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Abstract—Traditional deep learning models are trained at a
centralized server using data samples collected from users. Such
data samples often include private information, which the users
may not be willing to share. Federated learning (FL) is an emerging
approach to train such learning models without requiring the users
to share their data. FL consists of an iterative procedure, where in
each iteration the users train a copy of the learning model locally.
The server then collects the individual updates and aggregates
them into a global model. A major challenge that arises in this
method is the need of each user to repeatedly transmit its learned
model over the throughput limited uplink channel. In this work,
we tackle this challenge using tools from quantization theory. In
particular, we identify the unique characteristics associated with
conveying trained models over rate-constrained channels, and pro-
pose a suitable quantization scheme for such settings, referred
to as universal vector quantization for FL (UVeQFed). We show
that combining universal vector quantization methods with FL
yields a decentralized training system in which the compression
of the trained models induces only a minimum distortion. We then
theoretically analyze the distortion, showing that it vanishes as the
number of users grows. We also characterize how models trained
with conventional federated averaging combined with UVeQFed
converge to the model which minimizes the loss function. Our
numerical results demonstrate the gains of UVeQFed over pre-
viously proposed methods in terms of both distortion induced in
quantization and accuracy of the resulting aggregated model.
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I. INTRODUCTION

MACHINE learning methods have demonstrated unprece-
dented performance in a broad range of applications [2].

This is achieved by training a deep network model based on a
large number of labeled training samples. Often, these samples
are gathered on end devices or users, such as smartphones, while
the deep model is maintained by a computationally powerful
centralized server [3]. Traditionally, the users send their labeled
data to the server, who in turn uses the massive amount of
samples to train the model. However, data often contains private
information, which the users may prefer not to share, and having
each user transmit large volumes of training data to the server
may induce a substantial load on the communication link. This
gives rise to the need to adapt the network on the end-devices.,
i.e., train a centralized model in a distributed fashion [4]. Fed-
erated learning (FL) proposed in [5], is a method to update such
decentralized models. Instead of requiring the users to share
their possibly private labeled data, each user trains the network
locally, and conveys its trained model updates to the server. The
server then iteratively aggregates these updates into a global
network [6], [7], commonly using some weighted average, also
known as federated averaging [5].

One of the major challenges of FL is the transfer of a
large number of updated model parameters over the uplink
communication channel from the users to the server, whose
throughput is typically constrained [5], [7]–[9]. This challenge
can be tackled by reducing the number of participating users, via,
e.g., scheduling policies [10], [11]. An alternative strategy is to
reduce the volume of data each user conveys, via sparsification or
scalar quantization [12]–[21]. The work [12] proposed various
methods for compressing the updates sent from the users to the
server. These methods include random masks, subsampling, and
probabilistic quantization. Sparsifying masks for compressing
the gradients were proposed in [13]–[15]. Additional forms
of probabilistic scalar quantization for FL were considered
in [16]–[20]. However, these approaches are suboptimal from
a quantization theory perspective, as, e.g., discarding a random
subset of the gradients can result in dominant distortion, while
scalar quantization is inferior to vector quantization [22, Ch. 23].
This motivates the design and analysis of quantization methods
for facilitating updated model transfer in FL, which minimize the
error induced by quantization in the aggregated global model.
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Here, we design quantizers for distributed training by tackling
the uplink compression in FL problem from a quantization
theory perspective. We first discuss the requirements which one
have to account for, and can possibly exploit, when designing
quantization schemes for FL. We specifically identify that such
quantization schemes are required to operate without knowing
the distribution of the model updates, as such knowledge is
unlikely to be available in FL. We also note that the repeated
communications between the server and users imply that they
can share a source of local randomness, by, e.g., sharing a ran-
dom seed, which can be utilized by the quantization mechanism.

Based on these properties, we propose a scheme following
concepts from universal quantization [23], referred to as un-
viersal vector quantization for federated learning (UVeQFed).
UVeQFed implements subtractive dithered lattice quantization,
which is based on solid information theoretic arguments. In par-
ticular, such schemes are known to approach the most accurate
achievable finite-bit representation, dictated by rate-distortion
theory, to within a controllable gap [24], as well as achieve more
accurate quantized representation compared to scalar quantiza-
tion methods (probabilistic or deterministic) used in existing FL
works, while meeting the aforementioned requirements. Conse-
quently, UVeQFed allows FL to operate reliably under strict bit
rate constraints, due to its ability to reduce the distortion induced
by the need to quantize the model updates, which results in more
accurate learned models with faster convergence compared to
previously proposed methods.

We theoretically analyze the ability of the server to accu-
rately recover the updated model when UVeQFed is employed.
We show that the error induced by UVeQFed is mitigated by
conventional federated averaging, and analyze the convergence
of the global model to the one which minimize the loss function.
Specifically, our analysis reveals that the resulting quantization
error can be bounded by a term which vanishes as the number
of users grows, regardless of the statistical model from which
the data of each user is generated. This rigorously proves that
the quantization distortion can be made arbitrarily small when
a sufficient number of users contribute to the overall model.
Then, we study the convergence of stochastic gradient descent
(SGD)-based federated averaging with UVeQFed in a statisti-
cally heterogeneous setup, where the training available at each
user obeys a different distribution, as is commonly the case
in FL [7], [9]. We prove that for strongly convex and smooth
objectives, the expected distance between the resulting FL per-
formance and the optimal one asymptotically decays as one over
the number of iterations, which is the same order of convergence
reported for FL without communication constraints in hetero-
geneous setups [25]. Finally, we show that these theoretical
gains translate into FL performance gains in a numerical study.
We demonstrate that FL with UVeQFed yields more accurate
global models and faster convergence compared to previously
proposed quantization approaches for such setups when operat-
ing under tight bit constraints of two and four bits per sample,
considering synthetic data as well as the MNIST and CIFAR-10
data sets.

The rest of this paper is organized as follows: Section II
presents the system model and identifies the requirements of
FL quantization. Section III details the proposed quantization

system, and Section IV theoretically anaylzes its performance.
Experimental results are presented in Section V. Section VI
concludes the paper. Proofs of the results stated in the paper
are detailed in the Appendix.

Throughout the paper, we use boldface lower-case letters for
vectors, e.g., x; Matrices are denoted with boldface upper-case
letters, e.g., M , where In is the n× n identity matrix; calli-
graphic letters, such as X , are used for sets. The �2 norm and
stochastic expectation are written as ‖ · ‖ andE{·}, respectively.
Finally, R and Z are the sets of real numbers and integers,
respectively.

II. SYSTEM MODEL

In this section we detail the considered setup of FL with
bit-constrained model updates. To that aim, we first review the
conventional FL setup in Section II-A. Then, in Section II-B, we
formulate the problem and identify the unique requirements of
quantizers utilized in FL systems.

A. Federated Learning

We consider the conventional FL framework proposed in [5].
Here, a centralized server is training a model consisting of m
parameters based on labeled samples available at a set of K
remote users, in order to minimize some loss function �(·; ·).
Letting {x(k)

i ,y
(k)
i }nk

i=1 be the set ofnk labeled training samples
available at the kth user, k ∈ {1, . . . ,K} � K, FL aims at
recovering the m× 1 weights vector wo satisfying

wo = argmin
w

{
F (w) �

K∑
k=1

αkFk(w)

}
. (1)

Here, the weighting average coefficients {αk} are non-negative
satisfying

∑
αk = 1, and the local objective functions are de-

fined as the empirical average over the corresponding training
set, i.e.,

Fk(w) ≡ Fk

(
w; {x(k)

i ,y
(k)
i }nk

i=1

)

� 1

nk

nk∑
i=1

�
(
w; (x

(k)
i ,y

(k)
i )
)
.

