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1.1 Introduction

Recent years have witnessed unprecedented success of machine learning meth-

ods in a broad range of applications [1]. These systems utilize highly parame-

terized models, such as deep neural networks, trained using a massive amount

of labeled data samples. In many applications, samples are available at remote

users, e.g., smartphones and other edge devices, and the common strategy is to

gather these samples at a computationally powerful server, where the model is

trained [2]. Often, data sets, such as images and text messages, contain private

information, and thus the user may not be willing to share them with the server.

Furthermore, sharing massive data sets can result in a substantial burden on the

communication links between the edge devices and the server. To allow central-

ized training without data sharing, Federated learning (FL) was proposed in [3]

as a method combining distributed training with central aggregation. This novel

method of learning has been the focus of growing research attention over the

last few years [4]. FL exploits the increased computational capabilities of mod-

ern edge devices to train a model on the users’ side, while the server orchestrates

these local training procedures and, in addition, periodically synchronizes the

local models into a global one.

FL is trained by an iterative process [5]. In particular, at each FL iteration, the

edge devices train a local model using their (possibly) private data, and trans-

mit the updated model to the central server. The server aggregates the received

updates into a single global model, and sends its parameters back to the edge

devices [6]. Therefore, to implement FL, edge devices only need to exchange their

trained model parameters, which avoids the need to share their data, thereby

preserving privacy. However, the repeated exchange of updated models between

the users and the server given the large number of model parameters, involves

massive transmissions over throughput-limited communication channels. This

challenge is particularly relevant for FL carried out over wireless networks, e.g.,

when the users are wireless edge devices. In addition to overloading the communi-

cation infrastructure, these repeated transmissions imply that the time required

to tune the global model not only depends on the number of training iterations,

but also depends on the delay induced by transmitting the model updates at each

FL iteration [7]. Hence, this communication bottleneck may affect the training
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time of global models trained via FL, which in turn may degrade their resulting

accuracy. This motivates the design of schemes whose purpose is to limit the

communication overhead due to the repeated transmissions of updated model

parameters in the distributed training procedure.

Various methods have been proposed in the literature to tackle the communica-

tion bottleneck induced by the repeated model updates in FL. The works [8–17]

focused on FL over wireless channels, and reduced the communication by op-

timizing the allocation of the channel resources, e.g., bandwidth, among the

participating users, as well as limiting the amount of participating devices while

scheduling when each user takes part in the overall training procedure. An addi-

tional related strategy treats the model aggregation in FL as a form of over-the-

air computation [18–20]. Here, the users exploit the full resources of the wireless

channel to convey their model updates at high throughput, and the resulting in-

terference is exploited as part of the aggregation stage at the server side. These

communication-oriented strategies are designed for scenarios in which the partic-

ipating users communicate over the same wireless media, and are thus concerned

with the division of the channel resources among the users.

An alternative approach to reduce the communication overhead, which holds

also when the users do not share the same wireless channel, is to reduce the

volume of the model updates conveyed at each FL iteration. Such strategies

do not focus on the communication channel and how to transmit over it, but

rather on what is being transmitted. As a result, they can commonly be com-

bined with the aforementioned communication-oriented strategies. One way to

limit the volume of conveyed parameters is to have each user transmit only part

of its model updates, i.e., implement dimensionality reduction by sparsifying or

subsampling [6, 21–25]. An alternative approach is to discretize the model up-

dates, such that each parameter is expressed using a small number of bits, as

proposed in [26–31]. More generally, the compression of the model updates can

be viewed as the conversion of a high-dimensional vector, whose entries take

continuous values, into a set of bits communicated over the wireless channel.

Such formulations are commonly studied in the fields of quantization theory and

source coding. This motivates the formulation of such compression methods for

FL from a quantization perspective, which is the purpose of this chapter.

The goal of this chapter is to present a unified FL framework utilizing quanti-

zation theory, which generalizes many of the previously proposed FL compression

methods. The purpose of the unified framework is to facilitate the comparison

and the understanding of the differences between existing schemes in a system-

atic manner, as well as identify quantization theoretic tools that are particularly

relevant for FL. We first introduce the basic concepts of FL and quantization

theory in Section 1.2. We conclude this section with identifying the unique re-

quirements and characteristics of FL, which affect the design of compression and

quantization methods. Based on these requirements, we present in Section 1.3

quantization theory tools that are relevant for the problem at hand in a gradual

and systemic manner: We begin with the basic concept of scalar quantization
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and identify the need for a probabilistic design. Then, we introduce the notion

of subtractive dithering as a means of reducing the distortion induced by dis-

cretization, and explain why it is specifically relevant in FL scenarios, as it can

be established by having a random seed shared by the server and each user.

Next, we discuss how the distortion can be further reduced by jointly discretiz-

ing multiple parameters, i.e., switching from scalar to vector quantization, in

a universal fashion, without violating the basic requirements and constraints

of FL. Finally, we demonstrate how quantization can be combined with lossy

source coding, which provides further performance benefits from the underlying

non-uniformity and sparsity of the digital representations. The resulting com-

pression method combining all of these aforementioned quantization concepts is

referred to as universal vector quantization for federated learning (UVeQFed).

In Section 1.4 we analyze the performance measures of UVeQFed, including the

resulting distortion induced by quantization, as well as the convergence profile

of models trained using UVeQFed combined with conventional federated averag-

ing. Our performance analysis begins by considering the distributed learning of

a model using a smooth convex objective measure. The analysis demonstrates

that proper usage of quantization tools result in achieving a similar asymptotic

convergence profile as that of FL with uncompressed model updates, i.e., with-

out communication constraints. Next, we present an experimental study which

evaluates the performance of such quantized FL models when training neural net-

works with non-synthetic data sets. These numerical results illustrate the added

value of each of the studied quantization tools, demonstrating that both subtrac-

tive dithering and universal vector quantizers achieves more accurate recovery of

model updates in each FL iteration for the same number of bits. Furthermore,

the reduced distortion is translated into improved convergence with the MNIST

and CIFAR-10 data sets. We conclude this chapter with a summary of the unified

UVeQFed framework and its performance in Section 1.5.

