A Guide to the STML MATLAB Package

Amir Beck and Yonina C. Eldar

April 17, 2009

1 Overview

This short note briefly describes the usage of the functions in the STML package which are based on the paper

Amir Beck and Yonina C. Eldar, "Structured Total Maximum Likelihood:
An Alternative to Structured Total Least-Squares", submitted for publication.
Our goal is to find a "solution" of an approximate linear system

$$
A x \approx b
$$

where both \mathbf{A} and \mathbf{b} are noisy. We further assume that \mathbf{A} possesses some linear structure. In particular, the assumed linear model is:

$$
\left(\mathbf{A}_{0}+\sum_{i=1}^{p} e_{i} \mathbf{A}_{i}\right) \mathbf{x}=\mathbf{b}_{0}+\mathbf{w},
$$

where

- $\mathbf{A}_{0} \in \mathbb{R}^{m \times n}, \mathbf{b}_{0} \in \mathbb{R}^{m}$. \mathbf{A}_{0} is the nominal measurement matrix and \mathbf{b}_{0} is the observed data vector (both are known).
- $\mathbf{A}_{1}, \ldots, \mathbf{A}_{p}$ are the structure matrices describing the corresponding linear structure.
- e_{1}, \ldots, e_{p} are unknown perturbations of the structure components assumed to be distributed as $N\left(0, \sigma_{e}^{2}\right)$.
- w_{1}, \ldots, w_{m} are the components of the vector \mathbf{w} which is the perturbation to the righthand side vector \mathbf{b}. It is assumed that w_{1}, \ldots, w_{m} are distributed as $N\left(0, \sigma_{w}^{2}\right)$.

An underlying assumption is that the $m+p$ random variables $w_{1}, \ldots, w_{m}, e_{1}, \ldots, e_{p}$ are independently distributed. The STLS solution to the problem is an optimal solution to the following nonconvex optimization problem

$$
\begin{equation*}
(\mathrm{STLS}): \min _{\mathbf{x}}(\mathbf{A x}-\mathbf{b})^{T} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{A x}-\mathbf{b}) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Sigma}_{\mathbf{x}}=\sigma_{e}^{2} \sum_{i=1}^{p} \mathbf{A}_{i} \mathbf{x x}^{T} \mathbf{A}_{i}^{T}+\sigma_{w}^{2} \mathbf{I} \tag{1.2}
\end{equation*}
$$

The STML estimate is an optimal solution of the problem

$$
\begin{equation*}
(\mathrm{STML}): \quad \min _{\mathbf{x}}\left\{(\mathbf{A x}-\mathbf{b})^{T} \boldsymbol{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{A x}-\mathbf{b})+\log \operatorname{det} \boldsymbol{\Sigma}_{\mathbf{x}}\right\} . \tag{1.3}
\end{equation*}
$$

2 General Structures

In this section the following functions are described:

```
mstls.m
stls.m
detect_structure.m
detect_structure_unweighted.m
```

Suppose that \mathbf{A}_{0} is a 3×2 matrix of the form

$$
\left(\begin{array}{cc}
a_{1} & a_{1} \\
a_{2} & a_{1} \\
0 & a_{2}
\end{array}\right)
$$

For example, consider the following observed matrix and righthand side vector:
>>A_0=[0.234,0.234;0.14, 0.234;0,0.14]
A_0 =

0.2340	0.2340
0.1400	0.2340
0	0.1400

>>b_0 $=[1 ; 2 ; 3]$
b_0 =
1
2
3
If the true structure components are assumed to be given by

$$
g_{1}=a_{1}+\varepsilon_{1}, g_{2}=a_{2}+\varepsilon_{2}, \quad\left(a_{1}=0.234, a_{2}=0.14\right)
$$

where $\varepsilon_{i} \sim N\left(0, \sigma_{e}^{2}\right)$, then the structure matrices can be defined by
$\gg A(:,:, 1)=[1,1 ; 0,1 ; 0,0] ;$
$\gg A(:,:, 2)=[0,0 ; 1,0 ; 0,1]$
$A(:,:, 1)=$

```
    1
    0 1
    0
A(:,:,2) =
    0
    0
    0 1
```

