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1.1 INTRODUCTION

Beamforming is a classical method of processing temporal sensor array measure-
ments for signal estimation, interference cancellation, source direction, and spectrum
estimation. It has ubiquitously been applied in areas such as radar, sonar, wire-
less communications, speech processing, and medical imaging (see, for example,
[1,2,3,4,5,6, 7, 8] and the references therein.)

Conventional approaches for designing data dependent beamformers typically
attempt to maximize the signal-to-interference-plus-noise ratio (SINR). Maximizing
the SINR requires knowledge of the interference-plus-noise covariance matrix and
the array steering vector. Since this covariance is unknown, it is often replaced by
the sample covariance of the measurements, resulting in deterioration of performance
with higher signal-to-noise ratio (SNR) when the signal is present in the training data.
Some beamforming techniques are designed to mitigate this effect [9, 10, 11, 12],
whereas others are developed to also overcome uncertainty in the steering vector,
for example [13, 14, 15, 16, 17, 18, 19] (see also Chapters 2 and 3 in this book
and the references therein.) Despite the fact that the SINR has been used as a
measure of beamforming performance and as a design criterion in many beamforming

approaches, we note that maximizing SINR may not guarantee a good estimate of
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the signal. In arestimationcontext, where our goal is to design a beamformer in
order to obtain an estimate of the signal amplitude that is close to its true value, it
would make more sense to choose the weights to minimize an objective that is related
to the estimation erroi,e., the difference between the true signal amplitude and its
estimate, rather than the SINR. Furthermore, in comparing performance of different
beamforming methods, it may be more informative to consider the estimation error
as a measure of performance.

In this chapter we derive five beamformers for estimating a signal in the presence
of interference and noise using the mean-squared error (MSE) as the performance
criterion assuming either known steering vectors or random steering vectors with
known second-order statistics. Computing the MSE shows, however, that it depends
explicitly on the unknown signal magnitude in the deterministic case, or the unknown
signal second order moment in the stochastic case [8], hence cannot be minimized
directly. Thus, we aim at designing a robust beamformer whose performance in terms
of MSE is good across all possible values of the unknowns. To develop a beamformer
with this property, we rely on a recent minimax estimation framework that has been
developed for solving robust estimation problems [20, 21]. This framework considers
a general linear estimation problem, and suggests two classes of linear estimators that
optimize an MSE-based criterion. In the first approach, developed in [20], a linear
estimator is developed to minimize the worst-case MSE over an ellipsoidal region of
uncertainty on the parameter set. In the second approach, developed in [21], a linear
estimator is designed whose performance is as close as possible to that of the optimal
linear estimator for the case of known model parameters. Specifically, the estimator
is designed to minimize the worst-casgret, which is the difference between the
MSE of the estimator in the presence of uncertainties, and the smallest attainable
MSE with a linear estimator that knows the exact model. Note that as we explain
further in Section 1.2.2, even when the signal magnitude is known, we cannot achieve
a zero MSE with dinear estimator.

Using the general minimax MSE framework [20, 21] we develop two classes of
robust beamformers: Minimax MSE beamformers and minimax regret beamformers.

The minimax MSE beamformers minimize the worst-case MSE over all signals whose
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INTRODUCTION iii

magnitude (or variance, in the zero-mean stochastic signals case) is bounded by a
constant. The minimax regret beamformers minimize the worst-case regret over all
bounded signals, where this approach considers both an upper and a lower bound on
the signal magnitude. We note that in practice, if bounds on the signal magnitude
are not known, then they can be estimated from the data, as we demonstrate in the
numerical examples.

We first consider the case in which the steering vector is known completely
and develop a minimax MSE and minimax regret beamformer. In this case we
show that the minimax beamformers are scaled versions of the classical SINR-
based beamformers. We then consider the case in which the steering vector is not
completely known or fully calibrated, for example due to errors in sensor positions,
gains or phases, coherent and incoherent local scatters, receiver fluctuations due
to temperature changes, quantization effects, etc. (see [22, 14] and the references
therein). To model the uncertainties in the steering vector, we assume that it is a
random vector with known mean and covariance. Under this model, we develop three
possible beamformers: minimax MSE, minimax regret, and, following the ideas in
[23], a least-squares beamformer. While the minimax beamformers require bounds
on the signal magnitude, the least-squares beamformer does not require such bounds.
As we show, in the case of a random steering vector, the beamformers resulting from
the minimax approaches are fundamentally different than those resulting from the
SINR approach, and are not just scaled versions of each other as in the known steering
vector case.

To illustrate the advantages of our methods we present several numerical examples
comparing the proposed methods with conventional SINR-based methods, and several
recently proposed robust methods. For a known steering vector, the minimax MSE
and minimax regret beamformers are shown to consistently have the best performance,
particularly for negative SNR values. For random steering vectors, the minimax and
least-squares beamformers are shown to have the best performance for low SNR
values (-10 to 5 dB). As we show, the least-squares approach, which does not require
bounds on the signal magnitude, often performs better than the recently proposed

robust methods [14, 15, 16] for dealing with steering vector uncertainty. In this case,
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the improvement in performance resulting from the proposed methods is often quite
substantial.

The chapter is organized as follows. In Section 1.2 we present the problem for-
mulation and review existing methods. In Section 1.3 we develop the minimax MSE
and minimax regret beamformers for the case in which the steering vector is known.
The case of a random steering vector is considered in Section 1.4. In Sections 1.5 and
1.6 we discuss practical considerations and present numerical examples illustrating
the advantages of the proposed beamformers over several existing standard and ro-
bust beamformers, for a wide range of SNR values. The chapter is summarized in
Section 1.7.

1.2 BACKGROUND AND PROBLEM FORMULATION

We denote vectors ift™ by boldface lowercase letters and matrice€ii*M by
boldface uppercase letters. The malrdenotes the identity matrix of the appropriate
dimension,(-)* denotes the Hermitian conjugate of the corresponding matrix, and
(T) denotes an estimated variable. The eigenvector of a mAtegsociated with the

largest eigenvalue is denoted By{ A }.

1.2.1 Background

Beamforming methods are used extensively in a variety of areas, where one of their

goals is to estimate the source signal amplitsidg from the array observations
y(t) =s(t)a+i(t) +et), 1<t<N, (1.2)

wherey (t) € CM is the complex vector of array observations at timéth M/ being
the number of array sensors(t) is the signal amplitudea is the signal steering
vector,i(t) is the interferenceg(t) is a Gaussian noise vector aidis the number of
snapshots [4, 6, 8]. In the above model we implicitly made the common assumption
of a narrow-band signal.

The source signal amplitud€t) may be a deterministic unknown signal, such as

a complex sinusoid, or a stochastic stationary process with unknown signal power.
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For concreteness, in our development below we will tegaf as a deterministic
signal. However, as we show analytically in Section 1.2.2 and through simulations
in Section 1.6, the optimality properties of the algorithms we develop are valid also
in the case of stochastic signals.

In some applications, such as in the case of a fully calibrated array, the steering
vector can be assumed to be known exactly. In this case, weateszd known deter-
ministic vector. However, in practice the array response may have some uncertainties
or perturbations in the steering vectors. These perturbations may be due to errors in
sensor positions, gains or phases, mutual couplings between sensors, receiver fluctu-
ations due to temperature changes, quantization effects, and coherent and incoherent
local scatters [22, 14]. To account for these uncertainties, several authors have tried
modeling some of their effects [24, 25]. However these perturbations often take place
simultaneously, which significantly complicates the model. Instead, the uncertainty
in a can be taken into account by treating it as a deterministic vector that lies in
an ellipsoid centered at a nominal steering vector [14, 15]. An alternative approach
has been to treat the steering vector as a random vector assuming knowledge of its
distribution [13] or the second-order statistics [26, 27, 28, 29, 30, 31, 32, 16]. In
the latter case the mean valueaotorresponds to the nominal steering vector, and
the covariance matrix captures its perturbations. In this chapter we consider the
cases whera is known (Section 1.3) or random with known second-order statistics
(Section 1.4).

