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Abstract
Motivation: Imaging Spatial Transcriptomics (iST) techniques characterize gene expression in cells in their 
native context by imaging barcoded probes for mRNA with single molecule resolution. However, the need to 
acquire many rounds of high-magnification imaging data limits the throughput and impact of existing methods.
Results: We describe the Joint Sparse method for Imaging Transcriptomics (JSIT), an algorithm
for decoding lower magnification iST data than that used in standard experimental workflows. JSIT
incorporates codebook knowledge and sparsity assumptions into an optimization problem which is
less reliant on well separated optical signals than current pipelines. Using experimental data obtained
by performing Multiplexed Error-Robust Fluorescence in situ Hybridization (MERFISH) on tissue
from mouse brain, we demonstrate that JSIT enables improved throughput and recovery performance
over standard decoding methods.
Availability: Software implementation of JSIT, together with example files, are available at 
https://github.com/jpbryan13/JSIT.
Contact: yonina.eldar@weizmann.ac.il, sfarhi@broadinstitute.org, bcleary@bu.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Imaging Spatial Transcriptomics (iST) methods, such as MERFISH (K. 

H. Chen et al. 2015), CosMx (He et al. 2022), and STARmap (X. Wang et 
al. 2018) simultaneously measure expression of targeted sets of hundreds 
of genes at a time with single molecule spatial resolution, revealing spatial 
patterns of cell type arrangements and tissue organization. These newly 
developed methods have already allowed researchers to construct high-
resolution spatial tissue atlases (Zhang et al. 2021), study subcellular 
compartmentalization of gene expression (Xia et al. 2019), and observe 
spatial differences in gene expression between phenotypical conditions 
(Moffitt, Bambah-Mukku, et al. 2018), with potential for further discovery 
as datasets grow and analysis frameworks mature.

Highly multiplexed iST methods achieve gene multiplexing using 
combinatorial barcoding, in which each gene is assigned a distinct binary 

barcode from a pre-defined codebook (Tian, F. Chen, and Macosko 2022). 
Fluorescent probes complementary to the genes are then iteratively 
applied, imaged at high resolution, and removed from the sample, such 
that an individual mRNA molecule (or transcript) only appears as a bright 
spot in the images corresponding to the ones in its barcode. Software 
pipelines then perform computational decoding of the acquired images, 
identifying the location of each fluorescent spot and attempting to assign 
it to a gene identity. These decoded transcripts are then assigned to a cell, 
and all transcripts within a cell are tallied up to produce a count table 
relating cell location to gene expression.

Notably, while single molecule resolution imaging is necessary to 
identify transcripts, once the count table is produced, most downstream 
methods do not need individual molecule locations to perform common 
tasks such as cell type identification and differential gene expression 
analysis (Stogsdill et al. 2022; Dries et al. 2021; Hu et al. 2021). These 
analyses stand to be better empowered by profiling larger sample areas to 
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increase the likelihood of capturing rare cell types and interactions and of 
profiling distinct regions of the tissue. However, the requirement of single 
molecule resolution imaging has thus far set the maximum imaging 
throughput to roughly 1 cm2 per day, limiting the biological discovery 
impact of iST. If, instead, imaging could be performed at lower 
magnification, larger amounts of tissue could be studied and iST could 
better enable the study of developmental time courses, comparisons 
among large numbers of patient samples, and the creation of large-scale 
tissue atlases.

In this work we re-frame the decoding problem as an optimization 
problem and leverage algorithmic techniques like those used in super-
resolution microscopy (Solomon et al. 2018), to enable decoding of lower-
magnification iST data. iST data are known to be structured: fluorescence 
signals are sparse in spatial coordinates. Currently used decoding 
pipelines, such as MERlin (Emanuel, Eichorn, and Sepulveda 2020, 
https://github.com/emanuega/MERlin), deconvolve optical signals and 
assign them to most likely barcodes in distinct steps, without taking full 
advantage of the known sparsity of the data. We instead present the Joint 
Sparse method for Imaging Transcriptomics (JSIT), which combines 
optical deconvolution and decoding of iST data, explicitly incorporating 
signal sparsity knowledge into the decoding step. In the process, this joint 
approach relaxes the requirement for high magnification imaging, and 
increases overall throughput. 

In the remainder of the paper, we first provide a detailed description of 
the JSIT problem formulation and algorithm; its solution with the Fast 
Iterative Shrinkage-Thresholding Algorithm (FISTA), an iterative 
proximal gradient algorithm (Beck and Teboulle 2009; Eldar and 
Kutyniok 2012); and the metrics chosen to compare JSIT to MERlin. We 
then describe JSIT’s performance on real MERFISH data from the mouse 
somatosensory cortex (SSp) and primary motor cortex (MOp) imaged at 
both 40x and 60x, focusing specifically on JSIT’s ability to perform cell 
typing on low-resolution imaging data. We show that using JSIT on 40x 
data recapitulates the cell typing obtained by using MERlin on 60x data, 
while MERlin is not able to achieve this at 40x. We benchmark JSIT’s 
performance with several other decoding pipelines, including an 
optimization-based approach referred to as BarDensr (S. Chen et al. 2021), 
and the BlobDetector and MaxPeakFind pipelines from the Starfish 
software package (Perkel 2019); and further show that JSIT can accurately 
decode data acquired by other iST technologies. Finally, we discuss the 
practical throughput advantages of using JSIT to decode MERFISH data.

2 Methods

2.1 Problem formulation: modeling iST data
We begin by modeling the iST data generation process, as depicted 

schematically in Fig. 1a. Our aim is to recover the spatial distribution and 
gene identity of mRNA from raw data consisting of  images with size  𝐹 𝑛
×   pixels, which encode gene identities with defined barcodes of F bits. 𝑛
We first vectorize and subsequently concatenate these images to form a 
matrix  ∈ ℝN

l
×F , where  =   is the number of pixels in the field of 𝑌 𝑁𝑙 𝑛2

view (FOV). Element  of  represents the pixel value at location  in (𝑖,𝑓) 𝑌 𝑖
the -th image. We model the generation of  as:𝑓 𝑌

Y = AXC + η.     (1)
Here,  represents the operation of the point-spread function (PSF) of 𝐴

the microscope,  represents the spatial distribution and gene identity of 𝑋
mRNA, which we aim to recover,  is the codebook, and  denotes 𝐶 𝜂
additive experimental noise. This noise is not defined in specific terms, 
but is known to include low- frequency autofluorescence background, 
which varies strongly with location within the FOV, and high-frequency, 
uncorrelated shot noise.