Assuming that $\sigma_{e}=\sigma_{w}=0.1$, the STLS solution of the problem can be found by the function stls.m as follows:
x_stls=stls(2,A,A_0, b_0,0.1,0.1)
and the output is
Optimization terminated: relative infinity-norm of gradient less than options.TolFun.

$$
\begin{aligned}
& \text { x_stls }= \\
& -14.8060
\end{aligned}
$$

$$
19.2849
$$

To find the STML solution, the following command should be invoked:

```
>>x_stml=stml(2,A,A_0,b_0,0.1,0.1)
```

Optimization terminated: relative infinity-norm of gradient less
than options.TolFun.

```
x_stml =
    -12.0923
    15.7693
```

The function stml.m invokes the MATLAB function fmincon and uses the BFGS method. A message describing the stopping criteria used to terminate the algorithm used by fmincon is given.

Now consider the following symmetric Toeplitz matrix

```
>>A_0=toeplitz([100,3, 1,0,0])
A_0 =
\begin{tabular}{rrrrr}
100 & 3 & 1 & 0 & 0 \\
3 & 100 & 3 & 1 & 0 \\
1 & 3 & 100 & 3 & 1 \\
0 & 1 & 3 & 100 & 3 \\
0 & 0 & 1 & 3 & 100
\end{tabular}
```

This matrix has three structure components. In some scenarios it is more logical to assume that the perturbations of the structure components are proportional to their nominal value. That is, instead of assuming that the "true" structured matrix is

$$
\left(\begin{array}{ccccc}
100+\varepsilon_{1} & 3+\varepsilon_{2} & 1+\varepsilon_{3} & 0 & 0 \\
3+\varepsilon_{2} & 100+\varepsilon_{1} & 3+\varepsilon_{2} & 1+\varepsilon_{3} & 0 \\
1+\varepsilon_{3} & 3+\varepsilon_{2} & 100+\varepsilon_{1} & 3+\varepsilon_{2} & 1+\varepsilon_{3} \\
0 & 1+\varepsilon_{3} & 3+\varepsilon_{2} & 100+\varepsilon_{1} & 3+\varepsilon_{2} \\
0 & 0 & 1+\varepsilon_{3} & 3+\varepsilon_{2} & 100+\varepsilon_{1}
\end{array}\right),
$$

where $\varepsilon_{i} \sim N\left(0, \sigma_{e}^{2}\right), i=1,2,3$, it is more reasonable to assume that the "true" matrix is

$$
\left(\begin{array}{ccccc}
100\left(1+\varepsilon_{1}\right) & 3\left(1+\varepsilon_{2}\right) & 1\left(1+\varepsilon_{3}\right) & 0 & 0 \\
3\left(1+\varepsilon_{2}\right) & 100\left(1+\varepsilon_{1}\right) & 3\left(1+\varepsilon_{2}\right) & 1\left(1+\varepsilon_{3}\right) & 0 \\
1\left(1+\varepsilon_{3}\right) & 3\left(1+\varepsilon_{2}\right) & 100\left(1+\varepsilon_{1}\right) & 3\left(1+\varepsilon_{2}\right) & 1\left(1+\varepsilon_{3}\right) \\
0 & 1\left(1+\varepsilon_{3}\right) & 3\left(1+\varepsilon_{2}\right) & 100\left(1+\varepsilon_{1}\right) & 3\left(1+\varepsilon_{2}\right) \\
0 & 0 & 1\left(1+\varepsilon_{3}\right) & 3\left(1+\varepsilon_{2}\right) & 100\left(1+\varepsilon_{1}\right)
\end{array}\right)
$$

The only difference is that the structure matrices should include the nominal value and not just zeros and ones:

```
>>clear A;
>>A(:,:,1)=toeplitz([100,0,0,0,0]);
>>A(:,:,2)=toeplitz([0,3,0,0,0]);
>>A(:, :,3)=toeplitz([0,0,1,0,0])
```