1.2 Preliminaries and System Model

Here we formulate the system model of quantized FL. We first review some basics

in quantization theory in Section 1.2.1. Then, we formulate the conventional FL

setup in Section 1.2.2, which operates without the need to quantize the model

updates. Finally, we show how the throughput constraints of uplink wireless

communications, i.e., the transmissions from the users to the server, gives rise

to the need for quantized FL, which is formulated in Section 1.2.3.

1.2.1 Preliminaries in Quantization Theory

We begin by briefly reviewing the standard quantization setup, and state the

definition of a quantizer:
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Figure 1.1 Quantization operation illustration.

definition 1.1 (Quantizer) A quantizer QLR (·) with R bits, input size L,

input alphabet X , and output alphabet X̂ , consists of:

1) An encoder e : Xn 7→ {0, . . . , 2R−1} , U which maps the input into a discrete

index.

2) A decoder d : U 7→ X̂L which maps each j ∈ U into a codeword qj ∈ X̂L.

We write the output of the quantizer with input x ∈ XL as

x̂ = d (e (x)) , QLR (x) . (1.1)

Scalar quantizers operate on a scalar input, i.e., L = 1 and X is a scalar space,

while vector quantizers have a multivariate input. An illustration of a quantiza-

tion system is depicted in Fig. 1.1.

The basic problem in quantization theory is to design a QLR (·) quantizer in

order to minimize some distortion measure δ : XL × X̂L 7→ R+ between its

input and its output. The performance of a quantizer is characterized using

its quantization rate R
L , and the expected distortion E{δ (x, x̂)}. A common

distortion measure is the mean-squared error (MSE), i.e., δ (x, x̂) , ‖x− x̂‖2.

Characterizing the optimal quantizer, i.e., the one which minimizes the distor-

tion for a given quantization rate, and its trade-off between distortion and rate

is in general a very difficult task. Optimal quantizers are thus typically studied

assuming either high quantization rate, i.e., R
m → ∞, see, e.g., [32], or asymp-

totically large inputs, namely, L → ∞, via rate-distortion theory [33, Ch. 10].

One of the fundamental results in quantization theory is that vector quantizers

are superior to scalar quantizers in terms of their rate-distortion tradeff. For

example, for large quantization rate, even for i.i.d. inputs, vector quantization

outperforms scalar quantization, with a distortion gap of 4.35 dB for Gaussian

inputs with the MSE distortion [34, Ch. 23.2].

1.2.2 Preliminaries in FL

FL System Model
In this section we describe the conventional FL framework proposed in [3]. Here,

a centralized server is training a model consisting of m parameters based on
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labeled samples available at a set of K remote users. The model is trained to

minimize a loss function `(·; ·). Letting {x(k)
i ,y

(k)
i }

nk
i=1 be the set of nk labeled

training samples available at the kth user, k ∈ {1, . . . ,K} , K, FL aims at

recovering the m× 1 weights vector wo satisfying

wo = arg min
w

{
F (w) ,

K∑
k=1

αkFk(w)

}
. (1.2)

Here, the weighting average coefficients {αk} are non-negative satisfying
∑
αk =

1, and the local objective functions are defined as the empirical average over the

corresponding training set, i.e.,

Fk(w)≡Fk
(
w; {x(k)

i ,y
(k)
i }

nk
i=1

)
,

1

nk

nk∑
i=1

`
(
w; (x

(k)
i ,y

(k)
i )
)
. (1.3)

Federated Averaging
Federated averaging [3] aims at recovering wo using iterative subsequent updates.

In each update of time instance t, the server shares its current model, represented

by the vector wt ∈ Rm, with the users. The kth user, k ∈ K, uses its set of nk
labeled training samples to retrain the model wt over τ time instances into

an updated model w̃
(k)
t+τ ∈ Rm. Commonly, w̃

(k)
t+τ is obtained by τ stochastic

gradient descent (SGD) steps applied to wt, executed over the local data set,

i.e.,

w̃
(k)
t+1 = w̃

(k)
t − ηt∇F

i
(k)
t

k

(
w̃

(k)
t

)
, (1.4)

where i
(k)
t is a sample index chosen uniformly from the local data of the kth

user at time t. When the local updates are carried out via (1.4), federated av-

eraging specializes the local SGD method [35], and the terms are often used

interchangeably in the literature.

Having updated the model weights, the kth user conveys its model update,

denoted as h
(k)
t+τ , w̃(k)

t+τ −wt, to the server. The server synchronizes the global

model by averaging the model updates via

wt+τ = wt +

K∑
k=1

αkh
(k)
t+τ =

K∑
k=1

αkw̃
(k)
t+τ . (1.5)

By repeating this procedure over multiple iterations, the resulting global model

can be shown to converge to wo under various objective functions [35–37]. The

number of local SGD iterations can be any positive integer. For τ = 1, the

model updates {h(k)
t+τ} are the scaled stochastic gradients, and thus the local

SGD method effectively implements mini-batch SGD. While such a setting re-

sults in a learning scheme that is simpler to analyze and is less sensitive to data

heterogeneity compared to using large values of τ , it requires much more com-

munications between the participating entities [38], and may give rise to privacy

concerns [39].
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Figure 1.2 Federated learning with bit rate constraints.

1.2.3 FL with Quantization Constraints

The federated averaging method relies on the ability of the users to repeatedly

convey their model updates to the server without errors. This implicitly requires

the users and the server to communicate over ideal links of infinite throughput.

Since upload speeds are typically more limited compared to download speeds [40],

the users needs to communicate a finite-bit quantized representation of their

model update, resulting in the quantized FL setup whose model we now describe.