To better resolve spots in the acquired data, we define the matrix  ∈ 𝑋
ℝN

h
×G at a higher resolution than , i.e. > . Specifically, we pick a 𝑌 𝑁ℎ 𝑁𝑙

scale factor , and divide each pixel represented in  into equally-sized 𝑠 𝑌 𝑠2 
sub-pixels, giving . This scale factor can be chosen by 𝑁ℎ = 𝑠2𝑛2 = 𝑠2𝑁𝑙

the user: a higher scale factor will incur greater computational costs, but 
may provide more accurate results (Supp. Fig. S1). Throughout the rest of 
the paper, we use . The nonzero values of elements of  indicate 𝑠 =  3 𝑋
the intensity of fluorophores bound to mRNA molecules, while zeros 
indicate no mRNA present. Next, we define the PSF matrix  ∈ ℝN

l
×N

h
 , 𝐴

such that element  represents the percentage of photons originating (𝑖𝑙,𝑖ℎ)
at location in the sample distributed to pixel  in the image;  can be 𝑖ℎ 𝑖𝑙 𝐴
obtained theoretically or empirically for any optical system used to image 
the sample. Finally, we define the codebook  by setting element  of 𝐶 (𝑔,𝑓)

 ∈ ℤG×F equal to the value of bit  of barcode . For any iST experimental 𝐶 𝑓 𝑔
protocol, is known. Our goal is to recover  from .𝐶 𝑋 𝑌

2.2 Joint Sparse method for Imaging Transcriptomics (JSIT)

2.2.1 Preliminary denoising

To minimize the contribution of the noise term , we filter both high- 𝜼
and low-frequency noise by convolving each of the  observed images 𝑭
with a difference-of-Gaussians band-pass filter, where one Gaussian is 
empirically chosen to be broader than the microscope PSF and the other 
narrower. This band-pass approach mitigates the effects of both high-
frequency shot noise and low-frequency autofluorescence noise. In 
processing the 60x MERFISH data, for example, we used the filter: 

Figure 1: Summary of JSIT a) Schematic of JSIT pipeline. Left: MERFISH signal is acquired through multiple rounds of imaging. Center: MERFISH data are modeled as a matrix 
product. With this framing, decoding is a sparse recovery problem. Right: JSIT produces maps of the distribution of mRNA transcripts of each gene. b) Schematic of experiment. 
Left: Allen Brain Atlas depiction of the mouse brain, with cell regions labeled on right. Primary motor cortex (MOp) highlighted (Lein et al. 2007). Center: Downsampled 
MERFISH image of MOp, imaged at 40x. Right: Downsampled MERFISH image of MOp, imaged at 60x.
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                                                      (2)𝒉(𝒓) =
𝟏

𝟎.𝟕𝟓 𝟐𝛑𝒆
―

𝟏
𝟐

𝒓𝟐

𝟎.𝟕𝟓𝟐 ―
𝟏

𝟑 𝟐𝛑𝒆
―

𝟏
𝟐

𝒓𝟐

𝟑𝟐

where , with  and  representing distance in pixels. The 𝒓 = 𝒙𝟐 + 𝒚𝟐 𝒙 𝒚
resulting images are vectorized and concatenated to form  .𝒀𝒇 ∈ ℝ𝑵𝒍 × 𝑭

2.2.2 Decoding as a sparse recovery problem

We seek to recover  from  by solving a regularized least-squares 𝑿 𝒀𝒇

optimization problem, using principles of compressed sensing (Eldar and 
Kutyniok 2012; Eldar 2015). We impose several constraints: a) only one 
molecule is present at any given location, so the rows of are one-sparse; 𝑿 
b) molecules are present at few locations in the FOV, so  is row-sparse; 𝑿
c) the FOV contains few mRNA molecules, so  is overall sparse. We 𝑿
choose to impose constraint (a) in post-processing rather than as part of 
the optimization problem, finding that this improves results, similar to 
(Mazor et al. 2018). We impose (b) with a mixed  norm on the rows 𝓵𝟏/𝓵𝟐

of , and (c) by an  norm on . These functions are combined convexly, 𝑿 𝓵𝟏 𝑿
as in the Sparse Group LASSO formulation (Simon et al. 2013), leading 
to the optimization problem:

       (3)𝑿 = argmin𝒙||𝒀𝒇 ―𝑨𝑿𝑪||𝟐
𝑭 + 𝛌𝟏((𝟏 ― 𝛌𝟐)𝚺𝑵𝒉

𝒊 = 𝟏 𝚺𝑮
𝒋 = 𝟏𝑿𝟐

𝒊,𝒋 + 𝛌𝟐||𝑿||𝟏).

We solve (3) with FISTA, using the proximal operator for the 
regularization function as given in (Bach et al. 2012). These are both 
detailed in Supp. Section S1.

Algorithm 1 JSIT
Input: , , C, λ1, λ2, bandpass filter  min. cluster size , threshold  𝒀 𝑨 𝒉, 𝒄 𝒕𝒙

on , max. FISTA iterations 𝑿 𝒊max

Output: 𝑿
1: = 𝑿 𝟎𝑵𝒉,𝒇

2: for columns  of  do𝒀𝒊 𝒀
3: f,i,: = vec(mat( i) ∗ )𝒀 𝒀 𝒉
4: end for
5: (1) ← FISTA( f , , , λ1, λ2, max) (Supp. Algorithm S1, solution to 𝑿 𝒀 𝑨 𝑪 𝒊
Eqn. 3 in Section 2.2.2)
6: Keep only maximum-value element of each row of (1)𝑿
7: for elements of (1)

 do𝑿(𝟏)
𝒊,𝒋 𝑿

8: if (1) < x then𝑿 𝒕
9: 𝑿(𝟏)

𝒊,𝒋 = 𝟎

10: end if
11: end for
12: for columns i of (1) do𝑿 𝑿
13:  = bwconncomp(mat( ))𝑩 𝑿𝒊

14: for clusters j in  do𝑩 𝑩
15:          if size( j) ≥  then𝑩 𝒄
16: = round(centroid( j))𝛍𝒋 𝑩