$A(:,:, 1)=$

100	0	0	0	0
0	100	0	0	0
0	0	100	0	0
0	0	0	100	0
0	0	0	0	100

$\mathrm{A}(:,:, 2)=$

0	3	0	0	0
3	0	3	0	0
0	3	0	3	0
0	0	3	0	3
0	0	0	3	0

$\mathrm{A}(:,:, 3)=$

0	0	1	0	0
0	0	0	1	0
1	0	0	0	1
0	1	0	0	0
0	0	1	0	0

If the righthand side vector \mathbf{b}_{0} is given by
>>b_0=[1;2;3;4;5]
b_0 =
1
2
3
4
5

Then with $\sigma_{e}=\sigma_{w}=0.1$, the MSTLS solution can be computed by ${ }^{1}$
>> x_stml=stml(3,S,A_0,b_0,0.1,0.1)
Optimization cannot make further progress:
relative change in x less than options.TolX.
x_stml =
0.0091
0.0184
0.0275
0.0372
0.0481

It is also possible to extract the structure matrices using the function detect_structure.m. Just write
>> [p,S]=detect_structure(A_0)
$\mathrm{p}=$
3
$S(:,:, 1)=$

0	0	1	0	0
0	0	0	1	0
1	0	0	0	1
0	1	0	0	0
0	0	1	0	0

[^0]$S(:,:, 2)=$

0	3	0	0	0
3	0	3	0	0
0	3	0	3	0
0	0	3	0	3
0	0	0	3	0

$S(:,:, 3)=$

100	0	0	0	0
0	100	0	0	0
0	0	100	0	0
0	0	0	100	0
0	0	0	0	100

This function will work only when values of different structure components are not the same. If un-weighted structure matrices are required, then the function
detect_structure_unweighted.m
should be invoked:
>> [p, S] =detect_structure_unweighted (A_0)
p = 3
$S(:,:, 1)=$

0	0	1	0	0
0	0	0	1	0
1	0	0	0	1
0	1	0	0	0
0	0	1	0	0

S(:,:,2) =

0	1	0	0	0
1	0	1	0	0
0	1	0	1	0
0	0	1	0	1
0	0	0	1	0

S(:,:,3) =

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

3 The Matrix-Restricted structure

The function

```
mstls_dec.m
```

can be used when the perturbation matrix has the matrix-structure $D E C$ where

- $\mathbf{E} \in \mathbb{R}^{p \times q}$ is an unknown matrix whose components are independently and normally distributed as $N\left(0, \sigma_{e}^{2}\right)$.
- $\mathbf{D} \in \mathbb{R}^{m \times p}, \mathbf{C} \in \mathbb{R}^{n \times q}$ are known.

The linear model here is therefore

$$
\left(\mathbf{A}_{0}+D E C\right) \mathbf{x}=\mathbf{b}_{0}+\mathbf{w}
$$

For example if $\mathbf{A}_{0}, \mathbf{b}_{0}, \mathbf{D}$ and \mathbf{C} are given by

```
>>A_0=[1,2;3,4]
A_0 =
    1 2
    3 4
>>b_0=[5;6]
b_0 =
    5
    6
>>D=[1,-1;2,-3]
D =
\begin{tabular}{ll}
1 & -1 \\
2 & -3
\end{tabular}
```

$\gg C=[1,0 ; 1,2]$
C $=$

1	0
1	

then the STML solution with $\sigma_{e}=\sigma_{w}=0.1$ can be found by

```
>>x_stml1=stml_dec(A_0,b_0,D,C,0.1,0.1)
\begin{tabular}{cccc} 
Func-count & x & \(\mathrm{f}(\mathrm{x})\) & Procedure \\
1 & 38.1966 & -1.41606 & initial \\
2 & 61.8034 & 3.17932 & golden
\end{tabular}
```

