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1.1 Introduction

Wireless communications is one of the most prominent and impactful technologies of
the last few decades. Its transformative impact on our lives and society is immeasur-
able. The fifth generation (5G) of mobile technology has recently been standardised
and is now being rolled out. In addition to its reduced latency and higher data rates
compared to previous generations, one of the promises of 5G is to connect billions of
heterogeneous devices to the network, supporting new applications and verticals under
the banner of the Internet of Things (IoT). The number of connected IoT devices is
expected to increase exponentially in the coming years, enabling new applications
including mobile healthcare, virtual and augmented reality, and self-driving cars as
well as smart buildings, factories, and infrastructures.

In parallel with recent advances in wireless communications, modern machine
learning (ML) techniques have led to significant breakthroughs in all areas of science
and technology. New ML techniques continue to emerge, paving the way for new
research directions and applications, ranging from autonomous driving and finance
to marketing and healthcare, just to name a few. It is only natural to expect that a
tool as powerful as ML should have a transformative impact on wireless commu-
nication systems, similarly to other technology areas. On the other hand, wireless
communication system design has traditionally followed a model-based approach,
with great success. Indeed, in communication systems, we typically have a good
understanding of the channel and network models, which follow fundamental physical
laws, and some of the current systems and solutions already approach fundamental
information theoretical limits. Moreover, communication devices typically follow a
highly standardized set of rules; that is, standardization dictates what type of signals
to transmit, as well as when and how to transmit them, with tight coordination across
devices and even different networks. As a result, existing solutions are products of
research and engineering design efforts that have been optimized over many decades
and generations of standards, which are based upon theoretical foundations and exten-
sive experiments and measurements. From this perspective, compared to other areas
in which ML has made significant advances in recent years, communication systems
can be considered more amenable to model-based solutions rather than generic ML
approaches. Therefore, one can question what potential benefits ML can provide to
wireless communications [1–3].
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The chapters in the first part of this book provide many answers to this question.
First, despite the impressive advances in coding and communication techniques over
the last few decades, we are still far from approaching the theoretical limits in complex
networks of heterogeneous devices, or even understanding and characterizing such
limits. Current design approaches are built upon engineering heuristics: we try to
avoid or minimize interference through various access technologies, which allows us
to reduce a complex interconnected network into many parallel point-to-point links.
We then divide the design of the point-to-point communication systems into many
different blocks, such as channel estimation, feedback, equalization, modulation, and
coding, which are easier to model and may even lend themselves to optimal solutions.
Although this modular design is highly attractive from an engineering perspective, it
is generally suboptimal.

With 5G, we aim to connect billions of IoT devices, which have significantly differ-
ent requirements in terms of latency and energy efficiency compared to conventional
mobile handsets. The networks will have to sustain a much more diverse set of devices
and traffic types, each with different requirements and constraints. This will require
significantly more flexibility and more adaptive and efficient use of the available
resources. Therefore, the performance loss due to the aforementioned modular design
and separate optimization of the individual blocks is becoming increasingly limit-
ing. Cross-layer design as an alternative has been studied extensively, but this type
of design still depends on a model-based approach that is often significantly more
complex than the modular design. This complexity has led to ad-hoc solutions for
each separate cross-layer design problem and scenario, with performance gains that
were often limited or nonexistent relative to more traditional modular design. Data-
driven ML techniques can provide an alternative solution, with potentially larger gains
in performance and reasonable complexity in implementation.

Second, in current systems, even with the modular approach, the optimal solution
may be known theoretically, yet remain prohibitive to attain computationally. For
example, we can write down the maximum likelihood detection rule in a multiuser
scenario, but the complexity of its solution grows exponentially with the number of
users [4]. Similarly, in a communication network with a multi-antenna transmitter and
multiple single-antenna receivers, the optimal beamforming vectors can be written as
the solution of a well-defined optimization problem, albeit with no known polynomial
complexity solution algorithm [5]. As a result, we either provide low-complexity yet
suboptimal solution techniques to the problem [6] or resort to simple solutions that
can be solved in closed-form [7]. Recent results have shown that machine learning
techniques can provide more attractive complexity-performance trade-offs [8, 9].