 
17: = 1𝑿𝛍𝒋,𝒊

18:          end if
19: end for
20: end for

After obtaining , one-sparsity is imposed on the rows of  by setting 𝑿 𝑿
to 0 all but the maximal value of each row of , rejecting small elements 𝑿
representing spuriously detected molecules. The resulting  is 𝑿
additionally hard-thresholded, to mitigate effects of low-intensity noise, 
and remove spots which poorly match the codebook. Having recovered , 𝑿
each column  of  is reshaped as an image, giving the spatial distribution 𝒊 𝑿

of gene . Clusters of nonzero elements are formed by identifying 𝒊
connected components using the Matlab command bwconncomp and the 
centroid of each cluster is taken to be the location of a molecule associated 
with gene . This addresses cases where each molecule is represented by 𝒊
multiple nonzero elements in , due to small variations in the spot size, as 𝑿
can be seen in Fig. 1a. We reject clusters of pixels below an empirically 
chosen area threshold, to minimize spurious calls (typically 2).

The resulting method, called the Joint Sparse method for Imaging 
Transcriptomics (JSIT), is summarized in Algorithm 1. For comparison, 
the MERlin decoding procedure is detailed in Supp. Section S2.

2.2.3 Post processing and data cleanup

After the main decoding step, false positive detections (possibly caused 
by artifacts of the hybridization chemistry, autofluorescence noise that 
escaped filtering, or low-intensity shot noise blurred together by the 
bandpass filter) are minimized by adaptively filtering decoded spots. We 
use a method very similar to MERlin (Moffitt, Hao, et al. 2016), described 
in Supp. Section S3. Decoded transcripts are then assigned to individual 
cells segmented using a seeded watershed approach (Meyer 1994); we 
reject cells with area below one-half of the median area or above two times 
the median area. Transcripts that fall within the boundaries generated by 
the segmentation are then assigned to cells, to construct a count table  ∈ 𝑺
ℝNc×G, where  is the number of cells in the ROI, and element i,j is the 𝑵𝒄 𝑺
number of decoded transcripts of gene  within the bounds of cell . The 𝒋 𝒊
centroids of the segmented areas of each cell are also obtained, and a table 
of locations is created,  ∈ ℝNc×3, with the -th row of  a vector giving the 𝑳 𝒊 𝑳
3-dimensional position in the ROI of the -th cell. We also produce a table 𝒊
of “relative” locations,  ∈ ℝNc×3, in which the -th row is a vector 𝑳(𝒓) 𝒊
giving the position within its FOV of the -th cell.𝒊

Finally, we correct for observed expression differences between cells at 
the center and edges of the FOV, presumably caused by spherical 
aberrations of the microscope objective affecting imaging and decoding 
performance. We bin cells in all FOVs based on distance to the FOV 
center into  bins, and calculate the average expression level g,k for each 𝑲 𝒎
of  genes, and scale the abundance of each gene in each cell by 𝑮
multiplying each element of  by g,k = g,k , according to the bin  to 𝑺 𝒔 𝒎 𝒌
which its cell belongs.

2.2.4 Parameter tuning

Three parameters require tuning in the JSIT workflow: the 
regularization parameter 1, the threshold for , x, and the minimum 𝝀 𝑿 𝒕
accepted cluster size c ( 2 can also be tuned, but here is set to 0.5 𝒕 𝝀
throughout). The parameter 1 controls the sparsity level of the results: as 𝝀

1 is increased, more values of are equal to zero, and fewer spots are 𝝀 𝑿 
decoded. However, the adaptive filtering step complicates this: as 1 is 𝝀
decreased, the number of spots decoded increases, and, along with this, 
the number of spots corresponding to blank barcodes increases. This can 
result in an increased number of coding barcodes being rejected, and a 
decrease in the total number of post adaptive-filtering decoded spots, even 
as the total number of pre-adaptive-filtering decoded spots increases. We 
found that the best spatial homogeneity results are obtained when the 
number of post-adaptive-filtering decoded spots is maximal (see Section 
2.3.2), and so we use this as a heuristic for the selection of 1. To select 𝝀

1, we decode a small number of FOVs with various values of 1, perform 𝝀 𝝀
adaptive filtering, and select the value which gives the highest number of 
post-filtering spots (Supp. Fig. S2). After selecting 1, we use the same 𝝀
method to select x.𝒕
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We also find that performance of the pipeline improves when clusters 
below a certain size are rejected before adaptive filtering. Precision (% of 
detected molecules corresponding to real molecules) increases with the 
minimum cluster size , as many small clusters represent noise, while 𝒄
recall (% of molecules detected) decreases as the minimal cluster size 
increases, because some real molecules are represented by small spots. We 
typically set  to 2.𝒄

2.3 Validation of JSIT

2.3.1 Datasets

Prior to collecting experimental data, we performed preliminary 
simulations (Bryan et al. 2021) which suggested that 40x magnification is 
a reasonable compromise between quality and throughput: at lower 
magnification, blurring and loss of signal caused an increase in the false-
positive rate in comparison to simulations with 40x data. We thus 
collected two experimental MERFISH datasets to compare the 
performance of JSIT and MERlin at 60x and 40x magnification. First, we 
obtained a small sample of mouse somatosensory cortex (SSp), and 
prepared it for MERFISH imaging according to the procedure described 
in (Moffitt, Hao, et al. 2016). We probed the sample with a library of 20 
genes, initially designed for sub-classification of microglia (Favuzzi et al. 
2021). Readout and encoding probes were obtained from Vizgen Inc., and 
imaged using Vizgen’s MERSCOPE alpha instrument. The sample was 
imaged with both a 60x NA 1.4 objective, and a 40x NA 0.95 objective. 
We captured 31 x-y locations at 60x (20 x-y locations at 40x), and roughly 
2000 cells. We acquired 7 z-positions per x-y location, separated by 1.5 
µm.