Our goal is to estimate the signal amplitude) from the observationg(t) using
a set of beamformer weightg(t), where the output of a narrowband beamformer is
given by

() =w ()y(t), 1<t<N. (1.2)

To illustrate our approach, in this section we focus primarily on the case in which the
steering vectorn is assumed to be known exactly. As we show in Section 1.4, the
essential ideas we outline for this case can also be applied to the case inawkich
random.

Traditionally, the beamformer weightg(t) = w (where we omitted the index

for brevity) are chosen to maximize the SINR, which in the case of a known steering
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vector is given by

|w*a?
SINR o =, (1.3)
where
R=FE{(i+n)(i+n)"} (1.4)

is the interference-plus-noise covariance matrix. The weight vector maximizing the

SINR is given by
1
WMvDR = *R-1a ~la.

(1.5)

The solution (1.5) is commonly referred to as the minimum variance distortionless

response (MVDR) beamformer, since it can also be obtained as the solution to
minw*Rw subjectto w*a=1. (1.6)

w

In practice, the interference-plus-noise covariance marix often not available.
In such cases, the exact covarialité (1.5) is replaced by an estimated covariance.
Various methods exist for estimating the covarialRceThe simplest approach is to

choose the estimate as the sample covariance

N 1 X
Ropn = o > vty (1.7)
t=1

The resulting beamformer is referred to as the sample matrix inversion (SMI) beam-
former or the Capon beamformer [33, 34]. (For simplicity, we assume here that
the sample covariance matrix is invertible.) If the signal is present in the training
data, then it is well known that the performance of the MVDR beamformer Rith
replaced byﬁsm of (1.7) degrades considerably [11].

An alternative approach for estimatig is the diagonal loading approach, in

which the estimate is chosen as
N N 1 X
Ri = Ram + 1= ;y@)y(t) +¢L, (1.8)

where¢ is the diagonal loading factor. The resulting beamformer is referred to as the
loaded SMI or the loaded Capon beamformer [9, 10]. Various methods have been

proposed for choosing the diagonal loading fagt@eee.g.,[10]. A heuristic choice
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BACKGROUND AND PROBLEM FORMULATION vii

for &, which is common in applications, §s~ 1002, whereo? is the noise power in
a single sensor.
Another popular approach to estimatiityis the eigenspace approach [11], in

which the inverse of the covariance matrix is estimated as
—~ —1 ~ —1
(Reig) = (Rsm) Psa (19)

whereP; is the orthogonal projection onto the sample signal+interference subspace,
i.e.,the subspace corresponding to fhe+ 1 largest eigenvalues & .., wereD is
the known rank of the interference subspace.

Note that the Capon, loaded Capon and eigenspace beamformers, can all be viewed
as MVDR beamformers with a particular estimatdraf

The class of MVDR beamformers assumes explicitly that the steering we@tor
known exactly. Recently, several robust beamformers have been proposed for the case
in which the steering vector is not known precisely, but rather lies in some uncertainty
set[14, 15, 16]. Although originally developed to deal with steering vector mismatch,
the authors of the referenced papers suggest using these robust methods even in the
case in whicha is known, in order to deal with the mismatch in the interference-
plus-noise covariance, namely the finite sample effects, and the fact that the signal is
typically presentin the training data. Each of the above robust methods is designed to
maximize a measure of SINR on the uncertainty set. Specifically, in [14], the authors
suggest minimizingv*f{mw subject to the constraint that*c| > 1 for all possible
values of the steering vecter where|lc — a|| < e. The resulting beamformer is

given by
A

e —1
Aa* (Rsm " )\621) a—1

~ —1
w = (Rsm n /\621) a, (1.10)
where) is chosen such thaw*a — 1|2 = e2w*w. In practice, the solution can be
found by using a second order cone program. In [15] the authors consider a similar
approach in which they first estimate the steering vector by minimiﬁi‘rﬁ;}bé
with respect tcaa subject tol|a — a||?> = ¢, and then use/Ma/|a|| in the MVDR
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beamformer, which results in the beamformer

~ —1
N (\Row +1) 2

VM | a* ()\ﬁsm + I)_l ﬁsm ()\ﬁsm + I)_1 a.

(1.11)

W =

N —1 |2 N —1
Here\ is chosen such th t(I + )\Rsm> al| =e¢ anda = (R;}l + AI) all.

Finally, in [16] the authors consider a general-rank signal model. Adapting their

results to the rank-one steering vector case, their beamformer is the solution to
minimizing w*R.yw subject tdw*a|2 > 1 — w*Aw for all || A|| < ¢, and is given

by

w = aP {ﬁgll (aa™ — eI)} , (1.12)

whereq is chosen such that*(aa* — eI)w = 1.

The motivation behind the class of MVDR beamformers and the robust beam-
formers is to maximize the SINR. However, choosimgo maximize the SINR does
not necessarily result in an estimated signal amplit{dgthat is close ta:(¢). Inan
estimationcontext, where our goal is to design a beamformer in order to obtain an
estimates(¢) that is close ta(t), it would make more sense to choose the weights
to minimize the MSE rather than to maximize the SINR, which is not directly related

to the estimation erro¥(t) — s(t).

1.2.2 MSE Beamforming

If § = w*y, then, assuming thatis deterministic, the MSE betweearands is given

by
E{[s—s]’} =V(3) + |B(3)|* = w*Rw + |s]*|1 — w*a[?, (1.13)

whereV (3) = E{|s — E{s}|*} is the variance of the estimateand B(3) =
E {5} — s is the bias. In the case in whichis a zero-mean random variable with

variancer?, the MSE is given by

E{]5— s’} = wRw + 02|l — w*a|”. (1.14)
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Comparing (1.13) and (1.14) we see that the expressions for the MSE have the same
form in the deterministic and stochastic cases, whePdn the deterministic case is
replaced by2 in the stochastic case. For concreteness, in the discussion in the rest
of the chapter we assume the deterministic model. However, all the results hold true
for the stochastic model where we replacgé everywhere withs2. In particular, in
the development of the minimax MSE and regret beamformers in the stochastic case,
the bounds ons|? are replaced by bounds on the signal variange

The minimum MSE (MMSE) beamformer minimizing the MSE whelis known
is obtained by differentiating (1.13) with respectt@and equating t0, which results
in

w(s) = |s|*(R + |s|*aa*) 'a. (1.15)

Using the Matrix Inversion Lemma we can express) as

[s”

=———" R 'a 1.16
1+ |s|?a*R~1a & (1.16)

w(s)

The MMSE beamformer can alternatively be expressed as

|s|?’a*R~ta R !a
= ) = 1.17
W(S) 1+ |S|2a*R—1a a*Rfla ﬁ(S)WMVDRa ( )
where , 1
*R—
B(s) 2R 2 (1.18)

~ 1+ [sfaR a’
The scaling3(s) satisfies) < 3(s) < 1, and is monotonically increasing in|.
Therefore, for anys|?, [|[w(s)|| < ||[Wuvor||. Substitutingw(s) back into (1.13),
the smallest possible MSE, which we denoteM§E ., is given by

s

MSE =—
OFT T 1+ |s[?2a*R-1a

(1.19)

Using (1.13) we can also compute the MSE of the MVDR beamformer (1.5),
which maximizes the SINR, assuming thBRt is known. Substitutingw =
(1/a*R~ta)R~!ainto (1.13), the MSE is

1

MSEMVDR = m .

(1.20)
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Comparing (1.19) with (1.20),

|s|? 1 1

MSEcpr = = <
OFT T 1+ |s[2a*R-1a  1/[s]2+a*R-!la ~ a*R-la

= lwSEMVDR-
(1.21)

Thus, as we expect, the MMSE beamformer always results in a smaller MSE than

the MVDR beamformer. Therefore, in an estimation context where our goal is to
estimate the signal amplitude, the MMSE beamformer will lead to better average
performance.

