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Imaging

This article provides an overview of use of deep, data-driven learning strategies in
ultrasound systems, from the front-end to advanced applications. The authors discuss
the use of these new computational approaches in all aspects of ultrasound imaging,
ranging from ideas that are at the interface of raw signal acquisition (including
adaptive beam forming) and image formation, to learning compressive codes for color
Doppler acquisition to learning strategies for performing clutter suppression.
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ABSTRACT |
strategies in ultrasound systems, from the front end to
advanced applications. Our goal is to provide the reader with
a broad understanding of the possible impact of deep learning
methodologies on many aspects of ultrasound imaging.

In this article, we consider deep learning

In particular, we discuss methods that lie at the interface
of signal acquisition and machine learning, exploiting both
data structure (e.g., sparsity in some domain) and data
dimensionality (big data) already at the raw radio-frequency
channel stage. As some examples, we outline efficient and
effective deep learning solutions for adaptive beamforming
and adaptive spectral Doppler through artificial agents, learn
compressive encodings for the color Doppler, and provide
a framework for structured signal recovery by learning fast
approximations of iterative minimization problems, with
applications to clutter suppression and super-resolution
ultrasound. These emerging technologies may have a
considerable impact on ultrasound imaging, showing promise
across key components in the receive processing chain.
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LINTRODUCTION

Diagnostic imaging plays a critical role in healthcare,
serving as a fundamental asset for timely diagnosis,
disease staging, and management, as well as for treatment
choice, planning, guidance, and follow-up. Among the
diagnostic imaging options, ultrasound imaging [1] is
uniquely positioned, being a highly cost-effective modality
that offers the clinician an unmatched and invaluable
level of interaction, enabled by its real-time nature.
Its portability and cost effectiveness permit point-of-care
imaging at the bedside, in emergency settings, rural clinics,
and developing countries. Ultrasonography is increasingly
used across many medical specialties, spanning from
obstetrics to cardiology and oncology, and its market share
is globally growing.

On the technological side, ultrasound probes are
becoming increasingly compact and portable, with the
market demand for low-cost “pocket-sized” devices
expanding [2], [3]. Transducers are miniaturized, allow-
ing, e.g., in-body imaging for interventional applica-
tions. At the same time, there is a strong trend toward
3-D imaging [4] and the use of high-frame-rate imaging
schemes [5]; both accompanied by dramatically increasing
data rates that pose a heavy burden on the probe-system
communication and subsequent image reconstruction
algorithms. Systems today offer a wealth of advanced
applications and methods, including shear wave elasticity
imaging (SWEI) [6], ultrasensitive Doppler [7], and ultra-
sound localization microscopy (ULM) for super-resolution
microvascular imaging [8].

With the demand for high-quality image reconstruction
and signal extraction from unfocused planar wave trans-
missions that facilitate fast imaging, and a push toward
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miniaturization, modern ultrasound imaging leans heavily
on innovations in powerful receive channel processing.
In this article, we discuss how artificial intelligence and
deep learning methods can play a compelling role in this
process and demonstrate how these data-driven systems
can be leveraged across the ultrasound imaging chain.
We aim to provide the reader with a broad understanding
of the possible impact of deep learning on a variety of
ultrasound imaging aspects, placing particular emphasis
on methods that exploit both the power of data and
signal structure (for instance sparsity in some domain)
to yield robust and data-efficient solutions. We believe
that methods that exploit models and structure together
with learning from data can pave the way to interpretable
and powerful processing methods from limited training
sets. As such, throughout this article, we will typically
first discuss an appropriate model-based solution for the
problems considered and then follow by a data-driven deep
learning solution derived from it.

We start by briefly describing a standard ultrasound
imaging chain in Section II. We then elaborate on several
dedicated deep learning solutions that aim at improv-
ing key components in this processing pipeline, cover-
ing adaptive beamforming (see Section III-A), adaptive
spectral Doppler (see Section III-B), compressive tissue
Doppler (see Section III-C), and clutter suppression (see
Section III-D). In Section IV, we show how the syner-
getic exploitation of deep learning and signal structure
enables robust super-resolution microvascular ultrasound
imaging. Finally, we discuss future perspectives, opportu-
nities, and challenges for the holistic integration of artifi-
cial intelligence and deep learning methods in ultrasound
systems.

II. ULTRASOUND IMAGING CHAIN
AT A GLANCE

A. Transmit Schemes

The resolution, contrast, and overall fidelity of ultra-
sound pulse-echo imaging relies on careful optimization
across its entire imaging chain. At the front end, imaging
starts with the design of appropriate transmit schemes.

At this stage, crucial tradeoffs are made, in which the
frame rate, imaging depth, and attainable axial and lat-
eral resolution are weighted carefully against each other:
improved resolution can be achieved through the use of
higher pulse modulation frequencies; yet, these shorter
wavelengths suffer from increased absorption and thus
lead to reduced penetration depth. Likewise, a high frame
rate can be reached by exploiting parallel transmission
schemes based on, e.g., planar or diverging waves. How-
ever, use of such unfocused transmissions comes at the
cost of loss in lateral resolution compared to line-based
scanning with tightly focused beams. As such, optimal
transmit schemes depend on the application.

Today, an increasing amount of ultrasound applica-
tions rely on high-frame-rate (dubbed ultrafast) imaging.
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Among these are, e.g., ULM (see Section IV), highly sen-
sitive Doppler, and shear wave elastography, where the
former two mostly exploit the incredible vastness of data
to obtain accurate signal statistics, and the latter lever-
ages high-speed imaging to track ultrasound-induced shear
waves propagating at several meters per second.

With the expanding use of ultrafast transmit sequences
in modern ultrasound imaging, a strong burden is placed
on the subsequent receive channel processing. High
data rates not only raise substantial hardware complica-
tions related to power consumption, data storage, and
data transfer; the corresponding unfocused transmissions
require much more advanced receive beamforming and
clutter suppression to reach satisfactory image quality.

B. Receive Processing, Sampling, and
Beamforming

Modern receive channel processing is shifting toward
the digital domain, relying on computational power
and very-high-bandwidth communication channels to
enable advanced digital parallel (pixel-based) beamform-
ing and coherent compounding across multiple trans-
mit/receive events. For large channel counts, e.g., in dense
matrix probes that facilitate high-resolution 3-D imaging,
the number of coaxial cables required to connect all probe
elements to the back-end system quickly becomes infea-
sible. To address this, dedicated switching and process-
ing already take place in the probe head, e.g., in the
form of multiplexing or microbeamforming. Slow-time!
multiplexing distributes the received channel data across
multiple transmits, by only communicating a subset of the
number of channels to the back end for each such trans-
mit. This consequently reduces the achieved frame rate.
In microbeamforming, an analog prebeamforming step is
performed to compress channel data from multiple (adja-
cent) elements into a single focused line. This, however,
impairs flexibility in subsequent digital beamforming, lim-
iting the achievable image quality. Other approaches aim
at mixing multiple channels through analog modulation
with chipping sequences [9]. Additional analog process-
ing includes signal amplification by a low-noise ampli-
fier (LNA) as well as depth (i.e., fast time) dependent gain
compensation (TGC) for attenuation correction.

Digital receive beamforming in ultrasound imaging is
dynamic, i.e., receive focusing is dynamically optimized
based on the scan depth. The industry standard is delay-
and-sum beamforming, where depth-dependent channel
tapering (or apodization) is optimized and fine-tuned
based on the system and application. Delay-and-sum
beamforming is commonplace due to its low complexity,
providing real-time image reconstruction, albeit at a high
sampling rate and nonoptimal image quality.

