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1 Introduction

As wireless technology continues to expand, there is a grow-
ing concern about the efficient use of spectrum resources.
Even though a significant portion of the spectrum is allo-
cated to licensed primary users (PUs), studies indicate that
their actual utilization is often limited to between 5 to 10
percent [1]. The underutilization of spectrum has given rise
to Cognitive radio (CR) technology, which allows secondary
users (SUs) to opportunistically access these underused re-
sources [2]. However, wideband spectrum sensing, the key
of CR, is limited by the need for high-speed ADCs, which
are costly and power-hungry.

Compressed spectrum sensing (CSS) addresses this chal-
lenge by employing sub-Nyquist rate sampling. The effi-
ciency of active transmission detection heavily depends on
the quality of spectrum reconstruction. There are various re-
construction methods in CSS, each with its merits and draw-
backs. Still, existing algorithms have not tapped into the full
potential of sub-sampling sequences, and their performance
drops in noisy environments [3, 4].

The GHz Bandwidth Sensing (GBSense) project 1), intro-
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duces an innovative approach for GHz bandwidth sensing.
GBSense incorporates advanced sub-Nyquist sampling meth-
ods and is compatible with low-power devices. This project
also prompted the GBSense Challenge 2021, which centered
on sub-Nyquist reconstruction algorithms, with four leading
algorithms to be presented and evaluated in this paper.

2 Signal Models and Techniques

This paper focuses on multiband signals, which comprise
multiple distinct frequency bands within a specified baseband
range. At the receiver, a combined signal contaminated with
noise is observed without knowing the spectrum support.

To efficiently sample these signals below their Nyquist
rate, a multicoset sampling architecture is employed, whose
basic diagram is shown in Figure 1. This method divides the
signal into cosets, undergoing different and nonuniform time
delays before being digitized by ADCs running at a speed far
lower than the Nyquist rate. The core challenge is faithfully
reconstructing the original signal from the sub-Nyquist sam-
ples, formulated as

arg min ∥X∥2,0 s.t. ∥Y − AX∥F < ϵ, (1)

where X, Y, and A are the reconstructed spectrum, sub-
Nyquist measurements, and the sensing matrix, respectively.
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Fig. 1 The basic implementation diagram of the multicoset sampler.

The notation ϵ stands for a small threshold of error magni-
tude. Further details are elaborated in the support document,
Section 1.

3 Algorithms

When reconstructing the spectrum from sub-Nyquist sam-
ples, practitioners typically turn to four principal algorithms,
each offering unique advantages and challenges in spectrum
sensing applications.

Convex Optimization: This tackles the ℓ0 optimization
challenge by converting it to more manageable problems.
The basis pursuit (BP) and basis pursuit denoising (BPDN)
methods are notable techniques, with the former optimally
decomposing signals and the latter balancing between resid-
uals and ℓ1-norm simplicity. The focal underdetermined sys-
tem solver (FOCUSS) algorithm, albeit slower, stands out for
accuracy.

Greedy Algorithms: Common in real-time systems for
their speed, these algorithms, like matching pursuit (MP),
and orthogonal matching pursuit (OMP), iteratively recon-
struct signals based on atomic dictionaries. However, they
sometimes trade precision for speed. More advanced versions
of those matching-pursuit-based algorithms, such as simulta-
neous orthogonal matching pursuit (SOMP) and joint-block
hard thresholding pursuit (JB-HTP), further refine this pro-
cess for multiple measurement vectors (MMV) problems, but
they still often fall short of the reconstruction quality offered
by convex optimization methods.

Bayesian Framework: The Sparse Bayesian Learning
(SBL) algorithm excels in creating sparse representations, es-
pecially beneficial for signals with time correlations. Multi-
signal sparse Bayesian Learning (MSBL) improves upon
SBL by jointly recovering multiple signals with shared spar-
sity. In CSS scenarios, MSBL outperforms its counterpart
thanks to its collaborative signal recovery.