From (1.17) we see that the MMSE beamformer is just a shrinkage of the MVDR
beamformer (as we will show below, this is no longer true in the case of a random
steering vector). Therefore, the two beamformers will result in the same SINR, so
that the MMSE beamformer also maximizes the SINR. However, as (1.21) shows, this
shrinkage factor impacts the MSE so that the MMSE beamformer has better MSE
performance. To illustrate the advantage of the MMSE beamformer, we consider
a numerical example. The scenario consists of a uniform linear array (ULA) of
M = 20 omnidirectional sensors spaced half a wavelength apart. We ch@ssa
complex sinewave with varying amplitude to obtain the desired SNR in each sensor;
its plane-wave has a DOA df0° relative to the array normal. The noigeis a
zero-mean, Gaussian, complex random vector, temporally and spatially white, with
a power of 0 dB in each sensor. The interference is giveh bya;i wherei is
a zero-mean, Gaussian, complex process temporally white with interference-plus-
noise ratio (INR) of 20 dB and; is the interference steering vector with DOA =
—30°. Assuming knowledge ofs|?, R anda, we evaluate the square-root of the
normalized MSE (NMSE) over a time-window &f = 100 samples, where each
result is obtained by averaging 200 Monte Carlo simulations.

Figure 1.1 illustrates the NMSE of the MMSE and MVDR beamformers when
estimating the complex sinewave, as a function of SNR. It can be seen that the MMSE
beamformer outperforms the MVDR beamformer in all the illustrated SNR range.
As the SNR increases, the MVDR beamformer converges to the MMSE beamformer,
since3(s) in (1.17) converges td. The absolute value of the original signal and

its estimates obtained from the MMSE and MVDR beamformers are illustrated in
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—— MMSE
—~+- MVDR
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0
SNR[dB]

Fig. 1.1 Square-root of the normalized MSE as a function of SNR using the MMSE and
MVDR beamformers when estimating a complex sinewave with YDA, in the presence of

an interference with INR = 20 dB and DOA =30°. We assume thds|?, the noise-plus-

interference covariance matrR® and the steering vectar are known.

Fig. 1.2, for an SNR of-10 dB. Clearly, the MMSE beamformer leads to a better
estimate than the MVDR beamformer.

The difference between the MSE and SINR based approaches is more pronounced
in the case of a random steering vector. Supposeatisa random vector with mean
m and covariance matri&. In Section 1.4 we consider this case in detail, and show
that the beamformer minimizing the MSE is

w(s) = 5

- R+ |s2C) ' m. 1.22
1+ [s/?2m* (R + |s2C) ' m ( s1°C) (1.22)

On the other hand, the beamformer maximizing the SINR is given by
w=aP{R(C+mm")}, (1.23)

wherea is chosen such that*(C + mm*)w = 1. We refer to this beamformer
as the principal eigenvector (PEIG) beamformer [35]. Comparing (1.22) and (1.23)

we see that in this case the two beamformers are in general not scalar versions of
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Fig. 1.2 Absolute values of the true complex sinewave, and its estimates obtained by the
MMSE and MVDR beamformers for SNR = -10 dB, in the presence of an interference with
INR =20 dB and DOA =—30°. We assume thgs|?, the noise-plus-interference covariance

matrix R and the steering vectar are known.

each other. As we now illustrate, the MMSE beamformer can result in a much
better estimate of the signal amplitude and waveform than the SINR-based PEIG
beamformer.

To illustrate the advantage of the MMSE beamformer in the case of a random
steering vector, we consider an example in which the DOA of the signal is random.
The scenario is similar to that of the previous example, where in place of a constant
signal DOA, the DOA is now given by a Gaussian random variable with mean equal
to 30° and standard deviation equal to 1 (abai®°). The meanm and covariance
matrix C of the steering vector are estimated from 2000 realizations of the steering
vector. Assuming knowledge ¢f|> andR, we evaluate the NMSE over a time-
window of N = 100 samples, where each result is obtained by averaging 200 Monte
Carlo simulations.

Figure 1.3llustrates the NMSE of the MMSE and PEIG beamformers as a function
of SNR. It can be seen that the NMSE of the MMSE beamformer is substantially

lower than that of the PEIG beamformer. The absolute value of the original signal
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:
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Fig. 1.3 Square-root of the normalized MSE as a function of SNR using the MMSE and
PEIG beamformers when estimating a complex sinewave with random DOA, in the presence
of an interference with INR = 20 dB and DOA-=30°. We assume thas|?, the noise-plus-
interference covariance matl, and the meam and covarianc€ of the steering vectaa

are known.

and its estimates obtained from the MMSE and PEIG beamformers are illustrated in
Fig. 1.4 for an SNR of-10 dB. Clearly, the MMSE beamformer leads to a better

signal estimate than the PEIG beamformer. It is also evident from this example
that the signal waveform estimate obtained from both beamformers is different: the
MMSE beamformer leads to a signal waveform that is much closer to the original

waveform than the PEIG beamformer.

1.2.3 Robust MMSE Beamforming

Unfortunately, both in the case of knovanand in the case of randomthe MMSE
beamformer depends explicitly da| which is typically unknown. Therefore, in
practice, we cannot implement the MMSE beamformer. The problem stems from
the fact that the MSE depends explicitly pr. To illustrate the main ideas, in the

remainder of this section we focus on the case of a deterministic steering vector.
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Fig. 1.4 Absolute values of the true complex sinewave with random DOA, and its estimates
obtained by the MMSE and PEIG beamformers for SNR = -10 dB, in the presence of an
interference with INR = 20 dB and DOA =30°. We assume thas|?, the noise-plus-

interference covariance mat, and the meam and covarianc€ of the steering vectaa

are known.
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One approach to obtain a beamformer that does not depejsdliorthis case is to
force the term depending dg|, namely the bias, t6, and then minimize the MSE,
ie.,

minw*Rw subjectto w*a =1, (1.24)

which leads to the class of MVDR beamformers. Thus, in addition to maximizing
the SINR, the MVDR beamformer minimizes the MSE subject to the constraint that
the bias in the estimataris equal to0. However, this does not guarantee a small
MSE, so that on average, the resulting estimate ofay be far froms. Indeed, it

is well known that unbiased estimators may often lead to large MSE values. The
attractiveness of the SINR criterion is the fact that it is easy to solve, and leads to a
beamformer that does not depend|ep Its drawback is that it does not necessarily
lead to a small MSE, as can also be seen in Figs. 1.1 and 1.3.

We note, thatas we discussin Section 1.4.1, the property of the MVDR beamformer
that it minimizes the MSE subject to a zero bias constrain no longer holds in the
random steering vector case. In fact, wheis random with positive covariance
matrix, there is in general no choice of linear beamformer for which the MSE is
independent ofs|.

Instead of forcing the term dependingehto zero, it would be desirable to design
a robust beamformer whose MSE is reasonably small across all possible values of
|s|. To this end we need to define the set of possible valugd.ofln some practical
applications, we may knowa-priori bounds orjs|, for example when the type of the
source and the possible distances from the array are known, as can happen for instance
in wireless communications and underwater source localization. We may have an
upper bound of the forris| < U, or we may have both an upper and (nonzero) lower
bound, so that

L<|s| <U. (1.25)

In our development of the minimax robust beamformers, we will assume that the
boundsL andU are known. In practice, if no such bounds are kn@aapriori, then
we can estimate them from the data, as we elaborate on further in Sections 1.5 and

1.6. This is similar in spirit to the MVDR-based beamformers: In developing the
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MVDR beamformer it is assumed that the interference-plus-noise covariance matrix
R is known; however, in practice, this matrix is estimated from the data.

Given an uncertainty set of the form (1.25), we may seek a beamformer that
minimizes a worst-case MSE measure on this set. In the next section, we rely on
ideas of [21] and [20], and propose two robust beamformers. We first assume that
only an upper bound ofs| is given, and develop a minimax MSE beamformer
that minimizes the worst-case MSE over jall < U. As we show in (1.34), this
beamformer is also minimax subject to (1.25). We then develop a minimax regret
beamformer over the set defined by (1.25), that minimizes the worst-case difference
between the MSE attainable with a beamformer that does not Kepvand the
optimal MSE of the MMSE beamformer that minimizes the MSE wh¢is known.

In Section 1.4 we develop minimax MSE and minimax regret beamformers for the

case of a random steering vector.

