Chapter 1

AI and Point Of Care Image Analysis For
COVID-19

Michael Roberts, Oz Frank, Shai Bagon, Yonina C. Eldar, and Carola-Bibiane
Schonlieb

Abstract Point-of-care imaging, including chest x-ray, computed tomography and
ultrasound have played a critical role in the response to COVID-19. Clinicians study
the patterns and changes in the images to make a likely diagnosis, assess a patients
clinical response and to predict likely outcomes. In this chapter we focus on the
application of artificial intelligence (AI) techniques to these imaging modalities and
discuss the contributions in the literature for diagnosis and prognostic models.

1.1 Introduction

Point of care image analysis for hospitalised patients remains a largely manual
process. Typically, in Europe and the US, when a patient suspected to have COVID-
19 is admitted to the hospital, a Chest X-Ray (CXR) is acquired and a reverse
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transcription polymerase chain reaction (RT-PCR) test is performed. This CXR
is then interpreted by radiologists and other clinicians who will identify particular
patterns which may indicate a likely initial diagnosis and prognosis. When the results
of the RT-PCR test are returned, it will replace, or confirm, this initial image-based
diagnosis. If the CXR or the patient display any particular complications then further
imaging, such as Computed Tomography (CT) or Ultrasound (US) can be requested,
which are then interpreted by clinical staff once more.

In a pandemic, when every resource in the hospital system is under strain, it is
imperative to make manual processes as efficient as possible to reduce the time for
decisions to be taken and actions made. Artificial Intelligence (AI) algorithms and
methods promise great potential for automating many routine tasks for clinicians
and thereby the promise to improve clinical care. This includes, but is not limited
to (a) identifying regions of pathology on images, (b) tracking disease burden in
longitudinal imaging and (c) measuring regions and volumes of interest.

As of 2021, we remain a long way from point of care imaging that is informed
by Al techniques being available routinely — although it feels tantalisingly close to
being a reality. The COVID-19 pandemic has highlighted how Al-based algorithms
could have a significant impact — if only they were available to call upon during the
height of the pandemic. In particular, if COVID-19 diagnosis were possible based on
e.g. an admission CXR, it would have been possible to triage patients immediately
to the “green" wards" of non-COVID-19 patients and the “red" wards of COVID-19
cases. Unfortunately, when RT-PCR testing capacity was restricted, clinicians would
wait anything from 24-48 hours for a positive or negative result to be returned. This
led to inevitable cross-infection and even more extreme stress on the health system.

Similarly, prognostication for COVID- 19 patients using Al-based methods has the
promise to provide huge improvement in clinical care and allow for better resource
management. Examples of prognostication tasks are: (a) prediction of ventilation
requirement and the level of ventilation required, (b) prediction of response to
treatments (such as Dexamethasone) and the ideal time to administer for optimal
response, (c) prediction of the patients that will experience acute respiratory distress
syndrome (ARDS).

In this Chapter we focus on the reality, rather than the promise, of how Al was
applied to point of care imaging (CXR, CT and US) in the COVID-19 pandemic.
We will review each imaging modality separately and highlight models described
in the literature along with common themes, pitfalls and recommendations for how
future models can be developed following best practice. We conclude this chapter
by providing some success stories and reasons for optimism, highlight some of the
dangers of developing models which do not perform as expected along with lessons
learned from this pandemic that we can take forward to be better prepared for the
next one.
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1.1.1 Motivation for using imaging

As the COVID-19 pandemic swept through China in early 2020, chest imaging
was used locally as the primary initial diagnostic tool. Meanwhile, European and
American radiological societies did not initially support the use of CT and CXR
imaging for diagnosis in early March 2020 [1, 2] with the ACR stating

CT should not be used to screen for or as a first-line test to diagnose COVID-19

but this position softened towards the end of March as the pandemic took hold and
testing capacity was limited with an update in late March 2020 stating

The ACR strongly urges caution in taking this approach [...] Clearly, locally constrained
resources may be a factor in such decision making.

Several studies also indicate that, in addition to imaging being a potential diagnos-
tic tool, it also encodes prognostic information about the disease. For example, the
extent of opacification in the lungs of COVID-19 patients is a significant prognostic
marker of mortality [3].

Fig. 1.1, courtesy of [6], displays common presentations of COVID-19 in CT
scans and CXRs. In both the CXR and CT imaging we see ground-glass opacities in
the regions affected by COVID-19, with the CT scans showing a crazy-paving style
pattern inside those ground-glass opacities.

Fig. 1.1 Annotated examples of COVID-19 scans. (a) Chest X-ray (CXR) with ground-glass
opacification in both lungs and consolidation (outlined in orange). (b) A CT scan that shows
ground-glass opacification (green) and consolidation (orange). (c) A CT scan that indicates severe
COVID-19 with a crazy-paving pattern. Images from the NCCID [4], and inset from [5].
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1.1.2 Motivation for using AI with imaging

The ground-glass opacification of the lungs with a ‘crazy-paving’ pattern seen in CT
scans for COVID-19 patients motivates the idea that pattern recognition algorithms
hold the potential to aid clinicians in the diagnosis and prognostication of COVID-19
via chest imaging [7].

The COVID-19 pandemic is the first of the machine learning era and, given recent
developments in the application of machine learning models to medical imaging
problems [7, 9, 25, 26], there is fantastic promise for applying machine learning
methods to COVID-19 radiological imaging for improving the accuracy of diagnosis,
compared to the gold-standard RT-PCR, whilst also providing valuable insight for
prognostication of patient outcomes. These models have the potential to exploit the
large amount of multi-modal data collected from patients and could, if successful,
transform detection, diagnosis, and triage of patients with suspected COVID-19. One
model of huge potential utility is a model which can not only distinguish COVID-
19 from non-COVID-19 patients but also discern alternative types of pneumonia
such as those of bacterial or other viral aetiologies. For prognostication, it would is
desirable to develop models that predict responses to therapies and clinical pathways
for patients. This would allow for resource forecasting, patient triage and ultimately
improved care.

1.1.3 Integration of imaging with other modalities

In developing machine learning models for COVID-19 the model input can be from
a variety of sources, including but not limited to electronic health record records,
full blood count data, chest imaging, audio recording of coughs, symptom diaries,
genetics, and more. A single patient will have data recorded about them in several
modalities and at different levels of granularity. We aim to demonstrate why it
is important to combine/fuse data from multiple sources to get models that make
predictions using holistic understanding of the patient’s condition.

In late February 2020, the Diamond Princess cruise ship had the largest cluster
of positive COVID-19 cases outside of China. A study of 104 of these COVID-19-
positive patients found that 73% (76 out of 104) were asymptomatic. However, 54%
(41 out of 76) of these asymptomatic individuals displayed lung opacities on their
CT scans. The converse was also true, as roughly 21.5% (6 out of 28) of symptomatic
patients had normal CT findings [10]. Imaging features alone are clearly not sufficient
for accurate diagnosis and neither are the clinical features alone enough to understand
the degree of disease in a patient.

It is also important to recognise that clinicians routinely use multiple data sources
to develop their judgment for a patient’s likely diagnosis and their likely clinical
outcome. However, although it is simple for the clinician to do this, fusing multi-
modal data is not trivial in a machine learning framework.
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1.1.4 Literature Overview

There are a huge number of papers which discuss machine learning models for
COVID-19 diagnosis or prognosis using point of care imaging. Indeed, for 2020
and 2021, a basic search of Arxiv, BioRxiv, MedRxiv and Pubmed for papers which
mention machine/deep learning and COVID-19 and CT/CXR/US imaging returns
848 results with 294 of these being preprints. The three journals publishing the most
papers on the subject were Scientific Reports (17), IEEE Journal of Biomedical and
Health Informatics (16) and PLoS ONE (14).