Quantized FL System Model
The number of model parameters m can be very large, particularly when training

highly-parameterized deep neural networks (DNNs). The requirement to limit the

volume of data conveyed over the uplink channel implies that the model updates

should be quantized prior to its transmission. Following the formulation of the

quantization problem in Section 1.2.1, this implies that each user should encode

the model update into a digital representation consisting of a finite number of bits

(a codeword), and the server has to decode each of these codewords describing the

local model into a global model update. The kth model update h
(k)
t+τ is therefore

encoded into a digital codeword of Rk bits denoted as u
(k)
t ∈ {0, . . . , 2Rk − 1} ,

Uk, using an encoding function whose input is h
(k)
t+τ , i.e.,

e
(k)
t+τ : Rm 7→ Uk. (1.6)

The uplink channel is modeled as a bit-constrained link whose transmission

rate does not exceed Shannon capacity, i.e., each Rk bit codeword is recovered

by the server without errors, as commonly assumed in the FL literature [6, 21–

23, 25–31, 41]. The server uses the received codewords {u(k)
t+τ}Kk=1 to reconstruct

ĥt+τ ∈ Rm, obtained via a joint decoding function

dt+τ : U1 × . . .× UK 7→ Rm. (1.7)

The recovered ĥt+τ is an estimate of the weighted average
∑K
k=1 αkh

(k)
t+τ . Finally,

the global model wt+τ is updated via

wt+τ = wt + ĥt+τ . (1.8)
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An illustration of this FL procedure is depicted in Fig. 1.2. Clearly, if the number

of allowed bits is sufficiently large, the distance ‖ĥt+τ −
∑K
k=1 αkh

(k)
t+τ‖2 can be

made arbitrarily small, allowing the server to update the global model as the

desired weighted average (1.5)

In the presence of a limited bit budget, i.e., small values of {Rk}, distortion is

induced, which can severely degrade the ability of the server to update its model.

This motivates the need for efficient quantization methods for FL, which are to

be designed under the unique requirements of FL that we now describe.

Quantization Requirements
Tackling the design of quantized FL from a purely information theoretic per-

spective, i.e., as a lossy source code [33, Ch. 10], inevitably results in utilizing

complex vector quantizers. In particular, in order to approach the optimal trade-

off between number of bits and quantization distortion, one must jointly map

L samples together, where L should be an arbitrarily large number, by creating

a partition of the L-dimensional hyperspace which depends on the distribution

of the model updates. Furthermore, the distributed nature of the FL setups

implies that the reconstruction accuracy can be further improved by utilizing

infinite-dimensional vector quantization as part of a distributed lossy source cod-

ing scheme [42, Ch. 11], such as Wyner-Ziv coding [43]. However, these coding

techniques tend to be computationally complex, and require each of the nodes

participating in the procedure to have accurate knowledge of the joint distribu-

tion of the complete set of continuous-amplitude values to be discretized, which

is not likely to be available in practice.

Therefore, to study quantization schemes while faithfully representing FL se-

tups, one has to account for the following requirements and assumptions:

A1. All users share the same encoding function, denoted as e
(k)
t (·) = et(·) for

each k ∈ K. This requirement, which was also considered in [6], significantly

simplifies FL implementation.

A2. No a-priori knowledge or distribution of h
(k)
t+τ is assumed.

A3. As in [6], the users and the server share a source of common randomness.

This is achieved by, e.g., letting the server share with each user a random

seed along with the weights. Once a different seed is conveyed to each user, it

can be used to obtain a dedicated source of common randomness shared by

the server and each of the users for the entire FL procedure.

The above requirements, and particularly A1-A2, are stated to ensure fea-

sibility of the quantization scheme for FL applications. Ideally, a compression

mechanism should exploit knowledge about the distribution of its input, and

different distributions would yield different encoding mechanisms. However, the

fact that prior statistical knowledge about the distribution of the model updates

is likely to be unavailable, particularly when training deep models, while it is

desirable to design a single encoding mechanism that can be used by all devices,

motivates the statement of requirements A1-A2. In fact, these conditions give
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rise to the need for a universal quantization approach, namely, a scheme that op-

erates reliably regardless of the distribution of the model updates and without

prior knowledge of this distribution.

1.3 Quantization for FL

Next, we detail various mechanisms for quantizing the model updates conveyed

over the uplink channel in FL. We begin with the common method of probabilis-

tic scalar quantization in Section 1.3.1. Then in Sections 1.3.2-1.3.3 we show how

distortion can be reduced while accounting for the FL requirements A1-A3 by

introducing subtractive dithering and vector quantization, respectively. Finally,

we present a unified formulation for quantized FL based on the aforementioned

techniques combined with lossless source coding and overload prevention in Sec-

tion 1.3.4.

1.3.1 Probabilistic Scalar Quantization

The most simple and straight-forward approach to discretize the model updates is

to utilize quantizers. Here, a scalar quantizer Q1
R(·) is set to some fixed partition

of the real line, and each user encodes its model update h
(k)
t+τ by applyingQ1

R(·) to

it entry-wise. Arguably the most common scalar quantization rule is the uniform

mapping, which for a given support γ > 0 and quantization step size ∆ = 2γ
2R is

given by

Q1
R (x) =

{
∆
(⌊

x
∆

⌋
+ 1

2

)
, for |x| < γ

sign (x)
(
γ − ∆

2

)
, else,

(1.9)

where b·c denotes rounding to the next smaller integer and sign(·) is the signum

function. The overall number of bits used for representing the model update is

thus mR, which adjusts the resolution of the quantizers to yield a total of Rk bits

to describe the model update. The server then uses the quantized model update

to compute the aggregated global model by averaging these digital representa-

tions into (1.8). In its most coarse form, the quantizer represents each entry

using a single bit, as in, e.g., signSGD [26, 31]. An illustration of this simplistic

quantization scheme is given in Fig. 1.3.