1.3 MINIMAX MSE BEAMFORMING FOR KNOWN STEERING
VECTOR

We now consider two MSE-based criteria for developing robust beamformers when
the steering vector is known: In Section 1.3.1 we consider a minimax MSE approach
and in Section 1.3.2 we consider a minimax regret approach. In our development,
we assume that the covariance mafxis known. In practice, as we discuss in

Sections 1.5 and 1.6, the unkno®nis replaced by an estimafe.

1.3.1 Minimax MSE Beamforming

The first approach we consider for developing a robust beamformer it to minimize
the worst-case MSE over all bounded values$spf Thus, we seek the beamformer
that is the solution to
i E{|3—s]*} = mi ‘R 21— w*al?}. 1.26
H&n\g@}é {15 - s*} n&n‘Islllg)é{w w +|s]*|1 — w*al*} (1.26)

This ensures thatin the worst case, the MSE of the resulting beamformeris minimized.
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Now,
\Hﬂ% {w*'Rw + [s|*|l — w*a]*} = w*Rw + U?|1 — w*a|?, (1.27)
S —

which is equal to the MSE of (1.13) witk|? = U. It follows that the minimax MSE
beamformer, denoted,«,;, is an MMSE beamformer of the form (1.16) matched
to|s| =U:

U? _
Waxm = mR la = Brixma Waivpr s (1.28)
where
U?a*Rla

BMXM = 1+ UAiQa*Rfla. (129)

The resulting MSE is

Uta*R1la+ [s|?
MSEMXM = (1 + U2a*R_1a)2 : (130)
For any|s|? < U?, we have that
2

MSE U (1.32)

For comparison, we have seen in (1.20) that the MSE of the MVDR beamformer is

1
MSEMVDR - ma (132)
from which we have immediately that for any choicelbf
MSEyvor > MSEyxu- (1.33)

The inequality (1.33) is valid as long as the true covariaRcis known. When
R is estimated from the data, (1.33) is no longer true in general. Nonetheless, as we
will see in the simulations in Section 1.6, (1.33) typically holds even when Goth
andR are estimated from the data.

Finally, we point out that the minimax MSE beamfornvey;«,, of (1.30) is also

the solution in the case in which we have both an upper and lower bound on the norm
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of s. This follows from the fact that

max_|s]?|1 — w*a|* = max |s|*|1 — w*al?, (1.34)
L<|s|<U |s|<U

since the maximum is obtained|at = U. Thus, in contrast with the minimax regret
beamformer developed in the next section, the minimax MSE beamformer does not
take the lower bound (if available) into account and therefore may be overconservative

when such a lower bound is known.

1.3.2 Minimax Regret Beamforming

We have seen that the minimax MSE beamformer is an MMSE beamformer matched
to the worst possible choice ¢f|, namely|s| = U. In some practical applications,
particulary when a lower bound da| is known, this approach may be overcon-
servative. Although it optimizes the performance in the worst case, it may lead to
deteriorated performance in other cases. To overcome this possible limitation, in this
section we develop a minimax regret beamformer whose performance is as close as
possible to that of the MMSE beamformer that know$or all possible values of

in a prespecified region of uncertainty. Thus, we ensure that over a wide range of
values ofs, our beamformer will result in a relatively low MSE.

In [21], a minimax difference regret estimator was derived for the problem of
estimating an unknown vectarin a linear modey = Hx + n, whereH is a known
linear transformation, and is a noise vector with known covariance matrix. The
estimator was designed to minimize the worst case regret over all bounded wectors
namely vectors satisfying*Tx < U? for someU > 0 and positive definite matrix
T. It was shown that the linear minimax regret estimator can be found as a solution
to a convex optimization problem that can be solved very efficiently.

In our problem, the unknown parameter= s is a scalar, so that an explicit
solution can be derived, as we show below (see also [36]). Furthermore, in our
development we consider both lower and upper bounds|oso that we seek the
beamformer that minimizes the worst case regret over the uncertainty region (1.25).

The minimax regret beamformev,,«y is designed to minimize the worst-case

regret subject to the constraift < |s| < U, where the regret, denot&d(s, w),
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Unknown |g|

/ Known |5

- 18]

Fig. 1.5 The solid line represents the best attainable MSE as a functits| @fhen |s| is
known. The dashed line represents a desirable graph of MSE with small regret as a function

of | s| using some linear estimator that does not depenidpn

is defined as the difference between the MSE using an estirhatow*y and the
smallest possible MSE attainable with an estimator of the form w™*(s)y when

s is known, so thatv can depend explicitly on. We have seen in (1.19) that since

we are restricting ourselves to linear beamformers, even in the case in which the
beamformer can depend an the minimal attainable MSE is not generally equal

to zero. The best possible MSE is illustrated schematically in Fig. 1.5. Instead of
seeking an estimator to minimize the worst-case MSE, we therefore propose seeking
an estimator to minimize the worst-case difference between its MSE and the best
possible MSE, as illustrated in Fig. 1.5.

Using (1.19), we can express the regret as

R(s,w) = E {|w*y - s|2} — MSEqpr
E

_ *R 2 1 _ * o012 .
w'Rw + [s]?| w*a T s2aR 1a 5ZaR Ta

(1.35)
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Thuswxy IS the solution to

min max R(s,w) =
W L<|s|<U

2
o SIS OO
rx&l’n{w W+Lglﬁ><(U{|S| 1= wa 1+ s|?a*R~1a ( )

The minimax regret beamformer is given by the following theorem.

Theorem 1. Let s denote an unknown signal amplitude in the moget sa + n,
wherea is a known length¥/ vector, andn is a zero-mean random vector with
covarianceR. Then the solution to the problem
. E s <21 . E s 2 _
glznvg}y Lingl)éU{ {ls ! } 5:?3*}&)&' {|s o }}

2
— : 2 2 S
= IMINy maXLS‘SliU {W*RW + |S| (]. — W*a) — Mﬁ}

§

(1 1 a*R~ly
V(1 + L?a*R-1a)(1 + U%a*R-1a) ] a*R~'a’

Before proving Theorem 1, we first comment on some of the properties of the
minimax regret beamformer, which, from Theorem 1, is given by

1
Wi = | 1 — R 'a. (1.37
MXR ( \/(1+L2a*R_1a)(1+U2a*R_1a)> a*R—1la ( )

Comparing (1.37) with (1.5) we see that the minimax regret beamformer is a scaled
version of the MVDR beamformer, i.8vyxr = Buvxr Wavor Where

1
V(1 + L2a*R-1a)(1 + U%a*R-1a)

Buxr =1 — (138)

Clearly, the scalingd,xr satisfiesd < Suxr < 1, and is monotonically increasing
in L andU. In addition, wherlJ = L,

1 U?a*R~la

=1— =
Proxn 1+ U2a*R~'a2 1+ U2a*R!a’

(1.39)

in which case the minimax regret beamformer is equal to the minimax MSE beam-

former of (1.30). Foll < U, ||[Wyxz|l < [[Wuxum||-
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It is also interesting to note that the minimax regret beamformer can be viewed as

an MMSE beamformer of the form (1.16), matched to

|s|? = ﬁ (\/(1 + L?2a*R~1a)(1 + U?a*R~'a) — 1) ) (1.40)
for arbitrary choices of. andU. This follows immediately from substituting|? of
(1.40) into (1.16). Since the minimax regret estimator minimizes the MSE for the
signal power given by (1.40), we may view this power as the “least-favorable” signal
power in the regret sense.
The signal power (1.40) can be viewed as an estimate of the true, unknown signal

power. To gain some insight into the estimate of (1.40) we note that

<\/(1 +L2)(1 + U29) — 1) (\/1 YLy +/1+ U%) -
= Uy\/14 L2y + L?y\/1 + U2y, (1.41)

where for brevity, we denoted = a*R~'a. Substituting (1.41) into (1.40), we have

that
52 U?V1+ L2a*R-1a+ L?V/1+ U?a*R1a
ST = .
V1+ L2a*R-la+ 1+ U2a*R-1a
From (1.42) it follows that the unknown signal power is estimated as a weighted

(1.42)

combination of the power bound$? and L2, where the weights depend explicitly

on the uncertainty set and @) andu(U ), where
w(T) =T?*a*R™'a, (1.43)

can be viewed as the SNR in the observations, when the signal poér is
If u(L) > 1, then from (1.40),

Is|? ~ VUZL?, (1.44)

so that in this case the unknown signal power is estimated as the geometric mean of
the power bounds. If, on the other hapd/) < 1, then from (1.42),

152 ~ % (L2 +U?). (1.45)
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Thus, in this case the unknown signal power is estimated as the algebraic mean of
the power bounds.