Federated averaging [5] aims at recovering wo using iterative
subsequent updates. In each update of time instance t, the server
shares its current model, represented by the vector wt ∈ Rm,
with the users. The kth user, k ∈ K, uses its set of nk labeled
training samples to retrain the model wt over τ time instances
into an updated model w̃(k)

t+τ ∈ Rm.
Having updated the model weights, the kth user should con-

vey its model update, denoted as h
(k)
t+τ � w̃

(k)
t+τ −wt, to the

server. Since uploading throughput is typically more limited
compared to its downloading counterpart [26], the kth user
needs to communicate a finite-bit quantized representation of
its model update. Quantization consists of encoding the model
update into a set of bits, and decoding each bit combination into
a recovered model update [27]. The kth model update h

(k)
t+τ is

therefore encoded into a digital codeword of Rk bits denoted
as u(k)t ∈ {0, . . . , 2Rk − 1} � Uk, using an encoding function
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Fig. 1. Federated learning with bit rate constraints.

whose input is h(k)
t+τ , i.e.,

e
(k)
t+τ : Rm �→ Uk. (2)

The uplink channel is modeled as a bit-constrained link,
as commonly assumed in the FL literature [12]–[21]. In such
channels, each Rk bit codeword is recovered by the server
without errors, representing, e.g., coded communications at rates
below the channel capacity, where arbitrarily small error rates
can be guaranteed by proper channel coding. The server uses
the received codewords {u(k)t+τ}Kk=1 to reconstruct ĥt+τ ∈ Rm,
obtained via a joint decoding function

dt+τ : U1 × . . .× UK �→ Rm. (3)

The recovered ĥt+τ is an estimate of the weighted average∑K
k=1 αkh

(k)
t+τ . Finally, the global model wt+τ is updated via

wt+τ = wt + ĥt+τ . (4)

An illustration of this FL procedure is depicted in Fig. 1. Clearly,
if the number of allowed bits is sufficiently large, the distance
‖ĥt+τ −

∑K
k=1 αkh

(k)
t+τ‖2 can be made arbitrarily small, allow-

ing the server to update the global model as the desired weighted
average, denoted wdes

t+τ , via:

wdes
t+τ =

K∑
k=1

αkw̃
(k)
t+τ . (5)

In the presence of a limited bit budget, i.e., small values of
{Rk}, distortion is induced which can severely degrade the abil-
ity of the server to update its model. To tackle this issue, various
methods have been proposed for quantizing the model updates,
commonly based on sparsification or probabilistic scalar quan-
tization. These approaches are suboptimal from a quantization
theory perspective, namely, the gap between the distortion they
achieve in quantizing a signal using a given number of bit and
the most accurate achievable finite-bit representation, dictated
by rate-distortion theory, can be further reduced by, e.g., using
vector quantization [22, Ch. 23]. This motivates the study of
efficient and practical quantization methods for FL.

B. Problem Formulation

Our goal is to propose an encoding-decoding system which
mitigates the effect of quantization errors on the ability of the
server to accurately recover the updated model (5). To faithfully
represent the FL setup, we design our quantization strategy in
light of the following requirements and assumptions:

A1 All users share the same encoding function, denoted as
e
(k)
t (·) = et(·) for each k ∈ K. This requirement, which

was also considered in [12], significantly simplifies FL
implementation.

A2 a-priori knowledge or distribution of h(k)
t+τ is assumed.

A3 As in [12], the users and the server share a source of
common randomness. This is achieved by, e.g., letting the
server share with each user a random seed along with the
weights. Once a different seed is conveyed to each user,
it can be used to obtain a dedicated source of common
randomness shared by server and each of the users for the
entire FL procedure.

Requirement A2 gives rise to the need for a universal quan-
tization approach, namely, a scheme which operates reliably
regardless of the distribution of the model updates and without its
prior knowledge. In light of the above requirements, we propose
UVeQFed in the following section.

III. UVEQFED

We now propose UVeQFed, which conveys the model updates
{h(k)

t+τ} from the users to the server over the rate-constrained
channel using a universal quantization method. Specifically, the
scheme encodes each model update using subtractive dithered
lattice quantization [23], which operates in the same manner
for each user, satisfying A1. UVeQFed allows the server to
recover the updates with small average error regardless of the
distribution of {h(k)

t+τ}, as required in A2, by exploiting the
source of common randomness assumed in A3. In addition to its
compliance with the model requirements stated in Section II-B,
the proposed approach is particularly suitable for FL, as the
distortion is mitigated by federated averaging, as we prove in
Section IV. This significantly improves the overall FL capabil-
ities, as numerically demonstrated in Section V. The proposed
quantization method is detailed in Section III-A, followed by a
discussion in Section III-B.

A. Quantization Scheme

Here, we present the encoding and decoding functions,
et+τ (·) and dt+τ (·). Following requirement A1, we utilize uni-
versal vector quantization, i.e., a quantization scheme which
maps each set of continuous-amplitude values into a discrete
representation in a manner which is ignorant of the underlying
distribution. Common universal quantization methods are based
on selection from an ensemble of source codes [28], or alterna-
tively, on subtractive dithering [23], [29]–[33], where the latter
is simpler to implement being based on adding dither, i.e., noise,
to the discretized quantity, but requires knowledge of the dither
as it is subtracted from the discrete quantity when parsing the
quantized value. The source of common randomness assumed
in A3 implies that the server and the users can generate the
same realizations of a dither signal. We thus design UVeQFed
based on dithered vector quantization, and particularly, on lattice
quantization, detailed in the following.

Let L be a fixed positive integer, referred to henceforth as the
lattice dimension, and a let G be a non-singular L× L matrix,
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which denotes the lattice generator matrix. For simplicity, we
assume that M � m

L is an integer, where m is the number of
model parameters, although the scheme can also be applied when
this does not hold by replacing M with �M�. Next, we use L
to denote the lattice, which is the set of points in RL that can
be written as an integer linear combination of the columns of
G, i.e., the set of all points x ∈ RL which can be written as Gl
with l having integer entries:

L � {x = Gl : l ∈ ZL}. (6)

A lattice quantizer QL(·) maps each x ∈ RL to its nearest
lattice point, i.e., QL(x) = lx where lx ∈ L if ‖x− lx‖ ≤
‖x− l‖ for every l ∈ L. Finally, let P0 be the basic lattice
cell [24], i.e., the set of points x ∈ RL which are closer to 0
than to any other lattice point:

P0 � {x ∈ RL : ‖x‖ < ‖x− p‖, ∀p ∈ L/{0}}. (7)

As P0 represents the set of points which are closer to the origin
than to any other lattice point, its shape depends on the lattice
L, and in particular on the generator matrix G. For instance,
when G = Δ · IL for some Δ > 0, then L is the square lattice,
for which P0 is the set of vectors x ∈ RL whose �∞ norm is
not larger than Δ

2 . In the two-dimensional case, such a generator
matrix results in P0 being a square centered at the origin. For
this setting, QL(·) implements entry-wise scalar uniform quan-
tization with spacing Δ [22, Ch. 23]. In general, the basic cell
can take different shapes, such as hexagons for two-dimensional
hexagonal lattices.