'In ultrasound imaging, we make a distinction between slow time
and fast time: slow time refers to a sequence of snapshots (i.e., across
multiple transmit/receive events) at the pulse repetition rate, whereas
fast time refers to samples along depth.



Performing beamforming in the digital domain requires
sampling the signals received at the transducer elements
and transmitting the samples to a back-end processing
unit. To achieve sufficient delay resolution for focusing,
the received signals are typically sampled at four to
ten times their bandwidth, i.e., the sampling rate may
severely exceed the Nyquist rate. A possible approach
for sampling rate reduction is to consider the received
signals within the framework of the finite rate of innova-
tion (FRI) [10], [11]. Tur et al. [12] modeled the received
signal at each element as a finite sum of replicas of
the transmitted pulse backscattered from reflectors. The
replicas are fully described by their unknown amplitudes
and delays, which can be recovered from the signals’
Fourier series coefficients. The latter can be computed
from low-rate samples of the signal using compressed
sensing (CS) techniques [10], [13]. Wagner et al. [14]
and Wagner et al. [15] extended this approach and
introduced compressed beamforming. It was shown that
the beamformed signal follows an FRI model, and thus,
it can be reconstructed from a linear combination of
the Fourier coefficients of the received signals. Moreover,
these coefficients can be obtained from low-rate sam-
ples of the received signals taken according to the Xam-
pling framework [16]-[18]. Chernyakova and Eldar [3]
showed that this Fourier domain relationship between
the beam and the received signals holds irrespective of
the FRI model. This leads to a general concept of the
frequency-domain beamforming (FDBF) [3] that is equiv-
alent to beamforming in time. FDBF allows sampling the
received signals at their effective Nyquist rate without
assuming a structured model; thus, it avoids the oversam-
pling dictated by digital implementation of beamforming
in time. Furthermore, when assuming that the beam obeys
an FRI model, the received signals can be sampled at
sub-Nyquist rates, leading to up to 28-fold reduction in the
sampling rate [19]-[21].

C. B-Mode, M-Mode, and Doppler

Ultrasound imaging provides anatomical information
through the so-called brightness mode (B-mode). B-mode
imaging is performed by envelope-detecting the beam-
formed signals, e.g., through the calculation of the mag-
nitude of the complex in-phase and quadrature (IQ) data.
For visualization purposes, the dynamic range of these
envelope-detected signals is subsequently compressed via
a logarithmic transformation or specifically designed com-
pression curves based on a lookup table. Scan conversion
then maps these intensities to the desired (Cartesian)
pixel coordinate system. The visualization of a single
B-mode scan line (i.e., brightness over fast time) across
multiple transmit-receive events (i.e., slow time), is called
motion-mode (M-mode) imaging.

Beyond anatomical information, ultrasound imaging
also permits the measurement of functional parame-
ters related to blood flow and tissue displacement. The
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extraction of such velocity signals is called Doppler
processing. We distinguish between two types of veloc-
ity estimators: color Doppler and spectral Doppler. Color
Doppler provides an estimate of the mean velocity through
the evaluation of the first lag of the autocorrelation func-
tion for a series of snapshots across slow time [22]. Spec-
tral Doppler provides the entire velocity distribution in a
specified image region through estimation of the full power
spectral density and visualizes its evolution over time in a
spectrogram [23]. Spectral Doppler methods are relevant
for, e.g., detecting turbulent flow in stenotic arteries or
across heart valves. Besides assessing blood flow, Doppler
processing also finds applications in measurement of tissue
velocities (tissue Doppler), e.g., for assessment of the
myocardial strain.

D. Advanced Applications

In addition to B-mode, M-mode, and Doppler scan-
ning, ultrasound data are used in a number of advanced
applications. For instance, elastography methods aim at
measuring mechanical parameters related to tissue elas-
ticity and rely on the analysis of displacements following
some form of imposed stress. Stress may be delivered
manually (through gentle pushing), naturally (e.g., in the
myocardium of a beating heart) or acoustically, as done
in acoustic radiation force impulse imaging (ARFI) [24].
Alternatively, the speed of laterally traveling shear waves
induced by an acoustic push-pulse can be measured, with
this speed being directly related to the shear modulus [6].
SWEI also permits measurement of tissue viscosity in
addition to stiffness through the assessment of wave
dispersion [25]. All the above-mentioned methods rely
on the adequate measurement of local tissue velocity
or displacement through some form of tissue Doppler
processing.

While Doppler methods enable estimation of blood
flow, detection of low-velocity microvascular flow is chal-
lenging since its Doppler spectrum overlaps with that
of the strong tissue clutter. Contrast-enhanced ultra-
sound (CEUS) permits visualization and characterization
of microvascular perfusion through the use of gas-filled
microbubbles [26], [27]. These intravascular bubbles are
sized similar to red blood cells, reaching the smallest
capillaries in the vascular net, and exhibit a particular non-
linear response when insonified. The latter is specifically
exploited in contrast-enhanced imaging schemes that aim
at isolating this nonlinear response through the dedicated
pulse sequences. Unfortunately, this does not lead to com-
plete tissue suppression since the tissue itself also gener-
ates harmonics [28]. Thus, clutter rejection algorithms are
becoming increasingly popular, in particular when used in
conjunction with ultrafast imaging [29].

Recent developments also leverage the microbubbles
used in CEUS to yield super-resolution imaging [30]-[33].
ULM is a particularly popular approach to achieve this [8].
ULM methods rely on adequate detection, isolation,
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and localization of the microbubbles, typically achieved
through precisely tuned tissue clutter suppression algo-
rithms and by posing strong constraints on the allowable
concentrations. We will further elaborate on this approach
and its limitations in Section IV, where we discuss a ded-
icated deep learning solution for super-resolution ultra-
ound that aims at addressing some of these disadvantages.

III. DEEP LEARNING FOR
(FRONT-END) ULTRASOUND
PROCESSING

The effectiveness of ultrasound imaging and its applica-
tions are dictated by adequate front-end beamforming,
compression, signal extraction (e.g., clutter suppression),
and velocity estimation. In this section, we demon-
strate how neural networks, being universal function
approximators [34], can learn to act as powerful artificial
agents and signal processors across the imaging chain
to improve resolution and contrast, adequately suppress
clutter, and enhance spectral estimation. We here refer
to artificial agents [35] whenever these learned networks
impact the processing chain by actively and adaptively
changing the settings or parameters of a particular proces-
sor depending on the context.

Deep learning is the process of learning a hierarchy
of parameterized nonlinear transformations (or layers),
such that it performs a desired function. These elementary
nonlinear transformations in a deep network can take
many forms and may embed structural priors. A popular
example of the latter is the translational invariance in
images that is exploited by convolutional neural networks,
but we will see that in fact many other structural priors can
be exploited.

The methods proposed throughout this article are both
model based and learn from data. We complement this
approach with a priori knowledge on the signal structure
to develop deep learning models that are both effective
and data efficient, i.e., “fast learners.” An overview is
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given in Fig. 1. We assume that the reader is familiar
with the basics of (deep) neural networks. For a general
introduction to deep learning, we refer the reader to [36].