Itis interesting to note that while the minimax MSE estimator of (1.28) is matched
to a signal powet/?, the minimax difference regret estimator of (1.37) is matched to
a signal powefs|? < (U2 + L?)/2. This follows from (1.40) by using the inequality
Vab < (a+1b)/2.

We now prove Theorem 1. Although parts of the proof are similar to the proofs in

[37], we repeat the arguments for completeness.

Proof. To develop a solution to (1.36), we first consider the inner maximization

problem

flw) = max {|s|21—w*a|2—82}

L<|s|<U 14 |s]2y
= max {x|1 —w*al® — a } , (1.46)
[2<z<U? 1+ a2y

wherex = |s|?. To derive an explicit expression fgi(w) we note that the function

bx

=ax — 1.47
ha) = ar — = (L.47)
with b, ¢, d > 0 is convex inz > 0. Indeed,
2
h_ bd >0, z>0. (1.48)

—9__ 7
dx? (c+dx)3
It follows that for fixedw,

x
14y

g(x) = x|l — w*al* — (1.49)

is convex inz > 0, and consequently the maximumgifz) over a closed interval is
obtained at one of the boundaries. Thus,

PR g9(z)
= max (g(Lz), g(Uz))
L2 U?
U2 1— *o12 Y
1+ L2y’ 11— wal 1+ U2y

= max <L21 —wral® - ) ,(1.50)
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and the problem (1.36) reduces to

L? U2
min {W*RW—I—maX (L2|1—w*a|2— U1 - w*al® - )}

14 L2y’ 1+ U2y
(1.51)
We now show that the optimal value @f has the form
*P—1l,\—1p—1 d —1
w=d(@aRa) R 7a=-R a, (1.52)

Y
for some (possibly complex). To this end, we first note that the objective in (1.51)
depends orw only throughw*a andw*Rw. Now, suppose that we are given a

beamformerv, and let

w = R 'a. (1.53)
Y
Then .
w*a = W;aa*Rfla =w"a, (1.54)
and ) )
W Rw = |a;‘;v|2a*R_1a - |a*;"|2 (1.55)

From the Cauchy-Schwarz inequality we have that for any vegtor
la*x|2 = |(R™!/2a)*RY%x|? < a*R'ax*Rx = yx*Rx. (1.56)

Substituting (1.56) witkx = w into (1.55), we have that
|a*w|?
v

w'Rw <

< W'RW. (1.57)

It follows from (1.54) and (1.57) thatv is at least as good a& in the sense of

minimizing (1.51). Therefore, the optimal valuewfsatisfies

w = R 'a, (1.58)
Y
which implies that
w = ngla, (1.59)
Y

for somed.
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Combining (1.59) and (1.51), our problem reduces to

min w—i—max L1 —d)* - L U1 —d)? - v (1.60)
d v 1+4~L?’ 1+~02) )"

Sinced is in general complex, we can write= |d|e’? for some) < ¢ < 27. Using
the fact thatl — d|> = 1 + |d|?> — 2cos(¢), it is clear that at the optimal solution,
¢ = 0. Therefore, without loss of generality, we assume in the sequelitkab.
We can then express the problem of (1.60) as

rgldnt (1.61)
subject to
d? L?
— 4+ L1 -d)?-—— <
5 +L9(1-d)" — 5 oz S b
d? U?
— 4+ U*(1—-d)? - —— t. 1.62

The constraints (1.62) can be equivalently written as

2 2
LA P — <t
vy 14 ~L?

L 2 VU? ’
U <t. 1.
(’y + ) (d 107 t (1.63)

To develop a solution to (1.61) subject to (1.63), we note that fipth) and f;(d)

1>

fr(d)

(1>

fu(d)

are quadratic functions i, that obtain a minimum at; anddy respectively, where

yL?
A, = ——;
L 1+’}/L27
U?
d = . 1.64
v 1+~U2 (1.64)

It therefore follows, that the optimal value @f denotedi, satisfies
dp < dg <dy. (1.65)

Indeed, lett(d) = max(fL(d), fu(d)), and letty = ¢(dp) be the optimal value of
(1.61) subject to (1.63). Since bofh (d) and fi;(d) are monotonically decreasing
ford < dy, t(d) > t(dy) > to for d < dy, so thatdy, > dj,. Similarly, since both
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fr(d) and fy(d) are monotonically increasing faf > dy, t(d) > t(dy) > to for
d > dy so thatd < dy.
Sincef(d) and fi;(d) are both quadratic, they intersect at most at two points. If
fr(d) = fu(d), then
1

1—d)?= , 1.66
( ) (1+~L2)(1+~U?) (1.66)
so thatf,(d) = fu(d) ford = d+ andd = d_, where
1
de =1+ (1.67)

VA L)1 +40?)
Denoting byZ the intervalZ = [dy,, dy], sincedy > 1, clearlyd, ¢ Z. Using the

fact that
1 1 1

< < )
1+402 7 /A +~L2)(1 +1U?) ~ 1+~L?
we have thatl_ € 7.

(1.68)

In Fig. 1.6, we illustrate schematically the functiofigd) and fy;(d), where
1
de=d_=1- (1.69)
V(I +vL2)(1 ++U2)

is the unique intersection point ¢, (d) and fi(d) in Z. For the specific choices

of fr(d) and fy(d) drawn in the figure, it can be seen that the optimal value of
dis dy = d.. We now show that this conclusion holds true for any choice of
the parameters. Indeed, f = U, thend, = dr = dy so that from (1.65),

dp = d.. Next, assume thdt < U. In this case, forl € Z, f1.(d) is monotonically
increasing and; (d) is monotonically decreasing. Denotifg= ¢(d.) and noting
thatt. = fr(d.) = fu(d.), we conclude that fod. < d < dy, fu(d) > t., and for

dy < d < d., fr(d) > t. so thatt(d) > t. for anyd € Z such thatd # d., and
thereforedy = d.. O

One advantage of the minimax regret beamformer is that it explicitly accounts for
both the upper and the lower bounds [sh while the minimax MSE beamformer
depends only on the upper bound. Therefore, in applications in which both bounds
are available, the minimax regret beamformer can lead to better performance. As an

example, in Fig. 1.7 we compare the square-root of the NMSE of the minimax regret
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Fig. 1.6 lllustration of the functionsfy, (d) and fi; (d) of (1.63).

(MXR) and minimax MSE (MXM) beamformers, where for comparison we also plot
the NMSE of the MVDR beamformer, and the MMSE beamformer. Note that the
MMSE beamformer cannot be implementedsf is not known, however it serves
as a bound on the NMSE. Each result was obtained by averaging 200 Monte Carlo
simulations. The scenario we consider consists of a ULAof 20 omnidirectional
sensors spaced half a wavelength apart. The signal of inteieatcomplex random
process, temporally white, whose amplitude has a uniform distribution between the
values 3 and 6 and its plane-wave has a DOA®f relative to the array normal.
The noisee consists of a zero-mean complex Gaussian random vector, spatially and
temporally white, with a varying power to obtain the desired SNR. The interference
is given byi = a;i wherei is a zero-mean complex Gaussian random process with
INR =20 dB andh; its steering vector with DOA =30°. We assume th&, a and
the bound€/ = 6 and L = 3 are known.

As we expect, the minimax regret beamformer outperforms the minimax MSE and

MVDR beamformersin allthe illustrated SNR range, and approaches the performance
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Fig. 1.7 Square-root of the normalized MSE as a function of SNR using the MMSE, MXR,
MXM and MVDR beamformers in estimating a complex random process with amplitude
uniformly distributed between 3 and 6 and DOAE°, in the presence of an interference with

INR =20 dB and DOA =—30°.

of the MMSE beamformer. In Section 1.6, Example 1, we show the advantages of
the minimax MSE and minimax regret beamformers over several other beamformers
for the case whera is known butR, U and L are estimated from training data
containings.