Using the above definitions in lattice quantization, we now
present the encoding and decoding procedures of UVeQFed,
which are based on subtractive dithered lattice quantization:

Encoder: The proposed encoding function et+τ (·) imple-
ments dithered lattice quantization in four stages. It first nor-
malizes the model updates and partitions it into sub-vectors of
the lattice dimension, where the normalization is used to prevent
overloading the finite lattice. Then, each vector is dithered
before it is quantized to result in a distortion term which is
not deterministically determined by the model updates, and
is thus reduced by averaging. The quantized representation is
compressed in lossless manner using entropy coding to further
reduce its volume without inducing additional distortion. These
steps are detailed in the following:

E1 Normalize and partition: The kth user scales h(k)
t+τ by

ζ‖h(k)
t+τ‖ for some ζ > 0, and divides the result into M

distinct L× 1 vectors, denoted {h̄(k)
i }Mi=1. The scalar

quantity ζ‖h(k)
t+τ‖ is quantized separately from {h̄(k)

i }Mi=1

using some fine-resolution quantizer.
E2 Dithering: The encoder utilizes the source of common

randomness, e.g., a shared seed, to generate the set of
L× 1 dither vectors {z(k)

i }Mi=1, which are randomized in

an i.i.d. fashion, independently of h(k)
t+τ , from a uniform

distribution over P0.
E3 Quantization: The vectors {h̄(k)

i }Mi=1 are discretized by
adding the dither vectors and applying lattice quantiza-

tion, i.e., by computing {QL(h̄
(k)
i + z

(k)
i )}.

Fig. 2. Subtractive dithered lattice quantization illustration.

E4 Entropy coding: The discrete values {QL(h̄
(k)
i + z

(k)
i )}

are encoded into a digital codeword u(k)t+τ in a lossless
manner.

In order to utilize entropy coding in step E4, the discretized

{QL(h̄
(k)
i + z

(k)
i )} must take values on a finite set. This is

achieved by the normalization in Step E1, which guarantees

that {h̄(k)
i }Mi=1 all reside inside the L-dimensional ball with

radius ζ−1, in which the number of lattice points is not larger
than πL/2

ζLΓ(1+L/2)det(G)
[34, Ch. 2], where Γ(·) is the Gamma

function. The overhead in accurately quantizing the single scalar
quantity ζ‖h(k)‖ is typically negligible compared to the number

of bits required to convey the set of vectors {h̄(k)
i }Mi=1, hardly

affecting the overall quantization rate.
Decoder: The decoding mapping dt+τ (·) is comprised of

four stages. The purpose of the first three steps is to invert the
encoding procedure by decoding the lossless entropy code used
in E4, subtracting the dither added in E2, and reforming the full
model update vector from the partitioned sub-vectors generated
in E1. The final stage uses the recovered model update to
compute the aggregated global model. These stages are detailed
in the following:

D1 Entropy decoding: The server first decodes each digi-

tal codeword u(k)t+τ into the discrete value {QL(h̄
(k)
i +

z
(k)
i )}. Since the encoding is carried out using a lossless

source code, the discrete values are recovered without
any errors.

D2 Dither subtraction: Using the source of common ran-
domness, the server generates the dither vectors {z(k)

i },
which can be carried out rapidly and at low complexity
using random number generators as the dither vectors
obey a uniform distribution. The server then subtracts
the corresponding vector from each lattice point, i.e.,

compute {QL(h̄
(k)
i + z

(k)
i )− z

(k)
i }. An illustration of

the subtractive dithered lattice quantization procedure is
illustrated in Fig. 2.

D3 Collecting and scaling: The values {QL(h
(k)
i + z

(k)
i )−

z
(k)
i } are collected into an m× 1 vector ĥ

(k)

t+τ using the
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Fig. 3. UVeQFed encoding-decoding block diagram.

inverse operation of the partitioning and normalization in
Step E1.

D4 Model recovery: The recovered matrices are combined
into an updated model based on (4). Namely,

wt+τ = wt +
K∑

k=1

αkĥ
(k)

t+τ . (8)

A block diagram of the proposed scheme is depicted in Fig. 3.
The usage of subtractive dithered lattice quantization in Steps
E2–E3 and D2 allow obtaining a digital representation which
is relatively close to the true quantity, as illustrated in Fig. 2,
without relying on prior knowledge of its distribution. The joint
decoding aspect of the proposed scheme is introduced in the final
model recovery Step D4. The remaining encoding-decoding
procedure, i.e., Steps E1–D3 is carried out independently for
each user.

B. Discussion

UVeQFed has several clear advantages. While it is based on
information theoretic arguments, the resulting architecture is
rather simple to implement. Both subtractive dithered quanti-
zation as well as entropy coding are concrete and established
methods which can be realized with relatively low complexity
and feasible hardware requirements. In particular, the main
novel aspect of UVeQFed, i.e., the usage of subtractive dithered
lattice quantization, first requires generating the dither signal via,
e.g., the methods discussed in [35] for randomizing uniformly
distributed random vectors. Then, the encoder carries out lattice
projection of each sub-vector which, for finite and small L as
used in the numerical study in Section V, involves a complexity
term which only grows linearly with the number of parameters
m. This resulting additional complexity is of the same order
as previous quantized FL strategies, e.g., QSGD [17] which
also uses entropy coding, and is typically dominated by the
computational burden involved in training a deep model with
m parameters. The source of common randomness needed for
generating the dither vectors can be obtained by sharing a com-
mon seed between the server and users, as also assumed in [12].
The statistical characterization of the quantization error of such
quantizers does not depend on the distribution of the model
updates. This analytical tractability allows us to rigorously show

that its combination with federated averaging mitigates the
quantization error in Section IV. A similar approach was also
used in the analysis of probabilistic quantization schemes for
average consensus problems [36].

As the updates under the considered system model are quan-
tized for a specific task, i.e., to obtain the global model by
averaging, FL with bit constraints can be treated as a task-based
quantization scenario [37]–[40]. In UVeQFed, this task is ac-
counted for in the selection of the quantization scheme, using
one for which the distortion vanishes by averaging regardless
of the values of {h(k)}. In addition, UVeQFed is derived based
on modeling the uplink channel as a bit-limited pipeline. While
this model is widely adopted in the FL literature, it may not
accurately reflect the true nature of wireless communication
channels, being a noisy and shared media. This property of
wireless communications is known to affect the design of deep
learning systems operating over such channels [41]–[47]. Tradi-
tionally, transmitted bit streams such as the codewords produced
by UVeQFed are protected using a separate channel code for
mitigating the errors induced by the noisy channel. Alterna-
tively, one can also consider extending UVeQFed to directly
map the model updates into a channel codeword as a form of
task-based joint source channel coding. We leave this extension
of UVeQFed for future work.

The encoding Steps E1–E3 can be viewed as a generalization
of probabilistic scalar quantizers, used in, e.g., QSGD [17].
When the lattice dimension is L = 1 and ζ = 1, Steps E1–E3
implement the same encoding as QSGD. However, the decoder
is not the same as in QSGD due to the dither subtraction in
Step D2, which is known to reduce the distortion and yield
an error term that does not depend on the model updates [30].
Furthermore, UVeQFed allows using vector quantizers, i.e., set-
ting L > 1, which is known to further improve the quantization
accuracy [24]. Specifically, the usage of vector quantizers allows
UVeQFed to combine dimensionality reduction methods with
quantization schemes by jointly mapping sets of samples into
discrete representations. The gains of subtracting the dither at the
decoder and of using vector quantizers over scalar ones are nu-
merically demonstrated in our experimental study in Section V.

The usage of lossless source coding in Steps E4 and D1 allows
exploiting the typically non-uniform distribution of the quantizer
outputs. A similar approach was also used in QSGD [17],
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where Elias codes were utilized. Since Steps E4 and D1 involve
multiple encoders and a single decoder, improved compres-
sion can be achieved by utilizing distributed source coding
methods, e.g., Slepian-Wolf coding [48, Ch. 15.4]. In such
cases, the server decodes the received codewords {u(k)t+τ} into

{QL(h̄
(k)
i + z

(k)
i )} in a joint manner, instead of decoding each

QL(h̄
(k)
i + z

(k)
i ) from its corresponding u(k)t+τ separately. Sim-

ilarly, the distributed nature of FL can be exploited to optimize
the reconstruction fideitly for a given bit budget using Wyner-Ziv
coding [49]. However, such distributed coding schemes typically

require a-priori knowledge of the joint distribution of {h̄(k)
i },

and utilize different encoding mappings for each user, thus not
meeting requirements A1-A2.

