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DeepSIC: Deep Soft Interference Cancellation for
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Nir Shlezinger™, Member, IEEE, Rong Fu, Graduate Student Member, IEEE, and Yonina C. Eldar, Fellow, IEEE

Abstract— Digital receivers are required to recover the trans-
mitted symbols from their observed channel output. In multiuser
multiple-input multiple-output (MIMO) setups, where multiple
symbols are simultaneously transmitted, accurate symbol detec-
tion is challenging. A family of algorithms capable of reliably
recovering multiple symbols is based on interference cancellation.
However, these methods assume that the channel is linear,
a model which does not reflect many relevant channels, as well
as require accurate channel state information (CSI), which may
not be available. In this work we propose a multiuser MIMO
receiver which learns to jointly detect in a data-driven fashion,
without assuming a specific channel model or requiring CSI.
In particular, we propose a data-driven implementation of the
iterative soft interference cancellation (SIC) algorithm which we
refer to as DeepSIC. The resulting symbol detector is based on
integrating dedicated machine-learning methods into the iterative
SIC algorithm. DeepSIC learns to carry out joint detection from a
limited set of training samples without requiring the channel to be
linear and its parameters to be known. Our numerical evaluations
demonstrate that for linear channels with full CSI, DeepSIC
approaches the performance of iterative SIC, which is compa-
rable to the optimal performance, and outperforms previously
proposed learning-based MIMO receivers. Furthermore, in the
presence of CSI uncertainty, DeepSIC significantly outperforms
model-based approaches. Finally, we show that DeepSIC accu-
rately detects symbols in non-linear channels, where conventional
iterative SIC fails even when accurate CSI is available.

Index Terms— Multi-user multiple-input multiple-output
(MIMO), deep learning, interference cancellation.

I. INTRODUCTION

MODERN communications systems are subject to con-
stantly growing throughput requirements. In order to
meet these demands, receivers are commonly equipped with
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multiple antennas, and communicate with several transmitters
simultaneously to increase the spectral efficiency [2]. Such
scenarios, referred to as multiuser multiple-input multiple-
output (MIMO) networks, are typically encountered in uplink
cellular systems, where the number of transmitters as well as
receiver antennas can be very large, as in, e.g., massive MIMO
communications [3].

One of the main challenges in multiuser MIMO systems
is symbol detection, namely, the recovery of the multiple
transmitted symbols at the receiver. Conventional detection
algorithms, such as those based on the maximum a-posteriori
probability (MAP) rule which jointly recovers all the symbols
simultaneously, become infeasible as the number of sym-
bols grows. Alternatively, low complexity separate detection,
in which each symbol is recovered individually while treating
the rest of the symbols, i.e., the interference, as noise, is strictly
sub-optimal [4, Ch. 6], and thus results in degraded throughput
[5]. An attractive approach, both in terms of complexity and
in performance, is interference cancellation [6]. This family of
algorithms implement separate detection, either successively
or in parallel, and uses the estimates to facilitate the recovery
of the remaining symbols, essentially trading complexity for
detection delay. While these methods are prone to error prop-
agation, its effect can be dramatically mitigated by using soft
symbol estimates [7]-[9], achieving near MAP performance
with controllable complexity.

These aforementioned detection strategies are model-based,
namely, they require complete knowledge of the channel
model as well as its parameters. When the channel model
is unknown, highly complex, or does not faithfully represent
the physical environment, these methods cannot be applied.
Furthermore, common model-based detection techniques,
including interference cancellation schemes, typically assume
linear Gaussian channels, in which the noise obeys a Gaussian
distribution and the effect of the interference is additive and
can thus be canceled by subtraction. Many important
future wireless communication scenarios, involving, e.g.,
quantization-constrained receivers [10], [11], transmission
with non-linear amplifiers [12], and communication in the
presence of radar interference [13], do not obey the linear
Gaussian model. Furthermore, various other communication
systems, such as optical networks [14], power-line communi-
cations [15], and molecular communications [16], cannot be
accurately modeled as linear Gaussian channels. Consequently,
the applicability of model-based interference cancellation
methods is limited. In addition, even when the channel model
is linear and known, inaccurate knowledge of the parameters
of the channel, namely, channel state information (CSI)
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uncertainty, can significantly degrade the performance of
model-based detection mechanisms. This motivates the study
of data-driven model-agnostic detection methods.

An alternative to model-based detection algorithms, which
is gaining considerable interest recently, is to utilize machine
learning tools. Over the last decade, machine learning based
systems, and particularly deep neural networks (DNNs), have
revolutionized numerous research areas, including computer
vision and speech processing [17]. machine learning schemes
are gradually influencing the design of digital communication
systems, resulting in a multitude of recent works on the
application of DNNs in communications; see detailed surveys
in [18]—-[23]. Unlike model-based receivers, which implement
a specified detection rule, machine learning based receivers
learn how to map the channel outputs into the transmitted
symbols from training, namely, they operate in a data-driven
manner, and are typically capable of disentangling the seman-
tic information in complex environments [24]. Furthermore,
once trained, DNN-based receivers can implement complicated
computations with affordable complexity, making them a
promising approach to implement MIMO detection.

Broadly speaking, previously proposed machine learning
based receivers can be divided into two main categories:
Conventional DNNs and unfolded networks. The first group
replaces the receiver processing with a DNN architecture
which is established in the machine learning literature.
A-priori knowledge of the channel model is accounted for in
the selection of the network type, which is typically treated as
a black box. For example, recurrent neural networks (RNNs)
were applied for decoding sequential codes in [25]; the works
[26], [27] used sliding bi-directional RNNs for intersymbol
interference (ISI) channels with long memory; reservoir
computing was proposed for recovering distorted orthogonal
frequency division multiplexing (OFDM) signals in [28]; and
the work [29] used variational autoencoders for unsupervised
equalization. Such DNNs, which use conventional network
architectures that are ignorant of the underlying channel
model, can typically operate reliably in various scenarios with
or without CSI and channel model knowledge [30], assuming
that they were properly trained for the specific setup.
Nonetheless, black box DNNs tend to have a large number
of parameters, and thus require a large number of samples to
train [22], limiting their application in dynamic environments,
which are commonly encountered in communications.

Unlike conventional DNNs, which utilize established
architectures, in unfolded receivers the network structure is
designed following a model-based algorithm. In particular,
deep unfolding is a method for converting an iterative
algorithm into a DNN by designing each layer of the network
to resemble a single iteration [31]. The resulting DNN tends
to demonstrate improved convergence speed and robustness
compared to the model-based algorithm [32]-[34]. In the
context of MIMO symbol detection, the works [35]-[37]
designed deep receivers by unfolding the projected gradient
descent algorithm for recovering the MAP solution, and
[38] proposed to recover continuous-valued signals obtained
from one-bit quantized measurements by unfolding gradient
descent optimization. Iterative message passing algorithms,
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which are known to facilitate multi-user MIMO detection and
decoding at controllable complexity [39], [40], were used as a
basis for designing data-driven MIMO detectors in [41]-[43]
as well as for channel estimation and user activity detection
in [44]. Compared to conventional DNNs, unfolded networks
are typically interpretable, and tend to have a smaller number
of parameters, and can thus be trained quicker [22]. However,
these previously proposed receivers all assume a linear
channel with Gaussian noise, in which CSI is either available
[35]-[38], [41] or estimated from pilots [42]. Consequently,
these methods thus do not capture the potential of machine
learning in being model independent, and are applicable only
under specific channel setups.