1.4 RANDOM STEERING VECTOR

In Section 1.3, we explicitly assumed that the steering vector was deterministic and
known. However, it is well known that the performance of adaptive beamformers
degrades due to uncertainties or errors in the assumed array steering vectors [38,
28, 39, 40]. Several authors have considered this problem by modeling the steering
vector as a random vector with known distribution [13] or known second-order
statistics [26, 27, 28, 29, 30, 31, 32, 16]. In this section, we consider the case in
which the steering vector is a random vector with mearand covariance matrix

C. In this case, the meam corresponds to a perfectly calibrated arreg,, the
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perturbation-free steering vector, a@drepresents the perturbations to the steering
vector.
In the case of a random steering vector, the SINR is given by [16, 35]

w*R,w
w*Rw ’

SINR o

(1.70)

where
R, =F{aa"} = C+ mm" (1.71)

is the signal correlation matrix, whose rank can be betweamd M. In the case in
which a is deterministic so thai = m, R, = aa* and the SINR of (1.70) reduces
to the SINR of (1.3).

As in the case of deterministia, the most common approach to designing a
beamformer is to maximize the SINR, which results in the principle eigenvector
beamformer

w=aP {R 'R}, (1.72)

where« is chosen such thav*R,w = 1. The beamformer (1.72) can also be

obtained as the solution to

minw*Rw subjectto w*'R,w = 1. (2.73)

w

In practice, the interference-plus-noise malixs replaced by an estimate.
However, choosingv to maximize the SINR does not necessarily result in an

estimated signal amplitude that is close tos. Instead, it would be desirable to

minimize the MSE. In the case of a random steering vector, the MSE betwaaah

§ is given by the expectation of the MSE of (1.13) with respect,tso that

E{|s—s]’} = w'Rw+|[s|?E{|l - w"a]*}
= wW'Rw+ [s?E{|]l - w*m - w*(a—m)|*}

= w'Rw+|s]* (|1 - w*m|* + w*Cw). (1.74)
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The MMSE beamformer minimizing the MSE whe#| is known is obtained by
differentiating (1.74) with respect @ and equating t0, which results in [23]

w(s) = |s|*(R+[s]*C+ |s|*mm*)'m
Els

1+ |s]?2m* (R + |s|2C) ' m

(R+[s>’C)'m.  (1.75)

Note, that ifC = 0, so thata = m (with probability one), then (1.75) reduces to

Kl

= R 1.76
1+ |s|?2m*R~1m m, (1.76)

w(s)

which is equal to the MMSE beamformer of (1.16) with= m. Comparing (1.75)
with (1.72) we see that in general the MMSE beamformer and the SINR beamformer
are not scaled versions of each other, as in the known steering vector case. Substituting
w(s) back into (1.74), the smallest possible MSE, which we denot®IB¥ .y, is
given by

MSEopr = |5 — |s|*m* (R + |s[°C) ' m. 1.77)

Since the optimal beamformer (1.76) depends explicitlysnit cannot be im-
plemented if|s| is not known. Following the same framework as in the determin-
istic steering vector case, we consider two alternative approaches for designing a
beamformer wheis| is not known: a minimax MSE approach that minimizes the
worst-case MSE over alk| < U, and a minimax MSE regret that minimizes the

worst-case regret, which in the case of a random steering vector is given by

R(s,w) = W'Rw+|s]*(—w'm — m*w + w*(C + mm*)w)

+s|*m* (R+[s°C) "' m. (1.78)

The minimax MSE and minimax regret estimators for the linear estimation prob-
lem of estimatings in the modely = hs + n, whereh is a random vector with mean
m and covarianc€, andn is a noise vector with covarian@®, has been considered

in [23]. From the results in [23], the minimax MSE beamformer is

U2
1+ 0U?m* (R+0U2C) 'm

(R+U%C) 'm, (1.79)

WMxMR =
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which is just an MMSE estimator matched|tg = U. The minimax regret beam-

former for this problem is

S 7 —— (R+7C) 'm, (1.80)
m

1+ ym* (R +~C)

whereL? < v < U? is the unique root of () defined by

i ly;|? (U? — L?) ((1+U2)\)(1+L2)\)

~1). .
(1+U20)(1 4 L2X\) N\ (1 +9X)2 ) (1.81)

i=1

Herey; is theith component off = V*R~/?m, V is the unitary matrix in the
eigendecomposition & = R~/2(C + mm*)R~'/2, and); is theith eigenvalue
of A.

We see that in the case of a random steering vector, the minimax beamformers
are in general no longer scaled versions of the SINR-based principle eigenvector
beamformer (1.72), butrather pointin different directions. Through several numerical
examples (see Section 1.6, Example 2) we demonstrate the advantages of the minimax
MSE and minimax regret beamformers over the principal eigenvector solution as well
as over some alternative robust beamformers [14, 15, 16] for a wide range of SNR

values.

1.4.1 Least-Squares Approach

In the far-field point source case, we have seen that the MVDR approach, which
consists of maximizing the SINR, is equivalent to minimizing the MSE subject to
the constraint that the beamformer is unbiased. The MVDR beamformer is also the

least-squares beamformer, which minimizes the weighted least-squares error
as = (y —ad) RNy — as). (1.82)

As we now show, these equivalences no longer hold in the case of arandom steering
vector. First, we note that in this case of a random steering vector, the variance
also depends on the unknown powej*. Therefore, in this case, the unbiased
beamformer that minimizes the variance depends explicitlyamd therefore cannot

be implemented. Furthermore, for a full-rank model in whi€lis positive definite,
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there is no choice of beamformer that will result in an MSE that is independent of
(unless, of course, = 0). This follows from the fact that the term dependingsan
the MSE is

s> (|]1 = w*m[* + w*Cw) . (1.83)

Sincew*Cw > 0 for any nonzerow, this term cannot be equal to zero.

Following the ideas in [23], we now consider the least-squares beamformer for the
case of a random steering vector. In this case, the least-squares error (1.82) depends
on a, which is random. Thus, instead of minimizing the errgy directly, we may

consider minimizing the expectation @f; with respect ta, which is given by

E{est = E{(y—mé—(a—m)é)*Rfl(y—mé—(a—m)é)}
= (y-mé)'R'(y-ms)+§F{(a—m)'R ' (a—m)}
= (y-md)*R'(y —ms)+&Tr(R™'C). (1.84)

Differentiating (1.84) with respect toand equating t6, we have that

1
5= “R-ly. 1.85
TTRIC) +mR-m Y (1.85)

Thus, the least-squares beamformer is

1 -1

= 1-
TR0 +m R my ™ (1.86)

WLs

which, in general, is different than the MVDR beamformer of (1.72). Itis interesting
to note that the beamformer of (1.86) is a scaled version of the MVDR beamformer
for knowna = m.

The advantage of the least-squares approach is thatit does not require bounds on the
signal magnitude; in fact, it assumes the same knowledge as the principle eigenvector
beamformer which maximizes the SINR. In Section 1.6 Example 2 we illustrate
through numerical examples that for a wide range of SNR values the least-squares
beamformer has smaller NMSE than the principal eigenvector beamformer (1.72) as
well as the robust solutions [14, 15, 16]. These observations are true evemwhen
andC are not known exactly, but are rather chosen in an ad-hoc manner. Therefore,

in terms of NMSE, the least-squares approach appears to often be preferable over
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standard and robust methods, while requiring the same prior knowledge. As we
show, the NMSE performance can be improved further by using the minimax MSE
and minimax regret methods; however, these methods require prior estimates of the

signal magnitude bounds.

1.5 PRACTICAL CONSIDERATIONS

In our development of the minimax MSE and minimax regret beamformers, we
assumed that there exists an upper bolindn the magnitude of the signal to be
estimated, as well as alower bouhébr the minimax regret beamformer. For random
steering vectors we assumed also the knowledge of their mmeamd covarianc€.