There has already been a significant amount of research proposing data-driven
ML solutions for different components of a communication system, such as channel
estimation [10–12], channel state information compression and feedback [13, 14],
channel equalization [15], channel decoding [16], and more, many of which will be
discussed in detail in the later chapters of this book. These solutions are shown to
outperform conventional designs in many scenarios, particularly when we do not have
a simple model of the communication system (e.g., when the channel coefficients do
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not follow a distribution with a known covariance matrix). However, another potential
benefit of the ML approaches is to go beyond the aforementioned modular design and
learn the best communication scheme in an end-to-end fashion rather than targeting
each module separately [17, 18]. This end-to-end ML approach facilitates attacking
much more complex problems with solutions that were deemed elusive with conven-
tional approaches. A good example is the joint source-channel coding problem, which
is typically divided into the compression and channel coding subproblems. Despite
the known suboptimality of this approach, and decades of efforts in designing joint
source-channel coding schemes, these often resulted in ad-hoc solutions for differ-
ent source and channel combinations with formidable complexity. However, recent
results have shown that ML can provide significant improvements in the end-to-end
performance of joint source-channel coding [19–22].

An additional benefit of ML is that is does not require knowledge of channel
parameters or statistics. In particular, many known communication methods rely on
knowledge of the channel parameters or statistics or the ability to estimate these
statistics with minimal resources. In modern wireless networks, this is no longer the
case. Thus, ML can offer efficient techniques to compensate for unknown and varying
channel knowledge [23, 24]. In addition, hardware limitations, such as the use of
low bit rate quantizers or nonlinear power amplifiers, can significantly increase the
complexity of the underlying channel model. This renders a design based on exact
channel knowledge difficult to implement [25].

Another dimension of the potential synergies between communications and ML is
the design of communication networks to enable ML applications [26]. While a sig-
nificant amount of information is collected and consumed by mobile devices, most of
the learning is still carried out centrally at cloud servers. Such a centralized approach
to learning at the edge has limitations. First, offloading all the data collected by edge
devices to the cloud for processing is not scalable. For example, an autonomous car is
expected to collect terrabytes of data every day. As the number of vehicles increases,
the cellular network infrastructure cannot support such a huge rise in data traffic solely
from autonomous cars. A similar surge in traffic is expected from other connected
devices. The sheer volume of the collected data makes such centralized approaches
highly unsustainable. This is particularly problematic when the collected data has
large dimensions and has low information density, which refers to the information
within the data relevant for the underlying task. For example, a surveillance camera
may collect and offload hours of recording of a still background, which has little use
for the task of detecting intruders. Therefore, it is essential to enable edge devices with
some level of intelligence to extract and convey only the relevant information for the
underlying learning task [27–29].

Having all the intelligence centralized also causes significant privacy and secu-
rity concerns [30–32]. Most of the data collected from edge devices, such as smart
meters [33, 34], autonomous cars [35], health sensors [36], or entertainment devices
[37], collect highly sensitive information that reveals significant personal information
about our lives and daily habits. Sharing this data in bulk with other parties is a
growing concern for consumers, which can potentially hinder the adoption of some of
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these services. The alternative can be to carry out local learning at each individual
device with the available data; however, the locally available data can be limited in
quantity and variety, resulting in overfitting.

Fully centralized intelligence also introduces latency. In many applications that
involve edge devices, inference and action need to be fast. For example, autonomous
vehicles must detect and avoid pedestrians or other obstacles rapidly. Even though
some of the inference tasks can be carried out on board, devices may not have the
necessary processing capability, and some of the inference tasks may require fusing
information distributed across multiple edge devices. For example, an autonomous car
may benefit from camera or LIDAR data from other nearby cars or terrain information
available at a nearby base station to make more accurate decisions about its trajectory
and speed. In such scenarios, it is essential to enable distributed inference algorithms
that can rapidly gather the most relevant information and make the most accurate
decisions [28].

In light of these observations, an important objective in merging communications
and ML is to bring intelligence to the network edge, rather than offloading the data to
the cloud and relying on centralized ML algorithms. The two core ingredients behind
the recent success of ML techniques are massive datasets and tremendous memory
and processing power to efficiently and rapidly process the available data to train
huge models, such as deep neural networks (DNNs). Both of these ingredients are
plentiful at the network edge, yet in a highly distributed manner. The second part of
this book is dedicated to distributed ML algorithms, particularly focusing on learning
across wireless networks, addressing these challenges and highlighting some of the
important research achievements and remaining challenges.

Before revieweing the individual chapters in the book, we provide a brief overview
of basic ML techniques, particularly focusing on their potential applications in com-
munication problems.

1.2 Taxonomy of Machine Learning Problems

The type of problems to which machine learning algorithms are applied can be
grouped into three categories: supervised learning, unsupervised learning, and
reinforcement learning (RL). All three types of problems have found applications
in wireless communications. Here we provide a general overview of these different
categories and what types of problems they are used to solve and then highlight their
applications in wireless communications.