We sought to image a larger sample, probed with a larger library of 
genes, with both 60x and 40x objectives, but it proved impractical to 
manually switch objectives at each FOV and still maintain high data 
quality at this larger scale (in particular, this resulted in issues of focal 
plane alignment across rounds). Instead, we opted to compare sequential 
tissue slices imaged at different magnification levels. We obtained two 
sequential coronal slices of mouse MOp, separated by 10 µm (Fig. 1b), 
and probed with a library of 115 genes, designed for cell typing in mouse 
cortex (Stogsdill et al. 2022). While this library was specifically designed 
to study the SSp, the SSp has similar cell type structure to the MOp, and 
the library includes marker genes for the major cell types present in the 
MOp. One slice was imaged using the 60x NA 1.4 objective, and the other 
was imaged using the 40x NA 0.95 objective. At 60x, we captured 168 x-y 
locations covering 6.72 mm2 and roughly 6000 cells, and at 40x captured 
51 x-y locations covering 4.59 mm2 and roughly 4500 cells. In both 
datasets we acquired seven z-positions per x-y location, separated by 1.5 
µm. Illumination intensities and exposure times were kept the same in each 
dataset (a longer exposure time could improve the signal-to-noise ratio in 
the 40x data, but would reduce the throughput gains for low-magnification 
imaging).

In addition to these datasets we acquired to evaluate the performance of 
JSIT on low magnification data, we tested JSIT on three publicly available 
iST datasets: a higher-plex MERFISH dataset (acquired at 60x 
magnification), studying the expression of 307 genes in mouse liver, (J. 
Liu et al. 2023), a dataset using the in situ sequencing-based iST 
technology BARseq2 to study 67 genes in mouse cortex (Sun et al. 2021), 
and a small, single-FOV dataset acquired by the iST technology 
STARmap studying 160 genes (X. Wang et al. 2018).

2.3.2 Cell cluster and localization analysis

After producing the cell-by-gene count table , statistical results were 𝑺
computed on an aggregate level, calculating the average number of 
transcripts decoded per cell, the average number of genes with nonzero 
numbers of transcripts per cell, and the average intensity of a detected 
transcript (throughout the text, these results are expressed as a mean ± 
standard deviation unless otherwise noted. Statistical tests and p values are 
described next to individual results, with results treated as significant if p 
< 0.05, unless otherwise stated). Then, in the MOp data, standard single-
cell analysis techniques were used to cluster cells by their gene expression 
levels. All analysis was performed using the Scanpy library in Python 
(Wolf, Angerer, and Theis 2018). The count table was first filtered to 
remove cells with zero counts, and genes which appeared in fewer than 
three cells. The count table was then normalized such that each cell would 
have the same number of total counts, and dimensionality reduction was 
performed using principal component analysis (PCA), keeping the top 50 
principal components (PCs). We clustered the cells in PC space using the 
Louvain clustering algorithm (Blondel et al. 2008), selecting a resolution 
parameter by empirically adjusting until the major cortical cell types were 
revealed: excitatory neurons, interneurons, microglia, oligodendrocytes, 
and astrocytes. To maintain consistency in our evaluations of the 40x and 
60x data, as well as in comparing the results of different decoding 
pipelines, we used the same Scanpy parameters for all results, including 
the Louvain resolution parameter (which we set to 0.65). Following this 
analysis, we removed Slc17a7, which was highly expressed in all 
excitatory neurons and repeated these steps to subcluster excitatory 
neurons to reveal cortical layer specific subpopulations. We identified 
spatial regions belonging to major layers of the primary motor cortex—
Layers 2/3, 4, 5, and 6—by visualizing the spatial expression of well-
known marker genes of each layer (Stard8, Rorb, Deptor, and Tle4), and 
manually annotating the areas of high expression. To compare the cluster 
assignments in gene-expression space to the spatial layer assignments, we 
used the cluster homogeneity score (Rosenberg and Hirschberg 2007), 
defined as:

                        (4)  𝒉 = 𝟏 ―
― ∑𝑲

𝒌 = 𝟏
∑𝑪

𝒄 = 𝟏

𝒏𝒄,𝒌
𝑵 𝒍𝒐𝒈( 𝒏𝒄,𝒌

∑𝑪
𝒄 = 𝟏𝒏𝒄,𝒌

)
∑𝑪

𝒄 = 𝟏

∑𝑲
𝒌 = 𝟏𝒏𝒄,𝒌

𝑪 𝒍𝒐𝒈(∑𝑲
𝒌 = 𝟏𝒏𝒄,𝒌

𝑪 )
where  is the number of spatial layers,  is the number of gene-𝑲 𝑪
expression space clusters, and  is the number of cells belonging to 𝒏𝒄,𝒌

cluster  and layer .𝒄 𝒌

This metric quantifies the notion that excitatory neurons assigned to the 
same cluster in gene-expression space should belong to the same spatial 
layer. This metric can obtain a high score even if a layer is comprised of 
multiple gene-expression space clusters, each confined to that layer. This 
is biologically reasonable as layers may be subdivided into multiple cell 
types. The homogeneity score is related to the ratio of the conditional 
entropy of layers given cluster assignments to the overall entropy of the 
layers. The score is between 0 and 1, with 1 signifying perfect 
homogeneity.

3 Results

3.1 JSIT accurately decodes high-magnification data
We benchmarked the performance of the JSIT and MERlin pipelines 

on high- and low-magnification MERFISH data by analyzing two 
datasets, which we acquired at 60x and 40x magnifications. We processed 
a small sample of mouse SSp, with a 20-gene MERFISH library, in which 
the same tissue slice was imaged with both 60x and 40x magnification 
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lenses, and two sequential slices of mouse MOp, one acquired with 60x 
and the other with 40x, with a 115-gene MERFISH library. 