In keeping with this large corpus of literature and the fast moving nature of the
pandemic, there have also been many systematic reviews, 27 in total with 16 of them
published. The systematic reviews most relevant to this Chapter are [13, 17, 14, 15,
12,16, 8, 11, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35].

Several of the authors of this chapter performed the systematic review [8] which
examines the entire literature from January 1, 2020 to October 3, 2020 and identifies
320 published and preprint manuscripts that develop machine learning models using
chest CT or radiographs for COVID-19 diagnosis or prognostication. Unfortunately,
as we will discuss throughout this Chapter, many of the papers contained systematic
issues pertaining to image sourcing, quality, and documentation that introduce bias
in developed models, ultimately making them unlikely to perform well in practice
[6].

In our search of the literature, we found that 637/848 (75.1%) of papers mention
diagnosis, detection, diagnostics, screening, recognition, discrimination, identifica-
tion or classification of COVID-19 in the title of the manuscript whilst only 94/848
(11.1%) consider prognostication (17 papers consider both). For completion, the re-
maining papers are 59/848 (7.0%) which design segmentation models for COVID-19
patterns in imaging (15 of which also perform diagnosis) and the remaining 82 papers
are literature reviews, introduce new COVID-19 datasets or discuss methodologies
such as image reconstruction or denoising.

This significant bias towards the development of diagnosis models is understand-
able as at the start of the pandemic there was a hunger for a solution to the slow
processing of RT-PCR tests globally (typically 24-48 hours) which would allow for
rapid triage of patients into isolation if needed. COVID-19 imaging and clinical data
was also scarce and precious at the start of the pandemic, where non-COVID-19 data
was relatively plentiful, and it was therefore easier to develop methods which aim
to detect the COVID-19 data among a sea of other data. Prognostic models require
well curated data, with imaging linked to standardised outcomes which is harder to
collect. This is a challenge with Al methods, which rely on large, diverse data sets,
in order to succeed.

While Xray and CT are commonly used during the treatment of respiratory con-
ditions, lung ultrasound (LUS) is not an obvious choice due to the unique acoustical
properties of the lungs. We argue that despite its challenging properties LUS can
and should be considered as a point-of-care modality, and further show how Al can
assist in achieving this goal. In the rest of the chapter, we discuss Al methods for
Xray, CT and ultrasound imaging, respectively.
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1.2 Chest X-Ray Imaging

In Europe, the US and most countries of the world chest X-ray imaging is used as
the first-line imaging given to any COVID-19 patient once they enter the hospital.
Chest X-rays are fast to acquire and relatively low cost, so a patient is highly likely to
have several in a normal admission. Early into the pandemic, when RT-PCR results
were commonly only returned 24 hours or more after the sample was taken, the CXR
images were used in combination with clincal symptoms to make a likely diagnosis
of the patients. In addition to the initial diagnosis of patients, CXRs can be used to
determine a prognosis for the patient based on location and extent of the ground-
glass opacities and consolidation in the lungs. In this section, we discuss many of
the approaches taken to diagnosis and prognosis of COVID-19 using CXR images
along with specific focus on those which use longitudinal imaging in their models
and fuse data from non-imaging modalities into their input features. We conclude by
highlighting many of the issues that are common across the literature.

1.2.1 Diagnosis Models

Machine learning models for the diagnosis of COVID-19 using CXR imaging and
tend to pose the problem as either a two class problem of COVID-19 vs. Non-
COVID-19 or a more complex multi-class problem, such as COVID-19 vs. bacterial
pneumonia vs. other viral pneumonia vs. healthy. The latter is more nuanced as it
requires careful definition and identification of the non-COVID-19 classes to which
the model is likely to be applied in practice whereas a two-class model collates all the
non-COVID-19 data into one class. Most papers classify images into the three classes
COVID-19, non-COVID-19 pneumonia and normal while several consider an extra
class by dividing non-COVID-19 pneumonia into viral and bacterial pneumonia.

Commonly, the CXR images are pre-processed by segmenting the lungs to remove
biases in the images, such as labels imprinted on the image, and artefacts around the
border of the CXR. In [27], the authors consider a segmentation path input together
with the image itself, and show that this enhances performance. They also introduce
further pre-processing techniques based on augmentations inspired by clinical input
which further improves detection performance.

Most papers directly apply deep learning methodologies to the question of di-
agnosis. Simply using the images and associated labels to train networks which
learn their own features. For this, most authors chose to use transfer learning, taking
models trained on existing CXR datasets such as CheXpert and fine-tuning them to
the COVID-19 data. Most papers use off-the-shelf network architectures based on
the root model being used for transfer learning, including ResNet-18 or ResNet-50,
DenseNet-121, VGG-16 or VGG-19, Inception and EfficientNet. Few papers develop
their own custom architectures. ResNet and DenseNet architectures reported better
performance than the others, with accuracies ranging from 0-88 to 0-99. However,
we caution against direct comparison since the papers use different training and test-
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ing settings (e.g. different datasets and data partition sizes) and consider a different
number of classes.

Some papers use a more traditional approach, extracting hand engineered features
from the images and linking these to the outcomes by fitting a machine learning
model, such as a random forest or neural network.

1.2.2 Prognosis Models

As discussed, the literature for machine learning algorithms that prognosticate for
COVID-19 patients is small compared to diagnostic algorithms. This is due to
difficulty in identifying, anonymising and extracting datasets of images and clinical
outcomes which are linked to one another and of high quality.

Outcomes which are typically predicted by these models are those such as: death
or need for ventilation, a need for ICU admission, progression to acute respiratory
distress syndrome, the length of hospital stay, likelihood of conversion to severe
disease and the extent of lung infection.

Predictors from radiological data were extracted using either handcrafted radiomic
features or deep learning. Clinical data included basic observations, serology and
comorbidities. Most papers used models based on a multivariate Cox proportional
hazards model, logistic regression, linear regression, random forest or compare a
huge variety of machine learning models such as tree-based methods, support vector
machines, neural networks and nearest neighbour clustering.

1.2.3 Use of longitudinal imaging

As CXR imaging is the most common imaging modality for POC in Europe, the
USA and most countries of the world, it is common for patients to have multiple
images captured in a single hospital stay. If a model is able to read in several images
in sequence for a patient then it is possible to capture the changes in features of
the disease as it progresses and this should allow for more accurate prediction of
their outcomes. This approach introduces some methodological challenges, such as:
images acquired on different machines and of different quality, images acquired at
non-equidistant intervals and that the baseline images for all patients will be acquired
at different stages of their disease depending on when they presented to hospital.

In the literature, there are several examples of papers which consider longitudinal
CXR imaging for COVID-19 prognostication, in particular [36, 37]. These papers
employ different techniques to fuse the features extracted from the longitudinal
images. In [36], the authors use a self-supervised approach using momentum and
contrastive learning (MoCo) [XXX] to train a feature extractor for the CXR images.
This feature extractor is applied to each image in the sequence and the relative time
of the image acquistion is concatenated to the resulting feature vector. Therefore, for



8 Michael Roberts, Oz Frank et al.

each image we have one feature vector which encodes the image features and the
relative timing. After this, a Transformer [XXX] is applied to the sequence of feature
vectors from all of the images and classification is made for whether an adverse event
(death, ICU admission or intubation) takes place within 24, 48, 72 or 96 hours of the
CXR.