Non-sparse Approximation: Centered on non-sparse sig-
nals, this approach leans on the statistical traits of stationary
signals for power spectrum reconstruction. Yen’s pioneer-
ing research elucidated noise-free reconstruction using the

Fig. 2 The GBSense data collection and CSS algorithm testing platform
built on the NI millimeter-wave transceiver system.

multicoset sampler. An innovative technique, the fast com-
pressed power spectrum estimation (FCPSE), simplifies the
estimation process, producing an unbiased representation of
the power spectrum while requiring less computational power
than its iterative peers.

Four selected algorithms, namely the “slow kill” (SK)
method [5], subspace-augmented simultaneous orthogonal
matching pursuit (SA-SOMP) [6], MSBL [7], and fast com-
pressed power spectrum estimation (FCPSE) [8]. For detailed
mechanisms of these algorithms, refer to the supplementary
documentation, Section 2.

4 Testbed Setup

The GBSense Challenge 2021 and the GBSense project pro-
vide an experimental platform specifically designed for test-
ing algorithms and producing datasets [9]. This setup in-
cludes a transmitter (Tx) and a receiver (Rx), each equipped
with a millimeter wave (mmWave) front end and an SDR
platform, emphasizing the software-defined radio (SDR)
components. A photo of the testbed is shown in Figure 2.

The Tx emulates primary user signals by modulating
random sequences. Multiple orthogonal frequency divi-
sion multiplexing (OFDM) signals are then formed across
channels within a 2 GHz baseband and transmitted via the
mmWave. The Rx focuses on sub-Nyquist sampling to re-
construct the baseband spectrum. After capturing Nyquist
samples via an ADC at 3.072 GSps, multicoset sampling
processes these samples through downsampling and paral-
lel fast Fourier transform (FFT). Embedded algorithms tackle
the spectrum reconstruction. Given uncertain channel occu-
pation, a method based on Bayesian information criterion es-
timates the occupation rate of the spectrum.

For performance assessment, the FFT of the Nyquist sam-
ples serves as a benchmark, with real transmissions differen-
tiated from noise by energy detection. Recovery results are
then compared, and detection probability is calculated.

The system operates on two National Instruments PXI se-
tups, each modularly designed with a controller, frequency
module, and FPGA. The Tx module produces transmissions,
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Fig. 3 (a) ROC curves of the associated algorithms at sparsity level k = 6. (b) Detection probability as a function of SNR for the associated algorithms.

and the Rx digitizes signals using a dual-channel ADC. Both
units connect to 28GHz mmWave radio heads and horn an-
tennas.

5 Numerical Results

Four selected algorithms, together with two benchmark al-
gorithms are tested on the testbed. Experiments were con-
ducted using a 16-channel multicoset sampler, wherein data
was sampled at a rate equivalent to 1/40th of the conventional
Nyquist rate. The efficacy of the reconstruction methodolo-
gies was assessed via the mean area under the curve (AUC)
of the receiver operating characteristic (ROC) curve, as visu-
alized in Figure 3(a). It is imperative to note that the SBL
technique demonstrated commendable efficacy for a sparsity
level k = 6.

For a more granulated understanding, detection probabil-
ities at diverse signal-to-noise ratio (SNR) levels were ana-
lyzed, as delineated in Figure 3(b). Among the contenders,
the MSBL algorithm stood out, delivering unparalleled per-
formance across the evaluated datasets.

Performance evaluations further spanned multiple param-
eters. While the MSBL algorithm consistently outperformed
across diverse SNR conditions and maintained its perfor-
mance supremacy across varying signal sparsity levels, time
complexity emerged as an essential consideration. Detailed
insights regarding the average computational times for the al-
gorithms in a MATLAB environment, alongside the impli-
cations of modulating the sampling window lengths, can be
found in the associated figures and tables within the supple-
mentary documentation, Section 3.
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