1.2.1 Supervised Learning

In supervised learning the goal is to teach an algorithm the input-output relation
of a function. This can be applied to a wide variety of functions and input/output
types. Consider, for example, the input vector denoted by x ∈ X and the associated
vector of target variables c ∈ C. Supervised learning problems are classified into two
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groups: if the input is mapped to one of a finite number of discrete classes (i.e., C
is a discrete set), then the learning task is called classification. If, instead, the output
can take continuous values (i.e., C is a continuous set), then the learning task is called
regression. The often cited toy problem of classifying images into dog and cat labels
is a classical example of a classification problem. Most classification tasks have more
than two classes, and other common examples that are often used to compare and
benchmark supervised learning algorithms are classification of handwritten digits and
spam detection.

In communications, the design of a receiver for a fixed transmission scheme is a
classification task. For example, consider a simple modulation scheme mapping input
bits to constellation points. The receiver trying to map each received noisy symbol to
one of the constellation points can be considered a classification problem. This can
also be extended to decoding of coded messages transmitted over a noisy channel,
where the decoder function tries to map a vector of received symbols to a codeword
[16, 38].

Another application of classification in communications is the detection of the type
of wireless signals in the air, which is often required for military applications, or
for cognitive radios [39]. This includes the detection of the transmitting device by
identifying the particular hardware impairments of each individual transmitter [40],
detection of the modulation type used by the device [41–43], or detection of the
wireless technology employed by the transmitter [44]. A dataset of synthetic simulated
channel effects on wireless modulated signals of 11 different modulation types has
been released in [45], which has significantly helped the research community to test
and compare proposed techniques on a benchmark dataset.

A well-known example of a regression problem encountered in wireless commu-
nication systems is channel estimation [10, 11, 46], where the goal is to estimate the
channel coefficients from noisy received versions of known pilot signals. While tradi-
tional channel estimation methods assume a known channel model, and try to estimate
the parameters of this model through least squared or minimum mean-squared error
estimation techniques, a data-driven channel estimator does not make any assumptions
on the channel model. It instead relies on training data generated from the underlying
channel. In the context of wireless communications, while a data-driven approach is
attractive when an accurate channel model is not available, the requirement of a large
training dataset can mean that training needs to be done off-line.

Supervised learning can also be used as an alternative method to rapidly obtain rea-
sonable suboptimal solutions to complex optimization problems. In wireless networks,
we often face highly complex nonconvex or combinatorial optimization problems,
for example, in scheduling or deciding transmit powers in a network of interfering
transmitters. Many of these problems do not have low-complexity optimal solutions;
however, in practice, we need a fast solution to be implemented within the coherence
time of the channels. Therefore, we typically resort to some low-complexity subop-
timal solution. An alternative would be to train a neural network using the optimal
solution for supervision. This can result in a reasonable performance that can be
rapidly obtained once the network is trained. Such methods have been extensively
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applied to wireless network optimization problems with promising results in terms of
the performance-complexity trade-off [8, 47].

1.2.2 Unsupervised Learning

In unsupervised learning problems, we have training data without any output values,
and the goal is to learn functions that describe the input data. Such functions may
be useful for more efficient supervised learning, as they can be seen as a method for
feature extraction. They may also be used to make the input data more amenable to
human understanding and interpretation. Unsupervised learning is not as well-defined
as supervised learning, since it is not clear what type of description of the data we
are looking for. Moreover, it is often the case that the measure to use to compare
different descriptions is not obvious and may highly depend on the type of data and
application we have in mind. Common unsupervised learning problems are clustering,
dimension reduction, and density estimation, all of which have been used extensively
in communication systems.

Indeed, clustering is nothing but source compression or quantization, where the
goal is to identify a small number of representatives that can adequately represent all
possible input vectors. In density estimation, the goal is to determine the distribution
of data as accurately as possible from a limited number of samples. Parameterized
density estimation is often used in wireless communications when estimating the
channel from a limited number of pilot signals. Dimensionality reduction is similar
to clustering in the sense that we want a more efficient representation of data, but
rather than limiting this representation to a finite number of clusters, we limit its
dimension. Projecting a large-dimensional input data to two or three dimensions is
used for visualization. A common technique for dimensionality reduction is principle
component analysis (PCA), which is also known as the Karhunen-Loeve transform
and is used for lossy data compression. More recently neural networks in the form of
autoencoders have been employed for dimensionality reduction. Autoencoders play an
important role in the data-driven design of compression and communication schemes.