A. Beamforming

1) Deep Neural Networks as Beamformers: The low
complexity of delay-and-sum beamforming has made it
the industry standard and commonplace for real-time
ultrasound beamforming. There are, however, a number
of factors that cause deteriorated reconstruction quality
of this naive spatial filtering strategy. First, the chan-
nel delays for time-of-flight correction are based on the
geometry of the scene and assume a constant speed
of sound across the medium. As a consequence, varia-
tions in the speed of sound and the resulting aberra-
tions impair proper alignment of echoes stemming from
the same scatterer [37]. Second, the a priori determined
channel weighting (apodization) of pseudo-aligned echoes
before summation requires a tradeoff between mainlobe
width (resolution) and sidelobe level (leakage) [38].

Delay-and-sum beamformers are typically hand-tailored
based on knowledge of the array geometry and medium
properties, often including specifically designed array
apodization schemes that may vary across imaging depth.
Interestingly, it is possible to learn the delays and
apodizations from paired channel-image data through
gradient-descent by dedicated “delay layers” [39]. To show
this, unfocused channel data were obtained from echocar-
diography of six patients for both single- and multiple-line
acquisitions. While the latter allows for increased frame
rates, it leads to deteriorated image quality when apply-
ing standard delay-and-sum beamforming. The authors,
therefore, propose to train a more appropriate delay-and-
sum beamforming chain that takes multi-line channel data
as an input and produces beamformed images that are
as close as possible to those obtained from single-line
acquisitions, minimizing their ¢; distance. Since the intro-
duced delay and apodization layers are differentiable,



efficient learning is enabled through backpropagation.
Although such an approach potentially enables discovery
of a more optimal set of parameters dedicated to each
application, the fundamental problem of having a priori-
determined static delays and weights remains.

Several other data-driven beamforming methods have
recently been proposed. In contrast to [39], these are
mostly based on “general-purpose” deep neural networks,
such as stacked autoencoders [40], encoder—decoder
architectures [41], and fully convolutional networks,
that map predelayed channel data to beamformed
outputs [42]. In the latter, a 29-layer convolutional net-
work was applied to a 3-D stack of array response vectors
for all lateral positions and a set of depths to yield a beam-
formed IQ output for those lateral positions and depths.
Others exploit neural networks to process channel data in
the Fourier domain [43]. To that end, axially gated sec-
tions of the predelayed channel data first undergo discrete
Fourier-transformation. For each frequency bin, the array
responses are then processed by a separate fully connected
network. The frequency spectra are subsequently inverse
Fourier transformed and summed across the array to yield
a beamformed radio-frequency (RF) signal associated with
that particular axial location. The networks were specif-
ically trained to suppress off-axis responses (outside the
first nulls of the beam) from the simulations of ultrasound
channel data for point targets.

Beyond beamforming for suppression of off-axis
scattering, Hyun et al. [44] propose deep convolutional
neural networks for joint beamforming and speckle reduc-
tion. Rather than applying the latter as a post-processing
technique, it is embedded in the beamforming process
itself, permitting exploitation of both channel and phase
information that is otherwise irreversibly lost. The net-
work was designed to accept 16 beamformed subaperture
RF signals as an input, and outputs speckle-reduced B-
mode images. The final beamformed images exhibit com-
parable speckle-reduction as postprocessed delay-and-sum
images using the optimized Bayesian nonlocal means
algorithm [45], yet at an improved resolution. Addi-
tional applications of deep learning in this con-
text include removal of artifacts in time-delayed and
phase-rotated element-wise IQ data in multi-line acquisi-
tions for high-frame-rate imaging [46] and synthesizing
multiple-focus images from single-focus images through
generative adversarial networks [47]. In [48], such gen-
erative adversarial networks were used for joint beam-
forming and segmentation of cyst phantoms from unfo-
cused RF channel data acquired after a single plane-wave
transmission.

While the flexibility and capacity of very deep neural
networks in principle allow for learning context-adaptive
beamforming schemes, such highly overparameterized net-
works notoriously rely on vast RF channel data to yield
robust inference under a wide range of conditions. More-
over, large networks have a large memory footprint, com-
plicating resource-limited implementations.
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2) Leveraging Model-Based Algorithms: One approach for
constraining the solution space while explicitly embed-
ding adaptivity is to borrow concepts from model-based
adaptive beamforming methods. These techniques steer
away from the fixed-weight presumption and calculate an
array apodization depending on the measured signal statis-
tics. In the case of pixel-based reconstruction, apodization
weights can be adaptively optimized per pixel. A popular
adaptive beamforming method is the minimum variance
distortionless response (MVDR), or Capon, beamformer,
where optimal weights are defined as those that minimize
signal variance/power, while maintaining distortionless
response of the beamformer in the desired source direc-
tion. This amounts to solving

W = arg min wiR. w
w

st.wila=1 (D

where R, denotes the covariance matrix calculated over
the receiving array elements and a is a steering vector.

When the receive signals are already time-of-flight cor-
rected, a is a unity vector.

Solving (1) involves the inversion of R,, whose com-
putational complexity grows cubically with the number
of array elements [50]. To improve stability, it is often
combined with subspace selection through eigendecom-
position, further increasing the computational burden.
Another problem is the accurate estimation of R, typically
requiring some form of averaging across subarrays and the
fast- and slow-time scales. While this implementation of
MVDR beamforming is impractical for typical ultrasound
arrays (e.g., 256 elements) or matrix transducers (e.g.,
64 x 64 elements), it does provide a framework in which
deep neural networks can be leveraged efficiently and
effectively.

Instead of attempting to replace the beamforming
process entirely, a neural network can be used specifically
to act as an artificial agent that calculates the optimal
apodization weights w for each pixel, given the received
predelayed channel signals at the array. By only replacing
this bottleneck component in the MVDR beamformer, and
constraining the problem further by promoting close-to-
distortionless response during training (i.e., ¥;w; =~ 1),
this solution is highly data efficient, interpretable, and
has the ability to learn powerful models from only a few
images [49].

The neural network proposed in [49] is compact, con-
sisting of four fully connected layers comprising 128 nodes
for the input and output layers and 32 nodes for the hidden
layers. This dimensionality reduction enforces a compact
representation of the data, mitigating the impact of noise.
Between every fully connected layer, dropout is applied
with a probability of 0.2. The input of the network is the
predelayed (focused) array response for a particular pixel
(i.e., a vector of length N, with N being the number of
array elements), and its outputs are the corresponding
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beamforming by deep learning achieves notably better contrast and resolution and generalizes very well to unseen data sets.

array apodizations w. This apodization is subsequently
applied to the network inputs to yield a beamformed pixel.
Since pixels are processed independently by the network,
a large amount of training data is available per acquisi-
tion. Inference is fast, and real-time rates are achievable
on a GPU-accelerated system. For an array of 128 ele-
ments, adaptive calculation of a set of apodization weights
through MVDR requires > N®(= 2097 152) floating point
operations (FLOPS), while the deep-learning architecture
only requires 74656 FLOPS [49], leading to a more
than 400x speedup in the reconstruction time. Additional
details regarding the adopted network and training strat-
egy are given in Section III-A3.

Fig. 2 exemplifies the effectiveness of this approach
on plane-wave ultrasound acquisitions obtained using a
linear array transducer. Compared to standard delay-and-
sum, adaptive beamforming with a deep network serving
as an artificial agent visually provides reduced clutter
and enhanced tissue contrast. Quantitatively, it yields a
slightly elevated contrast-to-noise ratio (CNR) (10.96 ver-
sus 11.48 dB), along with significantly improved resolution
(0.43 versus 0.34 mm, and 0.85 versus 0.70 mm in the
axial and lateral directions, respectively).