In [37], the authors use a Cox proportional hazards model to predict the proba-
bility of experiencing death, ICU admission, ICU discharge, hospital admission and
hospital discharge before the observing time ¢. They extract features from the images
using a convolutional LSTM, concatenate them and use fully connected layers to
obtain a risk score.

The literature consistently suggests that using multiple CXR images gives better
model performance than using a single time point.

1.2.4 Fusion with other data modalities

Very few papers discuss models which integrate both radiological and clinical data for
COVID-19 diagnosis and prognostication. Fusing data of these different modalities
is a particular challenge, as these data are of different types and dimensionalities.
In particular, clinical data tend to be vectors or tables of features for each patient,
potentially with multiple time points per patient. Imaging is not only extremely
high-dimensional, with millions of pixels in a normal CXR, but there are also spatial
relationships between pixels and structures in the image to consider. Methodologies
for fusing this data of different modalities (which is also potentially longitudinal) are
being actively studied in the literature [39].

There are some examples in the literature, such as [41, 38], which combine CXR
imaging features with clinical data in a machine learning model to predict outcomes
for COVID-19 patients. In both cases, these papers state that incorporation of clinical
data, in addition to imaging features, improved the performance of the model. The
papers take very different approaches to fusing the different modalities.

In [41], the authors manually graded severity of the disease in different zones of
the CXR and use these hand-engineered features in combination with the clinical
data in a variety of machine learning models (support vector machines, random
forest, linear regression and XGBoost). They find that the model developed using a
combination of the CXR and clinical features performs better than those developed
using only the CXR and clinical features. In [38], the authors use a convolutional
neural network to extract the features from the CXR imaging and fuse the clinical
data into the final fully connected layer by concatenation. They similarly find that a
model developed using the fusion of imaging and clinical data is better than those
developed on the modalities separately.
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1.2.5 Common issues with AI and Chest X-Ray imaging

With no standardisation, Al algorithms for COVID-19 have been developed with
a very broad range of applications, data collection procedures and performance
assessment metrics. This creates various challenges such as (i) bias in small data
sets; (ii) variability of large internationally-sourced data sets; (iii) poor integration
of multi-stream data, particularly imaging data; (iv) difficulty of the task of prog-
nostication, and (v) necessity for clinicians and data analysts to work side-by-side
to ensure the developed Al algorithms are clinically relevant and implementable
into routine clinical care. Since the pandemic began in early 2020, researchers have
answered the ‘call to arms’ and numerous machine learning models for diagnosis
and prognosis of COVID-19 using radiological imaging have been developed and
hundreds of manuscripts have been written.

In this section, we highlight some of the key systemic issues found in [8] and
other systematic reviews.

Duplication and quality issues.

Many papers rely on public COVID-19 datasets, such as [42, 43,44, 45, 46]. However,
there is no restriction for a contributor to upload COVID-19 images to many of these
public repositories. There is high likelihood of duplication of images across these
sources and no assurance that the cases included in these datasets are confirmed
COVID-19 cases (authors take a great leap to assume this is true) so great care must
be taken when combining datasets from different public repositories. Also, most
of the images have been pre-processed and compressed into non-DICOM formats
leading to a loss in quality and a lack of consistency/comparability.

Source issues.

In the literature, many papers use the pneumonia dataset of Kermany et al. [9]
as a control (i.e. non-COVID-19) group. However, they commonly fail to mention
that this consists of paediatric patients aged between one and five. Developing a
model using adult COVID-19 patients and very young pneumonia patients is likely
to overperform as it is merely detecting children vs. adults. This dataset is also
erroneously referred to as the Mooney dataset in many papers (being the Kermany
dataset deployed on Kaggle [47]).

Another significant source issue identified in the systematic reviews of the lit-
erature is that data of different classes tend to come from different sources, e.g.
RSNA [48] contains only non-COVID-19 pneumonia CXRs, Kermany [9] contains
paediatric non-COVID-19 pneumonia CXRs and CheXpert [49] contains CXRs for
a range of non-COVID-19 lung diseases. The issue here arises when a machine
learning model learns the source of the data rather than imaging features unique to
the diseases of interest.
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It is demonstrated by Maguolo et al. [50] that by excluding the lung region
entirely, the authors could identify the source of the images in the Cohen et al.
[42] and Kermany et al. [9] datasets with an AUC between 0.9210 to 0.9997 and
‘diagnose’ COVID-19 with an AUC=0.68.

Frankenstein datasets.

The previously discussed issues of duplication and sourcing of data become com-
pounded when public ‘Frankenstein’ datasets are used. These are datasets assembled
from other datasets and redistributed under a new name. For instance, one dataset
[51] combines several other datasets [44, 42, 9] without realising that one of the
component datasets [42] already contains another component [44]. This repack-
aging of datasets, although pragmatic, inevitably leads to problems with authors
developing algorithms (in good faith) which are being trained and tested on identical
or overlapping datasets which they believed to be from distinct sources.

Implicit biases in the source data.

Images uploaded to a public repository and those extracted from publications [42] are
likely to have implicit biases due to the contribution source. For example, it is likely
that more interesting, unusual or severe cases of COVID-19 appear in publications.

The urgency of the pandemic led to many studies using datasets that contain
obvious biases or are not representative of the target population, e.g. paediatric
patients. Before evaluating a model, it is crucial that authors report the demographic
statistics for their datasets, including age and sex distributions. Diagnostic studies
commonly compare their models’ performance to that of RT-PCR. However, as the
ground-truth labels are often determined by RT-PCR, there is no way to measure
whether a model outperforms RT-PCR from accuracy, sensitivity, or specificity
metrics alone. Ideally, models should aim to match clinicians using all available
clinical and radiomic data, or to aid them in decision making.

Artificial limitations due to transfer learning.

Many papers utilise transfer learning in developing their model, which assumes an
inherent benefit to performance. However, it is unclear whether transfer learning
offers significant performance benefit due to the over-parametrisation of the models
[52]. Many publications used the same resolutions such as 224-by-224 or 256-by-256
for training, which are often used for ImageNet classification, indicating that the pre-
trained model dictated the image rescaling used rather than clinical judgement. This
is particularly hard to justify, given that the features which differentiate COVID-19
pnuemonia from other diseases are likely subtle and not appreciable at such coarse
resolutions.
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1.3 Computed Tomography Imaging

Computed Tomography (CT) images are far more resource intensive to acquire
and analyse than CXR imaging. This is due to the high relative cost of machines,
requirement for cleaning between patients, technicians to maintain the equipment
and the high level of skill required for their analysis. The acquisition of a scan also
exposes a patient to a high dose of radiation. Therefore, in many parts of the world,
CT scans were reserved for the most complex clinical COVID-19 cases after an initial
CXR. However, in China and Russia, CT was used as a first line imaging modality
for COVID-19 patients.

There are fewer papers in the literature which focus on CT imaging, however there
are a sizeable number. Just as the pandemic was starting to take hold in Europe in
March 2020, its effects were starting to ease in China. As a consequence, many of the
earliest papers were describing models developed using Chinese data and focused
specifically on CT imaging.

1.3.1 Diagnosis Models

Diagnosis of COVID-19 from a CT scan is most relevant and useful for those
countries in which CT scans are used as a first-line imaging modality. In countries
which use CXR as first-line, a CT scan is used to assess more complex clinical
disease but less for diagnosis of disease. Countries which use CT as a first-line
modality will also have more CT scans for COVID-19 cases of mild disease, when
it is most useful to accurately diagnose COVID-19 to allow for triage and isolation.

The majority of the papers in the literature apply deep learning directly to the CT
diagnosis problem and frame it as a classification task, distinguishing COVID-19
from other lung pathologies such as (viral or bacterial) pneumonia, interstitial lung
disease and/or a non-COVID-19 class.