The main drawback of the scalar quantization described in (1.9) follows from

the fact that its distortion is a deterministic function of its input. To see this,

consider for example the case in which the quantizer Q1
R(·) implements rounding

to the nearest integer, and all the users compute the first entry of their model

updates as 1.51. In such a case, all the users will encode this entry as the integer

value 2, and thus the first entry of ĥt+τ in (1.8) also equals 2, resulting in

a possibly notable error in the aggregated model. This motivates the usage of

probabilistic quantization, where the distortion is a random quantity. Considering

again the previous example, if instead of having each user encode 1.51 into 2,
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Figure 1.3 Model scalar quantization illustration.

Figure 1.4 Model probabilistic scalar quantization illustration.

the users would have 51% probability of encoding it 2, and 49% probability of

encoding it as 1. The aggregated model is expected to converge to the desired

update value of 1.51 as the number of users K grows by the law of large numbers.

Various forms of probabilistic quantization for distributed learning have been

proposed in the literature [41]. These include using one-bit sign quantizers [26],

ternary quantization [27], uniform quantization [28], and non-uniform quantiza-

tion [29]. Probabilistic scalar quantization can be treated as a form of dithered

quantization [44, 45], where the continuous-amplitude quantity is corrupted by

some additive noise, referred to as dither signal, which is typically uniformly

distributed over its corresponding decision region. Consequently, the quantized

updates of the kth user are given by applying Q1
R(·) to h

(k)
t+τ + z

(k)
t+τ element-

wise, where z
(k)
t+τ denotes the dither signal. When the quantization mapping

consists of the uniform partition in (1.9), as used in the QSGD algorithm [28],

this operation specializes non-subtractive dithered quantization [45], and the

entries of the dither signal z
(k)
t+τ are typically i.i.d. and uniformly distributed

over [−∆/2,∆/2] [45]. An illustration of this continuous-to-discrete mapping is

depicted in Fig. 1.4

Probabilistic quantization overcomes errors of a deterministic nature, as dis-

cussed above in the context of conventional scalar quantization. However, the

addition of the dither signal also increases the distortion in representing each

model update in discrete form [46]. In particular, while probabilistic quantiza-

tion reduces the effect of the distortion induced on the aggregated ĥt+τ in (1.8)

compared to conventional scalar quantization, it results in the discrete repre-

sentation of each individual update h
(k)
t+τ being less accurate. This behavior is



10 Quantized Federated Learning

Figure 1.5 Model subtractive dithered scalar quantization illustration.

also observed when comparing the quantized updates in Figs. 1.3 and 1.4. This

excess distortion can be reduced by utilizing subtractive dithering strategies, as

detailed in the following section.

1.3.2 Subtractive Dithered Scalar Quantization

Subtractive dithered quantization extends probabilistic quantization by intro-

ducing an additional decoding step, rather than directly using the discrete code-

words as the compressed digital representation. The fact that each of the users

can share a source of local randomness with the server by assumption A3 im-

plies that the server can generate the realization of the dither signal z
(k)
t+τ . Con-

sequently, instead of using the element-wise quantized version of h
(k)
t+τ + z

(k)
t+τ

received from the kth user, denoted here as Q(h
(k)
t+τ +z

(k)
t+τ ), the user sets its rep-

resentation of h
(k)
t+τ to be Q(h

(k)
t+τ+z

(k)
t+τ )−z(k)

t+τ . An illustration of this procedure

is depicted in Fig. 1.5.

The subtraction of the dither signal upon decoding reduces its excess distortion

in a manner that does not depend on the distribution of the continuous-amplitude

value [47]. As such, it is also referred to as universal scalar quantization. In

particular, for uniform quantizers of the form (1.9) where the input lies within

the support [−γ, γ], it holds that the effect of the quantization can be rigorously

modeled as an additive noise term whose entries are uniformly distributed over

[−∆/2,∆/2], regardless of the values of the realization and the distribution of the

model updates h
(k)
t+τ [45]. This characterization implies that the excess distortion

due to dithering is mitigated for each model update individually, while the overall

distortion is further reduced in aggregation, as federated averaging results in this

additive noise term effectively approaching its mean value of zero by the law of

large numbers.

1.3.3 Subtractive Dithered Vector Quantization

While scalar quantizers are simple to implement, they process each sample of the

model updates using the same continuous-to-discrete mapping. Consequently,

scalar quantizers are known to be inferior to vector quantizers, which jointly
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Figure 1.6 Model subtractive dithered vector quantization illustration.

map a set of L > 1 samples into a single digital codeword, in terms of their

achievable distortion for a given number of bits. In this section we detail how

the concept of subtractive dithered quantization discussed in the previous section

can be extended to vector quantizers, as illustrated in Fig. 1.6. The extension of

universal quantization via subtractive dithering to multivariate samples reviewed

here is based on lattice quantization [48]. To formulate the notion of such dithered

vector quantizers, we first briefly review lattice quantization, after which we

discuss its usage for FL uplink compression.

Lattice Quantization
Let L be a fixed positive integer, referred to henceforth as the lattice dimension,

and let G be a non-singular L × L matrix, which denotes the lattice generator

matrix. For simplicity, we assume that M , m
L is an integer, where m is the

number of model parameters, although the scheme can also be applied when

this does not hold by replacing M with dMe. Next, we use L to denote the

lattice, which is the set of points in RL that can be written as an integer linear

combination of the columns of G, i.e.,

L , {x = Gl : l ∈ ZL}. (1.10)

A lattice quantizer QL(·) maps each x ∈ RL to its nearest lattice point, i.e.,

QL (x) = lx where lx ∈ L if ‖x− lx‖ ≤ ‖x− l‖ for every l ∈ L. Finally, let P0

be the basic lattice cell [49], i.e., the set of points in RL which are closer to 0

than to any other lattice point:

P0 , {x ∈ RL : ‖x‖ < ‖x− p‖,∀p ∈ L/{0}}. (1.11)

For example, when G = ∆ · IL for some ∆ > 0, then L is the square lattice,

for which P0 is the set of vectors x ∈ RL whose `∞ norm is not larger than
∆
2 . For this setting, QL(·) implements entry-wise scalar uniform quantization

with spacing ∆ [34, Ch. 23]. This is also the case when L = 1, for which QL(·)
specializes scalar uniform quantization with spacing dictated by the (scalar) G.