In our previous work [45] we proposed ViterbiNet, which
is a data-driven implementation of the Viterbi algorithm
for detecting symbols transmitted over channels with finite
memory. Instead of implementing the receiver as a con-
ventional DNN, or alternatively, unfolding the Viterbi algo-
rithm, we replaced its model-based computations with simple
dedicated DNNs. The resulting receiver was thus capable
of implementing Viterbi detection in a data-driven fashion
using a relatively small number of parameters, while being
channel-model-independent. Since ViterbiNet is a data-driven
implementation of the Viterbi algorithm whose computational
complexity grows rapidly with the cardinality of the channel
input, it is not suitable in its current form for MIMO detection.
However, the fact that it is capable of learning to implement
symbol detection from small training sets motivates the design
of a data-driven model-ignorant MIMO symbol detector by
integrating machine learning into an established detection
algorithm, which is the focus of the current work.

Here, we design a data-driven MIMO detector which is
based on model-based interference cancellation methods while
being channel-model-independent. In particular, we base our
approach on the iterative soft interference cancellation (SIC)
symbol detection algorithm proposed in [7] as a model-based
method which is capable of approaching MAP performance at
affordable complexity. Then, we propose DeepSIC, in which
the model-based building blocks of iterative SIC are replaced
with simple dedicated DNNs. DeepSIC thus implements iter-
ative SIC in a data-driven fashion, learning to implement
MAP-comparable symbol detection from a limited training
set. Furthermore, the fact that DeepSIC learns to cancel the
interference from training allows it to operate in non-linear
setups, where model-based iterative SIC, which assume that
the interference is additive and can be canceled by subtracting
it, is not applicable.

We propose two methods for training DeepSIC. First we
discuss how to jointly train the building blocks consisting
of the iterations of iterative SIC in an end-to-end manner.
Then, we show how the same training set can be used to
train different subsets of the overall network sequentially,
by exploiting our prior knowledge of the specific role of each
block in the iterative SIC algorithm. The resulting sequen-
tial training method allows the receiver to learn its symbol
detection mapping from a smaller number of samples. The
ability to accurately train with a small training set facilitates
its applicability for online training, making the sequential
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approach attractive for dynamic environments in which the
receiver has to frequently retrain by exploiting the inherent
redundancy induced by digital communication protocols [45].

We numerically demonstrate the benefits of DeepSIC in a
simulation study. We show that it is capable of approaching
the performance of the model-based iterative SIC algorithm in
standard linear MIMO channels with Gaussian noise, and that
it achieves improved error rate performance compared to previ-
ously proposed data-driven MIMO receivers. We also observe
that, in the presence of CSI uncertainty, the performance of
the model-based iterative SIC, as well as the MAP detector,
is significantly degraded, while DeepSIC, which exploits the
generalization capabilities of DNNs, is capable of reliably
detecting the transmitted symbols. Then, we consider non-
linear channels, where DeepSIC is shown to continue to
achieve MAP comparable performance, while substantially
outperforming iterative SIC, which is incapable of canceling
the non-additive interference. Finally, we show how the ability
of DeepSIC to train with small training sets can facilitate
online tracking of dynamic channels in a self-supervised
manner. Our results demonstrate that efficient and robust com-
munication systems can be realized by properly integrating
machine learning methods into model-based algorithms.

The rest of this paper is organized as follows: In Section II
we present our system model and review the iterative SIC
algorithm. Section IIT proposes DeepSIC, which is a receiver
architecture integrating DNNSs into the iterative SIC method.
Section IV details numerical training and performance results
of the proposed receiver, and Section V provides concluding
remarks.

Throughout the paper, we use upper-case letters for random
variables (RVs), e.g. X, and calligraphic letter for sets, for
example, X'. Boldface lower-case letters denote vectors, e.g.,
x is a deterministic vector, and X is a random vector, and the
ith element of - is written as (x),. Since upper-case boldface
letters are reserved for random vectors, we use upper-case
Sans-Sarif fonts for matrices as in [10], [15], [45], [46], e.g., X
is a deterministic matrix. The probability measure of an RV X
evaluated at x is denoted px (), R is the set of real numbers,
and ()T is the transpose operator. All logarithms are taken to
basis 2.

II. SYSTEM MODEL AND ITERATIVE SIC
A. System Model

We consider an uplink system in which K single antenna
users communicate with a receiver equipped with n,. antennas
over a memoryless stationary channel. At each time instance
i, the kth user, k € {1,2,..., K} £ K, transmits a symbol
Sk[i] drawn from a constellation S of size M, i.e., |S| = M.
Each symbol is uniformly distributed over S, and the sym-
bols transmitted by different users are mutually independent.
We use Y[i] € R" to denote the channel output at time
index ¢. While we focus on real-valued channels, the system
model can be adapted to complex-valued channels, as complex
vectors can be equivalently represented using real vectors
of extended dimensions. Accordingly, we do not restrict
the constellation set S to take real values, and the receiver
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Fig. 1. System model.

architectures detailed in the sequel, which are formulated for
real-valued systems, can be applied in complex channels. Since
the channel is memoryless, Y'[i] is given by some stochastic
mapping of S[i] £ [S[i], Sa[il, ..., Sk [ZHT represented by
the conditional distribution measure py-(;jsi(-|-). The fact
that the channel is stationary implies that this conditional
distribution does not depend on the index i, and is thus
denoted henceforth by py|g(:|-). An illustration of the system
is depicted in Fig. 1.

We focus on the problem of recovering the transmitted
symbols S[i] from the channel output Y[i]. The optimal
detection rule which minimizes the probability of error given
a channel output realization Y'[i] = y is the MAP detector.
Letting pg|y (+|-) be the conditional distribution of S[i] given
Y'[i], the MAP rule is given by

Smapli] £ argmaxpg|y (s|y). (1)
seSK

The MAP detector jointly recovers the symbols of all
users by searching over a set of M different possible input
combinations, and thus becomes infeasible when the number
of users K grows. For example, when binary constellations
are used, i.e., M = 2, the number of different channel inputs
is larger than 10 for merely K = 20 users. Furthermore,
the MAP detector requires accurate knowledge of the channel
model, i.e., the conditional distribution py|g(-|-) must be fully
known. A common strategy to implement joint detection with
affordable computational complexity, suitable for channels
in which Y[i] is given by a linear transformation of S|[i]
corrupted by additive noise, is interference cancellation [6].
Interference cancellation refers to a family of algorithms
which implement joint detection in an iterative fashion by
recovering a subset of S[i] based on the channel output as well
as an estimate of the remaining interfering symbols. These
algorithms facilitate the recovery of the subset of S[i] from
the channel output by canceling the effect of the estimated
interference using knowledge of the channel parameters, and
specifically, how each interfering symbol contributes to the
channel output.

Our goal is to design a data-driven method for recovering
S|[i] from the channel output Y[i], which learns its detection
mapping using a training set of n; pairs of realizations of Y'[i]
and corresponding S[i], denoted {8;,9;}7",. In particular,
in our model the receiver knows the constellation S, and
that the channel is stationary and memoryless. We do not
assume that the channel is linear nor that the receiver knows
the conditional probability measure py|g(-|-). Following the
approach of [45], [47], [48], we design our network to
implement interference cancellation in a data-driven fashion.
In particular, our proposed receiver is based on the iterative
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SIC algorithm proposed in [7]. Therefore, as a preliminary
step to designing the data-driven detector, we review iterative
SIC in the following subsection.