Interestingly, the neural network exhibits increased sta-
bility and robustness compared to the MVDR weight esti-
mator. This can be attributed to its small bottleneck latent
space, enforcing apodization weight realizations that are
represented in a compact basis.

3) Design and Training Considerations: The large
dynamic range and modulated nature of RF ultrasound
channel data motivate the use of specific nonlinear acti-
vation functions. While rectified linear units (ReLUs) are
typically used in image processing, popular for their sparsi-
fying nature and ability to avoid vanishing gradients due to
their positive unbounded output, it inherently causes many
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“dying nodes” (neurons that do no longer update since
their gradient is zero) for ultrasound channel data, as a
ReLU does not preserve (the abundant) negative values.
To circumvent this, a hyperbolic tangent function could be
used. Unfortunately, the large dynamic range of ultrasound
signals makes it difficult to be in the “sweet spot,” where
gradients are sufficiently large, thereby avoiding vanishing
gradients during backpropagation across multiple layers.

A powerful alternative that is, by nature, unbounded
and preserves both positive and negative values is the class
of concatenated ReLUs [51]. A particular case is the anti-
rectifier function

=
=3

X—X
X=Xl

J(x)= )

+

where [] = max(-,0) is the positive part operator, x is
a vector containing the linear responses of all neurons
(before activation) at a particular layer, and X is its mean
value across all those neurons. The anti-rectifier does not
suffer from vanishing gradients, nor does it lead to dying
nodes for negative values, yet provides the nonlinearity
that facilitates learning complex models and representa-
tions. This dynamic-range preserving activation scheme is,
therefore, well suited for processing RF or IQ-demodulated
ultrasound channel data and is also used for the results
presented in Fig. 2. These advantages come at the cost of a
higher computational complexity compared to a standard
ReLU activation.

When training a neural-network-based ultrasound
beamforming algorithm, it is important to consider the
impact of subsequent signal transformations in the process-
ing chain. In particular, envelope-detected beamformed
signals typically undergo significant dynamic range com-
pression (e.g., through a logarithmic transformation) to
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project the high dynamic range of the backscattered ultra-
sound signals onto the limited dynamic range of a display
and allow for improved interpretation and diagnostics.
To incorporate this aspect in the neural network’s training
loss, beamforming errors can be transformed to attain a
mean squared logarithmic error

L = |log,,([§]+) — log,o (vl

+ |log,o([-¥]+) — 10g10([‘3’]+)”§ 3)
where y is a vector containing the neural-network-based
prediction of the beamformed responses for all pixels
and y contains the target beamformed signals. For our
model-based adaptive beamforming solution [49], y con-
tains the MVDR beamformer outputs for each pixel, and
y is the corresponding set of pixel responses after appli-
cation of the apodization weights calculated by the neural
network.

B. Adaptive Spectral Estimation for Spectral
Doppler

As mentioned in Section II, beamformed ultrasound sig-
nals are not only used to visualize anatomical information
in B-mode but also permit the extraction of velocities by
processing subsequent frames across slow time.

Spectral Doppler ultrasound enables measurement of
blood (and tissue) velocity distributions through the gen-
eration of a Doppler spectrogram from slow-time data
sequences, i.e., a series of subsequent pulse-echo snap-
shots. In commercial systems, spectra are estimated using
the Fourier-transform-based periodogram methods, e.g.,
the standard Welch approach. Such techniques, however,
require long observation windows (denoted as “coherent

processing intervals”) to achieve high spectral resolution
and mitigate spectral leakage. This deteriorates the tempo-
ral resolution.

Data-adaptive spectral estimators alleviate the strong
time—frequency resolution tradeoff, providing superior
spectral estimates and resolution for a given temporal
resolution [52]. The latter is determined by the coherent
processing interval, which is, in turn, defined by the pulse
repetition frequency and the number of slow-time snap-
shots required for a spectral estimate. Adaptive approaches
steer away from the standard periodogram methods and
rely on the content-matched filterbanks. The filter coeffi-
cients for each frequency of interest w are adaptively tuned
to, e.g., minimize signal energy while being constrained to
unity frequency response. This Capon spectral estimator is
given by solving [52]

W, = arg min wfRyww
Wo

“

S.t. wfew =1

where R, is the covariance matrix of the (slow-time)
input signal vector y, and e, is the corresponding Fourier
vector. While this adaptive spectral estimator indeed
improves upon standard approaches and significantly low-
ers the required observation window while gaining spectral
fidelity, it, unfortunately, suffers from high computational
complexity stemming from the need for inversion of the
signal covariance matrix.

As for the MVDR beamformer (see Section III-A),
we here demonstrate that neural networks can also
be exploited to provide fast estimators for the optimal
matched filter coefficients, acting as an artificial agent.
An overview of this approach is given in Fig. 3, for
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pulsed-wave phantom data for the arteria femoralis [53].
The neural network takes a beamformed slow-time RF
signal as input and outputs a set of filter coefficients for
each filter in the filterbank. The slow-time input signal
is then passed through this filterbank to attain a spec-
tral estimate. The neural network is trained by mini-
mizing the mean squared logarithmic error (3) between
the resulting spectrum and the output spectrum of the
high-quality adaptive Capon spectral estimator. It com-
prised 128 four-layer fully connected subnetworks, each
of those predicting the coefficients for one of the 128 fil-
ters in the filterbank. The optimization problem is then
regularized by penalizing deviations from unity frequency
response (4). The length of the slow-time observation
window was only 64 samples, taken from a single depth
sample. Compared to Welch’s periodogram-based method,
adaptive spectral estimation by deep learning achieves
far less spectral leakage and higher spectral resolution
[see Fig. 3(b) and (c)].

Training the artificial agent is subject to similar con-
siderations outlined in Section III-A3. First, slow-time
input samples have a large dynamic range, such that a
nonsaturating activation scheme is preferred, as in (2).
Second, Doppler spectra are typically presented in deci-
bels, advocating for the use of a log-transformed training
loss, as in (3). Third, training is regularized by adding
an additional loss to penalize predicted filterbanks that
deviate from unity frequency response.

The above-mentioned approach is designed to processes
uniformly sampled slow-time signals. In practice, there is a
desire to expand these techniques to estimators that have
the ability to cope with “gaps,” or even sparsely sampled
signals, since the spectral Doppler processing is typically
interleaved with B-mode imaging for navigation purposes
(Duplex mode). To that end, extensions of data-adaptive
estimators for periodically gapped data [54] and recovery
for nested slow-time sampling [55] can be used.

C. Compressive Encodings for Tissue Doppler

From a hardware perspective, a significant challenge for
the design of ultrasound devices and transducers is coping
with the limited cable bandwidth and related connectiv-
ity constraints [56]. This is particularly troublesome for
catheter transducers used in the interventional applica-
tions (e.g., intravascular ultrasound or intracardiac echog-
raphy), where data need to pass through a highly restricted
number of cables. While this is less of a concern for
transducers with only few elements, the number of trans-
ducer elements have expanded greatly in recent devices to
facilitate high-resolution 2-D or 3-D imaging [57]. Beyond
the limited capacity of miniature devices, (future) wire-
less transducers will pose similar constraints on data
rates [58]. Today, front-end connectivity and bandwidth
challenges are addressed through, e.g., application-specific
integrated circuits that perform microbeamforming [59] or
simple summation of the receive signals across neighboring
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elements [60] to compress the full channel data into a
manageable amount, and multiplexing of the receive sig-
nals. This inherently entails information loss and typically
leads to reduced image quality.