Finally, we note that the FL performance is affected by the
selection of the lattice L and the coefficient ζ. In general,
lattices of higher dimensions typically result in more accurate
representations, at the cost of increased complexity. Methods
for designing the lattice generator matrix G can be found
in [50]. The coefficient ζ should be set to allow the usage of
a limited number of lattice points, which is translated into less
bits, without concentrating the resulting vectors such that they
become indistinguishable after quantization. For example, using
ζ = 1 results in most quantized values mapped to zero, as also
observed in [17]. A reasonable setting is ζ = 3 1√

M
, resulting

in ζ‖h(k)‖ approaching 3 times the standard deviation of the
quantized vectors when they are zero-mean and i.i.d., and thus
assuring that they reside inside the unit L-ball with probability
of over 88% by Chebyshev’s inequality [51].

IV. PERFORMANCE ANALYSIS

Next, we analyze the performance of UVeQFed, character-
izing its distortion and studying its convergence properties.
We consider the conventional local SGD training method, de-
tailed in Section IV-A, and characterize the resulting distor-
tion of UVeQFed and the convergence of the global model in
Sections IV-B-IV-C, respectively.

A. Local SGD

Local SGD is arguably the most common training method
used for federated averaging [52]. Here, each user updates the
weights using τ SGD iterations before sending the updated
model to the server for aggregation. Let ε(k)t denote the error
induced in quantizing the model update h

(k)
t , and let i(k)t be

the sample index chosen uniformly from the local data of the
kth user at time t. By defining the gradient computed at a single
sample of index i as∇F i

k(w̃) � ∇Fk(w̃; (x
(k)
i ,y

(k)
i )), the local

weights at the kth user, denoted w̃
(k)
t , are updated via:

w̃
(k)
t+1=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃
(k)
t −ηt∇F i

(k)
t

k

(
w̃

(k)
t

)
, t+ 1 /∈ Tτ ,∑K

k′=1 αk′

(
w̃

(k′)
t −ηt∇F i

(k′)
t

k′

(
w̃

(k′)
t

)
+ε

(k′)
t+1

)
, t+ 1 ∈ Tτ ,

(9)

where ηt is the learning rate at time instance t, and Tτ is the set
of positive integer multiples of τ .

We focus on the case in which the users compute a single
stochastic gradient in each time instance. Hence, the perfor-
mance in terms of convergence rate can be further improved
by using mini-batches [52], i.e., replacing the random index i(k)t

with a set of random indices. The fact that the model updates
are quantized when conveyed to the server is encapsulated in the
per-user model update quantization error ε(k)t .

B. Quantization Error Bound

The need to represent the model updates h(k)
t+τ using a finite

number of bits inherently induces some distortion, i.e., the recov-

ered vector is ĥ
(k)

t+τ = h
(k)
t+τ + ε

(k)
t+τ . The error in representing

ζ‖h(k)
t+τ‖ is assumed to be negligible. For example, the normal-

ized quantization error is of the order of 10−7 for 12 b quanti-
zation of a scalar value, and decreases exponentially with each
additional bit [22, Ch. 23]. Letting σ̄2

L be the normalized second
order lattice moment, defined as σ̄2

L �
∫
P0

‖x‖2dx/
∫
P0
dx [53],

the moments of the quantization error satisfy the following:
Theorem 1: The quantization error vector ε(k)t+τ has zero-mean

entries and satisfies

E
{∥∥ε(k)t+τ

∥∥2∣∣h(k)
t+τ

}
= ζ2‖h(k)

t+τ‖2Mσ̄2
L. (10)

Proof: See Appendix A.
Theorem 1 characterizes the distortion in quantizing the

model updates using UVeQFed. Unlike the corresponding char-
acterization of previous quantizers used in FL which obtained
an upper bound on the quantization error, e.g., [17, Lem. 1], the
dependence of the expected error norm on the number of bits is
not explicit in (10), but rather encapsulated in the lattice moment
σ̄2
L. To observe that (10) indeed represents lower distortion

compared to previous FL quantization schemes, we note that
even when scalar quantizers are used, i.e.,L = 1 for which 1

L σ̄
2
L

is known to be largest [53], the resulting quantization is reduced
by a factor of 2 compared to conventional probabilistic scalar
quantizers, such as QSGD, due to the subtraction of the dither
upon decoding in Step D2 [30, Thms. 1-2].

The model updates are recovered in order to update the global
model via wt+τ =

∑
αkw̃

(k)
t+τ at the server. We next show that

the statistical characterization of the distortion in Theorem 1
contributes to the accuracy in recovering the desired wdes

t+τ (5)
viawt+τ . To that aim, we introduce the following assumption on
the stochastic gradients, which is often employed in distributed
learning studies [25], [52], [54]:

AS1 The expected squared �2 norm of the random vector
∇F i

k(w), representing the stochastic gradient evaluated
at w, is bounded by some ξ2k > 0 for all w ∈ Rm.

We can now bound the distance between the desired model
wdes

t+τ and the recovered one wt+τ , as stated in the following
theorem:
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Theorem 2: When AS1 holds, the mean-squared distance
between wt+τ and wdes

t+τ satisfies

E
{∥∥wt+τ−wdes

t+τ

∥∥2}≤Mζ2σ̄2
Lτ

(
t+τ−1∑
t′=t

η2t′

)
K∑

k=1

α2
kξ

2
k. (11)

Proof: See Appendix B.
Theorem 2 implies that the recovered model can be made arbi-

trarily close to the desired one by increasingK, namely, the num-
ber of users. For example, when αk = 1/K, i.e., conventional
averaging, it follows from Theorem 2 that the mean-squared
error in the weights decreases as 1/K. In particular, if maxk αk

decreases with K, which essentially means that the updated
model is not based only on a small part of the participating
users, then the distortion vanishes in the aggregation process.
Furthermore, when the step size ηt gradually decreases, which
is known to contribute to the convergence of FL [25], it follows
from Theorem 2 that the distortion decreases accordingly, further
mitigating its effect as the FL iterations progress. As shown in
Appendix B, the bound in (11) is obtained by exploiting the
mutual independence of the subtractive dithered quantization
error and the quantized value. Hence, our ability to rigorously
upper bound the distance in Theorem 2 is a direct consequence
of this universal method.

C. FL Convergence Analysis

We next study the convergence of FL with UVeQFed. Our
analysis is carried out under the following assumptions, com-
monly used in FL convergence studies [25], [52]:

AS2 The local objective functions {Fk(·)} are all ρs-smooth,
namely, for all v1,v2 ∈ Rm it holds that

Fk(v1)− Fk(v2) ≤ (v1 − v2)
T∇Fk(v2)

+
1

2
ρs‖v1 − v2‖2.

AS3 The local objective functions {Fk(·)} are all ρc-strongly
convex, namely, for all v1,v2 ∈ Rm it holds that

Fk(v1)− Fk(v2) ≥ (v1 − v2)
T∇Fk(v2)

+
1

2
ρc‖v1 − v2‖2.

Assumptions AS1–AS2 are commonly used in FL convergence
studies [25], [52], and hold for a broad range of objective
functions used in FL systems, including �2-norm regularized
linear regression and logistic regression [25].