In most of these papers, authors consider isolated 2D slices or even 2D patches
taken from the 3D volume. This is usually due to computational and storage con-
straints, as each CT image is typically between 200MB and 500MB and tens or
hundreds of millions of voxels. In most 2D models, authors employed transfer learn-
ing, with networks pre-trained on ImageNet [53]. Almost all models used lung
segmentation as a pre-processing step.

Recognising that there was a relatively small cohort of COVID-19 CT scan data
available early in the pandemic, some authors e.g. [55] use Generative Adversarial
Network (GAN) [54] approach to create synthetic COVID-19 imaging.

Outside of deep learning based models, other papers in the literature considered
more traditional machine learning methods for COVID-19 diagnosis relying on
hand-engineered features or CNN-extracted features. Software such as PyRadiomics
[XXX] was commonly used to extract a large number of radiomic features from
delineated regions in the CT scans and, after feature reduction, a classifier was fit to
the remaining features, with most authors using logistic regression.
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The performance of models in the literature is highly variable and optimistic with
many reporting AUC, sensitivity and specificity values over 0.95. For reference, the
gold standard RT-PCR test has a sensitivity of around 80% [XXX].

1.3.2 Prognosis Models

The literature for prognostic models using CT imaging, as with CXR imaging,
is relatively small compared to the diagnostic models but approaches have been
developed using similar models and features. There is a bias for prognostic models
to focus on CT imaging rather than CXR.

As for CXR, models were developed for predicting severity of outcomes includ-
ing: death or need for ventilation, a need for ICU admission, progression to acute
respiratory distress syndrome, the length of hospital stay, likelihood of conversion to
severe disease and the extent of lung infection. The features are either handcrafted
radiomic features or learned features extracted from a CNN. Most papers fit models
based on a multivariate Cox proportional hazards model, logistic regression, linear
regression, random forest or compare a huge variety of machine learning models
such as tree-based methods, support vector machines, neural networks and nearest
neighbour clustering.

1.3.3 Applications to regions away from the lungs

In the literature, almost all papers for CT prognosis and diagnosis of COVID-19
focus on either the full CT scan or the segmented lungs and use these as inputs to the
models. However, this ignores many of the other important structures of the body
which can be captured in a CT scan.

Most importantly, as poor cardiovascular health one of the largest risk factors for
a poor outcome for COVID-19 patients [56], it is highly relevant to consider the
heart features in CT images for prognostic models. For example, identifying and
quantifying atherosclerosis, tracking changes in the features of the heart through the
course of disease and quantifying the extent and volume of epicardial adipose tissue
(EAT), i.e. fat around the heart.

In [57], for example, the authors use a semi-automated tool to quantify the EAT
around the heart tissue in CT scans for COVID-19 patients and find that there is a link
between EAT and the burden of the COVID-19 pneumonia in the lung (ground-glass
opacities and consolidation).

In [62], the authors find a higher prevalence of pulmonary embolisms (PEs) in
COVID-19 patients and in [63] the authors discuss a deep learning algorithm for
identifying PEs. Further study of the vascular structure could also be performed
along with a study of changes in morphology and how these link to outcomes.
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In the literature considering lung diseases and imaging, airway features have been
postulated as markers of disease progression [58, 59]. Not only can one consider
the diameter changes and total volume features, but the overall morphology of this
complex structure can also be considered and changes monitored. There is not
currently existing literature exploring this.

Finally, we also mention that as obesity is known to be a risk factor for poor
COVID-19 outcomes [56], it is not unreasonable to consider the features of the
liver if an abdominal CT is acquired alongside the thoracic CT. Hepatic steatosis
is an accumulation of fat inside the liver, which is closely linked to obesity, that is
found to be of higher prevalence in COVID-19 patients [60]. It is unexplored whether
features of this fatty tissue, and the liver as a whole could harbour prognostic imaging
features.

1.3.4 Use of longitudinal imaging

Acquisition of CT imaging requires exposing the patient to a non-trivial amount
of radiation and therefore CT imaging for COVID-19 is only recommended when
clinically necessary in the case of seriously ill patients [64] or where the patient
condition is worse than would be expected based on the CXR. In our search of the
literature, no papers were found which discussed using longitudinal CT imaging and
machine learning models. This is potentially due to the fact that the added value
of using multiple CT scans to monitor COVID-19 pneumonia has been questioned
[61, 65] and found to be of little contribution. Therefore, CTs are not used for routine
disease monitoring, and the population will be highly biased. This contrasts with the
use of CXR for routine disease monitoring.

Therefore, the patient population with multiple scans is a highly biased cohort with
changing serious illness and it is hard to build predictive models which generalise
using this.

1.3.5 Fusion with other data modalities

Fusing CT imaging features from another modality is particularly challenging as CT
imaging is extremely high-dimensional, commonly with 50-100 million voxels or
more. Therefore, to allow for fusion with much lower dimensional data e.g. clinical
variables, feature extraction is typically applied to the CT images by calculation of
hand-engineered features or use of a CNN to extract learned features. These lower
dimensional radiomic features can be easily combined with the lower dimensional
clinical data e.g. by concatenation.

In [68], the authors use a convolutional neural network to extract the features
from the CT image and encode the symptoms by convolution. These image features
are then combined with the encoded clinical features by multiplication and the
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result is concatenated with the image features. This is then passed through several
convolutional layers before a prediction is made.

In [40], the authors use a semi-automated algorithm to segment the lung
parenchyma into lobes and then threshold to identify the tissue unaffected by ground-
glass opacities (GGO) or consolidation. Two radiologists also graded the images for
severity. The authors then. build a model using both imaging derived and clinical
features, finding that a model using C-reactive protein (an inflammatory marker)
along with the imaging features performed better than imaging features alone.

In [66], the authors train a deep learning based segmentation algorithm for GGO
and consolidation patterns in CT scans. They fit a model combining radiomic features
from these extracted regions with the clinical metadata. This results in a significant
boost in performance over using the imaging features alone, increasing the AUC
from 0.811 to 0.878.

1.3.6 Common issues with AT and Computed Tomography imaging

Computed Tomography (CT) imaging is a common 3D imaging modality which is
typically used for more complex clinical diagnoses due to the high-resolution of the
images, a typical voxel in the images is 0.7mm x 0.7mm x 1.0mm. A CT image
is reconstructed from 2D X-ray projections and there is no standard algorithm for
performing this reconstruction, therefore the images from different scanners can
appear quite different qualitatively. Radiomic features extracted from CT images are
known to be sensitive to the reconstruction that is used [69].

CT images are commonly enhanced by adding contrast that absorbs X-rays and
is added to exaggerate the difference in intensity between adjacent tissues. There-
fore, with intensities vastly different between enhanced and non-enhanced images,
radiomic features developed for one are unlikely be applicable to the other. Authors
must be clear in manuscripts whether enhanced, non-enhanced or a mixture of these
are used to train the models (and in what proportions they occur if the latter).

During the COVID-19 pandemic, CT was used in Europe in the more complex
cases of COVID-19 where a patient was likely to benefit from it. Therefore, there is
an inherent bias in the population of patients who underwent CT screening as they
must be ill enough to justify its use (not mild disease) but not so ill that they are
ineligible for a CT scan. Also, in the UK and elsewhere, each time a COVID-19
patient used a CT scanner, the machine and the room required a deep clean for 1-2
hours which limited the capacity of hospitals to perform CT scans on COVID-19
patients and hence there is a bias in the data due to this.