Instead of Nyquist-rate sampling of pre-beamformed
and multiplexed channel data, compressive sub-Nyquist
sampling methods permit reduced-rate imaging
without sacrificing quality [3], [19]. After (reduced-
rate) digitization, additional compression may be
achieved through neural networks that serve as
application-specific encoders. Advances in low-power
neural edge computing may permit placing such a trained
encoder at the probe, further alleviating probe-scanner
communication, and a subsequent high-end decoder at
the remote processor [61].

Instead of aiming at decoding the full input signals
from the encoded representation, one can also envisage
decoding only a specific signal or source that is to be
extracted from the input. This may enable stronger com-
pression during encoding whenever this component has
more restricted entropy than the full signal. In ultra-
sound imaging, such signal-extracting compressive deep
encoder—decoders can, e.g., be used for velocity estima-
tion in the color Doppler [62]. Fig. 4 shows how these
networks enable decoding of the tissue Doppler signals
from the encoded IQ-demodulated input data acquired in
an in vivo open-chest experiment of a porcine model, using
intra-cardiac diverging-wave imaging in the right atrium at
a frame rate of 474 Hz.

Here, the encoding neural network comprised a series
of three identical blocks, each composed of two subse-
quent convolutional layers across fast- and slow time,
followed by an aggregation of this processing through
spatial downsampling (max pooling). The decoder had
a similar, mirrored, architecture. The degree of IQ data
compression achieved by the encoder can be changed by
varying the number of channels (in the context of image
processing often referred to as feature maps) at the latent
layer. The encoder and decoder network parameters can
then be learned by mimicking the phase (and therewith,
velocity) estimates obtained using the well-known Kasai
autocorrelator on the full input data [see Fig. 4(b)].
Interestingly, IQ compression rates as high as 32 can
be achieved [see Fig. 4(c)] while retaining reasonable
Doppler signal quality, yielding a relative phase root-mean-
squared error (RMSE) of approximately 0.02. These errors
drop when requiring lower compression rates. Higher
compression rates lead to an increased degree of spatial
consistency, displaying fewer spurious variations that could
not be represented in the compact latent encoding.

The design of the traditional Doppler estimators involves
careful optimization of the slow- and fast-time range gates,
across which the estimation is performed, amounting to
a tradeoff between the estimation quality and spatiotem-
poral resolution [22]. For many practical applications,
the optimal settings not only vary across measurements
and desired clinical objectives but also within a single mea-
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parameters during training, showing the relative RMSEs on a test data set for four data compression factors.

surement. In contrast, a convolutional encoder—decoder
network can learn to determine the effective spatiotempo-
ral support of the given input data required for adequate
Doppler encoding and prediction.

D. Unfolding Robust PCA for Clutter Suppression

An important ultrasound-based modality is CEUS [63],
which allows the detection and visualization of small blood
vessels. In particular, CEUS is used for imaging perfusion
at the capillary level [64], [65] and for estimating differ-
ent vascular properties such as relative volume, velocity,
shape, and density. These physical parameters are related
to different clinical conditions, including cancer [66].

The main idea behind CEUS is the use of encapsulated
gas microbubbles, serving as ultrasound contrast agents
(UCAs), that are injected intravenously and can flow
throughout the vascular system due to their small
size [67]. To visualize them, strong clutter signals
originating from stationary or slowly moving tissues must
be removed, as they introduce significant artifacts in the
resulting images [68]. The latter poses a major challenge
in ultrasonic vascular imaging, and various methods
have been proposed to address it. In [69], a high-pass
filtering approach was presented to remove tissue signals
using finite impulse response (FIR) or infinite impulse
response (IIR) filters. However, this approach is prone to
failure in the presence of fast tissue motion. An alternative

strategy is the second-harmonic imaging [70] that exploits
the nonlinear response of the UCAs to separate them from
the tissue. This technique, however, does not remove the
tissue completely, as it also exhibits a nonlinear response.

One of the most popular approaches for clutter suppres-
sion is the spatio-temporal filtering based on the singular
value decomposition (SVD). This strategy has led to var-
ious techniques for clutter removal [68], [71]-[80]. SVD
filtering includes collecting a series of consecutive frames,
stacking them as vectors in a matrix, performing SVD
of the matrix, and removing the largest singular values,
assumed to be related to the tissue. Hence, a crucial step in
SVD filtering is determining an appropriate threshold that
discriminates between tissue- and blood-related singular
values. However, the exact setting of this threshold is
difficult to determine and may vary dramatically between
different scans and subjects, leading to significant defects
in the constructed images.

To overcome these limitations, in [81]-[83], the task
of clutter removal was formulated as a convex optimiza-
tion problem by leveraging a low-rank-and-sparse decom-
position. Solomon et al. [81] then proposed an efficient
deep learning solution to this convex optimization problem
through an algorithm-unfolding strategy [84]. To enable
explicit embedding of signal structure in the resulting
network architecture, the following model for the signal
after beamforming was proposed.
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Denote the received beamformed signal at snapshot
time ¢ by D(z,z,t), where (z,z) are image coordinates.
Then, we may write

D(x,2,t) = L(x, 2,t) + S(z, 2,1) 5)

where the term L(z, z, t) represents the tissue and S(z, z, t)
is the signal stemming from the blood. Similar to SVD
filtering, a series of consecutive snapshots (¢t = 1,...,7T)
is acquired and stacked as vectors into a matrix, leading to
the matrix model

D=L+S. (6)

The tissue exhibits high spatio—temporal coherence; hence,
the matrix L is assumed to be low rank. The matrix S is
considered to be sparse since small blood vessels sparsely
populate the image plane.

These assumptions on the rank of L and the sparsity in
S enable formulation of the task of clutter suppression as a
robust principle component analysis (RPCA) problem [85]

1
min 5[|D — (L+ S)[[f + MLl + AalIShz (D)

where \; and ). are threshold parameters. The symbol
|| - ||« stands for the nuclear norm that sums the
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singular values of L. The term || - ||1,2 is the mixed l; 2
norm [33], [86] that promotes the sparsity of the blood
vessels along with consistency of their locations over
consecutive frames. RPCA is widely used in the area
of computer vision and can be solved iteratively using
the fast iterative shrinkage/soft-thresholding algorithm
(FISTA) [87], leading to the following update rules:

L = ST, ) (%Lk —-s"+ D)

®)

1
Sk+1 = MT}\Q/Z <§

Sk—Lk-i-D)

where MT,(X) is the mixed {12 soft-thresholding
operator that applies the function max(0,1 — (a/|x]|))x
on each row x of the input matrix X. Assuming the input
matrix is given by its SVD X = UXV”, the singular value
thresholding (SVT) is defined as ST (X) = US.(X)VH,
where S, (z) = max(0,z — «) is applied point-wise on X.
A diagram of this iterative solution is given in Fig. 5(a).
As shown in Fig. 5(c), the iterative solution (8) out-
performs SVD filtering and leads to improved clutter sup-
pression. However, it suffers from two major drawbacks.
The threshold parameters A\; and A2 need to be properly
tuned, as they have a significant impact on the final result.
Moreover, depending on the dynamic range between the
tissue and the blood, FISTA may require many itera-
tions to converge, thus making it impractical for real-time



imaging. This motivates the pursuit of a solution with fixed
complexity, in which the threshold parameters are adjusted
automatically.