Subtractive Dithered Lattice Quantization
Lattice quantizers can be exploited to realize universal vector quantization. Such

mappings jointly quantize multiple samples, thus benefiting from the improved
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Figure 1.7 Subtractive dithered lattice quantization illustration.

rate-distortion tradeoff of vector quantizers, while operating in a manner which

is invariant of the distribution of the continuous-amplitude inputs [48].

To formulate this operation, we note that in order to apply an L-dimensional

lattice quantizer to h
(k)
t+τ , it must first be divided into M distinct L× 1 vectors,

denoted {h̄(k)
i }Mi=1. In order to quantize each sub-vector h̄

(k)
i , it is first corrupted

with a dither vector z
(k)
i , which is here uniformly distributed over the basic

lattice cell P0, and then quantized using a lattice quantizer QL(·). On the decoder

side, the representation of h̄
(k)
i is obtained by subtracting z

(k)
i from the discrete

QL(h̄
(k)
i +z

(k)
i ). An example of this procedure for L = 2 is illustrated in Fig. 1.7.

1.3.4 Unified Formulation

The aforementioned strategies give rise to a unified framework for model up-

dates quantization in FL. Before formulating the resulting encoding and decoding

mappings in a systematic manner, we note that two additional considerations of

quantization and compression should be accounted for in the formulation. These

are the need to prevent overloading of the quantizers, and the ability to further

compress the discretized representations via lossless source coding.

Overloading Prevention
Quantizers are typically required to operate within their dynamic range, namely,

when the input lies in the support of the quantizer. For uniform scalar quantizers

as in (1.9), this implies that the magnitude of the input must not be larger than

γ. The same holds for multivariate lattice quantizers; as an infinite number of
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lattice regions are required to span RL, the input must be known to lie in some

L-dimensional ball in order to utilize a finite number of lattice points, which in

turn implies a finite number of different discrete representations. In particular,

the desired statistical properties which arise from the usage of dithering, i.e.,

that the distortion is uncorrelated with the input and can thus be reduced by

averaging, hold when the input is known to lie within the quantizer support [45].

In order to guarantee that the quantizer is not overloaded, namely, that each

continuous-amplitude value lies in the quantizer support, the model updates

vector h
(k)
t+τ can be scaled by ζ‖h(k)

t+τ‖ for some parameter ζ > 0. This setting

guarantees that the elements {h̄(k)
i }Mi=1 of which the compressed h

(k)
t+τ is com-

prised all reside inside the L-dimensional ball with radius ζ−1. The number of

lattice points is not larger than πL/2

ζLΓ(1+L/2) det(G)
[50, Ch. 2], where Γ(·) is the

Gamma function. Note that the scalar quantity ζ‖h(k)
t+τ‖ depends on the vec-

tor h
(k)
t+τ , and must thus be quantized with high resolution and conveyed to the

server, to be accounted for in the decoding process. The overhead in accurately

quantizing the single scalar quantity ζ‖h(k)
t+τ‖ is typically negligible compared

to the number of bits required to convey the set of vectors {h̄(k)
i }Mi=1, hardly

affecting the overall quantization rate.

Lossless Source Coding
As defined in Section 1.2.1, quantizers can output a finite number of different

codewords. The amount of codewords dictates the number of bits used R, as

each codeword can be mapped into a different combination of R bits, and con-

veyed in digital form over the rate-constrained uplink channel. However, these

digital representations are in general not uniformly distributed. In particular,

model updates are often approximately sparse, which is the property exploited

in sparisfication-based compression schemes [21,23]. Consequently, the codeword

corresponding to (almost) zero values is likely to be assigned more often than

other codewords by the quantizer.

This property implies that the discrete output of the quantizer, i.e., the vector

Q(h
(k)
t+τ+z

(k)
t+τ ), can be further compressed by lossless source coding. Various loss-

less source coding schemes, including arithmetic, Lempel-Ziv, and Elias codes,

are capable of compressing a vector of discrete symbols into an amount of bits

approaching the most compressed representation, dictated by the entropy of the

vector [33, Ch. 13]. When the distribution of the discrete vector Q(h
(k)
t+τ + z

(k)
t+τ )

is notably different from being uniform, as is commonly the case in quantized FL,

the incorporation of such entropy coding can substantially reduce the number of

bits in a lossless manner, i.e., without inducing additional distortion.

Encoder-Decoder Formulation
Based on the above considerations of overloading prevention and the potential

of entropy coding, we now formulate a unified quantized FL strategy coined

UVeQFed. UVeQFed generalizes the quantization strategies for FL detailed in
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Sections 1.3.1-1.3.3, where the usage of scalar versus vector quantizers is dictated

by the selection of the dimension parameter L: When L = 1 UVeQFed imple-

ments scalar quantization, while with L > 1 it results in subtractive dithered

lattice quantization. Specifically, UVeQFed consists of the following encoding

and decoding mappings:

Encoder: The encoding function et+τ (·) (1.6) for each user includes the following

steps:

E1. Normalize and partition: The kth user scales h
(k)
t+τ by ζ‖h(k)

t+τ‖ for some

ζ > 0, and divides the result into M distinct L×1 vectors, denoted {h̄(k)
i }Mi=1.

The scalar quantity ζ‖h(k)
t+τ‖ is quantized separately from {h̄(k)

i }Mi=1 with high

resolution, e.g., using a uniform scalar quantizer with at least 12 bits, such

that it can be recovered at the decoder with negligible distortion.

E2. Dithering: The encoder utilizes the source of common randomness, e.g., a

shared seed, to generate the set of L × 1 dither vectors {z(k)
i }Mi=1, which

are randomized in an i.i.d. fashion, independently of h
(k)
t+τ , from a uniform

distribution over P0.