On aggregate measures of transcripts, there was good agreement 
between JSIT and MERlin results in the mouse brain datasets. We first 
measured pseudo-bulk gene abundances in both 60x datasets, and found 
high gene expression correlation between JSIT and MERlin (In the SSp 
data, Pearson’s  = 0.94, in the MOp data, Pearson’s = 0.95). Log-𝑟 𝑟 
transformed pseudo-bulk abundances also correlated strongly (SSp: 
Pearson’s  = 0.98, MOp: Pearson’s  = 0.83), as did gene expression in 𝑟 𝑟
individual cells (SSp: Pearson’s  = 0.93, MOp: Pearson’s  = 0.91). 𝑟 𝑟
MERlin detected a significantly larger number of transcripts per cell 
relative to JSIT in the MOp data (587±342, n = 6,068 cells vs 400±291, n 
= 5,809 cells, p = 6.7 × 10−217, Welch’s t-test), while in the SSp data, JSIT 
showed a modest but significant increase in the number of detected 
transcripts per cell (188±156, n = 2,064 cells vs 167±143 n = 2,064 cells, 
p = 7.1× 10−6, Welch’s t-test). MERlin and JSIT did not detect a 
significantly different number of genes with nonzero counts per cell (SSp: 
12±5, n = 2,064 cells vs 12±4 n = 2,064 cells, p = 0.25, Welch’s t-test. 
MOp: 61± 18, n=6,068 vs 60±22, n = 5,809, p = 0.33, Welch’s t-test) (Fig. 
2a). Because ground truth data are difficult to acquire in parallel with 
MERFISH, it is not clear whether the additional calls by MERlin represent 
true or false positives. To understand the apparent higher sensitivity of 
MERlin in comparison to JSIT in the MOp, we thus calculated the average 
pixel intensity of the signal from decoded transcripts in the MOp data, 
finding that the average pixel intensity for MERlin calls was lower than 
that of JSIT calls (19±15 post-denoising counts, n = 8.4 × 106 vs. 40±16, 
n = 4.5 × 106, p < 2.2 × 10−308, Welch’s t-test) (Fig. 2a). This was also 
apparent qualitatively: when examining the raw data for individual 
transcript calls, JSIT’s calls generally are brighter than MERlin’s (Supp. 
Fig. S3). Examining the correlation of pseudobulked log-transformed gene 

expression showed that JSIT detected a consistently lower ratio of counts 
for each gene relative to MERlin (Supp. Fig. S4). We broke down this 
analysis by cell type, investigating the predicted disjoint expression of a 
marker gene for inhibitory neurons (Erbb4) and a marker for microglia 
(Tmem119 ) in both cell types by both pipelines (Supp. Fig. S5). We again 
found that MERlin detects higher counts of each gene in each cell type 
than JSIT.

We noted that the two mouse brain datasets were quite similar, and 
MERFISH data can have quite different characteristics in other tissues 
(e.g. cells may be more or less densely packed, or be differently shaped). 
Further, MERFISH data plex can be larger than the 20 and 115 gene panels 
we worked with so far. Thus, we tested JSIT’s ability to decode publicly 
available data from a 307-gene MERFISH experiment studying mouse 
liver, imaged at 60x, and compared the results to the gene expression 
results reported in the publication (J. Liu et al. 2023). The pseudo-bulk 
gene expression of the decoded results from JSIT were highly correlated 
with the results from the paper (Pearson’s  = 0.95), as were the log-𝑟
transformed pseudo-bulk gene expression (Pearson’s  = 0.79, and gene 𝑟
expression in individual cells (median Pearson’s  = 0.73) (Supp. Fig. S6). 𝑟
While good, these results were poorer than the MOp and SSp results—it 
is worth noting that these particular liver samples showed relatively poor 
correlation to pseudo-bulk RNA seq in the publication (Pearson’s  = 𝑟
0.61).  Thus, without ground truth it is hard to know whether lower 
correlation to MERlin necessarily means that JSIT is less successful with 
higher-plex codebooks.

Moving from aggregate to spatially resolved analysis, we examined the 
spatial distribution of the expression of several marker genes of cortical 
layers in the MOp (Stard8, Rorb, Deptor, and Tle4). We found that in both 
MERlin and JSIT, expression qualitatively matched those recorded in the 
ABA (Lein et al. 2007) (Fig. 2b). When we measured the distribution of 

Figure 2: JSIT accurately recovers gene expression. a)-c) Transcript quantification in decoded results, by decoding pipeline. Asterisks indicate that differences between distributions are 
statistically significant. a) Number of transcripts per cell. b) Total genes with nonzero counts per cell. c) Intensity of decoded molecules. d) Spatial distribution of several genes with 
known spatial patterns as decoded by MERlin and JSIT from 40x and 60x data, and spatial distribution of genes as given by the Allen Brain Atlas (ABA) (Lein et al. 2007). e) Spatial 
distribution of expression of spatially varying genes versus cortical depth. Top row: Average number of mRNA molecules per cell, in each depth bin. Bottom row: Average number of 
mRNA molecules per cell, normalized by total counts.
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these genes as a function of cortical 
depth, and normalized by the total 
number of transcripts detected, JSIT 
and MERlin produced nearly 
identical distributions, though 
MERlin showed higher transcript 
numbers overall (Fig 2c). Next, we 
investigated JSIT and MERlin’s 
ability to produce results which 
would accurately identify cell type, 
comparing the results of clustering 
data processed by JSIT and MERlin 
by gene expression. It is well-known 
from scRNA-seq data that cortical 
excitatory neurons in different layers 
of the mouse brain have distinct 
expression profiles (Zhang et al. 
2021). Thus, unsupervised 
clustering of neurons by gene 
expression should result in clusters 
corresponding to layer-specific 
subtypes. When we performed this 
analysis, we found that for both 
MERlin and JSIT, the cell type 
clusters mapped to regions lying 
within the well-known cortical layer 
boundaries (Fig. 3a). We also computed spatial homogeneity, and found 
JSIT produced clusters with spatial homogeneity of 0.41, higher than the 
spatial homogeneity of 0.38 achieved by MERlin (Fig. 3d), showing that 
JSIT reproduces the laminar spatial structure of cortical neurons at least 
as well as MERlin. As a whole, these results showed that, with 60x high-
magnification data, the results produced by JSIT were very similar to those 
produced by MERlin, with slightly lower sensitivity.

3.2 JSIT enables higher throughput by accurately decoding 
low-magnification MERFISH data
While our 60x analysis showed that JSIT was accurate, if less sensitive 
than MERlin, our goal was to apply it to lower-magnification data to 
increase the throughput of the overall data generation. We thus performed 
the same set of analyses on the results produced by processing the SSp and 
MOp 40x data with MERlin and JSIT, starting with transcript-level 
aggregate metrics. We also processed the MOp 40x data with two 
decoding pipelines from Starfish (Perkel 2019), BlobDetector and 
MaxPeakFind, and compared their results to MERlin and JSIT to evaluate 
their accuracy in decoding low-magnification MERFISH data. Pseudo-
bulk correlation with the MERlin 60x data was high for both JSIT 40x (in 
the paired SSp data, Pearson’s  = 0.98, in the unpaired MOp data, 𝑟
Pearson’s  = 0.94) and MERlin 40x (SSp: Pearson’s  = 0.92, MOp: 𝑟 𝑟
Pearson’s  = 0.97), but much lower for the Starfish pipelines (MOp: 𝑟
Pearson’s  = 0.47 for BlobDetector, Pearson’s  = 0.68 for 𝑟 𝑟
MaxPeakFind). When pseudo-bulk abundances were log-transformed, 
correlation remained high for JSIT (SSp: Pearson’s  = 0.84, MOp: 𝑟
Pearson’s  = 0.93), and MERlin (SSp: Pearson’s  = 0.92, MOp: 𝑟 𝑟
Pearson’s = 0.97), and was very low for the BlobDetector and 𝑟 
MaxPeakFind (MOp: Pearson’s  = 0.16 and 0.19, respectively). We 𝑟
concluded that the Starfish pipelines were unsuitable for processing low-
magnification data.