B. Iterative Soft Interference Cancellation

The iterative SIC algorithm proposed in [7] is a multi-
user detection method which combines multi-stage (parallel)
interference cancellation [49] with soft decisions. Broadly
speaking, the detection method operates in an iterative fash-
ion, where in each iteration, an estimate of the conditional
distribution of Sy[i] given the channel output Y[i| = y is
generated for every user k € K using the corresponding
estimates of the interfering symbols {S;[i]};, obtained in
the previous iteration. By repeating this procedure iteratively,
the conditional distribution estimates are refined, allowing to
accurately recover each symbol from the output of the last
layer using hard decision. This iterative procedure is illustrated
in Fig. 2.

To formulate the algorithm, we consider a channel whose
output is obtained as a linear transformation of its input
corrupted by additive white Gaussian noise (AWGN), i.e.,

Y[i] = HS[i] + Wi, 2

where H € R"*X is an a-priori known channel matrix, and
W i] € R™ is a zero-mean multivariate Gaussian vector with
covariance o2 |-, independent of S[i].

Iterative soft interference cancellation consists of @ itera-
tions, where each iteration indexed q €{1,2,...,Q} =
generates K distribution vectors p;¥ € RM, k € K. These
vectors are computed from the channel output y as well
as the distribution vectors obtained at the previous iteration,
{j),(cqfl)}szl, as detailed in the sequel. The entries of ﬁ,(ﬁq) are
estimates of the distribution of Sy [i] for each possible symbol
in S, given the channel output Y'[i] = y and assuming that the

interfering symbols {.S;[i]}; are distributed via {j)l =) }l;gk
Note that for binary constellations, i.e., M = 2, p,3 can
be represented using a single scalar value, as ( )

- (q)
L- (p Icq )1'

Every iteration consists of two steps, carried out in parallel
for each user: Interference cancellation, and soft detection.
Focusing on the kth user and the gth iteration, the interference
cancellation stage first computes the expected values and vari-
ances of {5;[i]};+, based on {j)l )}#k Letting {a }M_
be the indexed elements of the constellation set S, the expected
values and variances are computed via

eV =37 an (B"V) )

am€S
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and

2
V) () @

respectively. The contribution of the interfering symbols from
y is then canceled by replacing these symbols with {el(q_l)}
and subtracting their contribution from the channel output.
By letting h; denote the /th column of H, the interference

canceled channel output is given by

= 3 (am_

am€S

(Q) Zhle(q 1) (5a)
£k
= hiSeli] + > ha(Sili] — e} V) + Wil (5b)
14k

Substituting the channel ou Put y into (5a), the realization of
the interference canceled Z , denoted z;; ), is obtained.

To implement soft detectlon, 1t is assumed that W,EQ)[ =
> h(Sifi] — el(q 1)) + Wi] obeys a zero-mean Gaussian
I#k

distribution, independent of Sj[i], and that its covariance is
given by

y -

W = oulk £y DS Y (6)

1#£k

Combining this assumption with (5b), the conditional distri-
bution of Z (@) given S;[i] = «,, is multivariate Gaussian
o Since Z( )[]
is given by a bijective transformatlon of Y'[i], it holds
that pg, |y (am|y) = Ps, 1z (am|z ) for each a,, € S
under the above assumptions. Consequently, the conditional
distribution of Si[i] given Y'[i] is approximated from the
conditional distribution of Z ,(Cq) given Sy [i] via Bayes theorem.
Since the symbols are equiprobable, this estimated conditional
distribution is computed as

with mean value hja,, and covariance X

Pz@)s, (z,(f)|am)

Z pZ(LI)\S (Zk |am’)
m! €S

ox {_;( (@) _p, )Tz—l ((Q)_h )}
p 3 EQm @) \ Rk kOQm,

R 5 ]

(N

After the final iteration, the symbols are detected by taking
the symbol which maximizes the estimated conditional distri-
bution for each user, i.e.,

S = argmax (i),iQ)) . (8)
me{l,..., M} m

The overall joint detection scheme is summarized below as
Algorithm 1. The initial estimates {ﬁ,(co)}szl can be arbitrarily
set. For example, these may be chosen based on a linear
separate estimation of each symbol for y, as proposed in [7].
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Algorithm 1 Iterative Soft Interference Cancellation

1: Input: Channel output y.

2: Initialization: Set ¢ = 1, and generate an initial guess of
the conditional distributions {p{”}X .

3: Compute the expected values {e,(cqfl)} and variances
{Uz_l} via (3)-(4), respectively.

4: Interference cancellation: For each k € K compute z
via (5a).

5: soft detection: For each k € K, estimate the conditional
distribution f)i,‘n via (7).

6: Set ¢ :=q+ 1. If ¢ < Q go to Step 3.

7: Output: Hard detected output 8, obtained via (8).

(q)
k

C. Advantages and Challenges of Iterative SIC

Iterative SIC has several notable advantages as a joint detec-
tion method: In terms of computational complexity, it replaces
the joint exhaustive search over all different channel input
combinations, required by the MAP detector (1), with a set
of computations carried out separately for each user. Hence,
its computational complexity only grows linearly with the
number of users [6], making it feasible also with large values
of K. Unlike conventional separate detection, in which the
symbol of each user is recovered individually while treating
the interference as noise, the iterative procedure refines the
separate estimates sequentially, and the usage of soft values
mitigates the effect of error propagation. Consequently, Algo-
rithm 1 is capable of achieving performance approaching that
of the MAP detector, which is only feasible for small values of
K. The iterative process trades computational complexity for
increased detection delay. However, it is numerically observed
in [7] that a relatively small number of iterations, such as
@ = 5, are sufficient for achieving substantial performance
gains over separate detection with only a small additional
detection delay.

Tterative SIC is specifically designed for linear channels of
the form (2). In particular, the interference cancellation in
Step 4 of Algorithm 1 requires the contribution of the interfer-
ing symbols to be additive. This limits the application of the
algorithm in non-linear channels, such as those encountered
in optical communications [14], or, alternatively, the models
arising in the presence of low-resolution quantizers [11] and
non-linear power amplifiers [12]. Additionally, the fact that the
distribution of the interference canceled channel output Z ,(Cq)
given Si[i] is approximated as Gaussian in Algorithm 1 may
degrade the performance in channels which do not obey the
linear Gaussian model (2).

Furthermore, even when the channel obeys the linear model
of (2), iterative SIC requires full CSI, i.e., knowledge of the
channel matrix H and the noise variance o2. Acquiring such
knowledge may entail substantial overhead. It is in fact crucial
for the receiver to have accurate CSI, since the performance
of Algorithm 1 is heavily degraded in the presence of CSI
errors, as empirically demonstrated in Section IV.

The dependence on accurate CSI and the assumption of
linear channels are not unique to iterative SIC, and are in
fact common to most interference cancellation based joint
detection algorithms [6]. These limitations motivate the design
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of a joint detector which exploits the computational feasibility
of interference cancellation methods while operating in a data-
driven fashion. We specifically select iterative SIC since it is
capable of achieving MAP-comparable performance, with a
structure that can be readily converted to be data-driven. This
is a result of the fact that its specific model-based computa-
tions, i.e., Steps 4-5 in Algorithm 1, can be naturally imple-
mented using relatively simple machine learning methods. The
resulting receiver, detailed in the following section, integrates
machine learning methods into Algorithm 1, allowing it to
be implemented for arbitrary memoryless stationary channels
without requiring a-priori knowledge of the channel model and
its parameters.