We do not restrict the labeled data of each of the users to
be generated from an identical distribution, i.e., we consider a
statistically heterogeneous scenario, thus faithfully representing
FL setups [7], [9]. Such heterogeneity is in line with assumption
A2, which does not impose any specific distribution structure on
the underlying statistics of the training data. Following [25], we
define the heterogeneity gap,

ψ � F (wo)−
K∑

k=1

αk min
w

Fk(w). (12)

The value of ψ quantifies the degree of heterogeneity. If the
training data originates from the same distribution, then ψ tends
to zero as the training size grows. However, for heterogeneous
data, its value is positive. The convergence of UVeQFed with
federated averaging is characterized in the following theorem:

Theorem 3: Set γ = τ max(1, 4ρs/ρc) and consider a UVe-
QFed setup satisfying AS1–AS3. Under this setting, local SGD
with step size ηt = τ

ρc(t+γ) for each t ∈ N satisfies

E{F (wt)} − F (wo)

≤ ρs
2(t+ γ)

max

(
ρ2c + τ2b

τρc
, γ‖w0 −wo‖2

)
, (13)

where

b �
(
1 + 4Mζ2σ̄2

Lτ
2
) K∑
k=1

α2
kξ

2
k

+ 6ρsψ + 8(τ − 1)2
K∑

k=1

αkξ
2
k.

Proof: See Appendix C.
Theorem 3 implies that UVeQFed with local SGD, i.e., con-

ventional federated averaging, converges at a rate of O(1/t).
The physical meaning of this asymptotic convergence rate is
that as the number of iterations t progresses, the learned model
converges to the optimal one with a difference decaying as 1/t.
Specifically, the difference between the objective of the model
learned in a federated manner and the optimal objective decays
to zero at least as quickly as 1/t (up to some constant). This
is the same order of convergence as FL without quantization
constraints for i.i.d. [52] as well as heterogeneous data [25],
[55]. Nonetheless, it is noted that the need to quantize the model
updates yield an additive term in the coefficient b which grows
with the number of parameter via M . This term adds to the
linear dependence of b on the bound on the gradients norm
ξ2, which is expected to grow with the number of parameters,
and also appears in the corresponding bounds for local SGD
without quantization constraints. This implies that FL typically
converges slower for larger models, i.e., the larger the dimen-
sionality of the model updates which have to be quantized. A
similar order of convergence was also reported for previous
probabilistic quantization schemes which typically considered
i.i.d. data, e.g., [17, Thm. 3.4].

While it is difficult to identify the convergence gains of UVe-
QFed over previously proposed FL quantizers, such as QSGD,
by comparing Theorem 3 to their corresponding convergence
bounds, in Section V we empirically demonstrate that UVeQFed
converges to more accurate global models compared to FL
with probabilistic scalar quantizers, when trained using i.i.d. as
well as heterogeneous data sets. Additionally, we note that the
communication load on the uplink channel induced by UVeQFed
can be further reduced by allowing only part of the nodes to
participate in each set of iterations [10], [19]. We leave the
analysis of UVeQFed with partial node participation for future
work.

Authorized licensed use limited to: Weizmann Institute of Science. Downloaded on January 24,2021 at 08:15:31 UTC from IEEE Xplore.  Restrictions apply. 



SHLEZINGER et al.: UVEQFED: UNIVERSAL VECTOR QUANTIZATION FOR FEDERATED LEARNING 507

Fig. 4. Quantization distortion, i.i.d. data.

V. NUMERICAL EVALUATIONS

In this section we numerically evaluate UVeQFed. We first
compare the quantization error induced by UVeQFed to compet-
ing methods utilized in FL in Section V-A. Then, we numerically
demonstrate how the reduced distortion is translated in FL
performance gains using both MNIST and CIFAR-10 data sets.1

in Section V-B.

A. Quantization Error

We begin by focusing only on the compression method,
studying its accuracy using synthetic data. We evaluate the
distortion induced in quantization of UVeQFed operating with
a two-dimensional hexagonial lattice, i.e., L = 2 and G =
[2, 0; 1, 1/

√
3] [33], as well as with scalar quantizers, namely,

L = 1 and G = 1. The normalization coefficient is set to ζ =
2+R/5√

M
. As discussed in Subsection III-B, decreasing ζ results

in higher overload probability, i.e., having more quantized sub-
vectors lying outside the unit L-ball. Consequently, the setting
used here results in having the quantized sub-vectors being
spread in a more uniform manner inside the unit ball at lower
quantization rates, where the lattice points are more distant
from one another compared to higher quantization rates, at
the cost of increased overload probability, thus balancing the
overall distortion. The distortion of UVeQFed is compared to
QSGD [17], as well as to uniform quantizers with random
unitary rotation [12], and to subsampling by random masks
followed by uniform three-bit quantizers [12], all operating with
the same quantization rate, i.e., the same overall number of bits.

Let H be a 128× 128 matrix with Gaussian i.i.d. entries,
and let Σ be a 128× 128 matrix whose entries are given by
(Σ)i,j = e−0.2|i−j|, representing an exponentially decaying cor-
relation. In Figs. 4-5 we depict the per-entry squared-error in
quantizing H and ΣHΣT , representing independent and cor-
related data, respectively, versus the quantization rateR, defined
as the ratio of the number of bits to the number of entries of H .

1The source code used in the numerical evaluations detailed in this section is
available online at https://github.com/mzchen0/UVeQFed

Fig. 5. Quantization distortion, correlated data.

TABLE I
MAIN SIMULATION PARAMETERS

The distortion is averaged over 100 independent realizations of
H . To meet the bit rate constraint when using lattice quantizers
we scaled G such that the resulting codewords use less than
1282R bits. For the scalar quantizers and subsampling-based
scheme, the rate determines the quantization resolution and the
subsampling ratio, respectively.

We observe in Figs. 4-5 that UVeQFed achieves a more
accurate digital representation compared to previously proposed
methods. It is also observed that UVeQFed with vector quanti-
zation, outperforms its scalar counterpart, and that the gain is
more notable when the quantized entries are correlated. This
demonstrates the improved accuracy of jointly encoding mul-
tiple samples via vector quantization as well as its ability to
exploit statistical correlation in a universal manner by using
fixed lattice-based quantization regions which do not depend
on the underlying distribution.

B. FL Convergence

Next, we demonstrate that the reduced distortion of UVeQFed
also translates into FL performance gains. To that aim, we
evaluate its application for training neural networks using the
MNIST and CIFAR-10 data sets, and compare its performance to
that achievable using previous quantization methods for FL. The
simulation settings are detailed below, with the main parameters
summarized in Table I.
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Fig. 6. Convergence profile, MNIST, R = 2, K = 100.

Fig. 7. Convergence profile, MNIST, R = 4, K = 100.

We first compare the accuracy of models trained using UVe-
QFed to those obtained using federated averaging combined
with the quantization methods considered in Subsection V-A,
i.e., QSGD [17] and the schemes proposed in [12] of uniform
quantizers with random rotation as well as random subsampling
followed by three-bit uniform quantizers. To that aim, we train
a fully-connected network with a single hidden layer of 50
neurons and an intermediate sigmoid activation for detecting
handwritten digits based on the MNIST data set. Training is
carried out usingK = 100 users, each has access to 500 training
samples distributed in an i.i.d. fashion, such that each user has
an identical number of images from each label. The users update
their weights using gradient descent, where federated averaging
is carried out on each iteration. The resulting accuracy versus the
number of iterations of these quantized FL schemes compared to
federated averaging without quantization is depicted in Figs. 6-7
for quantization rates R = 2 and R = 4, respectively.

Observing Figs. 6-7, we note that UVeQFed with vector quan-
tization, i.e.,L = 2, achieves the most rapid and accurate conver-
gence among all considered schemes. In particular, for R = 4,
UVeQFed with L = 2 achieves a convergence profile within

Fig. 8. Convergence profile, MNIST, R = 2, K = 15.

a minor gap from federated averaging without quantization
constraints. Among the previous schemes, QSGD demonstrates
steady accuracy improvements, though it is still outperformed
by UVeQFed with L = 1, indicating that the reduced distor-
tion achieved by using subtractive dithering is translated into
improved trained models. The quantization methods proposed
in [12] result in notable variations in the trained model accuracy
and in slower convergence due to their increased error induced
in quantization, as noted in Subsection V-A.