Comparing MERlin and JSIT further showed that both detected 
significantly fewer transcripts per cell at 40x than MERlin detected at 60x 

(SSp, MERlin 40x: 27±38, n = 2,064, JSIT 40x: 111±127, n = 2064, MOp, 
MERlin 40x: 104±60, n = 4,323, JSIT 40x: 200±144, n = 4,288, Welch’s 
t-test gives p < 2.2 × 10−308 for both MERlin 40x and JSIT 40x in 
comparison to MERlin 60x in both datasets), but JSIT 40x detects 
significantly more transcripts per cell than MERlin 40x (SSp: p = 1.1 × 
10−163, MOp: p < 2.3 × 10−308, Welch’s t-test). The same pattern is seen in 
computing mean genes with nonzero counts per cell, with both MERlin 
40x and JSIT 40x detecting significantly fewer positive genes per cell than 
MERlin 60x (in SSp, MERlin 40x: 4±3, JSIT 40x: 8±5, in MOp, MERlin 
40x: 32± 13, JSIT 40x: 41± 17, p < 2.2 × 10−308, Welch’s t-test for both in 
comparison to MERlin 60x). JSIT 40x, however, detected significantly 
more positive genes per cell than MERlin 40x (SSp: p = 8.8 × 10−167, MOp: 
p = 1.1 × 10−139, Welch’s t-test).

As in the 60x analysis, we found that the average decoded spot intensity 
was higher for JSIT than MERlin (87±43 post-filtering counts, n = 1.6 × 
106 vs. 53±41, n = 1.2 × 106, p < 2.2 × 10−308, Welch’s t-test) (Fig. 2a). On 
a gene-by-gene basis, JSIT 40x and MERlin 40x’s count numbers were 
smaller than MERlin 60x’s by a consistent ratio, (Supp. Fig. S4b-c), 
though JSIT 40x’s decrease is smaller than MERlin 40x’s. Surprisingly, 
we found a better correlation between (log-transformed) pseudo-bulked 
JSIT 40x compared to MERlin 60x than we did for JSIT 60x vs MERlin 
60x (Pearson’s  = 0.93 vs 0.83). The difference in sensitivity between 𝑟
JSIT 40x and MERlin 40x remained when examining the disjoint 
expression of Tmem119 and Erbb4 in microglia and inhibitory neurons, 
with JSIT 40x finding significantly more counts of the positive marker 
genes than MERlin 40x, though not quite so many as were found in the 
60x data (Supp. Fig. S5). We thus conclude that when processing 40x data, 
JSIT and MERlin both provide accurate results, but JSIT is much more 
sensitive, with results close to the performance of both JSIT and MERlin 
at 60x.

When comparing spatial patterns of gene expression, the JSIT 40x 
results look qualitatively similar to the JSIT 60x results and the ABA, 
while the results of using MERlin 40x show sparser expression patterns, 
especially for Stard8 (Fig. 2d). As a function of cortical depth, we 

Figure 3: JSIT accurately recovers cortical layers of excitatory neurons a) UMAP plots of the gene expression cells decoded by JSIT, 
imaged at 60x magnification. Left: all cells, with clusters associated with excitatory neurons outlined. Center: re-clustering of excitatory 
neurons. Right: Mapping of one cluster (L6 excitatory neurons) to spatial coordinates.  b) Spatial distribution of cell-types identified by 
unsupervised clustering of excitatory neurons in results from JSIT and MERlin, on 40x and 60x data. c) Defined spatial layers of 
excitatory neurons in the cortex (2/3, 4, 5, and 6), in 60x data, overlaid on distribution of key marker genes as detected in JSIT 60x data. d) 
Spatial homogeneity is computed between cell type clusters and spatial layers shown in c).
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observed the same pattern: for each gene, JSIT 
detected substantially more transcripts in the region for 
which the gene is a marker, and the normalized 
frequency distribution generated by the JSIT had a 
higher peak and lower trough than that generated by 
MERlin (Fig. 2e). Patterns of gene expression were 
much less well-defined when data were processed with 
the Starfish pipelines, (Supp. Fig. S7c). The 
BlobDetector results exhibited strong variation 
between neighboring FOVs, and the MaxPeakFind 
results had a high false positive rate, with genes known 
to be spatially confined detected in large numbers 
outside the expected layer.

While noting that 40x data analyzed by JSIT had 
lower detection sensitivity than 60x data, the 
qualitative similarity between the MERlin 60x and 
JSIT 40x gene distributions led us to consider whether 
we could still use JSIT 40x data to perform the types of cell-based 
downstream analyses that iST typically targets. We 
thus clustered the cells of both the JSIT 40x and 
MERlin 40x count tables by gene expression and 
computed the spatial homogeneity of sub-clustered 
excitatory neurons. The gene expression clusters from JSIT map well to 
the cortical layers, as defined by expression of marker genes (Fig. 3c). The 
gene expression clusters from MERlin 40x are much less spatially 
confined (Fig. 3b). The JSIT 40x results have spatial homogeneity of 0.40, 
higher than even the MERlin 60x results (0.38), while the MERlin 40x 
results have much lower spatial homogeneity, 0.18 (Fig. 3d). We noted 
that spatial homogeneity varied slightly with the Louvain cluster 
parameter, but that different datasets’ relative performance on this metric 
did not change substantially as the Louvain parameter varied (Supp. Fig. 
S8). Unsupervised clustering of the results from BlobDetector and 
MaxPeakFind gave poor results (Supp. Fig. S7d), with spatial 
homogeneity of 0.05 for BlobDetector and 0.09 for MaxPeakFind. So, 
while JSIT may exhibit lower sensitivity when decoding 40x data, it is 
nonetheless able to produce expression clusters that match the laminar 
structure in this data as well as MERlin on 60x data, and much better than 
other pipelines on this data.