In machine learning, some approaches first try to learn the distribution of data
(or the data as well as the output in the context of supervised learning). These are
called generative models, because once the underlying distribution is learned, one
can generate new samples from this distribution. With the advances in deep learning,
DNNs have also been used in deep generative models, which have shown remark-
able performance in modeling complex distributions. Two popular architectures for
deep generative modeling are variational autoencoders (VAEs) [48] and generative
adversarial networks (GANs) [49]. Generative models have recently been employed
in [50, 51] to model a communication channel from data; such models can be used for
training other communication components when no channel model is available.

1.2.3 Reinforcement Learning (RL)

RL is another class of machine learning problems, where the goal is to learn how to
interact in a random unknown environment based on feedback received in the form
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of costs or rewards following each action. In contrast to supervised learning, where
the outputs corresponding to a dataset of input samples are given, in RL these need
to be learned through interactions with the environment. The environment has a state,
and the agent interacts with the environment by taking actions. The goal is to learn the
right action to take at each state in order to maximize (minimize) the long-term reward
(cost). The cost/reward acquired depends both on the state and the action taken and
is typically random with a stationary distribution. Notable examples of RL algorithms
are game playing agents that can beat human masters in chess and Go, or more recently
in Atari games or more advanced multiplayer video games.

A fundamental aspect of RL is the trade-off between exploration and exploitation.
Exploration refers to taking new unexplored actions to gather more information about
the environment to potentially discover actions with higher rewards (lower costs).
Exploitation, on the other hand, refers to exploiting the actions that are more likely
to provide higher rewards (lower costs) based on past observations. A conservative
agent that is more likely to exploit its current knowledge risks losing out on high
reward actions that it has never tried. On the other hand, an agent that keeps exploring
without considering its past experiences ends up with a low reward. Hence, the goal is
to find the right balance between exploration and exploitation.

RL has found applications in wireless networks as early as in the 1990s [52, 53],
including power optimization in the physical layer for energy efficient operation [54].
Similarly to other machine learning tools, RL algorithms can be used for two types
of problems requiring interactions with an environment, which can model the wireless
network environment a device is operating in: the device might have an accurate model
of the environment, but the solution of an optimal operation policy for the device
may be elusive. In such a case, RL techniques can be used as a numerical solution
technique to characterize the optimal (or near optimal) strategy for the device. Note
that this is similar to the application of RL in games such as chess or Go, which have
well-understood rules but are still highly complex to study methodically. This type
of problem typically appears in networking, where multiple devices are scheduled to
share the limited spectral resources.

Alternatively, RL methods can be used in wireless networking problems for which
the environment is known to be stationary, yet we do not have a good model to char-
acterize its statistical behaviour. This might be the case, for example, when operating
over unlicensed bands, where it is difficult or impossible to model the statistics of
device activations, spectrum activity, traffic arrivals, and channel variations. In such
scenarios, RL tools can be used to learn the best operation strategy through direct
interactions with the environment in an online fashion. An example of the application
of RL techniques to such a problem is channel access for cognitive users, where the
probability of availability of each channel is unknown to the user. This problem is
formulated in [55] as a multiarmed bandit (MAB) problem, which is a special case of
RL with a single state. The name MAB is motivated by bandit machines in casinos:
a gambler wants to play the arm that has the highest chance of winning, but this
is unknown in advance. Hence, the gambler has to try as many different arms as
possible to discover the best one, while also trying to exploit the estimated best arm
as much as possible, since trying each arm has a cost. In [56], scheduling of multiple
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energy-harvesting wireless transmitters is considered. Due to the presence of finite-
capacity batteries, this problem is formulated as a restless MAB, which refers to the
fact that the rewards of the arms are governed by an underlying Markov process, and
the state of the arms may change even if they are not played.

1.3 ML Tools Used in Communication System Design

In the previous section we classified ML problems into three main groups. There
are many different formulations and approaches within each of these categories.
Moreover, many different techniques are available to solve the same problem, with
each method providing a different complexity-performance trade-off depending on
the implementation constraints, availability of data, and uncertainty in the system
parameters. While providing background on all existing tools is beyond the scope of
this chapter, we briefly review here three fundamental tools that are commonly used
in the design of communication networks (and many other engineering problems),
which also appear in most of the later chapters of the book. In particular, we provide
a brief introduction to neural networks and how they are trained, particularly for
supervised learning tasks, then present the concept of an autoencoder for unsupervised
learning, and finally discuss the main challenges of RL along with common solution
approaches.

1.3.1 Deep Neural Networks (DNNs)

An artificial neural network is a popular ML model consisting of several layers of
“neurons,” which are processing units loosely inspired by biological neurons. In a
feedforward neural network, neurons are organized into layers, and there are no feed-
back connections that would feed the output of any layer back into the model itself.
Neural networks that incorporate feedback connections are called recurrent neural
networks. Please see Fig. 1.1 for an illustration of a neural network architecture.