We next evaluate UVeQFed for both heterogeneous as well
as i.i.d. distributions of the training data. Based on the results
observed in Figs. 6–7 and to avoid cluttering, we compare
UVeQFed only to QSGD and to the accuracy achieved using
federated averaging without quantization. Here, we train neural
classifiers for both the MNIST and the CIFAR-10 data sets,
where for each data set we use both heterogeneous and i.i.d.
division of the data.

For MNIST, we again use a fully-connected network with a
single hidden layer of 50 neurons and an intermediate sigmoid
activation with gradient descent optimization. Each of the K =
15 users has 1000 training samples. We consider the case where
the samples are distributed sequentially among the users, i.e.,
the first user has the first 1000 samples in the data set, and so
on, resulting in an uneven heterogeneous division of the labels
of the users. We also train using an i.i.d. data division, where the
labels are uniformly distributed among the users. The resulting
accuracy versus the number of iterations is depicted in Figs. 8-9
for quantization rates R = 2 and R = 4, respectively.

For CIFAR-10, we train the deep convolutional neural net-
work architecture used in [56], whose trainable parameters
constitute three convolution layers and two fully-connected
layers. Here, we consider two methods for distributing the 50000
training images of CIFAR-10 among the K = 10 users: An
i.i.d. division, where each user has the same number samples
from each of the 10 labels, and a heterogeneous division, in
which at least 25% of the samples of each user correspond
to a single distinct label. Each user completes a single epoch
of SGD with mini-batch size 60 before the models are aggre-
gated. The resulting accuracy versus the number of epochs is
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Fig. 9. Convergence profile, MNIST, R = 4, K = 15.

Fig. 10. Convergence profile, CIFAR-10, R = 2.

depicted in Figs. 10–11 for quantization ratesR = 2 andR = 4,
respectively.

We observe in Figs. 8–11 that UVeQFed with vector quantizer,
i.e.,L = 2, results in convergence to the most accurate model for
all the considered scenarios. In fact, when training a deep convo-
lutional network, for which the loss surface is extremely complex
and non-convex, we observe in Figs. 10-11 that UVeQFed with
L = 2 trained using i.i.d. data achieves improved accuracy over
federated averaging without quantization. This follows from
the fact that the stochastic nature of the quantization error in
UVeQFed results in its implementing a noisy variant of local
SGD, which is known to be capable of boosting convergence
and avoid local minimas when training deep neural networks
with non-convex loss surfaces [57], as also observed in [42].

The observed gains are more dominant for R = 2, implying
that the usage of UVeQFed with multi-dimensional lattices can
notably improve the performance over low rate channels. Partic-
ularly, we observe in Figs. 8-11 that similar gains of UVeQFed
are noted for both i.i.d. as well as heterogeneous setups, while
the heterogeneous division of the data degrades the accuracy
of all considered schemes compared to the i.i.d division. It is

Fig. 11. Convergence profile, CIFAR-10, R = 4.

also observed that UVeQFed with scalar quantizers, i.e., L = 1,
achieves improved convergence compared to QSGD for most
considered setups, which stems from its reduced distortion.

The results presented in this section demonstrate that the
theoretical benefits of UVeQFed, which rigorously hold under
AS1–AS2, translate into improved convergence when operating
under rate constraints with non-synthetic data.

VI. CONCLUSION

In this work we have proposed UVeQFed, which utilizes
universal vector quantization methods to mitigate the effect of
limited communication in FL. We first identified the specific
requirements from quantization schemes used in FL setups.
Then, we proposed an encoding-decoding strategy based on
dithered lattice quantization. We analyzed UVeQFed, proving
that its error term is mitigated by federated averaging. We also
characterized its convergence profile, showing that its asymp-
totic decay rate is the same an unquantized local SGD. Our
numerical study demonstrates that UVeQFed allows achieving
more accurate recovery of model updates in each FL iteration
compared to previously proposed schemes for the same number
of bits, and that its reduced distortion is translated into improved
convergence with the non-synthetic MNIST and CIFAR-10 data
sets.

APPENDIX

A. Proof of Theorem 1

To prove the theorem, we note that by decoding step D3,
the error vector ε

(k)
t+τ scaled by ζ‖h(k)

t+τ‖, consists of M vec-

tors {ε̄(k)i }. Each ε̄
(k)
i is an L× 1 vector representing the

ith subtractive dithered quantization error, defined as ε̄
(k)
i �

QL(h̄
(k)
i + z

(k)
i )− z

(k)
i − h̄

(k)
i . The fact that we have used

subtractive dithered quantization via encoding steps E2–E3 and
decoding step D2, implies that, regardless of the statistical model

of {h̄(k)
i }, the quantization error vectors {ε̄(k)i } are zero-mean,

i.i.d (over both i and k), and uniformly distributed over P0 [24].
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Consequently,

E

{∥∥∥ε(k)t+τ

∥∥∥2 ∣∣h(k)
t+τ

}
= ζ2‖h(k)

t+τ‖2
M∑
i=1

E

{∥∥∥ε̄(k)i

∥∥∥2}

= ζ2‖h(k)
t+τ‖2Mσ̄2

L,

thus proving the theorem. �

B. Proof of Theorem 2

To prove the the theorem, we first express the the updated
global model using as a sum of the desired global model and
the quantization noise. Then, we show that the distance between
wt+τ and wdes

t+τ can be bounded via (11) due to the statistical
properties of subtractive dithered quantization error [24]. To
formulate this distance between wt+τ and the desired wdes

t+τ ,
we use {w̄t,i}Mi=1, {w̄t+τ,i}Mi=1, and {w̄des

t+τ,i}Mi=1 to denote the
partitions ofwt,wt+τ , andwdes

t+τ intoM distinctL× 1 vectors,
as done in Step E1. To formulate this distance, we use {w̄t,i}Mi=1

to denote the partition of wt into M distinct L× 1 vectors via
step E1, similarly to the definitions of {w̄t+τ,i} and {w̄des

t+τ,i}.
From the decoding and model recovery steps D3–D4 it fol-

lows that

w̄t+τ,i = w̄t,i +

K∑
k=1

αkζ‖h(k)
t+τ‖

(
QL(h̄

(k)
i + z

(k)
i )− z

(k)
i

)

= w̄t,i +

K∑
k=1

αkζ‖h(k)
t+τ‖h̄

(k)
i

+

K∑
k=1

αkζ‖h(k)
t+τ‖ε̄

(k)
i , (B.1)

where ε̄
(k)
i is the subtractive dithered quantization error, de-

fined in Appendix A. Now, since h
(k)
t+τ = w̃

(k)
t+τ −wt com-

bined with (5) and the fact that
∑K

k=1 αk = 1, it holds that

w̄t,i +
∑K

k=1 αkζ‖h(k)
t+τ‖h̄

(k)
i = w̄des

t+τ,i. Substituting this into
(B.1) yields

w̄t+τ,i − w̄des
t+τ,i =

K∑
k=1

αkζ‖h(k)
t+τ‖ε̄

(k)
i . (B.2)

As discussed in Appendix A, {ε̄(k)i } are zero-mean, i.i.d (over

both i and k), and independent of h(k)
t+τ . Consequently, by the

law of total expectation

E
{∥∥wt+τ −wdes

t+τ

∥∥2} = E

⎧⎨
⎩
∥∥∥∥∥

M∑
i=1

K∑
k=1

αkζ‖h(k)
t+τ‖ε̄

(k)
i

∥∥∥∥∥
2
⎫⎬
⎭

(a)
= E

⎧⎨
⎩E

⎧⎨
⎩
∥∥∥∥∥

M∑
i=1

K∑
k=1

αkζ‖h(k)
t+τ‖ε̄

(k)
i

∥∥∥∥∥
2 ∣∣∣h(k)

t+τ

⎫⎬
⎭
⎫⎬
⎭

(b)
= E

{
M

K∑
k=1

α2
kζ

2σ̄2
L‖h

(k)
t+τ‖2

}
. (B.3)

where (a) follows from the law of total expectation, and (b)
holds by (10).