Such a fixed-complexity solution can be attained
through unfolding [88], [89], in which a known iterative
solution is unrolled as a feedforward neural network.
In this case, the iterative solution is the FISTA algo-
rithm (8) that can be rewritten as

L' = ST, /2(WiD 4+ W38" + W;L")
ST = MTy, /2(WaD + W4S* + WLF) )

Where W1 = W2 = I, W3 = W6 = —I, and W4 = W5 =
(1/2)I. From this, the deep multilayer network takes a
form, in which the kth layer is given by

LAt = STA;f(W’f +D+ W5« 8F + WE «L¥)
[ MT (W5 D + W) « 8¥ + Wg «L*). (10)

In (10), the matrices (W¥,..., W§) and the regularization
parameters Y and )5 differ from one layer to another
and are learned during training. Moreover, (W}, ... WE§)
were chosen to be convolution kernels, where * denotes
the convolution operator. The latter facilitates spatial
invariance along with a notable reduction in the num-
ber of learned parameters. This results in a CNN that is
specifically tailored for solving RPCA, whose nonlinearities
are the soft-thresholding and SVT operators, and is
termed Convolutional rObust pRincipal cOmpoNent Analy-
sis (CORONA). A diagram of a single layer from CORONA
is given in Fig. 5(b).

The training process of CORONA is performed by back-
propagation in a supervised manner, leveraging both sim-
ulations, for which the true decomposition is known, and
in vivo data, for which the decomposition of FISTA (8) is
considered as the ground truth. Moreover, data augmenta-
tion is performed, and the training is done on 3-D patches
extracted from the input measurements. The loss function
was chosen as the sum of mean squared errors (mse)

N
E(0) = 5 (Zu&- ~S:OF + L —ﬁi<e>|%> (1n
=1

where {S;,L;}Y, are the ground truth and {S;,L;}¥, are
the network’s outputs. The learned parameters are denoted
by 6 = {W¥, ... WE M A1 | where K is the number of
layers. Backpropagation through the SVD was done using
PyTorch’s Autograd function [90].

Fig. 5 shows how CORONA effectively suppresses clut-
ter on CEUS scans of two rat’s brains, outperform-
ing SVD filtering and RPCA through FISTA (8). The
recovered CEUS (blood) signals are given in Fig. 5(c),
including the enlarged views of regions of inter-
est. Visually judging, FISTA achieves moderately better
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contrast than SVD filtering, while CORONA outperforms
both approaches by a large margin. For a quantitative
comparison, the CNR and the contrast ratio (CR) were
assessed, defined as

CNR:M CR = H= (12)

Jotol m

where p, and o2 are the mean and variance of the
regions of interest in Fig. 5(c), and u, and o} are the
mean and variance of the noisy reference area indicated
by the yellow box. In both metrics, higher values imply
higher CRs, which suggests better noise suppression. FISTA
obtained slightly better performance than SVD filtering
(CR =~ 4.6 dB and =~5.4 dB, respectively), and CORONA
outperformed both (CR ~ 15 dB). In most cases, the per-
formance of CORONA was about an order of magni-
tude better than that of SVD. Thus, combining a model
for the separation problem with a data-driven approach
leads to improved separation of UCA and tissue signals,
together with noise reduction compared to the popular
SVD approach.

The complexity of all three methods is governed by
the singular-value decomposition that requires O(M N?)
FLOPS for an M x N matrix, where M > N. However,
FISTA may require thousands of iterations, i.e., thousands
of such SVD operations. Hence, FISTA for RPCA is compu-
tationally significantly heavier than regular SVD-filtering.
On the other hand, for CORONA, up to ten layers were
shown to be sufficient (i.e., up to ten SVD operations),
therewith offering a dramatic increase in performance at
the expense of only a moderate increase in complexity. All
three methods can benefit from using inexact decomposi-
tions that exhibit reduced computational load, such as the
truncated SVD and randomized SVD.

IV. DEEP LEARNING FOR
SUPER-RESOLUTION

A. Ultrasound Localization Microscopy

While the above-described advances in front-end ultra-
sound processing can boost resolution, suppress clutter,
and drastically improve tissue contrast, the attainable res-
olution of ultrasonography remains fundamentally limited
by wave diffraction, i.e., the minimum distance between
separable scatters is half a wavelength. Simply increas-
ing the transmit frequency to shorten the wavelength,
unfortunately, comes at the cost of reduced penetration
depth since higher frequencies suffer from stronger absorp-
tion compared to waves with a higher wavelength. This
tradeoff between resolution and penetration depth particu-
larly hampers deep high-resolution microvascular imaging,
being a cornerstone for many diagnostic applications.

Recently, this tradeoff was circumvented by the intro-
duction of ULM [91], [92]. ULM leverages principles that
formed the basis for the Nobel-prize-winning concept
from optics of super-resolution fluorescence microscopy
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and adapts these to ultrasound imaging: if individual
point sources are well isolated from diffraction-limited
scans, and their centers subsequently precisely pinpointed
on a subdiffraction grid, then the accumulation of many
such localizations over time yields a super-resolved image.
In optics, stochastic “blinking” of subsets of fluorophores is
exploited to provide such sparse point sources. In ULM,
intravascular lipid-shelled gas microbubbles fulfill this
role [93]. This approach permits achieving a resolution
that is up to ten times smaller than the wavelength [8].

Since the fidelity of ULM depends on the number
of localized microbubbles and the localization accuracy,
it gives rise to a new tradeoff that balances the required
microbubble sparsity for accurate localization and acqui-
sition time. To achieve the desired signal sparsity for
straightforward isolation of the backscattered echoes, ULM
is typically performed using a very diluted solution of
microbubbles. On regular ultrasound systems, this con-
straint leads to tediously long acquisition times (on the
order of hours) to cover the full vascular bed. Using
an ultrafast plane-wave ultrasound system rather than
regular scanning, Errico et al. [8] performed ultrafast
ULM (uULM) in a rat’s brain. Empowered by high frame
rates (500 frames/s), the acquisition time was lowered to
minutes instead of hours. Ultrafast imaging indeed enables
taking many snapshots of individual microubbles, as they
transport through the vasculature, thereby facilitating very
high-fidelity reconstruction of the larger vessels. Never-
theless, mapping the full capillary bed remains dictated
by the requirement of microbubbles to pass through each
of the capillaries. As such, long acquisitions of tens of
minutes are required, even with uULM [94]. To boost
the achieved coverage in a given time-span, methods
that enable the use of higher concentrations can be
leveraged [32], [33], [95]-[97].

B. Exploiting Signal Structure

To strongly relax the constraints on microbubble con-
centration and therewith cover more vessels in a shorter
time, standard ULM can be extended by incorporating
knowledge of the measured signal structure, in particular,
its sparsity in a transform domain. To that end, a received
contrast-enhanced image frame can be modeled as

y=Ax+w (13)

where x is a vector that describes the sparse microbub-
ble distribution on a high-resolution image grid, y is the
vectorized image frame of the ultrasound sequence, A is
the measurement matrix, where each column of A is
the point-spread-function shifted by a single pixel on the
high-resolution grid, and w is a noise vector.

Leveraging this signal prior, i.e., assuming that the
microbubble distribution is sparse on a sufficiently
high-resolution grid (or, the number of nonzero entries in
x is low), we can formulate the following ¢;-regularized
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inverse problem:

f(:argm)(in||y—AX||g+)\||x||l (14)

where )\ is a regularization parameter that weighs the
influence of ||x||;.