In some applications, the bountlsand L may be known, for example based on
a-priori knowledge on the type of the source and its possible range of distances from
the array. If no such bounds are available, then we may estimate them from the data
using one of the conventional beamformers. Specificallywletlenote one of the
conventional beamformers. Then, using this beamformer we can estifiatas
5(t) = wiy(t) (the dependence on the time indeg presented for clarity). We may
then use this estimate to obtain approximate value§/fand L. In the simulations
below, we usé/ = (1 + 3)?||w:Y| andL = (1 — §8)?||w*Y| for some3, where
Y is the training data matrix of dimensidd x N and|| - || is the average norm over
the training interval.

Since in most applications the true covariaReis not available we have to
estimate it, e.g., using (1.7). However, as we discussed in Section k@) iis
present in the training data, then a diagonal loading (1.8) may perform better than
(1.7). Therefore, in the simulations, the tMReis replaced by (1.8).

In the case of a random steering vector, our beamformers rely on knowledge of
the steering vectom and covarianc€. These parameters can either be estimated
from observations of the steering vector, or, they can be approximated by choosing
m to be equal to a nominal steering vector, and choo€ing I, wherev reflects

the uncertainty size around the nominal steering vector.
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1.6 NUMERICAL EXAMPLES

To evaluate and compare the performance of our methods with other techniques,
we conducted numerical examples using scenarios similar to [16]. Specifically, we
consider a uniform linear array dff = 20 omnidirectional sensors spaced half a
wavelength apart. In all the examples below, we chogsgto be either a complex
sinewave or a zero-mean complex Gaussian random process, temporally white, with
varying amplitude or variance respectively, to obtain the desired SNR in each sensor.
The signals(t) is continuously present throughout the training data. The reige

is a zero-mean, Gaussian, complex random vector, temporally and spatially white,
with a power of 0 dB in each sensor. The interference is gived(by= a;i(t)
wherei(t) is a zero-mean, Gaussian, complex process temporally whiteaisd

the interference steering vector. To illustrate the performance of the beamformers
we use the square-root of the NMSE, which is obtained by averaging 200 Monte
Carlo simulations. Unless otherwise stated, we use a signal with SNR=-5 dB, and an
interference with DOA =-30°, INR =20 dB andN = 50 training snapshots. For
brevity, in the remainder of this section we use the following notation for the different
beamformers: MXM (minimax MSE), MXR (minimax regret), MXMR (minimax
MSE for randoma), MXRR (minimax regret for random), LSR (least-squares for
randoma); see also Table 1.1.

We consider two examples: In Example 1 we evaluate the performance of the
MXM and MXR beamformers using the exact knowledge of the steering vector. In
Example 2 we evaluate the MXMR, MXRR and LSR beamformers for a mismatch in
the signal DOA. We focus on low SNR values (important e.g. in sonar) and compare
the performance of the proposed methods against seven alternative methods: the
Capon beamformer (CAPON) [33, 34], loading Capon beamformer (L-CAPON)
[9, 10], eigenspace-based beamformer (EIG) [11, 12], and the robust beamformers
of (1.10), (1.11) and (1.12) which we refer to, respectively, as ROB1, ROB2, and
ROB3 [14, 15, 16]. In Example 2 we compare our methods against the principal
eigenvector beamformer [35], which we refer to as PEIG, WRitgiven by (1.8) and

R, given by exact knowledge or an ad-hoc estimate (see Example 2 for more details.)
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Beamformer Expression ‘ Parameters ‘ Ref. ‘
L-CAPON L R 'a £€=10 [10]
a*Rdlla il
EIG a»«ﬁl;; aR;;a D=1 [11]
—~ -1
ROB1 S W (Rsm + AEZI) ale=3 [14]
Aa (Rom+Ae2I)  a-1
31 ()\ﬁsm—i-l)_la
ROB2 - i - =35 [15]
VMa* (AR +1) " Rem (ARom+1)  a
ROB3 asP {f{;ﬁ (aa* — eI)} £€=230,e=9 | [16]
PEIG azP {R™'R,} [35]
MXM 1+UZZ*R_1aR_1a U [41]
MXR iR la U, L [36]
U? 2!
MXMR g e (R+U?C) m | Um,C
—1
MXRR e m R+70) 'm | U, Lm,C
1 —1
LSR Tr(R*IC)+m*R*1mR m m, C

Table 1.1 Beamformers used in the numerical examples.

The parameters of each of the compared methods were chosen as suggested in the
literature. Namely, for L-CAPON (1.8) and PEIG (1.72) the diagonal loading was
set ast = 1002, [14, 15] with o2 being the variance of the noise in each sensor,
assumed to be knowwf, = 1 in these examples); for the EIG beamformer (1.9)
it was assumed that the low-rank condition and number of interferers are known.
For the alternative robust methods, the parameters were chosen as follows: For
ROB1 (1.10) the upper bound on the steering vector uncertainty was set&s
[14], for ROB2 (1.11)e = 3.5, and for ROB3 (1.12)¢ = 9 and the diagonal
loading was chosen gs= 30. Table 1.1 summarizes the beamformers implemented
in the simulations, wherey, = (f{;}T + )\1)71 a’ , ag is chosen such that the
corresponding beamformer satisfie$(aa* — eI)w = 1, a3 is chosen such that
w*Rsw = 1,anday = 1 - 1/,/(1 + L2a*R~1a)(1 + U2a*R!a).

Example 1 - Known steering vectdn this example we assume that the steering

vectora is known. We first choose(t) as a complex sinewave with DOA of its
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‘ Beamformer‘ R ‘ W, ‘ I6] ‘
MXM Ry, =10 | L-Caponé=10| 9
MXR Ry, =10 | L-Capon,é=10| 6

Table 1.2 Specification of the MXM and MXR beamformers in Example 1.

plane-wave equal t80° relative to the array normal. We implemented the MXR
and MXM beamformers with the sample covariance matrix estimated using a loading
factor¢ = 10[14, 15],w. given by the L-CAPON beamformer with= 10 and( set

as 6 and 9, for these beamformers, respectively. The valuéselected for MXM

and MXR were those that gave the best performance over a wide range of negative
SNR values. Table 1.2 summaries the parameters chosen for MXM and MXR in this
example.

In Fig. 1.8 we plot the square-root of the NMSE as a function of the SNR using
the MXR, MXM, EIG, L-CAPON, ROB2, and ROB3 beamformers. Since in all
the scenarios considered in this example the NMSE of the CAPON and ROB1
beamformers was out of the illustrated scales, we do not plot the performance of
these methods. It can be seen in Fig. 1.8 that the MXM beamformer has the best
performance for SNR values between -10 to -3 dB, and the MXR beamformer has
the best performance for SNR values between -2 to 2 dB. In Fig. 1.9 we plot the
square-root of the NMSE as a function of the number of training data with SNR=-
5 dB. The performance of the proposed methods as a function of the difference
between the signal and interference DOAs is illustrated in Fig. 1.10. The NMSE
of all the methods remains constant for DOA differences betvit@erand90°, but
deteriorates for DOA differences closelta Despite this, MXR and MXM continue
to outperform the other methods. The performance of ROB2 and ROB3 is out of the
illustrated scale for DOA differences less thath because the uncertainty region of
their steering vectors overlaps with that of the interference. Figure 1.11 illustrates the
performance as a function of the signal-to-interference-ratio (SIR) for an SNR of -5

dB. As expected, the NMSE of all the beamformers decreases as the SIR increases,
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Fig. 1.8 Square-root of the normalized MSE as a function of SNR when estimating a complex

sinewave with knowrma and with DOA=30°, using the MXR, MXM, EIG, L-CAPON, ROB2,

and ROB3 beamformers.
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Fig. 1.9 Square-root of the normalized MSE as a function of the number of training snapshots

when estimating a complex sinewave with knowand DOA=30°, using the MXR, MXM,

EIG, L-CAPON, ROB2, and ROB3 beamformers.
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Fig. 1.10 Square-root of the normalized MSE as a function of the difference between the sig-
nal and interference DOAs when estimating a complex sinewave with kaamd DOA=30°,

using the MXR, MXM, EIG, L-CAPON, ROB2, and ROB3 beamformers.

however the minimax methods still outperform the alternative methods for all SIR
values shown.