3	23.6068	11.1174	golden
4	46.4718	-0.77517	parabolic
5	37.2693	-1.30881	parabolic
6	40.4887	-1.48735	parabolic
7	42.774	-1.33908	golden
8	40.0843	-1.49262	parabolic
9	40.0081	-1.49282	parabolic
10	39.9858	-1.49283	parabolic
11	39.987	-1.49283	parabolic
12	39.9871	-1.49283	parabolic
13	39.9871	-1.49283	parabolic
14	39.9871	-1.49283	parabolic

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of $1.000 \mathrm{e}-006$ x_stml1 =
-4.0025
4.4491

Thus, the STML solution is $\binom{-4.0025}{4.4491}$ and the optimal value is -1.49283 . As a sanity check, let us compute the same solution using the function stml.m that can handle general structures. Denoting

$$
\mathbf{E}=\left(\begin{array}{ll}
\varepsilon_{1} & \varepsilon_{2} \\
\varepsilon_{3} & \varepsilon_{4}
\end{array}\right)
$$

$$
\begin{aligned}
\mathrm{DEC} & =\left(\begin{array}{ll}
1 & -1 \\
2 & -3
\end{array}\right)\left(\begin{array}{ll}
\varepsilon_{1} & \varepsilon_{2} \\
\varepsilon_{3} & \varepsilon_{4}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) \\
& =\varepsilon_{1}\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right)+\varepsilon_{2}\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)+\varepsilon_{3}\left(\begin{array}{ll}
-1 & 0 \\
-3 & 0
\end{array}\right)+\varepsilon_{4}\left(\begin{array}{ll}
-1 & -2 \\
-3 & -6
\end{array}\right)
\end{aligned}
$$

Therefore, the structure matrices can be defined:

$$
\begin{aligned}
& \gg c l e a r ~ A ; \\
& \gg A(:,:, 1)=[1,0 ; 2,0] ; \\
& \gg A(:,:, 2)=[1,2 ; 2,4] ; \\
& \gg A(:,:, 3)=[-1,0 ;-3,0] ; \\
& \gg A(:,:, 4)=[-1,-2 ;-3,-6] \\
& A(:,:, 1)= \\
& 1
\end{aligned}
$$

```
A(:,:, 3) =
    -1 0
    -3 0
A(:,:,4) =
    -1 -2
    -3 -6
```

and the STML estimate can now be found using stml.m:

```
>>[x_stml2,f]=stml(4,A,A_0,b_0,0.1,0.1)
Optimization terminated: relative infinity-norm of gradient less
than options.TolFun.
x_stml2 =
    -4.0025
    4.4491
f =
    -1.4928
```

Obviously this is the same solution as the one produced by stml_dec.m. It is important to note that for matrix-restricted structures, the function stml_dec.m is more recommended than the function stml.m. The latter function first reduces the problem into a one-dimensional problem and is more efficient and less likely to get stuck at a local minimum. In addition, when both \mathbf{D} and \mathbf{C} are the identity matrices (of appropriate sizes), we are dealing with the unstructured case and the function stml_dec.m is guaranteed to find the exact STML solution.

4 The Circulant Structure

The function

```
stml_circulant.m
```

can be used in order to find the STML estimate for the circulant structure. The function is guaranteed to produce a global optimal solution of the corresponding nonconvex problem. Let us begin with a small example. Suppose that we consider the 4×4 circulant matrix with first row

```
>>a_0=[1,2,3,4]
```

a_0 =
$\begin{array}{llll}1 & 2 & 3\end{array}$
We can compute the circulant matrix by using the following command:

```
>> A_0=gallery('circul',a_0)
```

A_O =

1	2	3	4
4	1	2	3
3	4	1	2
2	3	4	1

The righthand side vector is defined by
>> b_0=[5;6;7;8]
b_0 =

5
6

7
8

Suppose that $\sigma_{e}=\sigma_{w}=0.1$. Then the STML estimate can be computed via the command stml_circulant.m

```
>>x_stml=stml_circulant(a_0,b_0,0.1,0.1)
```