E3. Quantization: The vectors {h̄(k)
i }Mi=1 are discretized by adding the dither

vectors and applying lattice/uniform quantization, namely, by computing

{QL(h̄
(k)
i + z

(k)
i )}.

E4. Entropy coding: The discrete values {QL(h̄
(k)
i + z

(k)
i )} are encoded into a

digital codeword u
(k)
t+τ in a lossless manner.

Decoder: The decoding mapping dt+τ (·) implements the following:

D1. Entropy decoding: The server first decodes each digital codeword u
(k)
t+τ into

the discrete value {QL(h̄
(k)
i + z

(k)
i )}. Since the encoding is carried out using

a lossless source code, the discrete values are recovered without any errors.

D2. Dither subtraction: Using the source of common randomness, the server

generates the dither vectors {z(k)
i }, which can be carried out rapidly and at

low complexity using random number generators as the dither vectors obey a

uniform distribution. The server then subtracts the corresponding vector by

computing {QL(h̄
(k)
i + z

(k)
i )− z(k)

i }.
D3. Collecting and scaling: The values computed in the previous step are col-

lected into an m×1 vector ĥ
(k)

t+τ using the inverse operation of the partitioning

and normalization in Step E1.

D4. Model recovery: The recovered matrices are combined into an updated

model based on (1.8). Namely,

wt+τ = wt +

K∑
k=1

αkĥ
(k)

t+τ . (1.12)

A block diagram of the proposed scheme is depicted in Fig. 1.8. The use

of subtractive dithered quantization in Steps E2-E3 and D2 allow obtaining
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a digital representation which is relatively close to the true quantity, without

relying on prior knowledge of its distribution. For non-subtractive dithering, as

in conventional probabilistic quantization such as QSGD [28], one must skip the

dither subtraction step D2, as illustrated in Fig. 1.8. For clarity, we use the term

UVeQFed to refer to the encoder-decoder pair consisting of all the detailed steps

E1-D4, i.e., with subtractive dithered quantization. The joint decoding aspect of

these schemes is introduced in the final model recovery Step D4. The remaining

encoding-decoding procedure, i.e., Steps E1-D3, is carried out independently for

each user.

UVeQFed has several clear advantages. First, while it is based on information

theoretic arguments, the resulting architecture is rather simple to implement.

In particular, both subtractive dithered quantization as well as entropy coding

are concrete and established methods which can be realized with relatively low

complexity and feasible hardware requirements. Increasing the lattice dimension

L reduces the distortion, thus leading to more improved trained models, at the

cost of increased complexity in the quantization step E3. The numerical study

presented in Section 1.4.2 demonstrates that the accuracy of the trained model

can be notably improved by using two-dimensional lattices compared to utilizing

scalar quantizers, i.e., setting L = 2 instead of L = 1. The source of common

randomness needed for generating the dither vectors can be obtained by sharing

a common seed between the server and users, as discussed in the statement

of requirement A3. The statistical characterization of the quantization error of

such quantizers does not depend on the distribution of the model updates. This

analytical tractability allows us to rigorously show that combining UVeQFed

with federated averaging mitigates the quantization error, which we show in the

following section.

1.4 Performance Analysis

In this section we study and compare the performance of different quantization

strategies that arise from the unified formulation presented in the previous sec-

tion. We first present the theoretical performance of UVeQFed in terms of its

resulting distortion and FL convergence for convex objectives. Then, we numer-

ically compare the FL performance with different quantization strategies using

both synthetic and non-synthetic datasets

1.4.1 Theoretical Performance

Here, we theoretically characterize the performance of UVeQFed, i.e., the encoder-

decoder pair detailed in Section 1.3.4. The characterization holds for both uni-

form scalar quantizers as well as lattice vector quantizers, depending on the

setting of the parameter L.
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Assumptions
We first introduce the assumptions on the objective functions Fk(·) in light of

which the theoretical analysis of the resulting distortion and the convergence of

local SGD with UVeQFed is carried out in the sequel. In particular, our theoret-

ical performance characterization utilizes the following assumptions:

AS1. The expected squared `2 norm of the random vector ∇F ik
(
w
)
, representing

the stochastic gradient evaluated at w, is bounded by some ξ2
k > 0 for all

w ∈ Rm.

AS2. The local objective functions {Fk(·)} are all ρs-smooth, namely, for all v1,v2 ∈
Rm it holds that

Fk(v1)− Fk(v2) ≤ (v1 − v2)T∇Fk(v2) +
1

2
ρs‖v1 − v2‖2.

AS3. The local objective functions {Fk(·)} are all ρc-strongly convex, namely, for

all v1,v2 ∈ Rm it holds that

Fk(v1)− Fk(v2) ≥ (v1 − v2)T∇Fk(v2) +
1

2
ρc‖v1 − v2‖2.

Assumption AS1 on the stochastic gradients is often employed in distributed

learning studies [35,36,51] Assumptions AS2-AS3 are also commonly used in FL

convergence studies [35, 36], and hold for a broad range of objective functions

used in FL systems, including `2-norm regularized linear regression and logistic

regression [36].

Distortion Analysis
We begin our performance analysis by characterizing the distortion induced

by quantization. The need to represent the model updates h
(k)
t+τ using a finite

number of bits inherently induces some distortion, i.e., the recovered vector is

ĥ
(k)

t+τ = h
(k)
t+τ + ε

(k)
t+τ . The error in representing ζ‖h(k)

t+τ‖ is assumed to be neg-

ligible. For example, the normalized quantization error is on the order of 10−7

for 12 bit quantization of a scalar value, and decreases exponentially with each

additional bit [34, Ch. 23].