To test the similarity of the cell-type clusters found by JSIT 40x and 
MERlin 60x we clustered the JSIT 40x and MERlin 60x results together.  
Despite some batch effects, we noted that all but two clusters (which 
correspond to the JSIT 40x and MERlin 60x clusters for L2/3 excitatory 
neurons) contained cells from both JSIT 40x and MERlin 60x (Fig. 4a), 
showing that we obtain the same major cell types in the results from both 
JSIT 40x and MERlin 60x. Additionally, we found that clusters labeled as 
L4, L5, and L6 excitatory neurons mapped to the same spatially confined 
layers in the JSIT 40x and MERlin 60x data (Fig. 4b). This confirmed 
JSIT’s ability to reproduce the clustering results of MERlin 60x at 40x 
magnification, enabling higher throughput. We also performed joint 
clustering with all four datasets (JSIT 60x, MERlin 60x, JSIT 40x and 
MERlin 40x), and found that the pipelines’ results were well-integrated in 
many clusters, i.e. that several clusters contained cells from all four 
pipelines. In clusters corresponding to excitatory neurons, we found 
divergence between the two pipelines, with JSIT 40x and 60x clustering 
together and MERlin 40x and 60x clustering together (Supp. Fig. S9a-b). 
We subclustered the excitatory neurons, again clustering the JSIT and 
MERlin results together, computed spatial homogeneity for the resulting 
neuronal subtypes. In this subclustering, we again saw that the JSIT results 
clustered together, and the MERlin results clustered together (Supp. Fig. 

S9c-d). The MERlin 40x results benefited from integration into the 
neighborhood graph with the MERlin 60x results, increasing in spatial 

homogeneity in comparison to the results of clustering separately, 
although they remained substantially lower than the MERlin 60x, JSIT 
60x, and JSIT 40x results (Supp. Fig. S9d-e). This gives further evidence 
that, while JSIT and MERlin do not produce identical results, JSIT 
accurately identifies cell types, and does so more accurately at 40x than 
MERlin.

In all, we found that JSIT enables accurate cell typing of MERFISH 
when imaging at 40x, with somewhat lower sensitivity than when imaging 
at 60x. In the common scenario in which the biological question in 
centered on accurate cell typing, JSIT enables increased experimental 
throughput. Thus, JSIT allows the profiling of larger volumes of tissue and 
allow transcriptional study of broader spatial contexts, which is necessary 
to better understand larger-scale systems of genetic behavior.

3.3 JSIT decodes MERFISH data more accurately than 
BarDensr

In addition to MERlin, we compared JSIT to BarDensr (S. Chen et al. 
2021), another optimization-based iST-decoding pipeline that was 
designed for use on the BARseq2 iST technology (Sun et al. 2021). To 
compare the performance of BarDensr to that of JSIT we first compared 
the performance of JSIT and BarDensr in decoding simulated iST data 
(with known ground truth) available with the BarDensr software package. 
On this synthetic data, JSIT exhibited a significantly lower false-positive 
rate than BarDensr, and comparable true-positive rate (Supp. Section S4). 
We saw a similar pattern when we compared the performance of JSIT and 
BarDensr in decoding experimental data. We processed four 1,000 x 1,000 
pixel patches of the 60x MOp data with BarDensr, using the procedure 
provided in the example notebook provided in the BarDensr 
documentation, and compared the resulting gene expression to the results 
obtained by MERlin. Pseudo-bulk gene expression were highly correlated 
(Pearson’s  = 0.97, as were log-transformed pseudo-bulk gene expression 𝑟
(Pearson’s  = 0.81). In comparison, in the JSIT results for these four 𝑟
patches pseudo-bulk gene expression were equally highly correlated 
(Pearson’s  = 0.97, and log-transformed pseudo-bulk gene expression 𝑟
were more highly correlated than BarDensr (Pearson’s  = 0.91). In 𝑟

Figure 4: JSIT 40x clustered with MERlin 60x a) UMAP, and clustering with Louvain clustering algorithm, of 
JSIT 40x results together with MERlin 60x results. b) Spatial mapping of cells clustered as excitatory neurons, when 
JSIT 40x and MERlin 60x results are clustered together.
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investigating these results, we 
hypothesize that BarDensr is 
sensitive to noise in MERFISH data, 
possibly because it was built for in 
situ sequencing methods, which 
produce much brighter signals, and 
have substantially less noise than 
MERFISH data. BarDensr infers a 
higher expression level than JSIT 
for genes which were lowly 
expressed in the MERlin results 
(Supp. Fig. S10a-b).

To further evaluate the accuracy 
of JSIT and BarDensr’s results, we 
compared the expression levels of 
known cell-type marker genes in the 
JSIT and BarDensr results (Supp. 
Fig. S10c). This analysis showed 
that BarDensr is somewhat more sensitive than JSIT, detecting more 
counts of marker genes in cells which belong to the corresponding cell 
type. However, BarDensr also calls many more counts of the marker genes 
in cells which do not seem to belong to the corresponding cell type—a 
much higher apparent false-positive rate than JSIT. We conclude that JSIT 
more accurately decodes MERFISH data, in particular being less sensitive 
to noise, and thus more accurately inferring the expression of lower-
expression genes.