\#ITER	\#1D-PROBLEMS	\#MAX-INTERVAL
0	4	$1.127 \mathrm{e}+000$
1	4	$7.511 \mathrm{e}-001$
2	4	$5.007 \mathrm{e}-001$
3	4	$3.338 \mathrm{e}-001$
4	4	$2.226 \mathrm{e}-001$
5	4	$1.484 \mathrm{e}-001$
6	4	$9.891 \mathrm{e}-002$
7	4	$6.594 \mathrm{e}-002$
8	4	$4.396 \mathrm{e}-002$
.	.	.
.	.	.
.	4	$4.529 \mathrm{e}-008$
42	1	$3.019 \mathrm{e}-008$
44	1	$2.013 \mathrm{e}-008$
45	1	$1.342 \mathrm{e}-008$
46	1	$8.945 \mathrm{e}-009$

x_mstls =
0.8973
0.8997
0.8973
-0.0953
We can also compute this solution using the general purpose function stml.m. For that, we first need to find the corresponding structure matrices:

```
>> \([\mathrm{p}, \mathrm{S}]=\) detect_structure_unweighted (A_0)
```

p =
4
$S(:,:, 1)=$

1	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

$S(:,:, 2)=$

0	1	0	0
0	0	1	0
0	0	0	1
1	0	0	0

$S(:,:, 3)=$

0	0	1	0
0	0	0	1
1	0	0	0
0	1	0	0

$S(:,:, 4)=$

0	0	0	1
1	0	0	0
0	1	0	0
0	0	1	0

and then invoke the function:

```
>>stml(p,S,A_0,b_0,0.1,0.1)
Optimization cannot make further progress:
    relative change in x less than options.TolX.
ans =
    0.8973
    0.8997
    0.8973
    -0.0953
```

Let us now take a larger example. Begin by fixing the seeds of randn and rand

```
>>randn('seed',314);
```

>>rand('seed', 314);

Now, let us generate the "true" circulant matrix by randomly generating the first row:
>>a_t=rand (100,1);
Let us assume that the "true" signal is the vector of 100 ones:

```
>>x_t=ones(100,1);
```

The "true" righthand side is computed as follows:

```
>> A_t=gallery('circul',a_t);
>> b_t=A_t*x_t;
```

The observed righthand side and first row of the matrix are randomly generated as
>> a_0=a_t+0.1*randn $(100,1)$;
>> b_0=b_t+0.1*randn (100,1);
>> A_0=gallery('circul', a_0);
The solution to the system $\mathbf{A}_{0} \mathbf{x}=\mathbf{b}_{0}$ is given by
>> x _ls=A_0 $\mathrm{b}_{-} 0$;
The STML solution is
>> x_stml=stml_circulant(a_0,b_0,0.1,0.1);
This is a much better solution to the problem. To see this, we can just write

```
>> mean(abs(x_ls-x_t))
```

ans $=$
0.3675
>> mean(abs (x_stml-x_t))
ans $=$
0.0385

That is, the average error per component of the naive solution is one order of magnitude larger than the error of the STML solution. Although not recommended, we can solve the same problem with the general purpose algorithm stml.m:
>> $[\mathrm{p}, \mathrm{S}]=$ detect_structure_unweighted (A_0);
>> x_stml2=stml(p,S,A_0,b_0,0.1,0.1);
In this case we get the same solution (up to the tolerance):
>> norm(x_stml2-x_stml)
ans $=$

$2.8989 \mathrm{e}-006$

If we start with a random vector:
>> x_{-}stml3 $=\operatorname{stml}\left(\mathrm{p}, \mathrm{S}, \mathrm{A}_{-} 0, \mathrm{~b} _0,0.1,0.1,10 * \operatorname{randn}(100,1)\right)$;
then we also get the same solution, but this time the algorithm is much slower (since the initial guess was far). It is not difficult to find scenarios in which the algorithm of stml.m does not find the optimal solution since this is a general purpose algorithm for nonconvex optimization. On the other hand, the function stml_circulant is guaranteed to produce the global optimal solution.

[^0]: ${ }^{1}$ In our demonstration the standard deviations σ_{w}, σ_{w} are the same, but it is perfectly legitimate to use different standard deviations.