Equation (14) may be solved using a numerical proximal
gradient scheme, such as FISTA [87]. We will discuss this
FISTA-based solution in Section IV-C2. After estimating x
for each frame, the estimates are summed across all frames
to yield the final super-resolution image.

Beyond sparsity on a frame-by-frame basis, signal struc-
ture may also be leveraged across multiple frames. To that
end, a multiple-measurement vector model [98] and its
structure in a transformed domain can be considered, e.g.,
by assuming that a temporal stack of frames x is sparse in
the temporal correlation domain [32], [33]. Considering
the temporal dimension, sparse recovery may be improved
by exploiting the motion of microbubbles, allowing the
application of a prior on the spatial microbubble distrib-
ution through the Kalman tracking [99].

Exploiting signal structure through sparse recovery
indeed enables improved localization precision and recall
for high microbubble concentrations [95], [97]. Unfortu-
nately, proximal gradient schemes, such as FISTA, typi-
cally require numerous iterations to converge (yielding
a very time-consuming reconstruction process), and their
effectiveness is strongly dependent on careful tuning of
the optimization parameters (e.g., A and the step size).
In addition, the linear model in (13) is an approxima-
tion of what is actually a nonlinear relation between the
microbubble distribution and the resulting beamformed
and envelope-detected image frame. While this approxi-
mation is valid for microbubbles that are sufficiently far
apart, the significant image-domain implications of the RF
interference patterns of very closely spaced microbubbles
cannot be neglected.

C. Deep Learning for Fast High-Fidelity Sparse
Recovery

1) Encoder-Decoder Architectures: In pursuit of fast
and robust sparse recovery for the nonlinear measure-
ment model, we leveraged deep learning to solve the
complex inverse problem based on adequate simula-
tions of the forward problem [95], [96]. This data-driven
approach, named deep-ULM, harnesses a fully convolu-
tional neural network to map a low-resolution input image
containing many overlapping microbubble signals, to a
high-resolution sparse output image, in which the pixel
intensities reflect recovered backscatter levels. This process
is illustrated in Fig. 6(a). The network comprises an
encoder and a decoder, with the former expressing input
frames in a latent representation and the latter decoding
such representation into a high-resolution output. The
encoder is composed of a contracting path of three blocks,
each block consisting of two successive 3 x 3 convolution
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(a) Fast ULM through deep learning (deep-ULM) [95], [96], using a convolutional neural network to map low-resolution CEUS frames

to highly resolved sparse localizations on an eight times finer grid. The network is trained using realistic simulations of the corresponding

ultrasound acquisitions, incorporating a point-spread-function estimate, the modulation frequency, pixel spacing, and background noise as

sampled from real data sets. (b) Standard maximum intensity projection across a sequence of frames for a rat’s spinal cord.

(c) Corresponding deep-ULM reconstruction.

layers and one 2 x 2 max-pooling operation. This is fol-
lowed by two 3x 3 convolutional layers and a dropout layer
that randomly disables nodes with a probability of 0.5 to
mitigate overfitting. The subsequent decoder also consists
of three blocks; the first two blocks encompassing two
5 x 5 convolution layers, of which the second has an
output stride of 2, followed by 2 x 2 nearest-neighbor
up-sampling. The last block consists of two convolution
layers, of which the second again has an output stride of 2,
preceding another 5 x 5 convolution that maps the feature
space to a single-channel image through a linear activation
function. All other activation functions in the network
were leaky ReLUs [100]. The full deep encoder—decoder
network [see Fig. 6(a)] effectively scales the input image
dimensions up by a factor 8 and provides a powerful
model that has the capacity to learn the sparse decoding
problem while yielding simultaneous denoising through
the compact latent space.

The network is trained on simulations of CEUS acqui-
sitions, using an estimate of the real system point-spread-
function, the RF modulation frequency, and pixel spacing.
Noise, clutter, and artifacts were included by randomly
sampling from real measurements across frames, in which
no microbubbles are present. Similar to [101], we adopt a
specific loss function that acts as a surrogate for the real
localization error

LY. Xe|0) = || £(YI0) = G(o) * Xel5 + [ F(YIO) I, (15)

where Y and X; are the low-resolution input and sparse
super-resolution target frames, respectively, f(Y|6) is the
nonlinear neural network function, and G(o) is an isotropic
Gaussian convolution kernel. Jointly, the ¢; penalty that
acts on the reconstructions and the kernel G(o) that oper-
ates on the targets yield a loss function that increases
when the reconstructed images exhibit less sparsity and
when the Euclidean distances between the localizations
and the targets become larger. We note that the selection
of the relative weighting of this sparsity penalty by ~ is
less critical than the thresholding parameter A adopted
in the sparse recovery problem (14) since the measure-
ment model A (characterized by the point-spread-function)
exhibits a much smaller bandwidth than G(o) for low
values of o as adopted here. Consequently, the degree of
bandwidth extension necessary to yield sparse outputs is
less in the latter case.

Fig. 6(c) displays the super-resolution ultrasound
reconstruction of a rat’s spinal cord [102], qualitatively
showing how deep-ULM achieves a significantly higher
resolution and contrast than the diffraction-limited
maximum intensity projection image [see Fig. 6(b)].
Deep-ULM achieves a resolution of about 20-30 um, being
a 4-5-fold improvement compared to standard imaging
with the adopted linear 15-MHz transducer [95]. In terms
of speed, recovery on a 4096 x 1328 grid takes roughly
100 ms/frame using GPU acceleration, making it about
four orders of magnitude faster than a Fourier-domain
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ISTA scheme, as shown in Section IV-C2. (c) Performance comparison of standard ULM, sparse-recovery, deep-ULM, and deep unfolded ULM
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ULM on simulation data, the latter seems to generalize better toward in vivo acquisitions, qualitatively yielding images with higher fidelity

[see Fig. 6(c) for comparison].

implementation of sparse recovery through the FISTA
proximal gradient scheme [33].

2) Deep Unfolding for Robust and Fast Sparse Decoding:
While deep encoder—decoder architectures (as used in
deep-ULM) serve as a general model for many regression
problems and are widely used in computer vision, their
large flexibility and capacity also likely make them over-
parameterized for the sparse decoding problem at hand.
To promote robustness by exploiting knowledge of the
underlying signal structure (i.e., microbubble sparsity),
we propose using a dedicated and more compact network
architecture that borrows inspiration from the proximal
gradient methods introduced in Section IV-B [87].

To do so, we first briefly describe the ISTA scheme for
the sparse decoding problem in (14)

X = T (x" — pAT (AX" —y) (16)

where p determines the step size, and 7, (x); = (|zi| —
A)4sgn(z;) is the proximal operator of the ¢; norm.
Equation (16) is compactly written as

X" = T (Why + Waox") (17
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with W; = pAT and W, = I — pATA. Similar to our
approach to robust PCA in Section III-D, we can unfold
this recurrent structure into a K-layer feedforward neural
network, as in LISTA (“learning ISTA”) [88], with each
layer consisting of trainable convolutions WY and W%,
along with a trainable shrinkage parameter A*. This
enables learning a highly efficient fixed-length iterative
scheme for fast and robust ULM, with an optimal set
of kernels and parameters per iteration, which we term
deep unfolded ULM. Different than LISTA, we avoid
vanishing gradients in the “dead zone” of the proximal
soft-thresholding operator 7,, by replacing it by a
smooth sigmoid-based soft-thresholding operation [103].
An overview of this approach is given in Fig. 7(b),
contrasting this dedicated sparse-decoding-inspired
solution with a general deep encoder-decoder network
architecture in Fig. 7(a). Both networks are trained on the
same, synthetically generated, data.