CT was used more commonly as a first line imaging modality in China and
Russia. Therefore, there are many cases of mild disease within datasets from China
and Russia.
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1.4 Ultrasound Imaging

The diagnosis and treatment of respiratory diseases rely on the use of various imaging
modalities. Chest CT is considered the imaging gold standard for pulmonary diseases,
as described in Section 1.3; however, it is expensive and non-portable. Another
standard imaging modality utilized to investigate the lung is chest X-ray, which
is discussed at length in Section 1.2. Both modalities involve ionizing radiations,
which are potentially harmful to the patient. This is particularly significant for
specific patient populations such as children, pregnant women, and patients who
require repeated examinations over a short period of time. Moreover, CT is generally
not available in every hospital nor applicable at bedside, thus requiring patients’
mobility. When dealing with a highly infectious disease, this last aspect further
increases the risk of contamination within the hospital. Compared to these imaging
technologies, ultrasound imaging is safe, cost-effective, more widely available, and
transportable, thus has the potential of reaching a much larger population, including
non-hospitalized patients. More importantly, there is growing evidence showing that
lung ultrasound (LUS) can be used effectively as an imaging modality for pulmonary
diseases (e.g., [83, 84, 85, 86, 87]).

However, despite all its advantages LUS has not yet taken a major role in point-
of-care protocols. One of the reasons hindering wide-spread use of LUS is the
difficulty in interpreting it, which is more challenging compared to other imaging
modalities, and even with respect to ultrasonography of other organs. Lungs pose a
unique challenge for ultrasound as, normally, ultrasound waves are not transmitted
through anatomic structures filled with gas. Consequently, the lung parenchyma is
not visible beyond the pleura [83]. This phenomenon is shown in Fig. 1.2: While for
other organs (left) ultrasound provides detailed visualizations of the organs, when
it comes to the lungs (right) the ultrasound waves are not transmitted through the
aerated alveoli and thus no anatomical structure below the pleura is visible in LUS.

(a) US of the abdomen (b) Lung Ultrasound

Fig. 1.2 The challenge of lung Ultrasound (LUS): (a) An ultrasound image of the abdomen, showing
the liver and one of the kidneys®. (b) A LUS frame showing the pleural line as a bright white curve
in the middle of the frame. The entire lung cavity below the pleura is not visible and shows only
fog-like noise.

< image credit quizlet.com/262841714/liverkidney-interface-diagram
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Another key difference between ultrasound and other imaging modalities is the
narrow field of view provided by ultrasound. While X-ray and CT can image entire
organs and anatomical structures, ultrasound provides only a partial and superficial
field of view. As a result, protocols for examining large organs, such as the lungs,
require scanning each patient at multiple points, to ensure a complete scan of the
organ in question. For LUS protocols vary from, e.g., 6 points [88] to 14 points [86,
89].

What can be observed in LUS

Despite the limitations of LUS, it has been observed that although the visual signal
below the pleura fails to show any anatomical structures, it still holds valuable clinical
information in the shape of the sonographic artifacts visible in the frame. Fig. 1.3
exemplifies some of these sonographic artifacts.

For example, in normal aerated lung, A-lines, hyperechoic, horizontal lines arising
at regular intervals from the pleural line can be seen. Fig. 1.3(a) shows an example
of A-lines indicated by a blue arrow. A-lines are reverberation artifacts that arise
when the ultrasound beam reflects off of the pleura, instead of being absorbed or
transmitted through the aerated lung cavity below it. Multiple reverberations result
in multiple A-lines, at multiples of the pleural depth. Observing these horizontal
A-lines in LUS indicates a well aerated healthy lung.

A different sonographic artifact are vertical B-lines, indicated by yellow arrows
in Fig. 1.3(b). According to recent developments in LUS [90, 91], vertical artifacts
are sonographic signs caused by complex interaction of the multiple scattering
phenomena that may form in the presence of an alteration occurring at the lung
surface. When forming the LUS frame, the ultrasound signals produced by multiple
scattering events, in case of resonance phenomena, are interpreted as a bright vertical

=
=
=

(a) LUS taken using a linear probe. (b) LUS taken using a convex probe.

Fig. 1.3 Examples illustrating what can be observed in LUS using either a linear or convex probe.
(a) The scan shows the pleural line (green) and a sequence of horizontal bright A-lines below it
(blue). (b) The scan shows the pleural line (green) with some consolidations (red). Several vertical
B-lines are visible under the pleural line (yellow). Figure taken from [117].
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line emitting from the pleural line and aligned along the ultrasound beam axis [92].
That is, observing B-lines in LUS indicates the presence of fluids just below the
pleura. This is, in general, an indication of some pathological condition. The more
B-lines observed in a scan or, the wider they are, the more severe is the patient’s
condition.

Although LUS only shows sonographic artifacts and no anatomical structure
below the pleural line, LUS can still be used to inspect the pleural line itself. In healthy
patients a smooth and continuous pleural line, as shown in Fig. 1.3(a), is usually
observed. In contrast, when there are pleural effusions or pulmonary consolidations
the pleural line is observed as irregular and discontinuous, as indicated by a red
arrow in Fig. 1.3(b). Based on these observations, it has been sown that LUS can
still be very beneficial clinically. For example, [83] showed how LUS can be used
for diagnosing the main lung pathologic entities in patients with ARDS, replacing
bedside CXR. More recently, the papers [88, 94] demonstrate that LUS may be used
to guide COVID-19 patients’ management strategies, as well as resource allocation.

To conclude, its widespread availability and safety are putting LUS in a position to
take a more substantial role as a POC modality. The main challenge hindering its use
is the difficulty in interpreting the acquired frames, inferring the underlying invisible
condition indirectly from the visible sonographic artifacts. This usually requires well-
trained and highly specialized radiologists. Nevertheless, recent advancements in Al
techniques may assist in bridging the gap by processing and analyzing LUS frames,
allowing even novice and inexperienced clinicians to benefit from this ubiquitous
POC modality.

1.4.1 Models Assisting in Interpreting LUS

Correctly identifying sonographic artifacts, such as A-lines and B-lines, and correctly
locating the pleural line is of great importance when one wishes to evaluate a patient’s
condition from LUS scans. Consequently, several algorithms were developed to
detect, segment, and classify these unique LUS features [95, 96, 97, 92], highlighting
them to assist clinicians in interpreting LUS scans. Yet, for some of these methods,
identifying LUS features is not the end goal but an intermediate stage towards
achieving more complicated tasks such as prognosis or diagnosis.

Some algorithms for locating LUS features take advantage of the unique geo-
metric properties of the pleural line, the A- and B- lines and use methods such
as Radon-transform [98, 99], dynamic programming [100] or morphological op-
erations [101, 102] to locate them. In contrast, more advanced Al methods rely
on training data to accomplish these tasks. These methods range from supervised
methods [103, 104, 105, 92], to semi-supervised frameworks [104, 106]. These
approaches train deep neural networks for either object detection or semantic seg-
mentation to directly infer the location of the various LUS features. Alternatively,
[106] proposes to use gradient-weight class-activation mapping (grad-CAM) [107]
on top of a classification network to identify regions of interest in LUS frames.
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Ultimately, these approaches automatically highlights the pleural or the A- and
B- lines for the clinician during her bed-side examination of the patient, allowing
even for a non-expert to benefit from POC LUS modality.