III. DEEPSIC

In this section, we present a data-driven implementation
of iterative SIC. To formulate the proposed receiver, we first
derive the machine learning based receiver architecture, which
we call DeepSIC, in Subsection III-A. Then, we present
methods for training the DNNs embedded in the receiver in
Subsection III-B, and discuss its pros and cons in Subsec-
tion III-C.

A. Data-Driven Receiver Architecture

Here, we present a receiver architecture which implements
iterative SIC in a data-driven fashion. Following the approach
of [45], [47], we wish to keep the overall structure of the
iterative SIC algorithm, depicted in Fig. 2, while replacing
the channel-model-based computations with dedicated suitable
DNNs. To that aim, we note that iterative SIC can be viewed
as a set of interconnected basic building blocks, each imple-
menting the two stages of interference cancellation and soft
detection, i.e., Steps 4-5 of Algorithm 1. While the high level
architecture of Fig. 2 is ignorant of the underlying channel
model, its basic building blocks are channel-model-dependent.
In particular, interference cancellation requires the contribution
of the interference to be additive, i.e., a linear model channel as
in (2), as well as full CSI, in order to cancel the contribution of
the interference. Soft detection requires complete knowledge
of the channel input-output relationship in order to estimate
the conditional probabilities via (7).

Although each of these basic building blocks consists of two
sequential procedures which are completely channel-model-
based, we note that the purpose of these computations is to
carry out a classification task. In particular, the kth building
block of the gth iteration, k € K, ¢ € Q, produces ]5,(;1),
which is an estimate of the conditional distribution of Sy][i]
given Y[i] = y based on {f)l(q_l)}l?gk. Such computations
are naturally implemented by classification DNNs, e.g., fully-
connected networks with softmax output layer. An illustration
of such a network implementing the kth basic block of the
qth iteration is depicted in Fig. 3. Specifically, in Fig. 3 we
depict a fully-connected multi-layered network with M output
nodes and a softmax output layer, whose inputs are the n, x 1
channel output y and the previous interference conditional
distribution estimates {f)l(q_l }i£i. While the latter consists of
(K —1)M entries, it can be represented using (K —1)(M —1)

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 15,2021 at 07:18:59 UTC from IEEE Xplore. Restrictions apply.



1354

Classification DNN
Fully connected layers

n_inputs

outputs

(K =1)(

Fig. 3. Conditional probability estimation network model. Here, the network
has M output nodes, representing classification with M possible classes.

DeepSIC symbol detector
A(0) A1) A(Q)

P Classification DNN | Pt Classification NN | P! 5

In_mal Iteration 1 Iteration Q H§rd
estimate .. decision

~(0) Classification DNN (i) Classification DNN o argmax S, K
Py a (0]
K Py Px

S|—@ Y

Channel

Sk

4

Fig. 4. DeepSIC illustration.

values, since the sum of the entries of each such probability
vector is one. When trained to minimize the cross-entropy loss,
the building block DNN implements a neural classifier for M
possible labels, i.e., constellation points. As such, the entries
of the output vector of the softmax layer represents an esti-
mate of the conditional probability for each possible symbol
conditioned on y and {f)l(q_l) }i1.. Embedding these machine
learning based conditional distribution computations into the
iterative SIC block diagram in Fig. 2 yields the overall receiver
architecture depicted in Fig. 4. We set the initial estimates
{f),&o)}szl to represent a uniform distribution, i.e., (f)i,o))m =
+ for each m € {1,2,...,M} and k € K. We leave the
study of different initial estimates and their effect on the
overall receiver performance for future research. The resulting
data-driven implementation of Algorithm 1 is repeated below
as Algorithm 2. Note that the model-based Steps 3-5 of
Algorithm 1 whose purpose is to estimate the conditional
distributions, are replaced with the machine learning based
conditional distribution estimation Step 3 in Algorithm 2.

Algorithm 2 Deep Soft Interference Cancellation (DeepSIC)

1: Input: Channel output y.

2: Initialization: Set ¢ = 1, and generate an initial guess of
the conditional distributions {f),io)}szl.

3: Conditional distribution estimation: For each k € IC,
estimate the conditional distribution ]5,(;1) from y and
{p\ "} 141 using the (g, k)th classification DNN.

4: Set q:=q+ 1. If ¢ <@ go to Step 3.

5: Output: Hard detected output s, obtained via (8).
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A major advantage of using classification DNNs as the
basic building blocks in Fig. 4 stems from the fact that
such machine learning methods are capable of accurately
computing conditional distributions in complex non-linear
setups without requiring a-priori knowledge of the channel
model and its parameters. Consequently, when these building
blocks are trained to properly implement their classification
task, the receiver essentially realizes iterative soft interference
cancellation for arbitrary channel models in a data-driven fash-
ion. In the following subsection we discuss how to train these
classification DNNs.

B. Training the DNNs

In order for the machine learning based receiver structure
of Fig. 4 to reliably implement joint detection, its building
block classification DNNs must be properly trained. Here,
we consider two possible approaches to train the receiver based
on the training set of m, pairs of channel inputs and their
corresponding outputs {éj,;l}j };“Z’l: End-to-end training, and
sequential training.

1) End-to-End Training: The first approach jointly trains the
entire network, i.e., all the building block DNNs. While the
output of each building block is an M x 1 vector, as illustrated
in Fig. 3, the output of the overall interconnection of these
DNNs is the set of conditional distributions {ﬁ,(CQ)}szl as
illustrated in Fig. 4. Since each vector ]5,2@) is used to estimate
Sk[i], we use the sum-cross entropy loss as the training objec-
tive. Let 0 represent the parameters of the entire network, and
ﬁ,(CQ)(y, «; 0) be the entry of ]5,2@) corresponding to Sj[i] = «
when the input to the network is y and its parameters are 6.
The sum-cross entropy loss over the training set {3, y; };“Z’l
can be written as

1 ne K .
Lsmon(0) = -3 >~ log py”

" j=1k=1

(9. (3))k:0). (9

Training the receiver in Fig. 4 in this end-to-end manner
based on the objective (9) jointly updates the coefficients
of all the K - @ building block DNNs. Since for a large
number of users, training so many parameters simultaneously
is expected to require a large number of input-output pairs,
we further propose a sequential training approach detailed
next.

2) Sequential Training: To allow the network to be trained
with a reduced number of training samples, we note that the
goal of each building block DNN does not depend on the
iteration index: The kth building block of the gth iteration
outputs a soft estimate of S[i] for each ¢ € Q; this estimation
is iteratively refined as the iteration index grows. Therefore,
each building block DNN can be trained individually, by min-
imizing the conventional cross entropy loss. To formulate this
objective, let 0,(6(1) represent the parameters of the kth DNN
at iteration ¢, and write j),(f) (y, {j)l(q_l)}#k,a;O,(f)) as the

- (q)

entry of p,"’ corresponding to Si[i] = « when the DNN

parameters are 05;1) and its inputs are y and {f)l(q_l) bk The
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cross entropy loss is given by

1 & (@) e ealae1 .
Lee(0)")= - S —logp? (3. {0 hins (35015 07),
j=1

(10)

where {i)%ﬁl)} represent the estimated probabilities associ-
ated with y; computed at the previous iteration. The problem
with training each DNN individually to minimize (10) is that
the soft estimates {]55.?[71)} are not provided as part of the
training set. This challenge can be tackled by training the
DNNs corresponding to each layer in a sequential manner,
where for each layer the outputs of the trained DNN corre-
sponding to the previous iterations are used to generate the soft
estimates fed as training samples. This process is summarized
below as Algorithm 3.