We nextrepeat the simulations fit) chosen to be a zero-mean complex Gaussian
random signal, temporally white. The square-root of the NMSE as a function of the
SNR, the number of training data, the difference between signal and interference
DOAs, and the SIR is depicted in Figs. 1.12, 1.13, 1.14 and 1.15, respectively. It can
be seen in Fig. 1.12 that the MXM has the best performance for SNR values between
-10 to -4 dB and the MXR has the best performance for SNR values between -3
to 1.5 dB. The performance in Figs. 1.13, 1.14 and 1.15 is similar to the case of a
deterministic sinewave.

Example 2 - Steering vector with signal DOA uncertainti®ge illustrate the
robustness of the algorithms for random steering vectors developed in Section 1.4
against a mismatch in the assumed signal DOA. Specifically, the DOA of the signal is
given by a Gaussian random variable with mean equaltand standard deviation
equal to 1 (aboui-3°). This DOA was independently drawn in each simulation run.

To estimate the signal in this case, we implemented the MXRR, MXMR, LSR, and
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Fig.1.11 Square-root of the normalized MSE as a function of SIR when estimating a complex
sinewave with knowmm and DOA=30°, using the MXR, MXM, EIG, L-CAPON, ROB2, and

ROB3 beamformers.
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Fig. 1.12 Square-root of the normalized MSE as a function of SNR when estimating a zero-
mean complex Gaussian random signal with knawand DOA=30°, using the MXR, MXM,

EIG, L-CAPON, ROB2, and ROB3 beamformers.
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Fig. 1.13 Square-root of the normalized MSE as a function of the number of training snap-
shots when estimating a zero-mean complex Gaussian random signal with knawd

DOA=30°, using the MXR, MXM, EIG, L-CAPON, ROB2, and ROB3 beamformers.
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Fig. 1.14 Square-root of the normalized MSE as a function of the difference between the
signal and interference DOAs when estimating a zero-mean complex Gaussian random signal
with known a and DOA=30°, using the MXR, MXM, EIG, L-CAPON, ROB2, and ROB3

beamformers.
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Fig. 1.15 Square-root of the normalized MSE as a function of SIR when estimating a zero-
mean complex Gaussian random signal with knaand DOA=30°, using the MXR, MXM,

EIG, L-CAPON, ROB2, and ROB3 beamformers.

Beamformer R W, ‘ 1] ‘

MXMR Ry, £=10| L-Caponé=10| 9
MXRR Ry, =10 | L-Capon&=10| 4
LSR Ry, £=10 — —
PEIG Ry, =10 — —

Table 1.3 Specification of the beamformers used in Example 2.

PEIG beamformers with parameters given by Table 1.3, for two choiagsafdC:

the true values (estimated from 2000 realizations of the steering vector), and ad-hoc
values. The ad-hoc value ah was chosen as the steering vector with DOA02

and for the covariance we cho€e= vI with v = ¢/M, wheree = 3.5 is the norm

value of the steering vector error (size of the uncertainty) used by ROB2 [15] and
M = 20 is the number of sensors. For the ROB1, ROB2 and ROB3 beamfoemers

is the steering vector for a signal DOA36°.
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Fig. 1.16 Square-root of the normalized MSE as a function of SNR when estimating a
complex sinewave with random DOA and knowmmandC, using the MXRR, MXMR, LSR,
PEIG, ROB1, ROB2, and ROB3 beamformers.

In Figs. 1.16 and 1.17 we depict the NMSE when estimating a complex sinewave
as a function of SNR, using the MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and
ROB3 beamformers, with known and ad-hoc valuesroind C, respectively. As
can be seen from the figures, the MXMR, MXRR and LSR methods perform better
than all the other methods both in the case of knawrand C and when ad-hoc
values are chosen. Although the performance of the MXMR, MXRR and LSR
methods deteriorates when the ad-hoc values are used in place of the true values, the
difference in performance is minor. A surprising observation from the figures is that
the standard PEIG method performs better, in terms of NMSE, than ROB1, ROB2
and ROB3. We also note that the LSR method, which does not use any additional
parameters such as magnitude bounds, outperforms all previously proposed methods.

The performance of the MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and ROB3
beamformers, assuming known and C, as a function of the number of training
snapshots and the difference between the signal and interference DOAs is illustrated
in Figs. 1.18 and 1.19, respectively. The NMSE of all methods remain almost
constant for differences abo¥€. Below this range all the beamformers decrease

their performance significantly, except for the PEIG and LSR beamformers. As in
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Fig. 1.17 Square-root of the normalized MSE as a function of SNR when estimating a
complex sinewave with random DOA and ad-hoc valuesiofand C, using the MXRR,

MXMR, LSR, PEIG, ROB1, ROB2, and ROB3 beamformers.

< T T T T T
25,‘>§ P

P N S el

D

15F | = PEIG

Square root of NMSE

i i i i i
40 60 80 100 120 140 160 180 200
Number of training data

Fig. 1.18 Square-root of the normalized MSE as a function of the number of training snap-
shots when estimating a complex sinewave with random DOA and kmavamd C using the

MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and ROB3 beamformers.
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Fig. 1.19 Square-root of the normalized MSE as a function of the difference between the sig-
nal and interference DOAs when estimating a complex sinewave with random DOA and known

m andC using the MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and ROB3 beamformers.

the case of deterministig, the performance of all the methods improves slightly as
a function of negative SIR, and is therefore not shown.

In Figs. 1.20 and 1.21 we plot the NMSE as a function of the SNR when esti-
mating a complex Gaussian random signal, temporally white, with random DOA, as
a function of SNR. As can be seen by comparing these figures with Figs. 1.16 and
1.17, the performance of all of the methods is similar to the case of a deterministic
sinewave. The NMSE as a function of the number of training snapshots and the dif-
ference between the signal and interference DOAs is also similar to the deterministic

sinewave case, and therefore not shown.

1.7 SUMMARY

We considered the problem of designing linear beamformers to estimate a source
signal s(t) from sensor array observations, where the goal is to obtain an estimate
5(t) that is close tos(¢). Although standard beamforming approaches are aimed

at maximizing the SINR, maximizing SINR does not necessarily guarantee a small
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Fig. 1.20 Square-root of the normalized MSE as a function of SNR when estimating a zero-
mean complex Gaussian random signal with random DOA and knmand C, using the

MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and ROB3 beamformers.
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Fig. 1.21 Square-root of the normalized MSE as a function of SNR when estimating a zero-
mean complex Gaussian random signal with random DOA and ad-hoc valuasanid C,

using the MXRR, MXMR, LSR, PEIG, ROB1, ROB2, and ROB3 beamformers.
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MSE, hence on average a signal estimate maximizing the SINR can be fas(frbm

To ensure thai(t) is close tos(t), we proposed using the more appropriate design cri-
terion of MSE. Since the MSE depends in generad@hwhich is unknown, it cannot

be minimized directly. Instead, we suggested beamforming methods that minimize
a worst-case measure of MSE assuming known and random steering vectors with
known second-order statistics. We first considered a minimax MSE beamformer that
minimizes the worst-case MSE. We then considered a minimax regret beamformer
that minimizes the worst-case difference between the MSE using a beamformer ig-
norant of s(¢) and the smallest possible MSE attainable with a beamformer that
knowss(t). As we showed, even i(t) is known, we cannot achieve a zero MSE
with a linear estimator. In the case of a random steering vector we also proposed a
least-squares beamformer that does not require bounds on the signal magnitude.

In the numerical examples, we clearly illustrated the advantages of our methods
in terms of the MSE. For both known and random steering vectors, the minimax
beamformers consistently have the best performance, particularly for negative SNR
values. Quite surprisingly, it was observed that the least-squares beamformer, which
does not require bounds on the signal magnitude, performs better than the recently
proposed robust methods in the case of random DOAs. It was also observed that
for a small difference between signal and interference directions of arrival, all our
methods show better performance. The performance of our methods was similar
when the signal was chosen as a deterministic sinewave or a zero-mean complex

Gaussian random signal.
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