1.4.2 Diagnosis Models

Al can benefit POC LUS beyond just improving human interpretability of the scans.
Like in X-ray and CT, Al tools can be used to assist in making differential diagnosis
decisions based on LUS. The ultimate goal of these Al tools is assisting in diagnosing
a patient. This task requires integrating information from several LUS scanning
points around the chest, each comprised of many LUS frames. However, most current
Al algorithms focus on a less ambitious goal: analyzing only a single LUS frame
at a time, leaving the task of integrating the predictions over a sequence of frames
and multiple scan points to future works. We focus the discussion in this section
and the next one on Al algorithms designed to perform per-frame predictions. In
Section 1.4.4 we cover approaches for integrating these per-frame predictions.

To facilitate training of AI models for the task of differential diagnosis of various
pulmonary conditions based on LUS, Born ef al. [108] curated the POCUS dataset.
This dataset contains LUS records from mainly 3 different classes, COVID-19,
bacterial pneumonia and healthy patients. They gathered LUS scans from different
online sources and made it available online!. The dataset was constantly updated
between April 2020 and January 2021. By January 2021, the dataset contained LUS
recordings from 216 patients, where the majority of which acquired with convex
transducers and the rest with linear probes. Table 1.1 provides more details about
the latest version of the POCUS dataset.

Due to the limited number of LUS scans acquired using a linear probes, and
LUS scan of viral pneumonia, the majority of the works that used the POCUS
dataset focused only on LUS recordings acquired by convex probes and ignored
the non-COVID viral pneumonia [108, 109, 110, 111, 112]. These works focused

Table 1.1 Current POCUS dataset [108]: Number of videos and images per class and probe type.

Convex Linear
Vid. Img. Vid. Img.
COVID-19 64 18 6 4
Bacterial Pneu. 49 20 2 2
Viral Pneu. 3 - 3 -
Healthy 66 15 9 -
Total 182 53 20 6

1 https://github.com/jannisborn/covid19_ultrasound
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on developing deep neural networks for LUS frame classification: either classifying
each frame into the corresponding diagnosis or providing a binary decision if the
frame presents with COVID-19 associated markers or not. Similar to the CXR
literature, few papers develop their own custom architectures [112], while most opt
to do transfer learning based on existing trained models, from ResNet and Inception
backbones to the more efficient MobileNet [108, 109, 108, 113]. Others utilize those
models as feature extractors for support vector machine classifier or other classifiers
based on fully connected layers [111]. ResNet and Xception architectures reported
better performance than the others, with accuracies ranging from 0.83 to 0.99 for
frame based diagnosis tasks. However, we caution against direct comparison since
the papers not only used different versions of the POCUS dataset but also employed
different sampling rate for extracting frames from the dataset’s LUS videos.

1.4.3 Prognosis Models

In order to stratify COVID-19 patients using LUS, it has been proposed to score
LUS scans according to well-defined physiological findings. Similar scoring scales
were independently proposed by [114, 88], suggesting a 4-level scoring system with
scores ranging from 0 to 3. Score O indicates a healthy lung characterised by a
continuous pleural-line and visible A-lines artifacts. In contrast, score 1 indicates
first signs of abnormality mostly related to small alterations in the pleural-line, and
the appearance of few vertical artifacts. Scores 2 and 3 are representative of a more
advanced pathological state, with the presence of small or large consolidations,
respectively, and significant presence of vertical artifacts (B-lines and “white lung").
Fig. 1.4 shows example frames representative of each score.

In order to facilitate the development of Al systems to automatically score LUS
scans according to their clinical severity, Roy et al. [105] curated the Italian COVID-
19 Lung Ultrasound dataset (ICLUS)2. The ICLUS dataset contains 277 LUS videos
of 35 patients, from 5 different Italian medical centers with a total of approximately
60,000 frames acquired by convex and linear probes. All frames in the ICLUS dataset
were manually annotated into one of the four severity scores. See Table 1.2 for more
details. In addition, video level annotation as well as pixel level annotations for the
bio-markers indicative of each score, were provided for a subset of the data.

The ICLUS dataset give rise to several Al methods aiming at scoring LUS frames,
thus assisting in the prognosis of the disease. Roy et al. [105] utilized the ICLUS
dataset for frame-based, video-based and pixel-based severity score prediction. They
used a special neural architecture in order to achieve unified processing of LUS
frames obtained by either linear or convex probe. In contrast [92] showed that by
injecting domain knowledge into the inputs of standard image classification models,
following the model-based Al philosophy [93], one can still handle linear and convex
frames in a unified manner. They also achieved a boost in performance on two

2 https://iclus-web.bluetensor.ai/
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Table 1.2 ICLUS dataset: Number of LUS frames per severity score and probe type [105]

Convex Linear Total

Score =0 14,690 5,283 19,973
Score =1 11,131 3,164 14,295
Score =2 15,772 3,200 18,972
Score =3 3,967 1,717 6,335
Total 45,560 13,364 58,924

domain specific tasks: severity classification and segmentation. Specifically, they
injected LUS domain knowledge in the form of B-line and pleural line masks along
with the raw LUS frame. Another use of LUS features for prognosis purposes was
demonstrated in [100]. Localization of the pleural line was used for extraction of
hand-crafted features, such as discontinuities in the pleural line, which in turn were
used as an input for a support vector machine classifier of COVID-19 severity score.

A recent dataset comprised over 18,000 LUS frames, acquired by convex probes,
from 450 patients (COVID-19 and healthy) was gathered and used for frame based

Fig. 1.4 COVID-19 Severity scores. LUS frames exemplifying the severity score of [87] from
healthy (score=0, top left) to severe (score=3, bottom right). One can observe the pleural line ( ),
A-lines (blue), subpleural consolidations (red) and vertical artifacts (e.g., B-lines and “white lung")
( ). While the pleural line and consolidations are anatomical features, the A-lines and vertical
artifacts are sonographic echoes. Figure taken from [92].
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severity score prediction by [115]. The frames where annotated with the 4 scores
severity system proposed in [87] and with a new 7 scores severity system, which
gives extra weight to pleural line irregularities. Using Resnet-18 and Resnet-50 they
achieved F1 score of above 97% for both models and for both scoring systems.
However, this dataset was not made publicly available.

1.4.4 Use of longitudinal imaging

As explained at the beginning of this section, the ultrasound modality in general and
LUS, in particular, provides only a partial and limited field of view. Thus, in order
to have a complete and comprehensive assessment of the lungs, clinical studies
require 6 [88] to 14 scanning points [86, 89]. These multiple scanning points, in
turn, amounts to numerous LUS videos, each comprising hundreds of frames. This
is in contrast to other modalities in which each scan provides a comprehensive view
of the clinical condition. Therefore, when considering longitudinal imaging in the
context of LUS, one needs to account for more fundamental levels of information
aggregation: The first is accumulating predictions from individual LUS frames to
a coherent estimation of the clinical condition at each scanning point. The second
level of aggregation is combining the prediction of each scanning point to provide
a coherent forecast for the patient as a whole. We discuss these more fundamental
levels of longitudinal imaging in LUS next.

The lack of sufficient LUS videos in the available datasets forced most existing
Al methods to focus on frame-level predictions. If made, aggregation is done mainly
through naive averaging of the frames’ prediction. One exception was introduced
by [105], where a lightweight learned approach based on uninorms was used for
aggregation of frame-level predictions into video-level prediction showing better
performance compared to simple averaging.

The caveat of most current Al methods for LUS, of processing one LUS frame at a
time and then aggregating the predictions, is the discarding of temporal information
existing in the LUS video sequence. However, exploiting temporal information can
be very beneficial in analyzing LUS. Specifically, such information can be helpful
in the identification of B-lines due to their flickering nature induced by the motion
of the lungs during respiration. For that aim, the use of 3D convolutions, optical
flow [116] or long short-term memory (LSTM) layers [110] where the most common
approaches.