Sequential training uses the n; input-output pairs to train
each DNN individually. Compared to the end-to-end training
that utilizes the training samples to learn the complete set
of parameters, which can be quite large, sequential training
uses the same set of input-output pairs to learn a significantly
smaller number of parameters, reduced by a factor of K - @,
multiple times. Consequently, this approach is expected to
require a much smaller number of training samples, at the cost
of a longer learning procedure for a given training set, due to
its sequential operation, and possible performance degradation
as the building blocks are not jointly trained. This behavior is
numerically demonstrated in the simulation study detailed in
Section IV, where the performance gap between sequential
training and end-to-end training is shown to be relatively
minor.

Algorithm 3 Sequential Training

1: Input: Training samples{8;, 9, }7" ;.
2: Initialization: Set ¢ = 1, generate an initial guess of the
conditional distributions {ﬁ,(ﬁo)},{;l, and set ]55012 = ]5](60)

foreach k € L and j € {1,2,...,n¢}.

3: for each £ € € do

4:  Randomize initial weights 0,(;1).

5. Train 05;1) to minimize (10).

6: Feed {;i]j, {f);?l_l) }l;ﬁk}‘?;l to the trained DNN, produc-
ing {p{)}7L,.

7: end for

8: Set g:=q+1.1f ¢ < Q go to Step 3.
9: Output: Trained network parameters 6 = {0,(;1)}.

C. Discussion

DeepSIC learns to implement the iterative SIC algorithm
from training. Consequently, once trained, it shares the main
advantages of the model-based algorithm: For scenarios in
which iterative SIC is applicable, i.e., linear channels of the
form (2), the performance of deepSIC is expected to approach
that of the optimal MAP detector. This behavior is numerically
observed in the simulation study detailed in Section IV.

Similarly to the model-based iterative SIC algorithm from
which DeepSIC originates, the computational complexity
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of applying DeepSIC grows linearly with the number of
users. This makes DeepSIC applicable in MIMO scenarios
where conventional MAP detection is infeasible. Furthermore,
as DeepSIC consists of an interconnection of relatively com-
pact DNNG, it shares the advantage of DNN-based receivers
over iterative model-based receivers in terms of inference
speed [22]. Explicitly characterizing the complexity of Deep-
SIC is challenging due to the inherent difficulty in quantifying
the complexity of training and applying DNNs, which is
heavily dependent on the number of parameters and the
learning algorithm. In particular, by letting P be the number of
parameters in each building block DNN, the overall number
of parameters of DeepSIC is P - K - ). Additionally, using
sequential training, the training set is required to adapt only
P parameters, as each building block is trained individually.
This indicates that DeepSIC can learn to implement iterative
SIC using a relatively small number of training samples,
allowing it to achieve improved performance over previously
proposed deep receivers with smaller training sets, as we
numerically demonstrate in Subsection IV-A. Additionally,
the ability of DeepSIC to accurately train with small data sets
facilitates tracking of dynamic channel conditions via self-
supervised online training by exploiting the inherent structure
of communication protocols [45, Sec. IV], as we demonstrate
in Subsection IV-D.

In addition to its ability to implement iterative SIC without
prior knowledge of the channel model and its parameters,
DeepSIC has two main advantages over the model-based
algorithm from which it originates: First, since DeepSIC
learns to cancel the interference from training, and does
not assume that its contribution is additive, it is applicable
also in non-linear channels. Iterative SIC, which attempts
to cancel the interference by subtracting its estimate from
the channel output, results in increased errors in non-linear
channels. Furthermore, even in linear scenarios where
iterative SIC is applicable, its performance is highly sensitive
to inaccurate CSI. By exploiting the known generalization
properties of DNNs, DeepSIC is capable of operating
reliably when trained under different channel parameters,
which is equivalent to having inaccurate CSI. These
advantages are clearly observed in our numerical study in
Section IV.

To identify the advantages of DeepSIC over previously
proposed machine learning based detectors, we first recall that,
as discussed in the introduction, these data-driven receivers
can be divided into two main types: The first family of deep
receivers implements symbol detection using a single conven-
tional network, generally treated as a black box. While their
architecture can account for some a-priori knowledge of the
scenario, such as OFDM signaling [28], [30], channel memory
[26], [27], and the presence of low resolution quantizers [50],
[51], the design is typically not based on established detection
algorithms. Compared to such deep receivers, DeepSIC, which
learns to implement only the model-based computations of an
established algorithm, has fewer parameters, and can thus be
trained using smaller training sets, allowing it to be quickly
retrained in the presence of dynamic environments. Further-
more, unlike black box DNNs, the architecture of DeepSIC
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is interpretable, and, when properly trained, it is expected to
achieve the MAP-comparable performance of iterative SIC.

The second family of machine learning-driven MIMO
receivers unfolds a model-based iterative optimization algo-
rithm for finding the MAP solution (1), such as projected
gradient descent, into a DNN, see, e.g., [35]-[37], [41] as
well as [22, Sec. II]. However, these methods assume a linear
channel model of the form (2). Furthermore, these previous
receivers typically require CSI, obtained either from a-priori
knowledge or via channel estimation as in [42]. Unlike these
previous receivers, DeepSIC, which is also based on a model-
based algorithm, is independent of the channel model, and can
efficiently learn to detect in a wide variety of channel con-
ditions, ranging from linear Gaussian channels to non-linear
Poisson channels, as numerically demonstrated in Section I'V.

Finally, we note that the architecture of DeepSIC, which is
depicted in Fig. 4, is related to the concepts of deep mutual
learning [52], as well as plug-and-play methods [53]. In partic-
ular, in deep mutual learning, a set of relatively small DNNs
are each trained individually while allowing to share some
information between intermediate layers to facilitate training.
By considering the @) building blocks corresponding to each
user as a single DNN, DeepSIC can be considered as a form
of mutual learning between those networks. However, while
conventional mutual learning is based on heuristic arguments,
DeepSIC arises from an established detection algorithm, which
is particularly suitable for the problem of MIMO detection.
As such, the building blocks of DeepSIC are not arbitrary
layers, but classification networks designed and trained to
implement the corresponding computation of iterative SIC
in a data-driven fashion. Plug-and-play methods implement
regularized optimization algorithms involving proximal oper-
ations by replacing these computations with denoiser DNNSs,
allowing the optimization process to be carried out in a
data-driven manner without analytically accounting for the
regularization. Our approach in designing DeepSIC thus bears
some similarity to plug-and-play methods, in the sense that
both approaches integrate DNNs into an established algo-
rithm by replacing some specific model-based computations
with DNNs. While their underlying rationale may be simi-
lar, DeepSIC and plug-and-play methods are fundamentally
different in the algorithm from which they arise, as well as
their target application, i.e., MIMO detection versus inverse
problems in image processing.