The first layer takes as input an affine function of the values of the input signal,
while the following layers take as input affine functions of the outputs of the neurons
in the previous layer. The left-most layer is typically considered the input layer and the
right-most layer is the output layer, while the remaining layers in between are called
the hidden layers; see Fig. 1.1. The number of hidden layers provides the depth of the
network, which led to the terminology of “deep learning.” Each hidden layer typically
consists of many neurons, the number of which determines the width of the network.
Let dk denote the width of the kth layer, where d0 corresponds to the input dimension
(e.g., the number of pixels in the input image). If we denote the output of neuron i in
layer k by x

(k)
i , and its input by y

(k)
i , we have

y
(k)
i = w(k)

0,i +
dk−1∑

n=1

w(k)
n,ix

(k−1)
n , (1.1)
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Figure 1.1 Neural network architecture.
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(k)

x1

(k–1)x1

1

1

1

(k+1)w1,i

Figure 1.2 One layer of a neural network, and the forward propagation of the neuron activations.

where w(k)
n,i denotes the weight of the connection from the output of the nth neuron in

layer k − 1 to the input of the ith neuron in layer k. Here, w(k)
0,i corresponds to the bias

term for the ith neuron at layer k. Each neuron then applies a nonlinear “activation
function” on its input, denoted by f

(k)
i for the ith neuron at layer k, resulting in

x
(k)
i = f

(k)
i (y(k)

i ), (1.2)

as illustrated in Fig. 1.2.
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The evaluation of the output values of the neurons in a neural network by recur-
sively computing Eqs. (1.1) and (1.2) is called forward propagation, as the information
flows from the input layer toward the output layer.

Different activation functions can be used in Eq. (1.2). The most common activa-
tion functions are the identity function, step function, a rectified linear unit (ReLU),
sigmoid function, hyperbolic tangent, and softmax. Softmax is a generalization of
the sigmoid function, which represents a binary variable. Note that the model in
Eq. (1.2) allows for employing a different activation function for each neuron in the
network. Softmax is often used as the activation function in the output layer of a
classifier network to represent a probability distribution over n classes. On the other
hand, ReLU is typically used as the activation function for hidden layers, although it
is not possible to say which activation function will perform the best. This is often
determined through trial and error.

Another aspect of a neural network that we must design is its architecture, which
refers to the depth of the network and the width of each layer. Although a network
with a single layer would be sufficient to fit the training dataset, deeper networks have
been shown to generalize better to the test set. Deeper networks may also use less
parameters in total; however, they are harder to train. Therefore, the network architec-
ture is often determined through trial and error, taking into account any constraints on
the training time and complexity.

Neural networks without an activation function, or an identity activation function,
can only learn linear models; nonlinear activation functions are required to learn more
complex nonlinear functions from the inputs to the outputs. Even though the choice of
the activation function and the network architecture are important design parameters
in practice, a network with a single hidden layer with a sigmoid activation function is
sufficient to approximate (with arbitrary precision) any continuous function between
any two Euclidean spaces [57, 58]. Note, however, that this is an existence result,
and we still need to identify the right parameters that would provide the desired
approximation. Identification of these parameters corresponds to the training stage
of the neural network.

For a given neural network architecture, the output corresponding to each input data
sample is determined by the weights, w(k)

n,i . Therefore, the goal of the training process
is to determine the weight values that will result in the best performance. Here, the
performance measure will depend on the underlying problem. It can be the accuracy
of detecting the correct label in a classification problem or determining the correct
value in a regression problem. For example, in a multiclass classification problem with
C classes, the width of the output layer is chosen as C, and the normalized values of
the output layer are interpreted as the likelihoods of the corresponding classes. Let
s1, . . . ,sN denote the data points in the training dataset, with corresponding labels
l1, . . . ,lN represented as one-hot encoded vectors of size C, whose elements are all 0
except for the entry corresponding to the correct class, which is set to 1. That is, if
data sample sn in the training dataset belongs to class c, then we have ln,c = 1, and
ln,m = 0 for m �= c. In this case, the loss function will be given by
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E(w) = −
N∑

n=1

C∑

c=1

ln,c ln x(K)
c (sn,w), (1.3)

where K is the number of layers in the network, w represents all the weights (including
the bias terms) in the network, and we have written x

(K)
k (sn,w) to represent the outputs

of the neurons in the output layer to highlight the dependence of their values on the
network weights as well as the input data. This error function is called the cross
entropy, or the log loss, and is widely used as the objective/loss function when training
parameterized classification algorithms.