1.4.5 Common issues with AI and Ultrasound imaging

LUS is acquired using both convex and linear probes. An observation made by [117,
118] suggests that using both in automatic LUS analysis system can be problematic.
They noticed that although both anatomic structure and sonographic artifacts can
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be observed in both probes, the orientation of the sonographic artifacts changes
between probe type. While in a linear probe, B-lines appear “axis-aligned”, when
using a convex probe, B-lines appear “tilted” as if emitted from the focus point of
the probe. This difference has little effect on a human observer, but can be confusing
for an automatic LUS analysis system. This observation calls for making an explicit
adjustment to the various models, either by new neural architectures (e.g., [105, 117])
or by domain-specific pre-processing of the data (e.g., [92]) in order to make these
models suitable across probe types. Alternatively, developing dedicated Al systems
restricted to a single probe type hinders the use of other probe types’ available
training data.

Another issue arising in developing Al methods for LUS is the relatively small
amount of available training data. Existing datasets, [CLUS [105] and POCUS [108],
have only several thousands of LUS frames. When it comes to LUS videos, or indeed
multiple scans of patients, the numbers are significantly lower, in the range of only a
few hundreds at best. This quantity does not allow, at the moment, the development
of elaborated schemes for information integration over frames in a LUS video or
between different videos of the same patient. On the other hand, trying to enrich
the datasets by curating LUS data from publicly available sources may also be
problematic. LUS frames were available online long before the COVID-19 outbreak,
thus acquired by older US machines than the COVID-19 ones. As aresult, Al systems
trained to perform, e.g., diagnosis, on such data may learn to classify idiosyncrasies
related to LUS machines rather than actual clinical findings. This might be the case
with some of the results reported on the POCUS dataset.

To conclude this section, LUS has the potential of playing a more significant role as
a point-of-care modality. Currently, its interpretability is a challenge that allows only
expert clinicians to take advantage of LUS effectively. Al models can potentially
bridge the gap and make LUS more widely used. The COVID-19 pandemic has
drawn attention to this gap and initiated a surge in the development of relevant
Al techniques. These Al models are just starting to emerge; hence they tend to
be simplistic, working on single frames rather than aggregating information across
frames and scanning points to provide a more holistic prediction for each patient.
However, considering the ubiquity of the LUS modality vis-a-vis the difficulty and the
expertise needed to gain useful clinical information, it seems like Al can significantly
bridge this gap.

1.5 Conclusions

In this section we summarise findings made from the literature, including the success
stories of machine learning for the COVID-19 pandemic, the pitfalls which must be
given more focus along with the lessons learned and recommendations.
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1.5.1 Success Stories

The COVID-19 pandemic highlighted, in many ways, how unprepared the world
was to tackle and respond to a highly infectious virus. In particular, for the machine
learning and imaging communities, although we had a plethora of literature regard-
ing chest imaging and machine learning, we did not have a robust method to apply
to a new disease quickly, that could be validated rapidly. In addition to the modelling
issues, data acquisition was also difficult, with lengthy detailed ethics requests re-
quired for each hospital to obtain high quality data — along with commonly requiring
data extraction by the very same clinicians who are on the front line treating patients.
However, we highlight here several of the success stories of this pandemic which
serve to provide a blueprint for the next pandemic response.

Large, rapid dataset collection. Most imaging studies outside of COVID-19 are
hampered by having small datasets at different sites with images acquired on different
machines. This leads to many biases appearing in the development process. The
pandemic presented a unique opportunity to allow researchers to collate imaging data
at a scale and pace which is commonly not possible with large datasets assembled for
many different instruments. The UK’s National COVID-19 Chest Imaging Database
(NCCID) assembled by NHSX, the British Society of Thoracic Imaging (BSTI),
Royal Surrey NHS Foundation Trust and Faculty is a great example of an initiative
to collate data in a systematic way which machine learning researchers can use to
develop and validate their algorithms. The NCCID required only one umbrella ethics
submission for all centers involved and images were collated at a single center for
anonymisation and upload into the cloud. Crucially, the burden of the work fell on
non-clinical staff to manage the data collation — rightly keeping more clinicians on
the front line.

Managing expectations. The pandemic has highlighted areas which were lacking
focus in the machine learning for imaging community, namely how to rapidly learn
a new class of data from limited examples. It highlighted also how a short-circuit
exists in the research community, whereby access to biased public datasets and
widely accessible machine learning frameworks (e.g PyTorch, Tensorflow, Keras)
allowed a large number of researchers to simultaneously fit models fairly easily —
without appreciation for the clinical biases in the data, biases in their methodologies
and biases in how models had been evaluated. Through systematic reviews such as
[11, 8], the clinical and machine learning community is more aware of the issues
pervasive in the machine learning literature, in particular for COVID-19, and can
make a fairer assessment of the models being developed, keep their expectations
grounded in realty and allow them to ask informed questions.

Appreciation of the need to collaborate. Collaborations across disciplines allow
for one community to appreciate the others challenges and understand each others
limitations. During the COVID-19 pandemic this has been highlighted the tangi-
ble benefits of collaboration. Fundamentally, understanding the clinical pathway for
COVID-19 patients is critical to allow for development of high quality models to
diagnose and prognosticate for the disease. Understanding when and how ventilators
are adjusted, the criteria for patients to be admitted to the intensive care units, when
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and where CXR/CT and US imaging are requested and when followup imaging
is required are all essential to allow for appreciation of biases in the datasets and
methodologies used. Healthy collaborations allow these to be explored in detail and
for clinicians to appreciate the limitations of existing machine learning methodolo-
gies.

1.5.2 Pitfalls to focus on

In this section we focus on some of the common and continuing areas in which we
need to learn and improve for the application of machine learning to images in the
time of a pandemic.

Willingness to share data and resources. Crucial to any machine learning
task is high-quality data and therefore hospitals and other data contributors need
to have a willingness to share data with researchers. For imaging, even if there is
willingness, an infrastructure to extract, anonymise and share images is also required.
Unfortunately, in the COVID-19 pandemic, even with the NCCID initiative, the
hospitals who could share data were those who had capacity for clinicians and
informatics staff to extract it. This inclusion bias is critical to tackle as it is necessary
that the algorithms which are developed can also apply in those resource stretched
hospitals which could not provide data. Federated learning techniques, which do not
require sharing of imaging data outside of each institution, such as [71, 119] may be
critical in the future to ensure that complications due to sharing and moving of data
between sites is not a hindrance to research.

Clearly defining the diagnosis control group. Throughout the literature, diagno-
sis models for COVID-19 based on machine learning methods rely on distinguishing
COVID-19 from a control class or classes. However, it is unclear what this con-
trol group should be in the context of COVID-19. Commonly, in the higher quality
manuscripts, authors have identified different non-COVID-19 viral pneumonias, bac-
terial pneumonias and COVID-19 pneumonia as separate classes and trained models
to separate these pneumonias. In poorer quality models, healthy patients have been
used as controls, or even exclusively paediatric patients with non-COVID-19 pneu-
monias. The key aspect here is identifying the population in which the model will be
applied and ensuring the data used to develop the model reflects this population. For
example, if the model is only to be applied by radiologists attempting to distinguish
different pneumonias, then training on these alone is reasonable. However, if the
model is to be used as a screening tool, the control group should include all different
pathologies which are seen in the clinic.