IV. NUMERICAL STUDY

In the following section we numerically evaluate DeepSIC
in several relevant multiuser MIMO detection scenarios.'
We first consider linear Gaussian channels in Subsection V-
A, for which conventional model-based iterative SIC as
well as the majority of previously proposed DNN-based
MIMO detectors are applicable. Then, in Subsection IV-B,
we demonstrate the performance gains of DeepSIC in two
common non-linear scenarios: Quantized Gaussian setups and
Poisson channels. Next, in Subsection IV-C we compare the

! The source code of DeepSIC is available online at

https://github.com/nirshlezinger1/DeepSIC.
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Fig. 5. DNN architectures used as DeepSIC building blocks for: a) end-to-
end training; b) sequential training.

methods for training DeepSIC discussed in Subsection I1I-B,
and in Subsection IV-D we evaluate DeepSIC in block-fading
channels.

Unless stated otherwise, we trained DeepSIC using the
ADAM optimizer with a relatively small training set
of 5000 training samples, and tested over 20000 symbols. The
motivation for using small training sets is to demonstrate the
ability of DeepSIC to train with a sample set of the order of a
preamble sequence, e.g., [54, Ch. 17], indicating its feasibility
to exploit the structure induced by communication protocols
to adapt in dynamic environments, as we demonstrate in
Subsection IV-D. We simulate DeepSIC with both end-to-end
training as well as sequential training. Since the latter strategy
sequentially adapts subsets of the building blocks, it can tune
a larger number of parameters using the same training set
compared to end-to-end training, where all the building blocks
are jointly trained. Consequently, in the implementation of the
DNN-based building blocks of DeepSIC depicted in Fig. 3,
we used a different fully-connected network for each training
method. In particular, for end-to-end training we used a
compact network consisting of a (n, + (K —1)(M —1)) x 60
layer followed by ReLU activation and a 60 x M layer,
as illustrated in Fig. 5(a). For sequential training, we used
three fully-connected layers: An (n, + (K —1)(M —1)) x 100
first layer, a 100 x 50 second layer, and a 50 x M third layer,
where a sigmoid and a ReLU intermediate activation functions
were used, respectively. The resulting DNN is illustrated
in Fig. 5(b). We note that the different training methods are
also compared with the same DNN structures in Subsection I'V-
C, allowing to determine which method should be used based
on the training set size.

A. Linear Gaussian Channels

We first consider a linear AWGN channel whose input-
output relationship is given by (2). Recall that the model-based
algorithm from which DeepSIC originates, i.e., iterative SIC,
as well as previously proposed unfolding-based data-driven
MIMO receivers [22, Sec. II], are all designed for such
channels. Consequently, the motivation of the following
study is to compare DeepSIC in terms of performance and
robustness to competing detectors in a scenario for which these
previous schemes are applicable. In particular, we evaluate the
symbol error rate (SER) of the following MIMO detectors:

o The MAP detector, given by (1).

o The iterative SIC algorithm detailed in Algorithm 1.

o DeepSIC with the sequential training method, referred to

in the following as Seq. DeepSIC.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on February 15,2021 at 07:18:59 UTC from IEEE Xplore. Restrictions apply.



SHLEZINGER et al.: DeepSIC FOR MULTIUSER MIMO DETECTION

o DeepSIC with end-to-end training based on the sum cross

entropy loss (9), referred to henceforth as E2E DeepSIC.

o The unfolding-based DetNet MIMO detector proposed

in [35].

The model-based MAP and iterative SIC detectors, as well
as DetNet [35], all require CSI, and specifically, accurate
knowledge of the channel matrix H. DeepSIC operates without
a-priori knowledge of the channel model and its parameters,
learning the detection mapping from a training set sampled
from the considered input-output relationship. In order to
compare the robustness of the detectors to CSI uncertainty,
we also evaluate them when the receiver has access to an
estimate of H with entries corrupted by i.i.d. additive Gaussian
noise whose variance is given by 2 times the magnitude of the
corresponding entry, where o2 > 0 is referred to as the error
variance. For DeepSIC, which is model-invariant, we compute
the SER under CSI uncertainty by using a training set whose
samples are randomized from a channel in which the true H
is replaced with its noisy version.

We simulate two linear Gaussian channels: A 6 x 6 channel,
i.e., K = 6 users and n, = 6 receive antennas, and a 32 x 32
setup. Since the computational complexity of the MAP rule
grows exponentially with K, it is simulated only for the 6 x 6
channel. Consequently, simulating the 6 x 6 channel allows
us to compare the error rate achieved by DeepSIC to that of
the optimal MAP rule, while the purpose of the 32 x 32 setup
is demonstrate the feasibility of DeepSIC in large multi-user
MIMO systems, where the MAP rule become computationally
prohibitive. The symbols are randomized from a binary phase
shift keying (BPSK) constellation, namely, S = {-1,1}
and M = |S| = 2. The channel matrix H models spatial
exponential decay, and its entries are given by

(H),,; = e =il ie{1,...,n}je{1,....K}. (1)

For each channel, the SER of the considered receivers is
evaluated for both perfect CSI, i.e., O'g = 0, as well as CSI
uncertainty, for which we use 02 = 0.1 and 02 = 0.75 for the
6 x 6 and the 32 x 32 channels, respectively. The numerically
evaluated SER values versus the signal-to-noise ratio (SNR),
defined as 1/02,, are depicted in Figs. 6-7 for the 6 x 6 case
and the 32 x 32 channel, respectively.

Observing Fig. 6, we note that the performance of DeepSIC
with end-to-end training approaches that of the model-based
iterative SIC algorithm, which is within a small gap of the
optimal MAP performance. This demonstrates the ability of
DeepSIC to implement iterative SIC in a data-driven fashion.
The sequential training method, whose purpose is to allow
DeepSIC to train with smaller data sets compared to end-
to-end training, also achieves SER which is comparable to
iterative SIC. In particular, the optimal MAP detector with
perfect CSI achieves SER of 1072 at SNR of approximately
10 dB, while iterative SIC and E2E DeepSIC require 11 dB
SNR and Seq. DeepSIC needs an SNR of at least 12 dB to
achieve the same SER value. The fact that E2E DeepSIC
approaches the performance of iterative SIC with perfect
CSI is also observed for the 32 x 32 channel in Fig. 7,
indicating the applicability of DeepSIC in relatively large
multiuser MIMO networks, where MAP-based joint detection
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Fig. 6. SER versus SNR of DeepSIC compared to the model-based iterative
SIC and the data-driven DetNet of [35], 6 x 6 linear channel with AWGN.
For DeepSIC and DetNet, Perfect CSI implies that the receiver is trained and
tested using samples from the same channel, while under CSI uncertainty they
are trained using samples from a set of different channels.
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Fig. 7. SER versus SNR of DeepSIC compared to the model-based iterative
SIC and the data-driven DetNet of [35], 32 x 32 linear channel with AWGN.
For DeepSIC and DetNet, Perfect CSI implies that the receiver is trained and
tested using samples from the same channel, while under CSI uncertainty they
are trained using samples from a set of different channels.

is computationally infeasible. We note that the SNR gap of
sequential training compared to end-to-end training is more
dominant in the 32 x 32, and is approximately 1.5 dB for
SER of 1073, The ability of DeepSIC to learn its mapping
from a small training set becomes notable when comparing
its performance to DetNet: For the same training set of size
ny = 5000, DetNet fails to properly adapt and achieves very
poor SER performance. Only when provided a hundred times
more training samples, denoted /00x train in Figs.6-7, DetNet
achieves SER values within a small gap of that achieved by
Seq. DeepSIC with 1% of the training set.