The error function in neural networks is highly nonlinear and nonconvex, there-
fore it is difficult to find the globally optimal weight parameters that minimize
Eq. (1.4). Instead, we resort to numerical approaches with the hope of finding
reasonable, potentially locally optimal, solutions. A common numerical approach
to solve such optimization problems is the gradient descent method, where we start
from an initial value of the weight vector w, and iteratively update it along the negative
gradient direction:

w(t + 1) = w(t) + η∇E(w(t)), (1.4)

where η > 0 is the learning rate. Since the error function is defined over the whole
training dataset, the gradient at each iteration must be computed for all the data points.
Alternatively, we can use an unbiased estimate of the gradient at each iteration by
computing it only at a random data sample. This is called stochastic gradient descent,
and it results in faster convergence in training DNNs.

In a neural network, the error function is a complex function of the weights, and
how to compute the gradient with respect to the weight vector is not obvious at all.
Fortunately, the recursive structure of the network allows for computing the gradients
in a systematic and efficient manner using the chain rule of differentiation. This is
known as the backpropagation algorithm, also referred to as backprop. There are
excellent textbooks explaining the technical details of the backpropagation algorithm
and other techniques to speed up neural network training. We refer the readers to
[59, 60] for further details.

1.3.2 Autoencoders

Autoencoders play an important role in the application of neural networks in wireless
communications. An autoencoder is a pair of neural networks, called the encoder and
decoder networks, trained together in an unsupervised manner in order to recover
the input signal at the output of the decoder network with minimal distortion (see
Fig. 1.3). The output of the encoder network is called the bottleneck layer, which
typically has lower dimension compared to the input signal. After training, this
bottleneck layer recovers a low-dimensional representation of the input signal that
still allows the decoder network to recover the input signal within some distortion.
Equivalently, the encoder acts as a data-driven dimensionality reduction technique,
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Figure 1.3 Autoencoder neural network architecture.

similarly to principal component analysis (PCA). Autoencoders were introduced in the
1980s [61], but they achieved competitive or superior performance compared to other
unsupervised learning techniques only recently with the advances in computational
capabilities that allowed fast training of sufficiently complex autoencoder models on
large datasets [62].

While autoencoders have been widely used for preprocessing in supervised learning
and visualization, their potential for data compression was also recognized in the
1990s [63, 64]. In data compression, the low-dimensional representation generated
by the encoder network must be converted into a bit sequence that can then be used
by the decoder network to recover the input signal. Since we are typically limited by
a finite bit budget, the output of the encoder network needs to be quantized, which
introduces additional distortion at the reconstruction; hence, the autoencoder must
be trained together with the quantization layer. This creates some difficulty as the
quantization operation is not differentiable, which prevents backpropagation during
training. Several methods have been introduced in the literature to deal with this, such
as straight through estimation, which ignores the quantization operation in the back-
propagation [65], or approximating the quantization operation with a differentiable
function [66].

Denoising autoencoders were introduced in [67] in order to provide robustness in
the generated low-dimensional representation to partial corruptions in the input signal.
In a denoising autoencoder, some components of the input signal are randomly erased
before being fed into the encoder network, and the autoencoder is trained to recover the
uncorrupted input signal with the highest fidelity. This way, the denoising autoencoder
learns not only to represent the input signal efficiently, but also to recover the random
perturbation introduced on the input signal. If we treat the basic autoencoder as apply-
ing source compression, we can consider the setting in the denoising autoencoder as
remote source coding [68].

Inspired by the denoising autoencoder, communication over a noisy channel is
treated in [69], where the channel introduces random noise on the signal generated
by the encoder output before it is fed into the decoder network. To the best of our
knowledge, this was the first work to treat the design of the encoder and decoder in
a channel communication problem as training of an autoencoder. In this model, the
input signal is a sequence of equally likely bits, representing the input message, and
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the goal is to transmit these inputs bit sequence over the noisy channel as reliably as
possible. Note that the input message has maximum entropy, so there is no structure
to be learned; instead, the goal of the autoencoder in this model is to learn the set
of input codewords that can best mitigate the impairments introduced by the channel.
Here, we can remove the low-dimensionality requirement on the bottleneck layer, as
we typically introduce additional redundancy against channel noise. The dimension of
the bottleneck layer determines the code rate.

A major challenge in the design of channel coding schemes using autoencoders is
the sheer number of input signals that must be recognized at the decoder. In particular,
for a message size of n bits, we have 2n possible input messages; equivalently, the
number of classes that must be recognized by the decoder network grows exponen-
tially with n. This makes the training of such an autoencoder highly challenging for
moderate to large blocklengths.