Let σ̄2
L be the normalized second order lattice moment, defined as σ̄2

L ,∫
P0
‖x‖2dx/

∫
P0
dx [52]. For uniform scalar quantizers (1.9), this quantity equals

∆2/3, i.e., the second-order moment of a uniform distribution over the quantizer

support. The moments of the quantization error ε
(k)
t+τ satisfy the following the-

orem, which is based on the properties of non-overloaded subtractive dithered

quantizers [49]:

theorem 1.2 The quantization error vector ε
(k)
t+τ has zero-mean entries and

satisfies

E
{∥∥ε(k)

t+τ

∥∥2∣∣h(k)
t+τ

}
= ζ2‖h(k)

t+τ‖2Mσ̄2
L. (1.13)

Theorem 1.2 characterizes the distortion in quantizing the model updates us-

ing UVeQFed. Due to the usage of vector quantizers, the dependence of the
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expected error norm on the number of bits is not explicit in (1.13), but rather

encapsulated in the lattice moment σ̄2
L. To observe that (1.13) indeed represents

lower distortion compared to previous FL quantization schemes, we note that

even when scalar quantizers are used, i.e., L = 1 for which 1
L σ̄

2
L is known to be

largest [52], the resulting quantization is reduced by a factor of 2 compared to

conventional probabilistic scalar quantizers, due to the subtraction of the dither

upon decoding in Step D2 [45, Thms. 1-2].

We next bound the distance between the desired model wdes
t+τ , which is given

by wdes
t+τ =

∑K
k=1 αkw̃

(k)
t+τ in (1.8), and the recovered one wt+τ , as stated in the

following theorem:

theorem 1.3 (Thm. 2 of [53]) When AS1 holds, the mean-squared distance

between wt+τ and wdes
t+τ satisfies

E
{∥∥wt+τ−wdes

t+τ

∥∥2
}
≤Mζ2σ̄2

Lτ

(
t+τ−1∑
t′=t

η2
t′

)
K∑
k=1

α2
kξ

2
k. (1.14)

Theorem 1.3 implies that the recovered model can be made arbitrarily close

to the desired one by increasing K, namely, the number of users. For example,

when αk = 1/K, i.e., conventional averaging, it follows from Theorem 1.3 that

the mean-squared error in the weights decreases as 1/K. In particular, if maxk αk
decreases with K, which essentially means that the updated model is not based

only on a small part of the participating users, then the distortion vanishes in

the aggregation process. Furthermore, when the step size ηt gradually decreases,

which is known to contribute to the convergence of FL [36], it follows from

Theorem 1.3 that the distortion decreases accordingly, further mitigating its

effect as the FL iterations progress.

Convergence Analysis
We next study the convergence of FL with UVeQFed. We do not restrict the

labeled data of each of the users to be generated from an identical distribution,

i.e., we consider a statistically heterogeneous scenario, thus faithfully represent-

ing FL setups [4, 54]. Such heterogeneity is in line with requirement A2, which

does not impose any specific distribution structure on the underlying statistics

of the training data. Following [36], we define the heterogeneity gap as

ψ , F (wo)−
K∑
k=1

αk min
w

Fk(w). (1.15)

The value of ψ quantifies the degree of heterogeneity. If the training data orig-

inates from the same distribution, then ψ tends to zero as the training size

grows. However, for heterogeneous data, its value is positive. The convergence of

UVeQFed with federated averaging is characterized in the following theorem:

theorem 1.4 (Thm. 3 of [53]) Set γ = τ max(1, 4ρs/ρc) and consider a
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UVeQFed setup satisfying AS1-AS3. Under this setting, local SGD with step size

ηt = τ
ρc(t+γ) for each t ∈ N satisfies

E{F (wt)} − F (wo) ≤ ρs
2(t+ γ)

max

(
ρ2
c + τ2b

τρc
, γ‖w0 −wo‖2

)
, (1.16)

where

b ,
(
1 + 4Mζ2σ̄2

Lτ
2
) K∑
k=1

α2
kξ

2
k + 6ρsψ + 8(τ − 1)2

K∑
k=1

αkξ
2
k.

Theorem 1.4 implies that UVeQFed with local SGD, i.e., conventional feder-

ated averaging, converges at a rate of O(1/t). This is the same order of con-

vergence as FL without quantization constraints for i.i.d. [35] as well as hetero-

geneous data [36, 55]. A similar order of convergence was also reported for pre-

vious probabilistic quantization schemes which typically considered i.i.d. data,

e.g., [28, Thm. 3.2]. While it is difficult to identify the convergence gains of

UVeQFed over previously proposed FL quantizers by comparing Theorem 1.4 to

their corresponding convergence bounds, in the following section we empirically

demonstrate that UVeQFed converges to more accurate global models compared

to FL with probabilistic scalar quantizers, when trained using i.i.d. as well as

heterogeneous data sets.

1.4.2 Numerical Study

In this section we numerically evaluate UVeQFed. We first compare the quanti-

zation error induced by UVeQFed to competing methods utilized in FL. Then,

we numerically demonstrate how the reduced distortion is translated in FL per-

formance gains using both MNIST and CIFAR-10 data sets.

Quantization Distortion
We begin by focusing only on the compression method, studying its accuracy

using synthetic data. We evaluate the distortion induced in quantization of

UVeQFed operating with a two-dimensional hexagonial lattice, i.e., L = 2 and

G = [2, 0; 1, 1/
√

3] [56], as well as with scalar quantizers, namely, L = 1 and

G = 1. The normalization coefficient is set to ζ = 2+R̃/5√
M

, where R̃ is the quanti-

zation rate, i.e., the ratio of the number of bits to the number of model updates

entries m. The distortion of UVeQFed is compared to QSGD [28], which can

be treated as UVeQFed without dither subtraction in Step D2 and with scalar

quantizers, i.e., L = 1. In addition, we evaluate the corresponding distortion

achieved when using uniform quantizers with random unitary rotation [6], and

to subsampling by random masks followed by uniform three-bit quantizers [6].

All the simulated quantization methods operate with the same quantization rate,

i.e., the same overall number of bits.