Figs. 6-7 indicate that the performance DeepSIC is compa-
rable to iterative SIC with accurate CSI. However, in the pres-
ence of CSI uncertainty, DeepSIC is observed to substantially
outperform the model-based iterative SIC and MAP receivers,
as well as DetNet operating with a noisy version of H and
trained with a hundred times more inaccurate training samples.
In particular, it follows from Fig. 6 that a relatively minor
estimation error of variance o2 = 0.1 severely deteriorates the
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performance of the model-based methods, while the proposed
data-driven DeepSIC is hardly affected by the same level of
CSI uncertainty. In Fig. 7, in which the relatively large error
variance of = 0.75 is used, we observe that while iterative
SIC is inapplicable, DeepSIC is still capable of achieving SER
values which decrease below 10! for SNRs larger than 10 dB
in the presence of notable CSI errors. However, the fact that it
is trained here using a training set which is not only relatively
small, but also quite noisy, induces a notable loss compared
to accurate training. Nonetheless, DeepSIC is still shown to
be far more robust to CSI uncertainty compared to the model-
based iterative SIC.

B. Non-Linear Channels

Here, we evaluate DeepSIC in communication channels
which are not modeled as a linear system whose output
is corrupted by AWGN. The purpose of this study is to
demonstrate that, even though the model-based iterative SIC
algorithm is derived assuming a memoryless linear AWGN
channel, its data-driven adaptation can be reliably applied
in a much broader family of relevant scenarios. Since the
unfolding-based DetNet receiver of [35] is designed for linear
AWGN setups, here we compare DeepSIC only to the model-
based MAP and the iterative SIC receivers.

We begin with a quantized Gaussian channel, which typi-
cally models wireless communications in the presence of low-
resolution quantizers [10]. The channel output undergoes a
2 bits uniform quantization mapping over the support [—4, 4],
given by

sign(y), |yl <2
3-sign(y), |yl > 2.

Consequently, using the notations in (2), the channel input-
output relationship can be written as

Y[i] = ¢ (HS[i] + WTil),

q(y) =

12)

where the quantization in (12) is carried out entry-wise. In
particular, we consider a receiver with n,, = 4 antennas serving
K = 4 users, each transmitting i.i.d. BPSK symbols. The
entries of the channel matrix H are given by (11).

In Fig. 8 we compare the SER achieved by DeepSIC with
both end-to-end and sequential training to the performance
of the model-based MAP and iterative SIC receivers versus
SNR € [6,20] dB. As in the previous subsection, we consider
both the cases in which the receiver has perfect CSI as well as
CSI uncertainty: Under perfect CSI, the model-based MAP and
iterative SIC detectors have accurate knowledge of H and JZJ,
while DeepSIC is trained over samples taken from the same
channel model under which it is tested; In CSI uncertainty
the model-based receivers have access to a noisy estimate
of H with uncertainty variance o2 = 0.1, and DeepSIC
is trained using samples from the corresponding inaccurate
channel model.

Observing Fig. 8, we note that the performance of DeepSIC
effectively coincides with that of the optimal MAP rule with
perfect CSI, demonstrating its ability to learn to accurately
detect in complex environments. For most considered SNR

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 2, FEBRUARY 2021

SER

——MAP, perfect CSI

78 —MAP, CSI uncertainty
Iterative SIC, perfect CSI

—Y/ ~ lterative SIC, CSI uncertainty
Seq. DeepSIC, perfect CSI ¥

- Seq. DeepSIC, CSI uncertainty R
E2E DeepSIC, perfect CSI

A)Kf Sequential DeepSIC, perfect CSI

1 I

6 8 10 12 14
SNR [dB]

Fig. 8. SER versus SNR of DeepSIC compared to the model-based MAP rule
and iterative SIC method, 4 X 4 quantized Gaussian channel. For DeepSIC,
Perfect CSI implies that the receiver is trained and tested using samples from
the same channel, while under CSI uncertainty it is trained using samples
from a set of different channels.

values, iterative SIC with perfect CSI also approaches the
MAP SER performance, which settles with the observation in
[55] that iterative soft detection based equalization methods,
such as iterative SIC, achieve excellent performance in quan-
tized Gaussian channels. However, obtaining accurate channel
estimation in the presence of low resolution quantization
is substantially more challenging compared to conventional
linear channels [10], thus in practice, the channel estimates are
likely to be inaccurate. In such cases, it is shown in Fig. 8 that
model-based methods are highly sensitive to inaccurate CSI,
and their error does not monotonically decrease with SNR.
This non-monotonic behavior follows since in some scenarios
involving quantized observations, the presence of noise, which
causes the discrete channel outputs to change their values
at some probability, can reduce the errors induced by CSI
uncertainty. Unlike the model-based receivers, DeepSIC hardly
exhibits any degradation under the same level of uncertainty.

Next, we consider a Poisson channel, which typically
models free-space optical communications [14]. As in the
quantized Gaussian case, we use K = 4 and n, = 4. Here,
the symbols are randomized from an on-off keying for which
S = {0, 1}. The entries of the channel output are related to
the input via the conditional distribution

1

a

(Yld]); |Sli] ~ P (HS[); + 1, (13)

2
j€{l,...,n.}, where P()) is the Poisson distribution with
parameter A > 0, and the entries of H € R *EK are given
by (11).

The achievable SER of DeepSIC versus SNR under both
perfect CSI as well as CSI uncertainty with error variance
02 = 0.1 is compared to the MAP and iterative SIC detectors
in Fig. 9. Observing Fig. 9, we again note that the performance
of DeepSIC is only within a small gap of the MAP
performance with perfect CSI, and that the data-driven receiver
is more robust to CSI uncertainty compared to the model-based
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Fig. 9. SER versus SNR of DeepSIC compared to the model-based MAP
rule and iterative SIC method, 4 X 4 Poisson channel. For DeepSIC, Perfect
CSI implies that the receiver is trained and tested using samples from the
same channel, while under CSI uncertainty it is trained using samples from
a set of different channels.

MAP. In particular, DeepSIC with sequential training, which
utilizes a deeper network architecture for each building
block, outperforms here end-to-end training with basic
two-layer structures for the conditional distribution estimation
components. We conclude that under such non-Gaussian
channels, more complex DNN models are required to learn
to cancel interference and carry out soft detection accurately.
This further emphasizes the gain of our proposed sequential
approach for training each building block separately, thus
allowing to train an overall deep architecture using a limited
training set based on the understanding of the role of each
of its components. Furthermore, it is noted that iterative SIC,
which is designed for linear Gaussian channels (2) in which
the interference is additive, achieves very poor performance
when the channel input-output relationship is substantially
different from (2). Since iterative SIC is shown to be unreliable
in this setup with accurate knowledge of H, we do not include
in Fig. 9 its SER performance with CSI uncertainty.

The results presented in this section demonstrate the abil-
ity of DeepSIC to achieve excellent performance and learn
to implement interference cancellation from training, under
statistical models for which conventional model-based inter-
ference cancellation is effectively inapplicable.

C. Training Methods Comparison

In the numerical studies reported in the previous subsec-
tions, we used different network architectures for each training
method of DeepSIC: For E2E DeepSIC we used two fully-
connected layers in implementing the machine learning based
building blocks of Fig. 1, while Seq. DeepSIC used three
layers. The rationale behind this setting was that for a given
training set, Seq. DeepSIC updates distinct subsets of its para-
meters gradually and can thus adapt larger networks using the
same training set compared to end-to-end training. However,
it is also demonstrated in the previous subsections that E2E
DeepSIC often achieves improved performance compared to
Seq. DeepSIC, despite the fact that it uses smaller networks,
as the joint training process results in a more accurate detector.
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and end-to-end training, 6 X 6 linear channel with AWGN.