1.3.3 Deep Reinforcement Learning (DRL)

DRL refers to the particular family of RL techniques where DNNs are employed to
approximate the agent’s strategy or utility function. In RL techniques, actions are
chosen at each state based on the expected rewards they will provide. The expected
reward from each action is updated continuously based on the past experiences of
the agent. In general, it is difficult to map these experiences to an accurate estimate
of the reward function. In many complex scenarios, the agent will not be able to
explore all possible state-action pairs a sufficient number of times to make accurate
estimates. For such problems, DNNs are used to estimate the average reward for
each state-action pair or directly predict the best action to take (more precisely, a
distribution over actions). DNN parameters are updated as in neural network training,
but based on the rewards accrued instead of the labels used in supervised training of
DNNs. Thanks to the generalization power of DNNs, DRLs can solve highly complex
RL problems even with continuous state and action spaces. However, similarly to
supervised learning problems, to achieve a good performance level, DRLs require
significant training data and training time. Hence, in the wireless context, it may be
more appropriate for stationary scenarios where the training can be carried out off-line
using the available data or the model of the underlying system, and the trained network
is used afterward. They can also be effective when the variations in the system statis-
tics are relatively slow, so that it is possible to track the optimal policy with limited
additional training.

1.4 Overview of the Book

This book is aimed at postgraduate students, Ph.D. students, researchers, and engi-
neers working on communication systems, as well as researchers in machine learning
seeking an understanding of the potential applications of ML in wireless communi-
cations. To read and fully understand the content it is assumed that the reader has
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some background in communication systems and basic ML. The book consists of 17
technical chapters written by leading experts in their areas, organised into two parts.
The first part, consisting of 10 chapters, considers the application of machine learning
techniques in solving a variety of wireless communication problems. The remaining
seven chapters of the book comprise the second part, which focuses on the design and
optimization of wireless network architectures to carry out machine learning tasks in
an efficient manner.

Each chapter is self-contained and the chapters are independent of each other.
Therefore, there is flexibility in selecting material both for university courses and short
seminars. A brief summary of each chapter is given next.

1.4.1 Part I: Machine Learning for Wireless Networks

In Chapter 2, the authors treat the problem of information transmission over a wireless
channel in an end-to-end manner, considering jointly the source compression and
channel coding problems. This chapter explores joint source-channel coding schemes
based on an autoencoder architecture, where a pair of jointly trained DNNs act as
the encoder and the decoder. The chapter focuses on image and text transmission
problems and shows that a neural network aided design not only outperforms state
of the art digital transmission schemes, but also provides graceful degradation with
variations in channel quality.

In Chapter 3, the authors extend the joint source-channel coding problem treated in
the previous chapter to the lossy transmission of correlated sources over a network of
orthogonal links. Joint source-network coding is known to be an NP-hard problem, and
no practical solution exists for general sources (e.g., images). This chapter explores
neural network aided design of such codes for arbitrary network topologies.

In Chapter 4, the author focuses explicitly on the design of channel codes using
deep learning. The chapter highlights that deep learning based design of channel
coding results in a broader range of code structures compared to traditional code
designs, which can then be optimized efficiently through gradient descent. However,
identifying the right network architectures and efficiently training the network param-
eters are challenges that still need to be overcome. The chapter provides a range of
neural network aided code designs and highlights many different scenarios where such
designs outperform conventional codes.

Chapter 5 focuses on the applications of deep learning to the problems of channel
estimation, feedback, and signal detection, particularly for orthogonal frequency divi-
sion multiplexing (OFDM) and millimeter-wave (mmWave) systems. Convolutional
neural networks (CNNs) are employed for these tasks and are shown to learn channel
features and estimate the channel successfully, after being trained on a large dataset
generated using the channel model. For the signal detection task, “deep unfolding” is
employed to benefit from the structure of an iterative decoder to improve the speed
and accuracy of the training process.
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In Chapter 6, the authors contrast the traditional model-based design approach to
communication systems with the data-driven approach based on ML. They demon-
strate through various examples that a combination of the two approaches, as model-
based ML, can benefit from the best of both worlds. In particular, such designs use ML
to learn unknown aspects of the system model and reduce complexity, while benefiting
from the lower training requirements and near-optimal performance of model-based
approaches.

Chapter 7 tackles the challenging problem of distributed optimization in wireless
networks, where the nodes have to make decisions based on their local view of the
network, while their actions collaboratively decides the global reward or cost func-
tion. This chapter considers the framework in which the nodes can exchange limited
amounts of information through backhaul links in order to coordinate their actions.
This highly complicated nonconvex optimization problem is solved by employing
DNNs trained in an unsupervised manner.