Regulatory considerations. In the literature, many models have been developed
and discussed but there is minimal consideration of how these models would pass
through regulatory processes to be adopted in the clinic. Many models are described
with insufficient documentation to allow for regulation to even be considerable. It is
also a reality that regulating software as a medical device is a long and expensive
process, which is not only beyond the resources (and skillsets) of many research
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groups but means that urgent solutions developed during the pandemic cannot hope
to be useful in the course of it due to time delays. It is for policy makers to consider
how this particular area of regulation could be improved for the next pandemic.

Missing entries in the data. Missing data is a reality of most real-world clinical
datasets and most machine learning models require complete training data. Therefore,
it is typical to use data imputation techniques to replace this missing data with
intelligent guesses. However, the type of missingness affects the quality of this
imputation, i.e. whether the data are missing completely at random, missing at
random (with missingness dependent on observed values) or missing not at random
[72]. It is important to understand the type of missingness in the data used to develop
the methods and ensure that this is also expected in the data to which the model will
be applied.

Non-standardised variables across sites. When models are developed for use
across multiple sites it is imperative that the variables are comparably recorded at
each site (both in terms of the concept being encoded and the units). As machine
learning progresses towards more federated approaches with multiple institutions, it
is important that variables are mapped into a common standard, e.g. using OMOP
dictionaries. Not only does this allow for federated approaches to be adopted more
easily, but it ensures that models developed at one site can be rapidly applied at other
sites.

1.5.3 Lessons learned and recommendations

The COVID-19 pandemic has highlighted many issues for the community using
machine learning with imaging and clinical data. In this section we will highlight
several of the lessons learned and recommendations (many of which are covered in
[8]).

Recommendations for study design. It is unfortunate that the same degree of
care which is applied to clinical trial design is not applied more extensively to
machine learning. In particular, exploratory analysis on a small dataset (analagous
to a phase 1 study), scaling to include more data with more diversity to determine
whether the model is identifying signals in the date (phase 2) before allowing for
development on the entirety of the dataset (phase 3). It is most common that authors
jump to phase 3, short-cutting a lot of important exploratory steps which can identify
biases.

Recommendations for data. Public repositories of imaging for COVID-19 pa-
tients should be used with extreme caution. Due to the lack of verification procedures
to ensure patients are RT-PCR positive or negative, along with the ability for anyone
globally to contribute images, this leads to significant risks of bias (e.g. source is-
sues and Frankenstein datasets) as discussed earlier. Authors must also aim to match
demographics across cohorts, an often neglected but significant potential source of
bias (which may even be impossible with public datasets that do not include demo-
graphic information). Many public datasets obtain their images from preprints and
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published manuscripts which are in low-resolution or compressed formats (e.g. JPEG
and PNGQG), rather than their original DICOM format. If this reduction in resolution
is biased across the different image classes, this leads to a serious issue for those
models reliant on convolutions and hand engineered features which may simply learn
to identify the new resolutions.

For CXRs in particular, researchers should be aware that the view (front-to-back
vs. back-to-front) that has been used to acquire that CXR is important as, for example,
in sick, immobile patients, an front-to-back CXR view is used for practicality rather
than the standard back-to-front CXR projection. The most useful algorithms are those
that can diagnose disease at an early stage however many datasets will include an
overrepresentation of severe disease which will likely reduce the models applicability.

In the literature, the timing between imaging and RT-PCR tests was also largely
undocumented, which has implications for the validity of the ground truth used.
A negative RT-PCR test does not necessarily mean that a patient does not have
COVID-19 and we must encourage authors to evaluate their algorithms on datasets
from the pre-COVID-19 era, such as performed by [73], to validate any claims that
the algorithm is isolating COVID-19-specific imaging features. In many papers, it
is common for non-COVID-19 diagnoses to be determined from the imaging alone,
with those same images used to develop the model. This is known as incorporation
bias and leads to an over optimistic model performance.

Recommendations for evaluation. The importance of using a well-curated ex-
ternal validation dataset of appropriate size in order to assess generalizability to
other cohorts cannot be overstated. Any useful model for diagnosis or prognostica-
tion must be robust enough to give reliable results for any sample from the target
population rather than just on the sampled population. Calibration statistics should
be calculated for the developed models to inform predictive error and decision curve
analysis [74] performed for assessing clinical utility. If a model outputs a prediction
of death at p = 0.6 vs. p = 0.8, clinical judgment is likely to change so it is impor-
tant to know how well calibrated the model is. Authors must also disclose how they
ensured that images from the same patient were not included in the different dataset
partitions, such as describing patient-level splits. It is primarily an issue for datasets
containing multiple images from each patient or those which process 3D volumes as
independent 2D samples.

It is important to include confidence intervals, when reporting results, to reflect
the uncertainty in the estimate, especially when training models on the small sample
sizes commonly seen with COVID-19 data. Moreover, it is important and not an
onerous task to demonstrate model interpretability. Examples of interpretability
techniques include: (i) informing the clinician of which features in the data most
influenced the prediction of the model, (ii) linking the prognostic features to the
underlying biology and (iii) overlaying an activation/saliency map on the image to
indicate the region of the image which influenced the model’s prediction and (iv)
identifying patients which had a similar clinical pathway. Many papers derive their
performance metrics from the test data alone with an unstated operating point to
calculate sensitivity and specificity. Clinical judgment should be used to identify
the desired sensitivity or specificity of the model and the operating point should be
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derived from the development data. The differences in the sensitivity and specificity
of the model should be recorded separately for the validation and test data.

Recommendations for replicability. It is not possible to reproduce many existing
models due to updating of publicly available datasets or codes since the publication
of the manuscripts. Therefore, we recommend that a cached version of the public
dataset be saved, or the date/version quoted, and specific versions of data or code
be appropriately referenced. We acknowledge that although perfect replication is
potentially not possible, details such as the seeds used for randomness and the actual
partitions of the dataset for training, validation and testing would form very useful
supplementary materials. Furthermore, it is necessary that the manuscript states any
image resizing, cropping and normalisation used to ensure the work is reproducible.

Recommendations for authors. It is recommended that authors assess their
manuscript against appropriate established frameworks, such as RQS, CLAIM, TRI-
POD, PROBAST and QUADAS [75, 76, 77,78, 79]. This will ensure reproducibility,
and that models are developed in a careful manner.

Recommendations for reviewers. For reviewers, we also recommend the use of
the checklists, discussed in the previous point, in order to better identify common
weaknesses in reporting the methodology. The most common issues in the papers
considered in [8] was the use of biased datasets and/or methodologies. For non-public
datasets, it may be difficult for reviewers to assess possible biases if an insufficiently
detailed description is given by the authors. We strongly encourage reviewers to ask
for clarification from the authors if there is any doubt about bias in the model being
considered. Finally, we suggest using reviewers from a combination of both medical
and machine learning backgrounds, as they can judge the clinical and technical
aspects in different ways.

1.5.4 The next pandemic

For the next pandemic, we must be better prepared, with rapid data collection and
sharing, and models which are purpose built and trainable to include new classes
quickly and robustly. We need an infrastructure to share data at scale, and we need
regulatory improvements which allow for validated algorithms to translate into clinic
rapidly.

As a community, we need a blueprint for how to optimally respond to the next
pandemic. According to the UK National Audit Office, the COVID-19 pandemic
has cost the country over £370 billion as of January 2022 [80] with the testing and
contact tracing program alone allocated £37 billion [81]. This astonishing amount
highlights the trade-off if governments do not invest in pandemic response research
and development to ensure we are not taken by surprise again. A particularly en-
couraging social enterprise is the Trinity Challenge [82] which ran a competition
in 2021 for teams to win funding for their ideas “’to ensure we are better prepared
against health emergencies”. There were 8 prize winning teams, all developing tools
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using machine learning and data analytics to increase global preparedness for future
pandemics.
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