3.4 JSIT accurately decodes 
data from other iST 
technologies
Finally, we tested whether JSIT 
could successfully decode iST data produced using other protocols, which 
can produce differently structured data than MERFISH (e.g., different 
signal-to-noise ratios, or differently-structured codebooks). We ran the 
JSIT pipeline on two publicly available datasets, acquired using two 
different iST technologies, BARseq2, and STARmap. As shown in Fig. 5, 
JSIT produced results matching the published results in both datasets. In 
each case, we computed pseudo-bulk gene expression, log-transformed 
pseudo-bulk gene expression, and the gene expression in each cell. In the 
BARseq2 dataset, pseudo-bulk gene expression was highly correlated 
(Pearson’s  = 0.97) as was log-transformed pseudo-bulk gene expression 𝑟
(Pearson’s  = 0.89) and gene expression in individual cells (median 𝑟
Pearson’s  = 0.76). Additionally, performing cell typing by gene 𝑟
expression on neurons with the JSIT results, according to the procedure 
detailed in (Sun et al. 2021), produced laminar arrangements of neuronal 
cell types, which matched the arrangement in Fig. 3b of the BARseq2 
publication (Fig. 5a). In the STARmap data, pseudo-bulk gene expression 
was highly correlated (Pearson’s  = 0.92), as was log-transformed 𝑟
pseudo-bulk gene expression (Pearson’s  = 0.78). Individual cells also 𝑟
had highly correlated gene expression (median Pearson’s  = 0.81) (Fig. 𝑟
5b). We thus conclude that JSIT is a broadly useful decoding tool for 
multiple types of iST data.

4 Discussion
We have presented a new algorithmic pipeline, JSIT, for decoding 

multiplexed iST data. JSIT uses an optimization-based method to take 
advantage of the sparse nature of iST signals, and, with high-
magnification imaging, shows comparable ability to detect gene 

expression, and perform cell typing, in comparison to the currently used 
decoding pipeline, MERlin.

We found that JSIT decoded MERFISH data acquired using a 40x 
microscope objective with higher sensitivity than MERlin on the same 
data, although lower sensitivity than MERlin’s decoding of 60x data. 
Despite this drop of sensitivity relative to 60x data, when the gene count 
matrix obtained by decoding 40x data with JSIT is clustered by gene 
expression using standard pipelines, clusters corresponding to all major 
cell types are correctly identified, with higher spatial homogeneity than 

that obtained by using MERlin to decode 60x data. In contrast, the gene 
count matrix obtained by decoding 40x data with MERlin was unable to 
produce cell-type clusters which correctly correspond to cell types, 
especially in excitatory neurons. We conclude that decoding with JSIT 
enables accurate cell typing while imaging at lower magnification.

Performing a MERFISH experiment with 40x, rather than 60x, lens, 
will reduce imaging time substantially. In concrete terms, a six-round 
MERFISH experiment will save 1,040 minutes (about 17 hours) per cm2 
of tissue imaged by imaging at the lower magnification level. Trade-offs, 
of course, exist: transcript detection sensitivity is somewhat lower in 40x 
data decoded by JSIT, in comparison to 60x data decoded by MERlin. 
Additionally, given the scale of iST data (frequently terabytes), it is 
important to consider the computational resources required to implement 
JSIT. Because the JSIT algorithm involves many large matrix 
multiplications, it requires substantially more computational time per 
FOV than MERlin: almost 57-fold more for the same area (Supp. Fig. 
S11). While this is a significant difference, we note that MERlin 
performance has been optimized several times, while this is the first 
presentation of JSIT; that computational load is easier to parallelize than 
experimental load; and that computational costs for MERFISH 
experiments are dominated by storage rather than by compute. In our cost 
models, the decreased storage costs of lowering the number of FOVs 
stored by 2.25x pays for the difference in compute time expense in the 
first year of the project. So, in cases in which computational resources are 
readily available, and in which the key priority is identification of cell 
types, JSIT can be used to study larger tissue samples in less time, enabling 
a greater range of insights into relationships between different cell types. 
Additionally, if computational costs are of particular concern to the user, 

Figure 5: JSIT recapitulates published iST results a) Left: pseudo-bulk gene expression and log-transformed pseudo-bulk gene 
expression comparison between JSIT and published data in 67-gene BARseq2 mouse cortex study. Right top: Histogram of gene 
expression correlation between JSIT and published data in individual cells. Right bottom: Spatial distribution of neuronal subtypes 
obtained from JSIT results, revealing laminar structure. b) Pseudo-bulk gene expression and log-transformed pseudo-bulk gene expression 
comparison between JSIT and published data in 160-gene STARmap study.
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the scale factor  may be reduced: in this paper, we have set  = 3 𝑠 𝑠
throughout, but setting  = 1 will reduce computational costs by 60%, with 𝑠
a small sacrifice in performance (Supp. Fig. S1).

We note that, at both 40x and 60x magnification, JSIT is less sensitive 
than MERlin 60x. We hypothesize that a key factor limiting sensitivity is 
the adaptive filtering step, which may inadvertently remove correctly-
identified spots along with spurious spots. In future work, two key avenues 
can be explored to remedy this.  First, more spurious spots should be 
removed before performing adaptive filtering, so that less aggressive 
filtering will be required, and more correctly-identified spots will be 
retained. This could be done by improving the preliminary denoising 
steps, by, for instance, explicitly estimating and removing the high-
frequency background shot noise, and more effectively removing low-
frequency autofluorescence noise produced by out-of-focus signal by 
three-dimensional deconvolution. Second, the adaptive filtering process 
may be improved, so fewer correctly-identified spots are filtered out. To 
accomplish this, additional metrics could be incorporated by which to 
filter out spurious spots, such as a morphological metric (spurious spots 
will be less likely to be round), and the ratio of the probability of the spot 
being called as the most likely barcode to the probability of assignment to 
the second-most likely barcode (spurious spots will have “messier” 
barcodes and this ratio is likely to be higher). Together, these two 
approaches of improved initial denoising and improved adaptive filtering 
may improve sensitivity and increase accuracy.

While in this study we have focused on the application of JSIT to 
MERFISH data, we have also shown that this optimization-based method 
may be applied to other multiplexed iST methods, such as BARseq2 (Sun 
et al. 2021), or STARmap (X. Wang et al. 2018). We suggest that JSIT or 
an adapted version be applied widely to other iST strategies. Finally, JSIT 
is readily extensible due to its straightforward model of iST signal 
generation: more complex noise models may be incorporated, for 
example, or JSIT may be extended to a 3D analysis of IT data sampled 
more densely by depth. The optimization-based approach also opens the 
door to the incorporation of machine learning via algorithm unrolling 
(Monga, Y. Li, and Eldar 2021; Sahel et al. 2022), as in (Dardikman-Yoffe 
and Eldar 2020), which can also reduce computational costs. Extensions 
are likely to improve the performance of JSIT and improve ability to study 
the spatial distributions of gene expression. Therefore, JSIT helps lower 
experimental overhead by increasing iST throughput and offers a 
framework for a general iST decoding tool.
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