Chapter 8 also deals with the radio resource allocation problem in wireless net-
works employing neural networks, which are trained in an off-line manner and are
employed for inference assuming the radio environment remains sufficiently station-
ary with respect to the training setting. This chapter focuses on the global energy
efficiency of the network, defined as the ratio of the total throughput achieved over
the network to the total power consumption. The authors show that neural networks
can be trained to operate close to the optimal performance, while having much lower
inference complexity, albeit at the expense of additional training cost.

Chapter 9 focuses on the applications of RL in physical layer wireless network
problems. After a brief overview of Markov decision processes (MDPs), partially
observable MDPs, and multiarmed bandits, the authors present some of the most
widely used algorithms, in particular Q-learning, SARSA, and deep RL. They then
provide a number of examples of how these techniques can be applied in a variety of
wireless networking problems from power management and cache content optimiza-
tion to channel access and real-world spectrum sharing problems.

In Chapter 10, the authors present scalable learning frameworks that are capable
of processing and storing large amounts of data generated in a large network. This
requires parallel learning algorithms that can decompose the global learning prob-
lem into smaller tasks that can be carried out locally. The authors propose Bayesian
nonparametric learning and RL as potential tools for scalable learning in the wireless
context. Finally, they present several practical use cases for the presented tools. The
authors also touch upon the model interpretability and adaptivity aspects of these
solutions.

Chapter 11 deals with the fundamental limits of communication over noisy
channels. Shannon’s channel coding theorem identifies the fundamental limit of
communication over a memoryless noisy channel as a single-letter mutual information
expression, which is maximized over input distributions. For certain channels
with feedback, capacity can be formulated as a directed information. This chapter
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introduces RL tools for the identification and optimization of the capacity for both
known and unknown channel models.

1.4.2 Part II: Wireless Networks for Machine Learning

Chapter 12 presents a general introduction to collaborative learning and how it can be
implemented over wireless nodes. The authors first provide an overview of distributed
learning algorithms, including federated and fully decentralized learning. They also
present methods to reduce the communication load of these distributed learning algo-
rithms, which measures the amount of information that must be exchanged among
the devices that participate in the learning process. Then, resource allocation and
scheduling problems are presented when nodes within physical proximity of each
other carry out distributed learning over a shared wireless medium.

Chapter 13 focuses on federated learning at the wireless network edge. After a
comprehensive introduction to the federated learning framework and existing algo-
rithms, the authors focus on the implementation of federated learning with limited
communication resources. The adaptation to available channel resources is achieved
by adjusting the number of local iterations.

Chapter 14 also deals with federated learning, focusing on the communication
bottleneck. The authors present a quantization theoretic framework to reduce the com-
munication load from the devices to the parameter server in federated learning. In
particular, scalar quantization, subtractive dithering, and universal vector quantization
techniques are considered to reduce the communication load in federated learning.

While Chapter 15 also considers federated learning over wireless networks, the
main focus of this chapter is to highlight how the signal superposition property of
the wireless medium can be exploited to increase the speed and accuracy of the learn-
ing process. In this chapter, unlike in conventional digital communication techniques,
the devices participating in the federated learning process are allowed to transmit their
model updates in an uncoded/uncompressed fashion simultaneously over the same
channel resources. With this approach the wireless medium becomes a computation
tool instead of solely enabling the transmission of information from the transmitter to
a receiver.

Chapter 16 presents federated distillation as a communication-efficient distributed
learning framework. The authors first introduce the concepts of knowledge distillation
and codistillation and then explain how these techniques can be exploited in the fed-
erated learning setting to reduce the communication load. The chapter concludes with
the application of federated distillation to two selected applications.

Chapter 17 addresses the privacy aspects of federated learning in the wireless
context. It is known that released model parameters in federated learning may leak
sensitive information about the underlying datasets. Differential privacy has been
introduced as a method to address this privacy leakage. This chapter studies how
differential privacy can be adopted when federated learning is carried out across
wireless nodes.
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Chapter 18 focuses on the inference aspect of machine learning at the wireless
network edge. The authors first overview techniques such as network splitting, joint
source-channel coding, and inference-aware scheduling to improve the speed and
efficiency of inference over wireless networks. Then, they provide a detailed analysis
of pruning-based dynamic neural network splitting and dynamic compression ratio
selection methods.

In conclusion, we would like thank all the authors for their contributions to this
book and for their hard work in presenting the material in a unified and accessible
fashion. We hope that you, the reader, will find these expositions to be useful.
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