Tests on synthetic data show that both deep learn-
ing methods significantly outperform standard ULM and
sparse decoding through FISTA for high microbubble con-
centrations [see Fig. 7(c)]. On such simulations, the deep
encoder—decoder used in deep-ULM yields higher recall
and lower localization errors compared to the deep



unfolded ULM. Interestingly, when applying the trained
networks to in vivo ultrasound data, we instead observe
that deep unfolded ULM yields super-resolution images
with higher fidelity. Thus, it is capable of translating
much better toward real acquisitions than the large deep
encoder—-decoder network [see Figs. 6(c) and 7(d) for
comparison].

Our ten-layer deep unfolded ULM comprising 5 x 5
convolutional kernels has much fewer parameters (merely
506, compared to almost 700 000 for the encoder—-decoder
scheme), therefore exhibiting a drastically lower memory
footprint and reduced power consumption, in addition
to achieving higher inference rates. The encoder—decoder
approach requires over four million FLOPS for map-
ping a low-resolution patch of 16 x 16 pixels into a
super-resolution patch of 128 x 128 pixels. The unfolded
ISTA architecture is much more efficient, requiring just
over 1000 FLOPS.

The lower number of trainable parameters may also
explain the improved robustness and better generalization
toward real data compared to its over-parameterized coun-
terpart. On the other hand, complex image artifacts, such
as the strong bone reflections visible in the bottom left
of Fig. 7(d), remain more prominent using the compact
unfolding scheme.

V.OTHER APPLICATIONS OF DEEP
LEARNING IN ULTRASOUND

While this article predominantly focuses on deep learn-
ing strategies for ultrasound-specific receive processing
methods along the imaging chain, the initially most
thriving application of deep learning in ultrasound was
spurred by computer vision: automated analysis of the
images obtained with traditional systems [104]. Such
image analysis methods aim at dramatically accelerating
(and potentially improving) current clinical diagnostics.

A classic application of ultrasonography lies in
prenatal screening, where fetal growth and development
are monitored to identify possible problems and aid
diagnosis. These routine examinations can be complex
and cumbersome, requiring years of training to swiftly
identify the scan planes and structures of interest.
Baumgartner et al. [105]  effectively leverage deep
learning to drastically simplify this procedure, enabling
real-time detection and localization of standard fetal
scan planes in freehand ultrasound. Similarly, in [106]
and [107], deep learning was used to accelerate
echocardiographic exams by automatically recognizing the
relevant standard views for further analysis, even permit-
ting automated myocardial strain imaging [108]. In [109],
CNN was trained to perform thyroid nodule detection and
recognition. Similar applications of deep learning include
automated identification and segmentation of tumors in
breast ultrasound [110]-[112], localization of clinically
relevant B-line artifacts in lung ultrasonography [113],
and real-time segmentation of anatomical zones on
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transrectal ultrasound (TRUS) scans [114]. Huet al. [115]
show how such anatomical landmarks and boundaries can
be exploited by a deep neural network to attain accurate
voxel-level registration of TRUS and MRI.

Beyond these computer-vision applications, other
learning-based techniques aim at extracting relevant
medium parameters for tissue characterization. Among
such approaches is data-driven elasticity imaging [116],
[117]. In these works, the authors propose neural-
network-based models that produce spatially varying lin-
ear elastic material properties from force—displacement
measurements, free from prior assumptions on the under-
lying constitutive models or material properties. In [118],
a deep convolutional neural network is used for speed-of-
sound estimation from the (single-sided) B-mode channel
data. Vishnevskiy et al. [119] address the problem by
introducing an unfolding strategy to yield a dedicated
network based on the iterative wave reflection tracking
algorithm. The ability to measure the speed of sound
not only permits tissue characterization but also adequate
refraction-correction in beamforming.

VI. DISCUSSION AND FUTURE
PERSPECTIVES

Over the past years, deep learning has revolutionized
a number of domains, spurring breakthroughs in com-
puter vision, natural language processing, and beyond.
In this article, we aimed to signify the potential that this
powerful approach carries when leveraged in ultrasound
image and signal reconstruction. We argue and show that
deep learning methods profit considerably when integrat-
ing signal priors and structure, embodied by the pro-
posed deep unfolding schemes for clutter suppression and
super-resolution imaging, and the learned beamforming
approaches. In addition, several ultrasound-specific con-
siderations regarding suitable activation and loss functions
were given.

We designed and showcased a number of independent
building blocks, with trained artificial agents and neural
signal processors dedicated to distinct applications.
Some of the presented methods operate on images
(see Sections III-D and IV) or IQ data (see Section III-C),
while others process channel data directly (see
Sections III-A and III-B). A full processing chain may
easily comprise a number of such components, which can
be optimized holistically. This proposition enables imaging
chains that are dedicated to the application and fully
adaptive.

Designing neural networks that can efficiently process
channel data in real time comes with a number of chal-
lenges. First, in contrast to images, channel data has a
very large dynamic range and is RF modulated. This
makes typical activation functions as used in image analy-
sis (often ReLUs or hyperbolic tangents) less suited.
In Section III-A3, we argue that the class of concatenated
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ReLUs provides a possible alternative. Second, channel
data is extremely large, in particular, for large arrays
or matrix transducers and when sampled at the Nyquist
rate. This may be alleviated significantly by leveraging
sub-Nyquist sampling schemes [3], [14], [15], [17], [55],
permitting high-end processing of low-rate channel data
after (wireless) transfer to a remote (or cloud) processor.
Such a new scheme, with a wireless probe that streams
low-rate channel data for subsequent deep learning in
the cloud, would open up many new possibilities for
intelligent image formation and advanced processing in
ultrasonography.

Deep learning typically relies on vast amounts of train-
ing data. Although several approaches to make learn-
ing more data-efficient and robust have been discussed
throughout this article, a significant amount of data is still
required. In the framework of supervised learning, training
data typically consist of input data and desired targets.
What these targets are and how they should be obtained
depends on the application and goal. Sometimes, it is, for
instance, desirable to mimic an existing high-performance
algorithm that is too complex and costly to implement
in real time. Examples of this are the adaptive beam-
forming and spectral Doppler applications described in
Sections III-A and III-B, respectively. At other times, train-
ing data may only be obtainable through simulations or
measurements on well-characterized in vitro phantoms.
In such cases, the performance of a deep learning algo-
rithm on in vivo data stands or falls with the realism
of these training data and its coverage of the real-world
data distribution. As shown in Section IV-C2, leveraging
structural signal priors in the network architecture strongly
aids generalization beyond simulations.

Once trained, inference can be fast through the exploita-
tion of high-performance GPUs. While advanced high-end
imaging systems may be equipped with GPUs to facilitate
the deployment of deep neural networks at the remote
processor, FPGAs or ASICSs may be more appropriate
for resource-limited low-power settings [120]. In the con-
sumer market, small neural- and tensor-processing units
(NPUs and TPUs, respectively) are enabling neural net-
work inference at the edge [121]—one can envisage a
similar paradigm for the front-end ultrasound process-
ing. As such, the relevance of designing compact and
efficient neural networks for memory-constrained (edge)
settings is considerable and becomes particularly relevant
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