To understand which training method is preferable for a
given network architecture and training set, in the following
we numerically evaluate the performance of DeepSIC versus
the training set size n, when using the same number of
parameters under both training methods. In particular, we fix
the building blocks to consist of the architecture used under
end-to-end training in the previous subsections, namely,
a (n, + (K —1)(M — 1)) x 60 x M fully-connected two
layers. The achievable SER of the training methods versus
the training set size n; for the 6 x 6 linear Gaussian channel
detailed in Subsection IV-A with perfect CSI for SNR
values of 8 and 12 dB is depicted in Fig. 10. Observing
Fig. 10, we note that the accuracy of end-to-end training
is substantially degraded as the number of labeled sampled
decreases, since the available training is used to jointly adapt
the complete set of parameters of the network. For comparison,
sequential training, which exploits the understanding of the
role of each building block in the model-based iterative
SIC method to train each subsystem individually, is capable
of operating reliably with as few as n; = 100 training
samples. In particular, it is observed in Fig. 10 that the fact
that sequential training uses the same training set to adapt
sub-sets of the overall architecture sequentially, facilitates
convergence with much smaller training sets compared to
end-to-end training. However, the fact that end-to-end training
jointly adapts the complete DeepSIC architecture allows it to
converge to improved configurations when a sufficient number
of training samples is provided. These results demonstrate
how converting a model-based algorithm into a data-driven
system not only yields a suitable DNN architecture, but can
also facilitate its training.

D. Online Tracking of Channel Variations

The ability of DeepSIC with sequential training to tune
its parameters using small labeled data sets facilitates its
application in dynamic time-varying channels. One of the
major challenges of machine learning aided receivers stems
from the fact that DNNs require a large volume of training
data in order to learn their mapping, and once trained they are
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applicable to inputs obeying the same (or a similar) distribution
as the one used during training. Since communication channels
are typically dynamic and conditions may change significantly
over time, DNN-based receivers should re-train periodically
in order to track channel variations, without degrading the
spectral efficiency. In such cases, the fact that DeepSIC can
be efficiently trained with small data sets allows it to track
time-varying channels without inducing additional communi-
cation overhead by exploiting the inherent structure of digital
communication protocols.

We next demonstrate this advantage by applying the self-
supervised online training method proposed in [45, Sec. IV]
for tracking channel variations by utilizing the presence of
coded communications. Here, each user transmits a set of
codewords protected by a forward error correction (FEC) code,
and each codeword is transmitted as a block of symbols. The
receiver applies DeepSIC to detect the transmitted symbols
from the channel output and decodes the message using its
FEC decoder. If the messages are successfully decoded, they
are re-encoded and re-modulated into their corresponding
channel input, which is used along with the observed chan-
nel output to re-train DeepSIC. Since the FEC decoder can
successfully recover the message even when some symbol
errors are present, this approach allows an initially trained
deep receiver which is capable of re-training using small data
sets of the order of a single codeword, to track block-fading
time-varying channel conditions.

In particular, we simulate two 4 x 4 channels: a linear
AWGN channel (2) and a Poisson channel (13). Here, each
user transmits 50 codewords encoded using a [255, 239] Reed-
Solomon FEC code, i.e., each codeword consists of 2040 sym-
bols embedding a message of 1784 bits. The channel observed
by the bth codeword is generated with the channel matrix H(b)
whose entries are given by

(H());; = e "l cos((e); - D), (14)

i€ {l,....,n.}, 7 € {l,...,K}, where we used ¢ =
[51,39,33,21]. The difference between the initial channel
matrix and that used during the bth block, given by the squared
Frobenius distance ||H(b)—H(0)||?, is depicted in Fig. 11c. For
each of the considered channel models, i.e., the linear AWGN
channel and the Poisson channel, we evaluate the instanta-
neous bit error rate (BER) in decoding each codeword of
DeepSIC using the method of [45, Sec. IV] for self-supervised
channel tracking, where before the first block is transmitted,
DeepSIC is trained using 5000 samples corresponding to the
channel with index b = 0. These results are compared to
the model-based MAP detector which knows the channel at
each time instance, as well as when it has only knowledge
of the initial channel H(0). Furthermore, we also evaluate the
instantaneous BER of DeepSIC without online training when
trained only once using 5000 samples corresponding to H(0),
as well as when the set of 5000 training samples constitutes
of 10 subsets corresponding to H(b) with b € {1,...,10},
representing joint learning for multiple channels [56]. The
results are depicted in Figs. 11la-11b for the linear AWGN
channel and the Poisson channel, respectively. We specifically
consider relatively high SNRs of 14 db and 32 dB for the
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Fig. 11. Channel tracking via online self-supervised training.

Gaussian and Poisson channels, respectively, to focus on
scenarios where detection errors are expected to occur mostly
due to channel variations, rather than due to the presence of
a dominant noise, which is the case in lower SNRs.
Observing Figs. 1la-11b, we note that as the channel
parameters begin to deviate considerably compared to their
initial value, around the tenth codeword. Receivers which do
not track channel variations, i.e., DeepSIC without retraining
and the MAP detector operating with the initial CSI, start
exhibiting errors. However, DeepSIC which trains online in
a self-supervised manner based on its FEC decoder outputs,
successfully tracks the variations of the channel, demonstrating
low error rates for each codeword, and in fact achieving zero
errors over all considered blocks for the linear AWGN channel.
This demonstrates how the ability of DeepSIC to adapt with a
small number of samples using the sequential training method
allows it to track time-varying channels without requiring
additional pilots, by merely exploiting the inherent structure
of digital communication protocols. Furthermore, we also
observe that DeepSIC trained once over various channel con-
ditions via joint learning exhibits reduced error rates compared
to the MAP detector with initial CSI as well as DeepSIC
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which trains only for the initial channel, particularly for the
Poisson channel in Fig. 11b. This illustrates the potential of
such joint training to improve the robustness of DeepSIC,
as also observed for the CSI uncertainty case in the previous
subsections.

V. CONCLUSION

In this work we proposed DeepSIC, a data-driven multiuser
MIMO receiver architecture. To derive DeepSIC, we relied on
the iterative SIC algorithm, which is an accurate and compu-
tationally feasible model-based MIMO detection scheme that
can be naturally extended to incorporate machine learning
methods. We obtained the data-driven DeepSIC receiver by
replacing the model-based building blocks of iterative SIC
with dedicated compact DNNs. Unlike its model-based coun-
terpart, DeepSIC is channel-model-independent and can learn
to implement interference cancellation in non-linear setups
with non-additive interference. We proposed two methods for
training DeepSIC: an end-to-end approach and a sequential
scheme, where the latter is more suitable for small training
sets and can thus be used to quickly adapt in dynamic
environments. Our numerical results demonstrate that for
conventional linear channels, DeepSIC approaches the MAP
performance, outperforming previously proposed DNN-based
receivers while demonstrating improved robustness to CSI
uncertainty. Finally, we showed that the MAP-comparable
performance of deepSIC and its resiliency to uncertainty hold
in the presence of non-linear channels, where the applicability
of iterative SIC as well as previously proposed machine
learning based receivers is limited.
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