Next, we note that by (9), the model update h(k)
t+τ = w̃

(k)
t+τ −

w̃
(k)
t can be written as the sum of the stochastic gradients

h
(k)
t+τ =

∑t+τ−1
t′=t ηt′∇F

i
(k)

t′
k (w̃

(k)
t′ ). Since the indices {i(k)t } are

i.i.d. over t and k, applying the law of total expectation to (B.3)
yields

E
{∥∥wt+τ −wdes

t+τ

∥∥2}

=E

{
Mζ2σ̄2

L

K∑
k=1

α2
kE
{
‖h(k)

t+τ‖2
∣∣∣{w̃(k)

t′ }
}}

=E

⎧⎨
⎩Mζ2σ̄2

L

K∑
k=1

α2
kE

⎧⎨
⎩
∥∥∥∥∥
t+τ−1∑
t′=t

ηt′∇F
i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥∥
2∣∣∣{w̃(k)

t′ }

⎫⎬
⎭
⎫⎬
⎭

(a)

≤ E

{
Mζ2σ̄2

L

K∑
k=1

α2
kτ

t+τ−1∑
t′=t

η2t′E

{∥∥∥∥∇F i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥
2∣∣∣{w̃(k)

t′ }
}}

(b)

≤Mζ2σ̄2
Lτ

(
t+τ−1∑
t′=t

η2t′

)
K∑

k=1

α2
kξ

2
k, (B.4)

where in (a) we used the inequality ‖
∑t+1

t′=t+1−τ rt‖2 ≤
τ
∑t+1

t′=t+1−τ ‖rt‖2, which holds for any multivariate sequence
{rt}; and (b) holds since the uniform distribution of the random
index ik implies that the expected value of the stochastic

gradient is the full gradient, i.e., E{∇F i
(k)
t

k (w)} = ∇Fk(w),

and consequently, E{
∥∥∇F i

(k)
t

k (w̃
(k)
t )−∇Fk(w̃

(k)
t )
∥∥2} ≤

E{
∥∥∇F i

(k)
t

k (w̃
(k)
t )
∥∥2} ≤ ξ2k by AS1. Equation (B.4) proves the

theorem. �

C. Proof of Theorem 3

Our proof follows a similar outline to that used in [25], [52],
with the introduction of additional arguments for handling the
quantization constraints. The unique characteristics of the quan-
tization error which arise from the dithered strategy presented
in Section III allow us to rigorously incorporate its contribution
into the overall flow of the proof.

1) Recursive Bound on Weights Error: From [24] it follows
that the effect of substractive dithered quantization can be
modeled as additive noise, independent of the quantized value,
whose distribution depends only on the properties of the lattice.
In particular, it holds that the distortion induced in quantizing
the model update h

(k)
t , denoted ε

(k)
t , is an m× 1 zero-mean

additive noise vector independent of h(k)
tτ , and thus also of w̃(k)

t

and i
(k)
t . Consequently, by defining the sequence e

(k)
t such

that e(k)t = ε
(k)
t if t is an integer multiple of τ and e

(k)
t = 0

otherwise, it follows that (9) can be written as

w̃
(k)
t+1 =⎧⎪⎨

⎪⎩
w̃

(k)
t −ηt∇F i

(k)
t

k

(
w̃

(k)
t )
)
+e

(k)
t+1 t+1 /∈Tτ ,∑K

k′=1αk′

(
w̃

(k′)
t −ηt∇F i

(k′)
t

k

(
w̃

(k′)
t

)
+e

(k′)
t+1

)
t+1∈Tτ .

(C.1)
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The equivalent model update representation (C.1) allows us to
model the effect of subtractive dithered quantization on the over-
all FL procedure as additional noise corrupting the computation
of the stochastic gradients. Building upon this representation,
we now follow the strategy proposed in [52] and adapted to
heterogeneous data in [25]. This is achieved by defining a virtual
sequence {vt} from {w̃(k)

t } which can be shown to behave
almost like mini-batch SGD with batch size τ , while being
within a bounded distance of the FL model weights {w̃(k)

t },
by properly setting the step size ηt. In particular, we define the
virtual sequence {vt} via

vt �
K∑

k=1

αkw̃
(k)
t , (C.2)

which coincides with w̃
(k)
t when t is an integer multiple of τ .

Further define the averaged noisy stochastic gradients and the
averaged full gradients as

g̃t �
K∑

k=1

αk

(
∇F i

(k)
t

k

(
w̃

(k)
t

)
− 1

ηt
e
(k)
t+1

)
, (C.3a)

gt �
K∑

k=1

αk∇Fk

(
w̃

(k)
t

)
, (C.3b)

respectively. Note that since the quantization error is zero-mean
and the sample indexes {i(k)t } are independent and uniformly
distributed, it holds that E{g̃t} = gt. Additionally, the virtual
sequence (C.2) satisfies vt+1 = vt − ηtg̃t.

The resulting model is thus equivalent to that used in [25,
App. A], and as a result, by assumptions AS2–AS3, it follows
from [25, Lemma 1] that if ηt ≤ 1

4ρs
then

E
{
‖vt+1−wo‖2

}
≤ (1−ηtρc)E

{
‖vt−wo‖2

}
+6ρsη

2
tψ

+ η2tE
{
‖g̃t−gt‖2

}
+2E

{
K∑

k=1

αk

∥∥∥vt−w̃
(k)
t

∥∥∥2
}
. (C.4)

Expression (C.4) bounds the expected distance between the
virtual sequence {vt} and the optimal weights wo in a recursive
manner. We further bound the summands in (C.4), using the
following lemmas:

Lemma C.1: If the step size ηt is non-increasing and satis-
fies ηt ≤ 2ηt+τ for each t ≥ 0, then, when assumption AS1 is
satisfied, it holds that

η2tE
{
‖g̃t − gt‖2

}
≤
(
1 + 4Mζ2σ̄2

Lτ
2
)
η2t

K∑
k=1

α2
kξ

2
k. (C.5)

Lemma C.2: If the step size ηt is non-increasing and satisfies
ηt ≤ 2ηt+τ for each t ≥ 0, then, by AS1, it holds that

E

{
K∑

k=1

αk

∥∥∥vt − w̃
(k)
t

∥∥∥2
}

≤ 4(τ − 1)2η2t

K∑
k=1

αkξ
2
k. (C.6)

Next, we define δt � E{‖vt −wo‖2}. When t ∈ Tτ , the term
δt represents the �2 norm of the error in the weights of the global
model. Using Lemmas C.1-C.2, while substituting (C.6) and

(C.5) into (C.4), we obtain the following recursive relationship
on the weights error:

δt+1 ≤ (1− ηtρc)δt + η2t b, (C.7)

where

b �
(
1 + 4Mζ2σ̄2

Lτ
2
) K∑
k=1

α2
kξ

2
k + 6ρsψ + 8(τ − 1)2

K∑
k=1

αkξ
2
k.

The relationship in (C.7) is used in the sequel to prove the FL
convergence bound stated in Theorem 3.

2) FL Convergence Bound: Here, we prove Theorem 3 based
on the recursive relationship in (C.7). This is achieved by prop-
erly setting the step-size and the FL systems parameters in (C.7)
to bound δt = E{‖vt −wo‖2}, and combining the resulting
bound with the strong convexity of the objective AS2 to prove
(13).