Let H be a 128 × 128 matrix with Gaussian i.i.d. entries, and let Σ be a

128 × 128 matrix whose entries are given by (Σ)i,j = e−0.2|i−j|, representing
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Figure 1.9 Quantization distortion, i.i.d.
data.
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Figure 1.10 Quantization distortion,
correlated data.

an exponentially decaying correlation. In Figs. 1.9-1.10 we depict the per-entry

squared-error in quantizing H and ΣHΣT , representing independent and cor-

related data, respectively, versus the quantization rate R̃. The distortion is av-

eraged over 100 independent realizations of H. To meet the bit rate constraint

when using lattice quantizers, we scaled G such that the resulting codewords use

less than 1282R̃ bits. For the scalar quantizers and subsampling-based scheme,

the rate determines the quantization resolution and the subsampling ratio, re-

spectively.

We observe in Figs. 1.9-1.10 that implementing the complete encoding-decoding

steps E1-D4 allows UVeQFed to achieve a more accurate digital representation

compared to previously proposed methods. It is also observed that UVeQFed

with vector quantization outperforms its scalar counterpart, and that the gain is

more notable when the quantized entries are correlated. This demonstrates the

improved accuracy of jointly encoding multiple samples via vector quantization

as well as the ability of UVeQFed to exploit statistical correlation in a universal

manner by using fixed lattice-based quantization regions that do not depend on

the underlying distribution.

Convergence Performance
Next, we demonstrate that the reduced distortion which follows from the combi-

nation of subtractive dithering and vector quantization in UVeQFed also trans-

lates into FL performance gains. To that aim, we evaluate UVeQFed for training

neural networks using the MNIST and CIFAR-10 data sets, and compare its

performance to that achievable using QSGD.

For MNIST, we use a fully-connected network with a single hidden layer of 50

neurons and an intermediate sigmoid activation. Each of the K = 15 users has

1000 training samples, which are distributed sequentially among the users, i.e.,

the first user has the first 1000 samples in the data set, and so on, resulting in an

uneven heterogeneous division of the labels of the users. The users update their

weights using gradient descent, where federated averaging is carried out on each
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Figure 1.11 Convergence profile,
MNIST, R̃ = 2.
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Figure 1.12 Convergence profile,
MNIST, R̃ = 4.

iteration. The resulting accuracy versus the number of iterations is depicted in

Figs. 1.11-1.12 for quantization rates R̃ = 2 and R̃ = 4, respectively.

For CIFAR-10, we train the deep convolutional neural network architecture

used in [57], whose trainable parameters constitute three convolution layers and

two fully-connected layers. Here, we consider two methods for distributing the

50000 training images of CIFAR-10 among the K = 10 users: An i.i.d. division,

where each user has the same number of samples from each of the 10 labels,

and a heterogeneous division, in which at least 25% of the samples of each user

correspond to a single distinct label. Each user completes a single epoch of SGD

with mini-batch size 60 before the models are aggregated. The resulting accuracy

versus the number of epochs is depicted in Figs. 1.13-1.14 for quantization rates

R̃ = 2 and R̃ = 4, respectively.

We observe in Figs. 1.11-1.14 that UVeQFed with vector quantizer, i.e., L = 2,

results in convergence to the most accurate model for all the considered scenar-

ios. The gains are more dominant for R̃ = 2, implying that the usage of UVeQFed

with multi-dimensional lattices can notably improve the performance over low

rate channels. Particularly, we observe in Figs. 1.13-1.14 that similar gains of

UVeQFed are noted for both i.i.d. as well as heterogeneous setups, while the het-

erogeneous division of the data degrades the accuracy of all considered schemes

compared to the i.i.d division. It is also observed that UVeQFed with scalar

quantizers, i.e., L = 1, achieves improved convergence compared to QSGD for

most considered setups, which stems from its reduced distortion.

The results presented in this section demonstrate that the theoretical benefits

of UVeQFed, which rigorously hold under AS1-AS3, translate into improved con-

vergence when operating under rate constraints with non-synthetic data. They

also demonstrate how introducing the state-of-the-art quantization theoretic con-

cepts of subtractive dithering and universal joint vector quantization contributes

to both reducing the quantization distortion as well as improving FL convergence.
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1.5 Summary

In the emerging machine learning paradigm of FL, the task of training highly-

parameterized models becomes the joint effort of multiple remote users, orches-

trated by the server in a centralized manner. This distributed learning operation,

which brings forth various gains in terms of privacy, also gives rise to a multi-

tude of challenges. One of these challenges stems from the reliance of FL on

the ability of the participating entities to reliably and repeatedly communicate

over channels whose throughput is typically constrained, motivating the users to

convey their model updates to the server in a compressed manner with minimal

distortion.

In this chapter we have considered the problem of model update compression

from a quantization theory perspective. We first identified the unique character-

istics of FL in light of which quantization methods for FL should be designed.

Then, we presented established concepts in quantization theory which facilitate

uplink compression in FL. These include a) the usage of probabilistic (dithered)

quantization to allow the distortion to be reduced in federated averaging; b)

the integration of subtractive dithering to reduce the distortion by exploiting

a random seed shared by the server and each user; c) the extension to vector

quantizers in a universal manner to further improve the rate-distortion tradeoff;

and d) the combination of lossy quantization with lossless source coding to ex-

ploit non-uniformity and sparsity of the digital representations. These concepts

are summarized in a concrete and systematic FL quantization scheme, referred

to as UVeQFed. We analyzed UVeQFed, proving that its error term is mitigated

by federated averaging. We also characterized its convergence profile, showing

that its asymptotic decay rate is the same as an unquantized local SGD. Our

numerical study demonstrates that UVeQFed achieves more accurate recovery

of model updates in each FL iteration compared to previously proposed schemes

for the same number of bits, and that its reduced distortion is translated into

improved convergence with the MNIST and CIFAR-10 data sets.
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mization: Distributed machine learning for on-device intelligence,” arXiv preprint

arXiv:1610.02527, Oct. 2016.
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