the compression operator. This comes down to
much smaller memory storage of 5× 9 = 45. For this scenario,
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Fig. 7. Data visualizations on LS-MBD-LCISTA when the compression
method of the filter bank is used. The source has a wavelet shape, and the
compression ratio is %55.55.

Fig. 7 visualizes a test example of full measurements (a), the
ground-truth and estimated sparse filters code (b), the source
shape (c), the compressed data (d), and the learned compression
filter banks (e).

F. Toward Data-Driven Unrolled Denoising Networks

This section characterizes the performance of the proposed
method in the presence of noise. The generated data contains
the Gaussian source shape and the target amplitudes are follow-
ing Uniform distribution Unif(4, 5). We trained the networks
using 10,000 training examples. We considered the case where
the data is corrupted with additive Gaussian noise with σ =
0.161 (i.e., SNR of approximately 15 dB). We used LS-MBD-
LCISTA-freelayers-denoiser with T = 10 unrolled layers and
DnCNN [34] as denoiser. The denoiser has a kernel size of 3, 64
feature maps, and a depth of 4. We use validation and test sets of
size N = 100 where each example has its noise realization. The
reported results are from the test set. For example, the reported
results for the hit rate are averaged over 100 examples. Fig. 8
shows that adding a denoiser to the unrolled network results in
an improved performance both in terms of NRMSE and exact
hit rate.

Fig. 8. Outperformance of LS-MBD denoiser against LS-MBD in the presence
of additive Gaussian noise. For SNR of 15 and 10 dB, σ = 0.161 and 0.297,
respectively. When SNR is 10 dB, the variance of the reported average hit rate
for LS-MBD-LCISTA is 1.25, 2.52, 3.39, and 3.21 for a compression ratio of
50, 40, 31.31, and 25.25, respectively. For the same scenario, the variance over
the reported hit rate of LS-MBD-LCISTA-denoiser is 0.30, 3.05, 2.76, and 2.49.
Moreover, when SNR is 15 dB, the variance of the reported average hit rate
for LS-MBD-LCISTA is 0.65, 3.13, 2.4, 3.49 for a compression ratio of 50, 40,
31.31, and 25.25, respectively. For the same scenario, The variance over the
reported hit rate of LS-MBD-LCISTA-denoiser is 0.30, 0.96, 0.73, and 2.32.

Fig. 9. Effect of unrolling layers on the performance of LS-MBD denoiser in
the presence of additive Gaussian noise. For SNR of 15, with σ = 0.161.

For when SNR is 15 dB, we studied the effect of unrolling on
denoising and target recovery. We trained LS-MBD-LCISTA-
denoiser when T = 2, 5, and 10. Fig. 9 demonstrates that
increasing the unrolling layers improves the performance.

G. Fewshot Learning

In this section, we show the advantage of our unrolled learn-
ing (Fig. 2(b)) approach to conventional deep neural networks
(Fig. 2(a)) such as DnCNN [34] in fewshot learning. We let
CR = 55.5 and choose the source shape as a symmetric wavelet,
which we assume is known. We utilized the filter banks compres-
sion (i.e., using 5 compression filters with a kernel size of 9× 9
and strides of 9). For compressed DnCNN, after ΦT, there is an
additional fully-connected layer to go from My to Mx before
the DnCNN network which its input and output have the same
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Fig. 10. Fewshot learning. Unrolling significantly outperforms conventional
neural networks DnCNN in a data-limited regime.

dimension. DnCNN uses kernel sizes of 3, and 64 feature maps.
We set the depth of DnCNN to only 3 layers lead to 32,645
trainable parameters compared to 442 of unrolling method; this
is to alleviate the overfitting of DnCNN in low data regime.

As the amount of training data decreases from 10,000 to 100,
the performance of compressed DnCNN significantly degrades,
as opposed to our unrolling approach of LS-MBD-LCISTA
(Fig. 10). We observed that unrolling approach outperforms
DnCNN for all ranges of data. Most importantly, in a low data
regime, DnCNN breaks down and reaches 0 dB NRMSE and
an exact hit rate below %40 when there are only 100 training
examples.

VI. CONCLUSION

We studied the problem of sparse multichannel blind decon-
volution (S-MBD). We proposed a filter-based compression to
enable recovery from a small number of measurements. We
theoretically studied the identifiability problem and provide
conditions under which recovery is possible. We derived the nec-
essary and sufficient conditions on the compression filter and the
source for unique recovery. Through an unrolled learning frame-
work, we proposed to learn the compression filter, resulting in
better recovery from higher compression rates. Specifically, we
designed a structured inference network based on an �1-based
iterative sparse coding algorithm to map compressed measure-
ments to the sparse filters of interest. We demonstrated the
robustness and superior performance of our proposed framework
compared to traditional optimization-based methods. Moreover,
we demonstrated the generalization capability of unrolled deep
learning compared to generic deep learning in applications with
data-limited regimes.

APPENDIX

In this section, we show that the D-SoS filter together with
a source satisfying non-vanishing spectral properties [12] will
follow the spark properties of Theorem 1. The impulse response
of the D-SoS filter considered in [12] is given as

h[m] =
∑
k∈K

ejkω0 m, 0 ≤ m ≤ Mh − 1, (26)

where |K| = 2L2 for sufficiency. With the D-SoS filter, the
entries of the matrix A(My+Mx−1,2Mx−1) for any source s0 ∈
R

Ms0 with Ms0
< Mh are given as

A[m, l] =
∑
k∈K

S0(e
jkω0) ejkω0(My+Mx+m−l−2), (27)

where S0(e
jω) is the discrete-time Fourier transform of s0 and

0 ≤ m ≤ Mh −My −Mx + 1, 0 ≤ l ≤ 2Mx − 1. The non-
vanishing spectral condition states that S0(e

jω) �= 0 for k ∈
K. Then by assuming that Mh ≥ My +Mx + |K|, the matrix
A(My +Mx − 1, 2Mx − 1) can be decomposed as

A(My +Mx − 1, 2Mx − 1) = V1diag(d{S0(kω0)}k∈K)V∗
2,

(28)

where entries of |K| length vector are consists of elements
in the set {S0(kω0)e

jkω0(My+Mx−2)}k∈K. The matrices V1 ∈
C

My−Mx−1×|K| and V2 ∈ C
2Mx−1×|K| are Vandermonde and

with their (m, k)-th element is ejkmω0 . As we discussed in the
proof of Theorem 1, the number of rows of A(My +Mx −
1, 2Mx − 1) should be greater than or equal to 2L2 for the spark
condition to hold in the sufficient part. Hence, the matrix V1 is
full column rank. In [12], it was assumed that S0(kω0) �= 0, k ∈
K which ensures that the matrix V1diag(d{S0(kω0)}k∈K) is
full rank. Hence, spark of matrix A(My +Mx − 1, 2Mx − 1)
should be equal to that of matrix V∗

2. Given that ω0 and K form
universal sampling pattern [12] an |K| columns of matrix V∗

2 are
linearly independent and hence the matrix has full spark [12].
Hence, Spark(A(My +Mx − 1, 2Mx − 1)) > 2L2.
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