In particular, we set the step size ηt to take the form ηt =
β

t+γ

for some β > 0 and γ ≥ max(4ρsβ, τ), for which ηt ≤ 1
4ρs

and
ηt ≤ 2ηt+τ , implying that (C.4) and (C.6) hold.

Under such settings, we show that there exists a finite ν
such that δt ≤ ν

t+γ for all integer l ≥ 0. We prove this by
induction, noting that setting ν ≥ γδ0 guarantees that it holds
for t = 0. Consequently, we next show that if δt ≤ ν

t+γ , then
δt+1 ≤ ν

t+1+γ . It follows from (C.9) that

δt+1 ≤
(
1− β

t+ γ
ρc

)
ν

t+ γ
+

(
β

t+ γ

)2

b

=
1

t+ τ

((
1− β

t+ γ
ρc

)
ν +

β2

t+ γ
b

)
. (C.8)

Consequently, δt+1 ≤ ν
t+1+γ holds when

1

t+ τ

((
1− β

t+ γ
ρc

)
ν +

β2

t+ γ
b

)
≤ ν

t+ 1 + γ
,

or, equivalently,(
1− β

t+ γ
ρc

)
ν +

β2

t+ γ
b ≤ t+ γ

t+ 1 + γ
ν. (C.9)

By setting ν ≥ 1+β2b
βρc

, the left hand side of (C.9) satisfies

(
1− β

t+γ
ρc

)
ν+

β2

t+γ
b=

t−1+γ

t+γ
ν+

(
1−βρc
t+γ

ν+
β2

t+γ
b

)

=
t− 1 + γ

t+ γ
ν+

1

t+ γ

(
(1− βρc) ν + β2b

)
(a)

≤ t− 1 + γ

t+ γ
ν, (C.10)

where (a) holds since ν ≥ 1+β2b
βρc

. As the right hand side of
(C.10) is not larger than that of (C.9), it follows that (C.9) holds
for the current setting, which in turn proves that δt+1 ≤ ν

t+1+γ .
Finally, the smoothness of the objective AS2 implies that

E{F (wt)} − F (wo) ≤ ρs
2
δt ≤

ρsν

2(t+ γ)
, (C.11)
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which, in light of the above setting, holds for ν ≥
max( 1+β2b

βρc
, γδ0), γ ≥ max(τ, 4βρs), and β > 0. In particu-

lar, setting β = τ
ρc

results in γ ≥ τ max(1, 4ρs/ρc) and ν ≥
max(ρ

2
c+τ2b
τρc

, γδ0), which, when substituted into (C.11), proves
(13). �

3) Deferred Proofs: Here we detail the proofs of the inter-
mediate lemmas used for obtaining the recursion (C.7).

a) Proof of Lemma C.1: To prove (C.5), we note that since
the quantization noise and the stochastic gradients are mutually
independent, it follows from the definition of the gradient vectors
(C.3) that

η2tE
{
‖g̃t − gt‖2

}
=

K∑
k=1

α2
kE

{∥∥∥e(k)t+1

∥∥∥2}

+ η2t

K∑
k=1

α2
kE

{∥∥∥∥∇F i
(k)
t

k

(
w̃

(k)
t

)
−∇Fk

(
w̃

(k)
t

)∥∥∥∥
2
}

(a)

≤
K∑

k=1

α2
kE

{∥∥∥e(k)t+1

∥∥∥2}+ η2t

K∑
k=1

α2
kξ

2
k, (C.12)

where (a) holds since the uniform distribution of the random
index ik implies that the expected value of the stochastic

gradient is the full gradient, i.e., E{∇F i
(k)
t

k (w)} = ∇Fk(w),

and consequently, E{
∥∥∇F i

(k)
t

k (w̃
(k)
t )−∇Fk(w̃

(k)
t )
∥∥2} ≤

E{
∥∥∇F i

(k)
t

k (w̃
(k)
t )
∥∥2} ≤ ξ2k by AS1. Furthermore, the definition

of e
(k)
t+1 implies that E{

∥∥e(k)t+1

∥∥2} = 0 for t+ 1 /∈ T , while

for t+ 1 ∈ T it holds that E{
∥∥e(k)t+1

∥∥2} = E{
∥∥ε(k)t+1

∥∥2} =
Mσ2

L(k)
t+1

. Now, similarly to the derivation in (B.4), the

quantization error induced by UVeQFed satisfies

E
{∥∥e(k)t+1

∥∥2}

≤Mζ2σ̄2
LE

⎧⎨
⎩
∥∥∥∥∥

t+1∑
t′=t+1−τ

ηt′∇F
i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥∥
2
⎫⎬
⎭

(a)

≤ Mζ2σ̄2
Lτ

t+1∑
t′=t+1−τ

η2t′E

{∥∥∥∥∇F i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥
2
}

(b)

≤ Mζ2σ̄2
Lτ

2η2t+1−τ ξ
2
k

(c)

≤ 4Mζ2σ̄2
Lτ

2η2t ξ
2
k, (C.13)

where in (a) we used the inequality ‖
∑′

t =

t+ 1− τ t+1rt‖2 ≤ τ
∑t+1

t′=t+1−τ ‖rt‖2, which holds for any
multivariate sequence {rt}; (b) is obtained from assumption
AS1; and (c) follows since ηt+1−τ ≤ 2ηt+1 ≤ 2ηt. Substituting
(C.13) into (C.12) proves the lemma. �

b) Proof of Lemma C.2. Note that for t0 = �t/τ�τ , which is
an integer multiple of τ , it holds that vt0 = w̃

(k)
t0

. Since (C.6)
trivially holds for t = t0, we henceforth focus on the case where
t > t0. We now write

E

{
K∑

k=1

αk

∥∥∥w̃(k)
t −vt

∥∥∥2
}

= E

{
K∑

k=1

αk

∥∥∥w̃(k)
t −w̃

(k)
t0

−(vt−vt0)
∥∥∥2
}

(a)

≤ E

{
K∑

k=1

αk

∥∥∥w̃(k)
t −w̃

(k)
t0

∥∥∥2
}

=
K∑

k=1

αkE

{∥∥∥w̃(k)
t −w̃

(k)
t0

∥∥∥2} , (C.14)

where in (a) we used the fact that for every set {r(k)}, one can
define a random vector r such thatPr(r = r(k)) = αk, and thus

K∑
k=1

αk

∥∥∥r(k) − K∑
l=1

αlr
(l)
∥∥∥2 = E{‖r − E{r}‖2}

≤ E{‖r‖2} =
K∑

k=1

αk‖r(k)‖2.

Next, we recall that et′ = 0 for each t′ = t0 + 1, . . . , t. Con-
sequently, similarly to the derivation in (C.13),

E

{∥∥∥w̃(k)
t − w̃

(k)
t0

∥∥∥2} = E

⎧⎨
⎩
∥∥∥∥∥

t−1∑
t′=t0

ηt′∇F
i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥∥
2
⎫⎬
⎭

(a)

≤ (τ − 1)
t−1∑
t′=t0

η2t′E

{∥∥∥∥∇F i
(k)

t′
k

(
w̃

(k)
t′

)∥∥∥∥
2
}

(b)

≤ (τ − 1)2η2t0ξ
2
k

(c)

≤ 4(τ − 1)2η2t ξ
2
k, (C.15)

where in (a) we used the inequality ‖
∑t−1

t′=t0
rt‖2 ≤ (t−

1− t0)
∑t−1

t′=t0
‖rt‖2 ≤ (τ − 1)

∑t−1
t′=t0

‖rt‖2, which holds for
any multivariate sequence {rt}; (b) is obtained from assump-
tion AS1; and (c) follows since ηt0 ≤ ηt−τ ≤ 2ηt. Substituting
(C.15) into (C.14) proves the lemma. �
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